Лаборатории

 

Лаборатория теоретических и экспериментальных исследований высокобарического минералообразования (452)

 

1

 Заведующий лабораторией

Доктор геолого-минералогических наук, Корсаков Андрей Викторович 

Научный руководитель базового проекта

Доктор геолого-минералогических наук, Корсаков Андрей Викторович 

Кадровый состав лаборатории

Состав лаборатории насчитывает 12 сотрудников, в том числе: 1 доктор геолого-минералогических наук, 4 кандидатов наук, а также квалифицированных инженеров, техников и лаборантов, имеющих большой опыт исследований высокобарических пород и минералов.

 Контакты

Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript. 

Методы и методики

     В своих исследованиях коллектив лаборатории активно использует большинство современных аналитических методик, а также имеет богатый опыт проведения полевых работ в различных климатических зонах от Казахстана, до полярных широт Российской Федерации.

Инфраструктура

 

Важнейшие достижения за 5 лет

 

Исследования, проводимые в лаборатории, позволили реконструировать состав метасоматических агентов, преобразующих породы литосферной мантии Сибирского кратона. В наиболее глубинных ксенолитах деформированных перидотитов, залегающих в основании континентальной литосферы, диагностированы продукты раскристаллизации высокобарического щелочно-карбонатитового расплава, метасоматизировавшего эти породы. Впервые для природных образцов были идентифицированы вторичные включения расплава в породообразующих минералах этих ксенолитов. Дочерние минеральные фазы в этих включениях представлены разнообразными карбонатами (Na-K-Ca-, Na-Ca-, Na-Mg-, Ca-Mg- and Ca-), K-Na- and Na-сульфатами, Na-, K-, Mg-хлоридами, K-Fe-Ni-, K-Fe-, Fe-Ni- and Fe-сульфидами, фосфатами, оксидами и силикатами. Среди дочерних фаз во включениях установлен арагонит (высокобарическая полиморфная модификация CaCO3) однозначно свидетельствующий о мантийном высокобарическом происхождении включений. По данным КР-картирования карбонаты во включениях составляют не менее 64 объемных %. Таким образом, эти включения являются щелочно-карбонатными жидкостями и впервые на природном объекте зафиксировано существование таких жидкостей в макромасштабе на границе астеносферы с литосферой. Считается, что щелочно-карбонатитовые расплавы так же являются самой эффективной средой для формирования алмазов при мантийных условиях [Pal'yanov et al., 1999]. Сходство составов, изученных щелочно-карбонатитовых расплавных включений в оливине деформилованных перидотитов и составов микровключений из волокнистых алмазов мира, позволяет предполагать, что просачивание примитивных кимберлитовых жидкостей через мантийные породы может приводить к формированию по крайней мере некоторой части алмазов в мантии.

Продукты раскристаллизации расплавов - полифазные включения были идентифицированы в порфиробластах породообразующих минералов из метаморфических пород участка Барчинский (Кокчетавский массив, Северный Казахстан). Эти включения состоят из минеральных ассоциаций, включающих породообразующие и акцессорные минералы, которые кристаллизуются во время эксгумации. После гомогенизации этих включений были определены два типа стёкол. Один тип присутствует в гранатовых порфиробластах в меланократовой части одного из образцов и представляет собой высокобарический расплав, образованный вблизи условий пика метаморфизма >4.5 ГПа и 1000 ° С. Эти включения характеризуются высокой концентрацией легких редкоземельных элементов (LREE), Th и U. Экстракция этих расплавов привела к истощению Кокчетавских гнейсов в отношении этих элементов. Измеренные коэффициенты распределения крупных ионных литофильных элементов (LILE) между включениями фенгита и расплавных включений составляют DRb = 1.9-2.5, DBa=1.1-1.6 и DCs=0.6-0.8. Эти коэффициенты показывают, что при частичном плавлении коровых пород в присутствии фенгита происходит незначительное их обеднение в отношении этих элементов. Концентрация Nb в расплавах (27 ppm) примерно вдвое больше, чем в рестите (15 ppm), что указывает на несовместимое поведение Nb при высокобарическом анатексисе, несмотря на наличие остаточного фенгита и акцессорного рутила. Второй тип включения был идентифицирован в порфиробластах граната из лейкократической части этого же образца и представляет собой расплав, образовавшийся во время эксгумации при 650-750 ° С и давлениях земной коры. Эти включения характеризуются низкими концентрациями LREE и Nb, но высоким содержанием U. Составы высокобарических расплавов характеризуются умеренным обогащением в LILE, без истощения в отношении Nb, и экстремально высоким обогащением в отношении LREE и Th, и заметно отличаются от геохимических характеристик островодужных базальтов. Следовательно, можно предполагать, что подобные расплавы не участвуют в образовании островодужной коры. Состав исследованных нами расплавных высокобарических включений аналогичен составу расплавных включений в минералах из ксенолитов земной коры, выносимых щелочными базальтоидами на Памире [Мадюков и др., 2011], а также составам некоторых шошонитов из Тибета [Campbell et al, 2014; Wang et al., 2016]. Образование шошонитовых щелочных магматических пород, распространенных в зонах коллизии, может быть связано с анатексисом Кокчетавского типа пород континентальной коры [Stepanov и др., 2017].

Информационная справка

 Лаборатория была выделена в апреле 2017 года из состава лаборатории 451. На момент выделения основными направления работы лаборатории были теоретические и экспериментальные исследования минералообразования при высоких температурах и давлениях. В 2018 году из коллектива лаборатории была создана лаборатория 454 (Фазовых превращений и диаграмм состояния вещества Земли при высоких давлениях). В настоящее время в лаборатории активно развиваются следующие направления (i) высокобарическое минералообразование на примере глубоко субдуцированных пород континетальной коры, (ii) высокобарическое минералообразование в условиях нижней части земной коры и верхней мантии, (iii) численное моделирование условий образования выосокбарических ассоциаций на основе упруго-пластических равновесий в системах "включение - минерал-хозяин". Одной из приоритетных задач является выявление ключевых карбонатсодержащих минеральных ассоциаций, контролирующие транспорт углерода, радиоактивных и щелочных элементов в мантию Земли в ходе субдукции корового материала, оценка роли и влияния субдукционных процессов на эволюцию вещества литосферной мантии.

Список основных проектов и публикаций