Лаборатория рудоносности щелочного магматизма (215)
Заведующий лабораторией
Доктор геолого-минералогических наук Дорошкевич Анна Геннадьевна
Научный руководитель базового проекта
Доктор геолого-минералогических наук Дорошкевич Анна Геннадьевна
Кадровый состав лаборатории
Состав лаборатории насчитывает 16 сотрудников, имеющих большой опыт результативных исследований, в том числе: 1 доктор геолого-минералогических наук, 6 кандидатов наук, а также квалифицированных инженеров и лаборантов.
Контакты
Доктор геолого-минералогических наук Дорошкевич Анна Геннадьевна
телефон +7 (383) 373-05-26 доб. 741, E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
630090, г. Новосибирск, пр. Акад. Коптюга 3, ИГМ СО РАН
Лаборатория рудоносности щелочного магматизма была создана в 2017 году с целью изучения процессов рудообразования щелочных комплексов. Одной из главных задач является определение главных петрологических, геохимических и физико-химических факторов, определяющих высокую рудоносность щелочных комплексов. Результатом деятельности лаборатории является определение условий генерации щелочных магм, особенностей их состава и мантийных субстратов; характера эволюции первичных расплавов и флюидного режима; механизмов концентрирования, распределения и перераспределения рудных элементов.
Объектами исследования являются щелочные комплексы юга Сибирского кратона и Центрально-Азиатского складчатого пояса. В их число входят: (1) Позднемезозойские карбонатитовые комплексы Центрально-Азиатского складчатого пояса: Карасугская группа (Тува), Западно-Забайкальские комплексы (Южное, Халюта, Аршан и др.), Мушугай-Худук (Ю. Монголия). (2) Палеопротерозойские магнезиокарбонатиты Алданского щита: Селигдар, Муосталаах, Бирикеен, Усть-Чульман и др. (3) Неопротерозойские и мезозойские щелочные карбонатитовые комплексы юга Сибирского кратона: Белая Зима, Арбарастах, Татарское, Чуктуконское и др. (3) Мезозойские щелочные золотоносные комплексы Алданского щита: Верхнеамгинский, Тыркандинский (Джелтулинский массив) и Центрально-Алданский (Рябиновое, Ыллымах, Самолазовское, Подголечное и др. объекты) рудные районы.
Основными объектами экспериментального моделирования являются флюиды смешанного водно-солевого состава H2O-Na2SO4-NaCl-CO2 в присутствии Fe, Cu, Mo, Au в качестве рудных компонентов, системы CaCO3+CaF2+Na2CO3±Ca3(PO4)2 с примесями РЗЭ и высокозарядных компонентов. Для термодинамического моделирования применяется программный комплекс HCh и база термодинамических данных UNITHERM.
Коллектив лаборатории составлен из трёх дополняющих друг друга исследовательских групп, занимающиеся следующими направлениями:
петрологическое изучение щелочных комплексов
Результатами работы группы является: характеристика источников вещества пород и руд, определение возрастных рубежей и механизмов формирования (ликвация, фракционная кристаллизация, гидротермальные преобразования) щелочных комплексов.
рудоносность щелочных комплексов
Деятельность группы направлена на определение физико-химических условий формирования руд и закономерностей концентрирования рудных компонентов в типовых месторождениях, связанных со щелочными комплексами.
экспериментальные исследования
В рамках данного направления проводится экспериментальное и расчетное моделирование гидротермальных процессов в поликомпонентных системах, приближенных по своим составам к природным гидротермальным флюидам, генетически связанным с щелочным магматизмом.
Проводимые комплексные исследования позволяют получать новые данные по: условиям генерации щелочных магм, особенностям их состава и мантийных субстратов; характеру эволюции первичных расплавов, проявлению карбонатно-силикатной несмесимости или фракционной кристаллизации; флюидному режиму и условиям генерации флюидов на разных стадиях эволюции исследуемых систем; механизмам концентрирования, распределения и перераспределения рудных элементов. Получаемые в рамках исследований лаборатории главные петрологические, геохимические и физико-химические факторы, определяющие высокую рудоносность щелочных комплексов являются важными при определении технологических свойств руд, которые необходимо учитывать при разработке схем извлечения рудных компонентов, для поисков и оценки рудных месторождений
Для определения петрогенезиса и параметров рудообразования щелочных комплексов используются следующие методы исследования:
(1) геохронологические – датирование пород и руд U-Pb (SНRIMP-II, LA-ICP-MS) и Ar-Ar методами. Исследования проводятся на базе Аналитического центра коллективного пользования многоэлементных и изотопных исследований ИГМ СО РАН (АЦКП МИИ ИГМ СО РАН, г. Новосибирск): Ar-Ar и LA-ICP-MS методы; и ВСЕГЕИ (г. Санкт-Петербург): SHRIMP-II.
(2) минералого-геохимические – петрографическое и минералогическое исследования пород (с использованием электронного микроскопа, микрозонда, Рамановской спектроскопии и LA ICP-MS анализа) с определением и редкоэлементной характеристикой основных и второстепенных минералов-концентраторов редких элементов, а также построением карт распределения и перераспределения редких элементов в породах, петрохимическое и геохимическое изучение состава пород (РФА и ICP-MS). Исследования проводятся на базе АЦКП МИИ ИГМ СО РАН.
(3) изотопно-геохимические – изучение состава радиогенных (Sr, Nd, Pb) и стабильных (δ18О – в силикатах, оксидах и фосфатах, δ18О и δ13С – в карбонатах) изотопов в минералах и породах для характеристики источников, участвовавших в их формировании. Определение изотопного состава О в оксидах, силикатах и фосфатах проводятся на базе АЦКП МИИ ИГМ СО РАН; изучение состава радиогенных изотопов (Pb, Sr и Nd) – на базе АЦКП МИИ ИГМ СО РАН, в ИГГД РАН и ВСЕГЕИ (г. Санкт-Петербург)
(4) термобарогеохимические – исследования расплавных и флюидных включений с использованием методов термо-криометрии (установки Linkam THMSG-600, термокамера TC-1500); изучение состава флюидной и дочерних кристаллических фаз включений с использованием Рамановской спектроскопии (спектрометр LabRam HR800 Horiba Jobin Yvon). Изучение состава солевых дочерних фаз вскрытых флюидных включений и прогретых стекол расплавных включений – методом сканирующей электронной микроскопии, микрорентгеноспектральным анализом. Количественные концентрации основных петрогенных, а также рудных элементов определяются методом LA-ICP-MS (установка XSERIES2 ICP-MS с устройством лазерного пробоотбора NewWaveResearch, Nd:YAG). Термобарогеохимические исследования проводятся на базе АЦКП МИИ ИГМ СО РАН.
(5) экспериментальные и термодинамические – экспериментальное и численное моделирование гидротермальных процессов в поликомпонентных системах (с участием рудных элементов: Au, РЗЭ, Nb), приближенных по своим составам к природным солевым расплавам и гидротермальным флюидам, связанных со щелочным магматическими породами. Используются титановые автоклавы разного объема, установка экзоклавного типа с вакуумированием, вводом жидких и газообразных компонентов, и установка быстрой закалки с холодным затвором. Для термодинамического моделирования применяется программный комплекс HCh и база термодинамических данных UNITHERM. Продукты экспериментов анализируются с помощью сканирующей электронной микроскопии, микрорентгеноспектральным анализом, LA ICP-MS, методами оптической спектрофотомерии и атомной адсорбции. Исследования проводятся на базе АЦКП МИИ ИГМ СО РАН.
2020 год
Проведены геохронологические, петрологические, изотопно-геохимические и термобарогеохимические исследования щелочных пород комплекса Мушугай-Худук (Монголия). Определено, что формирование пород происходило в интервале 145-133 млн лет. Установлено, что силикатные породы комплекса сформировались в результате кристаллизационной дифференциации исходного меланефелинитового расплава с последующим образованием магнетит-апатитовых пород в результате силикатно-солевой несмесимости. Геохимические и изотопные характеристики пород указывают на то, что родительские расплавы были сформированы из неоднородного источника литосферной мантии, который был метасоматизирован флюидами, извлечёнными из смеси субдуцированной океанической коры и ее осадочных компонентов. Флюоритовая минерализация, характеризующаяся высокими содержаниями редкоземельных элементов, начала формироваться непосредственно за счет высокотемпературных флюидов, отделившихся от щелочной магмы. Развитие флюоритовой минерализации сопровождалось изменением анионного состава рудоносного флюида с сульфатного на карбонатно-хлоридный, а также снижением температуры минералообразования.
Щелочные породы Джелтулинского массива (Алданский щит) сформированы в результате процесса кристаллизационной дифференциации из единой родительской лампроитовой магмы, а образование гранитов связано с процессом корового анатексиса. Возраст образования золоторудных метасоматитов (121.4±2.3 млн. лет) синхронен времени формирования меланократовых сиенитов (120.2±1.7 млн. лет (по полевому шпату) и 117.8±3.8 млн. лет (по биотиту)) Джелтулинского массива. Образование сульфидной и золоторудной минерализации связано с деятельностью гидротермальных концентрированных (32-44 мас.%) Na±H2O-CO2-хлоридно-карбонатных флюидных растворов при минимальных температурах образования - порядка 350-390°С, захваченных при давлении 1.1-1.2 кбар.
В формировании щелочных пород Ыллымахского массива (Алданский щит) существенный вклад внесла ассимиляция корового материала. Щелочные породы Джелтулинского и Ыллымахского массивов были сформированы из древнего мантийного источника, обогащение которого относительно деплетированной мантии произошло в палеопротерозое.
2021 год
Получены значения возраста (U-Pb SHRIMP II и LA ICP-MS и Ar-Ar методы) по щелочным породам массивов р. Хани. Полученные значения возраста по ядрам и каймам (U-Pb SHRIMP II метод) цирконов из различных типов пород ложатся в интервал 2.69-2.68 и 2.01 млрд. лет, соответственно. Отсутствие признаков метаморфического преобразования пород, с учетом проявления высокоградного регионального метаморфизма в исследуемом районе в период 2.6-2.4 и 2.04-1.92 млрд. лет, свидетельствуют о ксеногенной природе цирконов. Определенные значения возраста в интервале 1.88-1.81 млрд. лет для титанита (U-Pb SHRIMP II метод) и флогопита (Ar-Ar метод), сформированных в магматическую стадию, характеризуют время кристаллизации пород. Определенные значения возраста пироксенитов и карбонат-полевошпатовых пород р. Хани совпадают по времени с позднепалеопротерозойскими (1.9–1.8 млд лет) пост-коллизионными магматическими процессами, которые сопровождались образованием магнезиокарбонатитов и дайковых роев основных пород Алданского щита, вулканоплутонического пояса Байкальского поднятия и расслоенных ультрамафит-мафитовых интрузий в южной части Сибири.
Проведены минералогические, изотопно-геохимические и термобарогеохимические исследования ультраосновных лампрофиров Чадобецкого щелочного карбонатитового комплекса. Определено, что формирование пород происходило 256 - 240 млн лет назад из неоднородного изотопно умеренно-деплетированного, обогащенного флогопитом и карбонатами, гранат-содержащего мантийного источника. Их минералогические характеристики соответствуют породам, кристаллизовавшимся из первичных расплавов (высоко-Mg оливин, Cr-шпинель) и содержащих ксеногенные оливин и шпинель, захваченные при подъеме расплавов из вмещающего мантийного лерцолита. Эволюция составов шпинели и оливина соответствуют процессу их кристаллизационной дифференциации совместно с флогопитом из родоначальной высокомагнезиальной высококалиевой магмы при 1300-1200°С и fO2 близ буфера QFM.
Термодинамически рассчитано, что распределение РЗЭ+Y по формам в слабокислых и слабощелочных близнейтральных окисленных богатых сульфатной серой флюидах большей частью зависит от кислотно-щелочной обстановки минералообразования, в меньшей степени, от Т и Р. Большое значение имеет увеличение номера лантаноида: для тяжелых РЗЭ усиливается роль фторидных комплексов и ослабляется вклад сульфатных комплексов. В слабокислых и близнейтральных флюидах для всех лантаноидов ведущими оказываются бисульфатные и моносульфатные комплексы.
2022 год
Изучены дайки айлликитов карбонатитового массива Арбарастах (Алданский щит). Возраст айлликита (631 ± 8,5 млн лет) находится в интервале образования пород массива, периода интенсивного внутриплитного рифтогенного щелочного магматизма южного края Сибирского кратона, связанного с процессами раскола суперконтитнта Родиния. Оливин представлен ксеногенным из мантийных перидотитов, антикристами, сформированными при мантийном метасоматозе и минералом, кристаллизующимся из айлликитового расплава. Температуры ранней стадии кристаллизации - 1169-1296°C и fO2 +0,4 ….+1,0 FMQ, поздней - 700–720°С. Обогащенность айлликитов магматическими карбонатами и наличие последних в расплавных включениях в минералах айлликитов, особенности состава минералов, их близкий с карбонатитами возраст свидетельствуют в пользу генетического родства между айлликитами и породами массива Арбарастах.
Рудоносные Zr-Nb минеральные ассоциации фоскоритов и карбонатитов массива Арбарастах представлены цирконом, цирконолитом, перовскитом, пирохлором и бадделеитом. Ba-Sr-REE гидротермальная минерализация состоит из анкилита-(Ce), бастнезита-(Ce) и бурбанкита, а также барито-целестина, стронцианита и баритокальцита. Исследования флюидных включений показали, что силикатно-фосфатно-карбонатные рассол-расплавы (с концентрацией солей более 85 мас.%) участвовали в формировании рудоносной Zr-Nb-минерализации карбонатитов при температурах более 540–575 °С; глубина зарождения таких ортомагматических флюидов оценена в 2,9–3,3 ГПа. Солевые (порядка 60–70 мас.%) флюиды Na–Ca–Mg–F–карбонатного состава ответственны за гидротермальную Ba–Sr–REE минерализацию карбонатитов, при температурах генерации выше 300–350 °C. Рудоносные Fe–P–Nb фоскориты также подверглись воздействию рудообразующих Ba–Sr–REE ортомагматических солевых (50-70 мас.%) растворов Ca–Sr–карбонатного и REE–гидрокарбонатного составов, сформированных в температурных интервалах более 480-500 и 430–450 °С, соответственно.
Экспериментально определено, что высоконатровые карбонатитовые расплавы способны разлагать (растворять) и преобразовывать более ранние тугоплавкие силикатные фазы, ремобилизировать РЗЭ и осаждать их в силикатной части системы в виде бритолита. При повышенной активности F и Cl, РЗЭ могут осаждаться на апатите, а при активности SO3 – переноситься и отлагаться в виде фосфатов РЗЭ в ассоциации с сульфатами. При воздействии на монацит+кальцит карбонат-бикарбонатных охлаждающихся от 500 до 100°С флюидов, карбонат- бикарбонатные флюиды не приводят к выносу РЗЭ, а способствуют их накоплению в виде осаждающихся фторокарбонатов.
2023 год
Впервые для рудоносных F-Ba-REE пород Центрального Таймыра подтвержден их глубинный магматический генезис, определен химический состав рудных минералов, установлен возраст пород и связь с глобальными процессами тектоно-магматической активности на Земле. Исследования показали, что рудоносные породы Таймыра относятся к специфичным магматическим породам – карбонатитам, которые представляют особенный геолого-промышленный тип редкоземельных карбонатитов складчатых поясов образования. Рудные минералы представлены флюоритом (F), баритом (Ba), фосфатами и карбонатами редких земель (REE). Возраст пород коррелирует с образованием рудных магматических объектов Сибирской крупной изверженной провинции.
В серии экспериментов при 500°С и 700°С и 1 кбар по метасоматическому влиянию внедряющейся карбонатитовой магмы на вмещающие породы (гнейс, гранит) образуется метасоматическая зональность. Образованные в ходе экспериментов минеральные ассоциации распространены в природных ореолах фенитизации, а также в измененных ксенолитах в щелочных породах. Воздействие на монацит+кальцит+сульфат (барит и целестин) слабокислого охлаждающегося от 500 до 100°С флюида способствуют накоплению РЗЭ во флюиде по сравнению со слабощелочным флюидом. В слабокислых условиях равновесная минеральная ассоциация представлена редкоземельным флюоритом, монацитом, редкоземельным фторапатитом и Sr-содержащим баритом, а в слабощелочном - монацитом, РЗЭ-флюоритом, РЗЭ-фторапатитом, кальцитом, Sr-содержащим баритом и стронцианитом. В равновесном слабощелочном флюиде вплоть до 200°C для всех РЗЭ превалирующими оказываются гидроксокомплексы, к 100°C на первое место выходят фторокомплексы.
В результате комплексных исследований пород щелочного массива Бурпала, входящего в состав позднепалеозойской Северо-Байкальской щелочной провинции, была установлена сингенетичность магм, из которых кристаллизовались нефелиновые, щелочные и кварцевые сиениты. При этом, наиболее вероятным фактором, определившим генетическую связь нефелиновых и кварцевых сиенитов в составе массива являлась ассимиляция верхнекорового сиалического материала (для кварцевых сиенитов). Изотопно- геохимические характеристики пород Бурпалинского массива указывают на преобладание вещества метасоматизированной литосферной мантии в источнике. Рудная минерализация в рудоносных нефелиновых и щелочных сиенитах зачатую имеет интерстициальный характер выделения, что, вероятно, связано с совмещением процессов фракционной кристаллизации и реактивного порового потока, вызванного реакциями кристалл-расплав при достаточно длительной истории становления массива. Рудоносность в метасоматитах (фениты и альбит-эгириновые метасоматиты) связана с воздействием щелочных флюидов, обогащенных F, Be, Sr, высокозарядными (Nb, Zr) и редкоземельными элементами на вмещающие породы и сиениты на позднемагматической стадии в тектонически напряженных средах. При этом процесс сопровождался ремобилизацией элементов из ранее сформированных минералов при меняющихся окислительно-восстановительных условиях.
2024 год
Проведены минералогические, геохимические и изотопно-геохимические исследования основных разновидностей пород комплекса Арбарастах. Определено, что формирование пород происходило из изотопно-умеренно деплетированного метасоматизированного мантийного источника. Установлено, что айлликиты являются наименее дифференцированной разновидностью пород. Распределение изотопов Sr-Nd-Pb указывает на смешение компонентов литосферной и астеносферной мантии. Минералогические и геохимические характеристики позволяют предполагать, что породы комплекса Арбарастах образованы в результаты сочетания процессов фракционной кристаллизации, жидкостной несмесимости и карбонатитового метасоматоза.
Экспериментально определено, что щелочи (Na или K) или Ca не оказывают существенного влияния на содержание титана и ниобия в растворах, в то время как F-, Cl-, PO43-, SO42- способствуют переходу этих элементов в раствор и этот эффект усиливается с повышением температуры. Растворимость резко снижается при переходе состава лигандов в растворе к CO32- и ОН-, снижение температуры усиливает этот эффект, что способствует выпадению из раствора кристаллических фаз, содержащих титан и ниобий. Термодинамические расчеты показали, что при воздействии на ассоциацию монацита с кальцитом охлаждающегося от 500 до 100°С гидротермального флюида фосфатные комплексы не вносят значимого вклада в транспорт РЗЭ; в высокотемпературной области основной вклад делают хлорокомплексы легких лантаноидов, а при пониженных температурах – фторокомплексы тяжелых РЗЭ.
Для проведения исследований используется оборудование Аналитического центра Института геологии и минералогии СО РАН (г. Новосибирск).
В лаборатории имеются автоклавы с холодным затвором и быстрой закалкой для проведения опытов при температуре до 1000 °C и давлении до 300 МРа и автоклавы закрытого типа из политетрафторэтилена (ПТФЭ) высокого давления
Дорошкевич Анна Геннадьевна – курсы лекций по щелочному магматизму, Томский Государственный Университет. Руководство магистерскими работами и квалификационными работами на соискание ученой степени кандидата наук.
Прокопьев Илья Романович – старший преподаватель по дисциплинам: «Основы теории рудообразования» (ведет лекции и практические занятия для геологов, геохимиков и нефтяников 3 курса обучения), «Минераграфия» (лекционные и практические занятия для геологов 3 курса обучения).
Дорошкевич Анна Геннадьевна – эксперт РНФ, РАН и СО РАН.
2020 год
- EGU General Assembly 2020. – 4-8 May 2020. 58-ая Международная научная студенческая конференция
2021 год
- X Российская молодёжная научно-практическая школа «Новое в познании процессов рудообразования». ИГЕМ РАН, Москва 29 ноября–3 декабря 2021.
- XXVII молодежная научная школа «Металлогения древних и современных океанов – 2021. Сингенез, эпигенез, гипергенез». ЮУ ФНЦ МиГ УрО РАН, Миасс 26 апреля–30 апреля 2021.
- Всероссийский ежегодный семинар по экспериментальной минералогии, петрологии и геохимии. 25–26 мая 2021. ГЕОХИ РАН. – Москва
- EGU General Assembly 2021, online, 19–30 Apr 2021.
2022 год
- Всероссийская конференция (с участием зарубежных ученых) «Современные направления развития геохимии» / г. Иркутск (21‒25 ноября 2022 г.).
- XIX Ферсмановская научная сессия ГИ КНЦ РАН / г. Апатиты (3-5 апреля 2022).
- XVIII Российское Совещание по экспериментальной минералогии / г. Иркутск (5-10 сентября 2022 г.).
- Всероссийский ежегодный семинар по экспериментальной минералогии, петрологии и геохимии/ г. Москва. (2022).
- XXVI международный научный симпозиум имени академика М.А. УСОВА студентов и молодых ученых «Проблемы геологии и освоения недр» / г. Томск (4-8 апреля 2022).
- XIX Всероссийская конференция по термобарогеохимии / г. Новосибирск (10-13 октября 2022).
- Научная конференция «Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту)» / г. Иркутск (18–21 октября 2022).
2023 год
- Конференция Геология, геоэкология и ресурсный потенциал Урала и сопредельных территорий, 25-28 сентября, 2023 г., Уфа.
- Научная международная конференция "Щелочной и кимберлитовый магматизм Земли и связанные с ним месторождения стратегических металлов и алмазов", 11-15 сентября 2023 года, Апатиты, Мурманская область
- VIII Всероссийская конференция с международным участием, 30 августа - 1 сентября 2023 г., Новосибирск
- Всероссийская научная конференция с международным участием ”Геологические процессы в обстановках субдукции, коллизии и скольжения литосферных плит”, ДВГИ ДВО РАН, г. Владивосток, 19-22 сентября 2023 года.
- XXI научная конференция «Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса: от океана к континенту», ИЗК СО РАН, г. Иркутск, 17-20 октября 2023 года
- XX Всероссийская Ферсмановская научная сессия посвящена 140 лет со дня рождения великого российского ученого - минералога и кристаллографа, профессора, академика и вице-президента АН СССР Александра Евгеньевича Ферсмана, 3-4 апреля 2023 г., Апатиты, и ГИ КНЦ РАН.
- VI Международная научная конференция Геодинамика и минерагения Северной Евразии, посвященной 50-летию Геологического института им. Н. Л. Добрецова СО РАН. - Улан-Удэ
2024 год
- LV Тектоническое совещание «Тектоника и геодинамика Земной коры и мантии: фундаментальные проблемы». Москва, февраль 2024
- Конференция «Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту)». Иркутск, октябрь 2024.
- Научная конференция «Глубинный магматизм, его источники и плюмы». Иркутск, май 2024
- Всероссийский ежегодный семинар по экспериментальной минералогии, петрологии и геохимии. Москва, 2024
- Международная научно-практическая конференция, посвящённая десятилетию науки и технологий в Российской Федерации и 300-летию Российской академии наук «Металлогения золота Центрально-Азиатского орогенного пояса и его обрамления» Кызыл. 2024
Список основных достижений, проектов и публикаций
2022 год
2023 год
2024 год
Базовый проект фундаментальных исследований
- Шифр ГЗ – FWZN-2022-0024; Номер Гос. учета: 122041400241-5. «Щелочной магматизм Сибири: источники, условия генерации расплавов, их эволюция и рудообразование », руководитель Дорошкевич Анна Геннадьевна
- Шифр ГЗ – FWZN-2026-0002. «Рудный потенциал метасоматических процессов, связанных с щелочными и карбонатитовыми комплексами», руководитель Дорошкевич Анна Геннадьевна
Гранты Российского научного фонда
- РНФ№ 23-77-01075; Номер Гос. учета – 123100300081-1. «Механизмы ремобилизации и ловушки ниобия и титана на постмагматических стадиях эволюции карбонатитовых комплексов на примерах карбонатитовых комплексов Сибири и Кольской щелочной провинции», руководитель Чеботарев Дмитрий Александрович
- РНФ№ 23-17-00098; Номер Гос. учета – 123063000021-8. «Неопротерозойский щелочной магматизм юга Сибирского кратона: источники, связь натриевого и калиевого щелочного магматизма, рудообразование», руководитель Дорошкевич Анна Геннадьевна
- РНФ№ 19-77-10004; Номер Гос. учета – 121120600259-1. «Рудоносность карбонатитов и их связь с крупными изверженными провинциями: на примере Чадобецкого щелочного комплекса (Чуктуконский и Териновский массивы), Красноярский край», руководитель Прокопьев Илья Романович
2023 год
- Doroshkevich A.G., Savatenkov V.M., Izbrodin I.A., Prokopyev, M.N. Kruk, A.E. Izokh, A.A. Nosova Petrology and source characteristics of the Arbarastakh alkaline ultramafic carbonatitephoscorite complex, the Aldan-Stanovoy Shield // LITHOS (2023). DOI: 10.1016/j.lithos.2023.107458
- Laptev Y., Doroshkevich A., Prokopyev I. Comparative Experiments on the Role of CO2 in the Gold Distribution between Pyrite and a High-Salinity Fluid // Minerals – 2023 – 13 – 464. DOI: 10.3390/min13040464
- Nugumanova Y., Doroshkevich A., Starikova A., Garcia J. Composition of olivines and spinel group minerals in aillikites from the Bushkanay dike, South Siberian Craton: Insights into alkaline melt sources and evolution // Geosystems and Geoenvironment – 2023, 100247. DOI: 10.1016/j.geogeo.2023.100247
- Prokopyev I., Doroshkevich A. Redina A. Brine–Melts and Fluids of the Fe-F-P-(Ba)-(Sr)-REE Central Asian Carbonatite Province (Southern Siberia and Mongolia): The Petrogenetic Aspects // Minerals – 2023 – 13(4) – 573. DOI: 10.3390/min13040573
- Prokopyev I., Doroshkevich A., Starikova A., Kovalev S., Nugumanova Y., Izokh A. Petrogenesis of juvenile pelletal lapilli in ultramafc lamprophyres // Scientifc Reports – 2023 – 13:5841. DOI: 10.1038/s41598-023-32535-2
- Prokopyev I.R., Doroshkevich A.G., Starikova A.E., Yang Y., Goryunova V.O., Tomoshevich N.A., Proskurnin V.F., Saltanov V.A., Kukharenko E.A. Geochronology and origin of the carbonatites of the Central Taimyr Region, Russia (Arctica): Constraints on the F-Ba-REE mineralization and the Siberian Large Igneous Province // Lithos – 2023 – V.440–441 – 107045. DOI: 10.1016/j.lithos.2023.107045
- Redin Y., Redina A., Malyutina A., Dultsev V., Kalinin Y., Abramov B., Borisenko A. Distinctive Features of the Major and Trace Element Composition of Biotite from Igneous Rocks Associated with Various Types of Mineralization on the Example of the Shakhtama Intrusive Complex (Eastern Transbaikalia). Minerals 2023, 13, 1334. DOI: 10.3390/min13101334
- Redina A.A., Doroshkevich A.G., Prokopyev I.R., Izbrodin I.A., Yang Y., 2023. Age and Source Characteristics of the Yuzhnoe and Ulan-Ude Ree-Fluorite Occurrences Associated with Carbonatite Magmatism (Western Transbaikalia, Russia). Geodynamics & Tectonophysics 14 (6), 0728. DOI: 10.5800/GT-2023-14-6-0728
- Yang Z., Hou T., Wang D., Marxer F., Wang M., Chebotarev D., Zhang Z., Zhang H., Botcharnikov R. and Holtz F. The Role of Magma Mixing in the Petrogenesis of Eocene Ultrapotassic Lavas, Western Yunnan, SW China // Journal of Petrology – 2023 – 64 – 1-26. DOI: 10.1093/petrology/egac129
- Zhukova I.A., Stepanov A.S., Malyutina A., Doroshkevich A.G., Korsakov A.V., Jiang Sh.-Y., Bakovets V.V., Pomelova T.A., Nigmatulina E.N. Raman spectroscopic study of non-stoichiometry in cerianite from critical zone // J Raman Spectrosc – 2023 – 1–10. DOI: 10.1002/jrs.6557
- Избродин И.А., Дорошкевич А.Г., Хубанов В.Б., Хромова Е.А. Состав, возраст и геодинамическая позиция щелочных пород Боргойского и Боцинского массивов (Джидинская щелочная провинция) // Геодинамика и тектонофизика – 2023 – Т.4 – №1. DOI: 10.5800/GT-2023-14-1-0686
- Каргин А.В., Прокопьев И.Р., Старикова А.Е., Каменецкий В.С., Голубева Ю.Ю. ЭВОЛЮЦИЯ ЩЕЛОЧНО-УЛЬТРАМАФИЧЕСКОГО РАСПЛАВА ТРУБКИ ВИКТОРИЯ (АНАБАРСКИЙ РАЙОН, ЯКУТИЯ): ПО РЕЗУЛЬТАТАМ ИЗУЧЕНИЯ РАСПЛАВНЫХ ВКЛЮЧЕНИЙ В ОЛИВИНЕ И МИНЕРАЛАХ ОСНОВНОЙ МАССЫ // ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ, 2023, том 512, № 2, с. 242–250. DOI: 10.31857/S2686739723601369
- Нугуманова Я.Н., Калугина А.Д., Старикова А.Е., Дорошкевич А.Г., Прокопьев И.Р. Минералы группы апатита из ультраосновных лампрофиров зиминского щелочно-ультраосновного карбонатитового комплекса (Урикско-Ийский грабен, Восточное Присаянье).Литосфера. 2023;23(4):589-602. DOI: 10.24930/1681-9004-2023-23-4-589-602
- Редин Ю.О., Малютина А.В., Редина А.А., Дульцев В.Ф. ГЕОХИМИЧЕСКИЙ СОСТАВ МАГНЕТИТА ИЗ РУД КРУПНЫХ Au-Cu-Fe-СКАРНОВЫХ (СКАРНОВОПОРФИРОВЫХ) МЕСТОРОЖДЕНИЙ ВОСТОЧНОГО ЗАБАЙКАЛЬЯ — КАК ПОКАЗАТЕЛЬ ГЕНЕТИЧЕСКОЙ ПРИНАДЛЕЖНОСТИ МЕСТОРОЖДЕНИЯ // Разведка и охрана недр – 2023 – 07 – с. 19-25. DOI: 10.53085/0034-026X_2023_07_19
2024 год
- Izbrodin I.A., Doroshkevich A.G., Malyutina A.V., Semenova D.V, Radomskaya T.A., Kruk M.N., Prokopyev I.R., Starikova A.E., Rampilov M.O., 2024. Geochronology of Alkaline Rocks from the Burpala Massif (Northern Pribaikalye): New U-Pb Data // Geodynamics & Tectonophysics 15 (1), 0741. DOI: 10.5800/GT-2024-15-1-0741
- Izbrodin I.А., Doroshkevich А.G., Kotov А.B., Salnikova Е.B., Izokh А.E., Letnikova Е.F., Ivanov А.V., 2024. Age and Petrogenesis of Dolerites on the Mara River (Sayan Marginal Uplift of the Basement, Southern Part of the Siberian Craton) // Geodynamics & Tectonophysics 15 (5), 0789. DOI: 10.5800/GT-2024-15-5-0789
- Izokh A.E., Letnikova E.F., Izbrodian I.A., Ivanov A.V., Shkolnik S.I., Doroshkevich A.G. High-K Rocks of the Late Riphean Mara Paleovolcano, Biryusa Uplift, South of the Siberian Platform // Stratigraphy and Geological Correlation, 2024, Vol. 32, No. 4, pp. 374–395. DOI:10.1134/S0869593824700060
- Kruk M.N., Doroshkevich A.G., Prokopyev I.R., Izbrodin I.A., Chemical evolution of major and minor minerals in rocks of the Arbarastakh complex (Aldan shield, Republic of Sakha, Yakutia) // Geosystems and Geoenvironment, Volume 3, Issue 4, 100271. DOI: 10.1016/j.geogeo.2024.100271
- Malyutina A.V., Doroshkevich A.G., Zhukova I.A., Prokopyev I.R. Variations in mineral composition and the weathering crust zoning of the REE-Nb chuktukon deposit (Chadobetsky uplift, Krasnoyarsk region)//Geochemistry, 2024, 126210. DOI: 10.1016/j.chemer.2024.126210
- Nugumanova Y., Doroshkevich A., Kalugina A., Chebotarev D., Izbrodin I., Hou T., Age and composition of perovskite in ultramafic lamprophyres from the Zima alkaline-ultramafic carbonatite complex, the southern margin of the Siberian craton: Petrogenetic implications // Geochemistry, 2024, 126159. DOI: 10.1016/j.chemer.2024.126159
- Prokopyev I.R., Doroshkevich A.G., Varchenko M.D., Semenova D.V., Izbrodin I.A., Kruk M.N. MINERALOGY AND ZIRCON AGE OF CARBONATITES OF THE SREDNYAYA ZIMA COMPLEX (EASTERN SAYAN) // Geodynamics & Tectonophysics, Vol 15, No 2 (2024), 0749. DOI: 10.5800/GT-2024-15-2-0749
- Starikova A.E., Doroshkevich A.G., Sklyarov E.V., Donskaya T.V., Gladkochub D.P., Shaparenko E.O., Zhukova I.A., Semenova D.V., Yakovenko E.S., Ragozin A.L. Magmatism and metasomatism in the formation of the Katugin Nb-Ta-REE-Zr-cryolite deposit, eastern Siberia, Russia: Evidence from zircon data // Lithos, 2024, Volumes 472–473, 107557. DOI: 10.1016/j.lithos.2024.107557
- Starikova A.E., Malyutina A.V., Izbrodin I.A., Doroshkevich A.G., Radomskaya T.A., Isakova A.T., Semenova D.V., Korsakov A.V., Mineralogical, Petrographic and Geochemical Evidence for Zircon Formation Conditions within the Burpala Massif, Northern Baikal Region// Geodynamics & Tectonophysics 15 (5), 0787. 2024. DOI:10.5800/GT-2024-15-5-0787
- Горюнова В.О., Прокопьев И.Р., Дорошкевич А.Г., Старикова А.Е., Проскурнин В.Ф., Салтанов В.А. Редкоземельный состав флюоритов как индикатор генезиса карбонатитов Центральной Тувы и Восточного Таймыра // Геосферные исследования. 2024. № 3. С. 10–20. DOI: 10.17223/25421379/32/2
- Зубакова Е.А., Дорошкевич А.Г., Шарыгин В.В. Особенности состава клинопироксена и апатита из пироксенитового массива Укдуска (Алдано-Становой щит, Якутия) // Геосферные исследования. 2024. № 3. С. 42–51. DOI: 10.17223/25421379/32/5
- Исакова А.Т., Старикова А.Е., Затолокина К.И., Избродин И.А., Дорошкевич А.Г. Условия образования апатит-флюоритовых пород Бурпалинского массива по данным изучения флюидных включений во флюорите // Геосферные исследования. 2024. № 3. С. 52–64. DOI: 10.17223/25421379/32/6
- Малютина А.В., Дорошкевич А.Г., Старикова А.Е., Избродин И.А., Прокопьев И.Р., Радомская Т.А., Крук М.Н. ОСОБЕННОСТИ СОСТАВА ТЕМНОЦВЕТНЫХ ПОРОДООБРАЗУЮЩИХ МИНЕРАЛОВ В ПОРОДАХ ЩЕЛОЧНОГО МАССИВА БУРПАЛА (СЕВЕРНОЕ ПРИБАЙКАЛЬЕ) // Геология и геофизика, 2024. 10.15372/GiG2024161
- Малютина А.В., Дорошкевич А.Г., Старикова А.Е., Избродин И.А., Прокопьев И.Р., Радомская Т.А., Крук М.Н. ОСОБЕННОСТИ СОСТАВА ТЕМНОЦВЕТНЫХ ПОРОДООБРАЗУЮЩИХ МИНЕРАЛОВ В ПОРОДАХ ЩЕЛОЧНОГО МАССИВА БУРПАЛА (СЕВЕРНОЕ ПРИБАЙКАЛЬЕ) // Геология и геофизика, 2024. DOI: 10.15372/GiG2024161
- Нугуманова Я.Н., Дорошкевич А.Г., Старикова А.Е., Пономарчук А.В. СОСТАВ ФЛОГОПИТА ИЗ УЛЬТРАОСНОВНЫХ ЛАМПРОФИРОВ КАК ИНДИКАТОР УСЛОВИЙ ОБРАЗОВАНИЯ (ЗИМИНСКИЙ ЩЕЛОЧНО-УЛЬТРАОСНОВНОЙ КАРБОНАТИТОВЫЙ КОМПЛЕКС, ЮГ СИБИРСКОГО КРАТОНА) // Геология и геофизика, 2024. DOI: 10.15372/GiG2024131
- Редин Ю.О., Борисенко А.С., Редина А.А., Малютина А.В., Дульцев В.Ф. Основные этапы формирования золотого и редкометалльного оруденения Восточного Забайкалья и связанного с ним магматизма: новые U-Pb и Ar-Ar данные// Геосферные исследования. 2024. № 2. С. 77–100. DOI: 10.17223/25421379/31/5
- Редин Ю.О., Малютина А.В., Борисенко А.С., Шадрина С.В. САВКИНСКОЕ Au-As (±Sb, Hg) МЕСТОРОЖДЕНИЕ КАК ПРИМЕР CARLIN-LIKE ТИПА В ВОСТОЧНОМ ЗАБАЙКАЛЬЕ // Разведка и охрана недр, Выпуск 5, 2024, 67–77. DOI: 10.53085/0034-026X_2024_5_67
- Чеботарев Д.А., Сарыг-Оол Б.Ю., Козлов Е.Н., Фомина Е.Н., Сидоров М.Ю. Мобильность титана и ниобия при низкотемпературном гидротермальном преобразовании и выветривании оксидов ниобия (пирохлора, луешита) и титана (рутила, анатаза) // Вестник Санкт-Петербургского университета. Науки о Земле (2024), 69 (4). DOI: 10.21638/spbu07.2024.410
- Чеботарев Д.А., Сарыг-оол Б.Ю., Козлов Е.Н., Фомина Е.Н., Сидоров М.Ю., Редина А.А. Мобильность титана и ниобия при постмагматических низкотемпературных преобразованиях рутила, анатаза, пирохлора и луешита // Геосферные исследования. 2024. № 3. С. 77–86. DOI: 10.17223/25421379/32/8
- ШИРОНОСОВА Г. П., ПРОКОПЬЕВ И. Р. ВЛИЯНИЕ ФОСФОРА НА ТРАНСПОРТ И ОТЛОЖЕНИЕ РЗЭ В ГИДРОТЕРМАЛЬНОМ ПРОЦЕССЕ (ТЕРМОДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ) // ВЕСТНИК КОЛЬСКОГО НАУЧНОГО ЦЕНТРА РАН. 2024. Т. 16 № 2
- Широносова Г.П., Прокопьев И.Р. Формы переноса РЗЭ фторидно-карбонатно-хлоридными охлаждающимися гидротермальными флюидами в присутствии барита и целестина (термодинамическое моделирование) // Russian Journal of Earth Sciences. — 2023. — Т. 23. — ES5009. DOI: 10.2205/2023es000859