Geochemistry and U–Pb detrital zircon dating of Paleozoic graywackes in East Junggar, NW China: Insights into subduction–accretion processes in the southern Central Asian Orogenic Belt

Xiaoping Long a,b, Chao Yuan a,b,⁎, Min Sun c, Inna Safonova d, Wenzhao Xiao a,e, Yujing Wang b

a Xinjiang Research Center for Mineral Resources, Chinese Academy of Sciences, Urumqi 830011, China
b State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
c Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
d Institute of Geology and Mineralogy, SB RAS, Novosibirsk 630090, Russia
*e State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

A R T I C L E I N F O

Article history:
Received 29 November 2010
Received in revised form 15 May 2011
Accepted 22 May 2011
Available online 13 June 2011

Handling Editor: R.D. Nance

Keywords:
Detrital zircons
Provenance
Tectonics
Central Asian Orogenic Belt
Junggar

A B S T R A C T

The southern Central Asian Orogenic Belt (CAOB) is characterized by multiple and linear accretionary orogenic collages, including Paleozoic arcs, ophiolites, and accretionary wedges. A complex history of subduction–accretion processes makes it difficult to distinguish the origin of these various terranes and reconstruct the tectonic evolution of the southern CAOB. In order to provide constraints on the accretionary history, we analyzed major and trace element compositions of Paleozoic graywackes from the Huangcaopo Group (HG) and Kubusu Group (KG) in East Junggar. The HG graywackes have relatively low Chemical Index of Alteration (CIA) values (50 to 66), suggesting a source that underwent relatively weak chemical weathering. The identical average Index of Compositional Variability (ICV) values (~1.1) for both the KG and HG samples point to an immature source for the Paleozoic graywackes in East Junggar, which is consistent with an andesitic–felsic igneous source characterized by low La/Th ratios and relatively high HF contents. These graywackes are geochemically similar to continental island arc sediments and therefore were probably deposited at an active continental margin. U–Pb dating of detrital zircons from the lower subgroup of the HG yielded a young age peak at ~440 Ma, indicating a post-Early Silurian depositional age. However, the youngest populations of detrital zircons from the KG graywackes and the upper subgroup of the HG yielded 206Pb/238U ages of ~346 Ma and ~355 Ma, respectively, which suggest a post-Early Carboniferous depositional age. Because of similarities of rock assemblages, these two units should be incorporated into the Early Carboniferous Namningshui Formation. The detrital zircon age spectrum of the Early Paleozoic HG graywackes resembles that of the Habae sediments in the Chinese Altai, which suggests that the ocean between East Junggar and the Chinese Altai was closed before the deposition of the sediments and that the Armantai ophiolite was emplaced prior to the Early Devonian. The differences in age spectra for detrital zircons from the post-Early Carboniferous graywackes in East Junggar and the Harlik arc indicate that the emplacement of the Kalamaili ophiolite postdates the Early Carboniferous. Therefore, a long-lasting northward subduction–accretion process is suggested for the formation of East Junggar and the reconstruction of the Early Paleozoic evolution of the southern CAOB.

© 2011 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

1. Introduction

The Central Asian Orogenic Belt (CAOB), also termed the Altai, is a large accretionary orogenic belt bounded by the Siberian Craton to the north and the Tarim–North China Craton to the south (Fig. 1, inset A; Şengör et al., 1993). This orogenic belt was formed by Early Neoproterozoic to Late Paleozoic subduction–accretion processes, which resulted in accretion of island arcs, ophiolites, other supra-subduction units, and terranes with Precambrian crystalline basement to the southern margin of the Siberian Craton (Şengör and Natal’in, 1996; Buslov et al. 2001; Badarch et al. 2002; Khain et al. 2002, 2003; Xiao et al. 2003, 2009, 2010; Dobretsov et al. 2004; Safonova et al. 2004; Yakubchuk 2004; Helo et al. 2006; Kröner et al. 2007; Windley et al. 2007). The geodynamic affinities of these various terranes are critical to rebuilding the evolution history of the CAOB. Clastic sediments hold key information about their source materials, tectonic settings and crustal growth events (e.g. Bhatia and Taylor, 1981; Bhatia and Crook, 1986; Roser and Korsch, 1986; McLennan et al., 1990). The geochemistry of sedimentary rocks and the geochronology of their detrital zircons were previously used to reconstruct the
regional tectonic evolution (Nelson, 2001; Cullers and Podkovyrov, 2002; Griffin et al., 2004; Hofmann, 2005; Gerdes and Zeh, 2006; Dickinson and Gehrels, 2009; Safonova et al., 2010). Recently, such studies were successfully applied to terranes in the southern CAOB (Long et al., 2007, 2008, 2010; Kelty et al., 2008; Kröner et al., 2010; Ren et al., 2011; Rojas-Agramonte et al., 2011).

The Junggar Block is one of the largest terranes in the southern CAOB and is located between the Chinese Altai and Tianshan orogenic belts (Xiao et al., 2004, 2008; Fig. 1, inset B). It is traditionally divided into three parts: Junggar Basin, East Junggar and West Junggar (e.g. BGMRX 1993). The Junggar Basin is mainly filled with pre-Carboniferous marine and post-Carboniferous continental sediments, whereas the East and West Junggar are dominated by igneous rocks, which form the basin ranges (BGMRX 1993; Zhang et al., 2009). Based on gravitational, aeromagnetic and seismic data, it has been suggested that the basin is underlain by ancient continental basement and that the Junggar Block was a Precambrian microcontinent (Li, 2004; Charvet et al., 2007, and references therein). However, based on the geochemical and Nd juvenile isotopic features of igneous rocks surrounding the Junggar Basin, other authors have interpreted the Junggar block as a fragment of accreted oceanic crust and/or a volcanic arc of Early Paleozoic age (Filippova et al., 2001; Chen and Jahn, 2004; Jahn, 2004; Long et al., 2006; Yuan et al., 2006; Zheng et al., 2007; Xiao et al., 2008). In addition, the suture zone that stitches the Siberian plate to the Tarim plate, and to which plate the Junggar Block belongs has been a subject of debate for the past several years (e.g., Xiao et al., 1990; Ma et al., 1997; Shu et al., 2000). The occurrence of ophiolitic terranes of various ages around the Junggar Basin (i.e., in East and West Junggar) is also indicative of a complex history for the southern and resulted in many, often controversial, regional tectonic reconstructions (Jian et al., 2003; Ping et al., 2005; Tang et al., 2007; Xiao et al., 2008, 2009; Wang et al., 2009).

In this paper, we present new geochemical and geochronological data on Paleozoic graywackes from the lower sedimentary units of East Junggar (Fig. 1). Our results provide new constraints on the provenance of the graywackes and their depositional tectonic settings, which are indicative of Paleozoic subduction–accretion processes in East Junggar. The data also contribute to our understanding of the complex tectonic evolution of the Junggar Block and that of the southern CAOB.
2. Geological setting

East Junggar is located between the Early Paleozoic Chinese Altai magmatic arc and the Late Paleozoic Harlik arc, which are separated by the Ergis accretionary complex to the north and the Kelamaili ophiolite belt to the south (Fig. 1; Li, 2004; Xiao et al., 2008). The East Junggar terrane is dominated by Paleozoic accretionary complexes formed during northward subduction of the southern Paleo-Asian Ocean (PAO) (Coleman, 1989; Feng et al., 1989; Şengör and Natal'in, 1996; Xiao et al., 2009; Xiao et al., 2011). It is made up of the NW-striking Dulate and Yemaquan island-arcs, which are separated by the highly deformed and dismembered Armantai ophiolite belt (Fig. 2; Li, 2003; Xiao et al., 2004). The Dulate arc extends along the northern side of the Armantai ophiolite and consists mainly of Devonian–Carboniferous volcanic rocks, including picrite, boninite, high-Mg andesite, and Nb-rich basalt (Zhang et al., 2005; Zhang et al., 2008). The Yemaquan arc is located south of the Armantai ophiolite and is dominated by Ordovician–Carboniferous clastic rocks and carbonates, with subordinate volcaniclastic rocks (BGMRX, 1993; Xiao et al., 2009).

SHRIMP U–Pb zircon dating of the ophiolite belts in East Junggar yielded Early Paleozoic ages of 481±5 to 489±4 and 503±7 Ma for the Armantai ophiolite (Jian et al., 2003; Xiao et al., 2008, 2009), and Middle–Late Paleozoic ages of 403±9 to 330±2 Ma for the Kalamaili ophiolite (Ping et al., 2005; Tang et al., 2007; Wang et al., 2009). According to the reconstructions by Xiao et al. (2009), the Armantai and Kalamaili ophiolites were formed by subduction of the southern branch of the PAO during the Early to Middle Paleozoic. The presence of uniformly deposited Late Carboniferous continental volcanic-sedimentary sequences on both sides of the Armantai ophiolite belt allowed Li (2004) to suggest that closure of the PAO in East Junggar predated the Late Carboniferous and was followed by post-collisional A-type granitoids and Cu–Ni-bearing mafic and ultramafic plutons (Han et al., 2006; Mao et al., 2008; Zhang et al., 2008). Recent geochronological studies demonstrate that the post-collisional plutons intruded during the Late Carboniferous to the Permian, within an age span of 280–330 Ma (Li et al., 2004; Lin et al., 2007; Tang et al., 2007; Mao et al., 2008; Su et al., 2008; Yang et al., 2008, 2009; Chen et al., 2009).

Early Paleozoic sediments in East Junggar are mainly exposed in the Yemaquan arc terrane. The oldest sedimentary stratum, the Middle–Late Ordovician Huangcaopo Group (HG), consists of low-grade marine clastic sediments and andesitic–felsic volcanic rocks (BGMRX, 1993). The group occurs in the southeastern Yemaquan arc and has been divided into (from bottom to top), the Wuliegai, Daligou and Miaogou formations (Cai, 1999). The Wuliegai and Miaogou formations are mainly composed of tuffaceous and calcareous sandstone and siltstone, intercalated with minor limestones, whereas the Daligou formation comprises andesitic–felsic volcanic rocks, interlayered with subordinate tuffs and siltstones. The Middle to Late Silurian Kubusu Group (KG) and Hongliuxia Formation, which unconformably overlie the HG, occur mainly in the Yemaquan arc and are dominated by marine siltstone and sandstone (BGMRX, 1993). The Late Paleozoic sedimentary sequences in East Junggar consist of Devonian to Carboniferous arc-related volcanic rocks and clastic sediments, which are widely distributed in both the Dulate and Yemaquan arc terranes (Zhang et al., 2009).

Fig. 2. Geological map of East Junggar with sample locations (after BGMRX, 1993).
<table>
<thead>
<tr>
<th>Sample strata</th>
<th>YW27</th>
<th>YW28</th>
<th>YW29</th>
<th>YW30</th>
<th>YW33</th>
<th>YW35</th>
<th>YW36</th>
<th>YW37</th>
<th>YW38</th>
<th>YW41</th>
<th>YW42</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huangcauo Group (HG)</td>
<td></td>
</tr>
<tr>
<td>Major element (wt.%)</td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>63.4</td>
<td>64.1</td>
<td>62.7</td>
<td>63.7</td>
<td>88.3</td>
<td>67.7</td>
<td>67.2</td>
<td>66.7</td>
<td>49.6</td>
<td>68.0</td>
<td>61.1</td>
<td>65.7</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.73</td>
<td>0.69</td>
<td>0.78</td>
<td>0.78</td>
<td>0.18</td>
<td>0.58</td>
<td>0.62</td>
<td>0.66</td>
<td>1.29</td>
<td>0.79</td>
<td>0.87</td>
<td>0.7</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16.7</td>
<td>16.5</td>
<td>16.3</td>
<td>16.1</td>
<td>5.3</td>
<td>14.8</td>
<td>14.9</td>
<td>14.9</td>
<td>17.8</td>
<td>16.2</td>
<td>18.5</td>
<td>15.3</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>5.86</td>
<td>5.56</td>
<td>6.52</td>
<td>6.35</td>
<td>0.98</td>
<td>5.03</td>
<td>5.11</td>
<td>5.20</td>
<td>11.17</td>
<td>4.05</td>
<td>4.57</td>
<td>5.5</td>
</tr>
<tr>
<td>MnO</td>
<td>0.07</td>
<td>0.07</td>
<td>0.11</td>
<td>0.10</td>
<td>0.04</td>
<td>0.09</td>
<td>0.09</td>
<td>0.10</td>
<td>0.18</td>
<td>0.05</td>
<td>0.10</td>
<td>0.1</td>
</tr>
<tr>
<td>MgO</td>
<td>3.23</td>
<td>2.93</td>
<td>3.36</td>
<td>3.31</td>
<td>0.05</td>
<td>2.21</td>
<td>2.48</td>
<td>2.63</td>
<td>5.07</td>
<td>1.08</td>
<td>1.31</td>
<td>2.5</td>
</tr>
<tr>
<td>CaO</td>
<td>0.22</td>
<td>0.50</td>
<td>1.44</td>
<td>1.26</td>
<td>0.74</td>
<td>2.34</td>
<td>2.54</td>
<td>2.72</td>
<td>6.94</td>
<td>0.40</td>
<td>1.27</td>
<td>1.9</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.10</td>
<td>1.54</td>
<td>2.08</td>
<td>2.07</td>
<td>1.92</td>
<td>3.22</td>
<td>3.28</td>
<td>3.32</td>
<td>3.73</td>
<td>4.02</td>
<td>5.73</td>
<td>3.0</td>
</tr>
<tr>
<td>K₂O</td>
<td>4.29</td>
<td>4.70</td>
<td>2.87</td>
<td>2.80</td>
<td>1.03</td>
<td>2.19</td>
<td>2.05</td>
<td>1.87</td>
<td>0.61</td>
<td>2.64</td>
<td>3.86</td>
<td>2.6</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.11</td>
<td>0.10</td>
<td>0.22</td>
<td>0.21</td>
<td>0.05</td>
<td>0.17</td>
<td>0.18</td>
<td>0.20</td>
<td>0.18</td>
<td>0.14</td>
<td>0.26</td>
<td>0.2</td>
</tr>
<tr>
<td>LOI</td>
<td>3.09</td>
<td>3.38</td>
<td>3.40</td>
<td>3.13</td>
<td>0.98</td>
<td>1.45</td>
<td>1.42</td>
<td>1.32</td>
<td>3.33</td>
<td>2.42</td>
<td>1.9</td>
<td>2.4</td>
</tr>
<tr>
<td>Total</td>
<td>99.8</td>
<td>100.1</td>
<td>99.8</td>
<td>99.8</td>
<td>95.6</td>
<td>99.7</td>
<td>99.8</td>
<td>99.9</td>
<td>99.8</td>
<td>99.8</td>
<td>99.8</td>
<td>99.8</td>
</tr>
<tr>
<td>Trace element (ppm)</td>
<td></td>
</tr>
<tr>
<td>Sc</td>
<td>14.4</td>
<td>14.9</td>
<td>15.7</td>
<td>15.8</td>
<td>1.79</td>
<td>10.4</td>
<td>17.0</td>
<td>9.4</td>
<td>20.1</td>
<td>15.7</td>
<td>13.8</td>
<td>13.5</td>
</tr>
<tr>
<td>Cr</td>
<td>88.7</td>
<td>86.7</td>
<td>85.9</td>
<td>97.5</td>
<td>11.6</td>
<td>66.6</td>
<td>99.5</td>
<td>88.6</td>
<td>15.2</td>
<td>31.5</td>
<td>26.8</td>
<td>63.5</td>
</tr>
<tr>
<td>Co</td>
<td>0.18</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>0.08</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>0.12</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>0.08</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>0.08</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.08</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2.02</td>
<td>2.02</td>
<td></td>
</tr>
<tr>
<td>REE (ppm)</td>
<td></td>
</tr>
<tr>
<td>Gd/Yb</td>
<td>1.48</td>
<td>1.38</td>
<td>1.56</td>
<td>1.52</td>
<td>2.10</td>
<td>1.58</td>
<td>1.53</td>
<td>1.57</td>
<td>1.48</td>
<td>1.24</td>
<td>1.39</td>
<td>1.5</td>
</tr>
<tr>
<td>Eu/Eu*</td>
<td>1.15</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>143</td>
<td>162</td>
<td>179</td>
<td>159</td>
<td>109</td>
<td>146</td>
<td>155</td>
<td>152</td>
<td>72</td>
<td>147</td>
<td>157</td>
<td>146</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample strata</th>
<th>KP02</th>
<th>KP03</th>
<th>KP05</th>
<th>KP06</th>
<th>KP07</th>
<th>KP08</th>
<th>KP33</th>
<th>KP34</th>
<th>KP35</th>
<th>Average</th>
<th>PAAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kubusuo Group (Kg)</td>
<td></td>
</tr>
<tr>
<td>Major element (wt.%)</td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>73.5</td>
<td>72.0</td>
<td>64.7</td>
<td>62.5</td>
<td>71.1</td>
<td>73.1</td>
<td>49.8</td>
<td>66.4</td>
<td>67.2</td>
<td>66.7</td>
<td>62.8</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.48</td>
<td>0.51</td>
<td>0.75</td>
<td>0.81</td>
<td>0.60</td>
<td>0.30</td>
<td>1.17</td>
<td>0.81</td>
<td>0.67</td>
<td>0.7</td>
<td>1.0</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>12.1</td>
<td>13.1</td>
<td>17.4</td>
<td>17.5</td>
<td>14.3</td>
<td>13.6</td>
<td>15.7</td>
<td>14.6</td>
<td>14.6</td>
<td>14.8</td>
<td>18.9</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>3.27</td>
<td>3.57</td>
<td>5.41</td>
<td>4.31</td>
<td>2.53</td>
<td>2.74</td>
<td>8.08</td>
<td>5.47</td>
<td>4.73</td>
<td>4.5</td>
<td>6.5</td>
</tr>
<tr>
<td>MnO</td>
<td>0.12</td>
<td>0.10</td>
<td>0.09</td>
<td>0.09</td>
<td>0.08</td>
<td>0.06</td>
<td>0.12</td>
<td>0.12</td>
<td>0.11</td>
<td>0.11</td>
<td>0.1</td>
</tr>
<tr>
<td>MgO</td>
<td>1.01</td>
<td>1.07</td>
<td>1.63</td>
<td>1.21</td>
<td>0.77</td>
<td>1.0</td>
<td>8.41</td>
<td>1.79</td>
<td>1.57</td>
<td>2.1</td>
<td>2.2</td>
</tr>
<tr>
<td>CaO</td>
<td>1.67</td>
<td>1.38</td>
<td>0.55</td>
<td>2.02</td>
<td>1.53</td>
<td>0.90</td>
<td>6.36</td>
<td>1.99</td>
<td>2.33</td>
<td>2.1</td>
<td>3.0</td>
</tr>
<tr>
<td>Na₂O</td>
<td>3.78</td>
<td>5.47</td>
<td>5.97</td>
<td>6.04</td>
<td>5.59</td>
<td>6.37</td>
<td>3.44</td>
<td>4.50</td>
<td>5.70</td>
<td>5.2</td>
<td>1.2</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.95</td>
<td>0.98</td>
<td>1.48</td>
<td>2.96</td>
<td>1.87</td>
<td>0.45</td>
<td>1.24</td>
<td>1.84</td>
<td>1.45</td>
<td>3.70</td>
<td></td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.41</td>
<td>0.10</td>
<td>0.15</td>
<td>0.27</td>
<td>0.19</td>
<td>0.09</td>
<td>0.28</td>
<td>0.21</td>
<td>0.18</td>
<td>0.2</td>
<td>0.16</td>
</tr>
<tr>
<td>LOI</td>
<td>1.79</td>
<td>1.42</td>
<td>1.58</td>
<td>2.00</td>
<td>1.08</td>
<td>1.12</td>
<td>5.20</td>
<td>1.99</td>
<td>2.01</td>
<td>2.0</td>
<td>–</td>
</tr>
<tr>
<td>Total</td>
<td>99.7</td>
<td>99.7</td>
<td>99.7</td>
<td>99.8</td>
<td>99.7</td>
<td>99.7</td>
<td>100.1</td>
<td>99.7</td>
<td>99.8</td>
<td>99.8</td>
<td>97.9</td>
</tr>
<tr>
<td>Trace element (ppm)</td>
<td></td>
</tr>
<tr>
<td>Sc</td>
<td>6.6</td>
<td>8.4</td>
<td>6.0</td>
<td>15.0</td>
<td>10.6</td>
<td>9.36</td>
<td>2.57</td>
<td>21.9</td>
<td>13.0</td>
<td>11.0</td>
<td>11.1</td>
</tr>
<tr>
<td>Cr</td>
<td>9.09</td>
<td>8.62</td>
<td>10.5</td>
<td>8.99</td>
<td>7.08</td>
<td>7.57</td>
<td>333</td>
<td>7.47</td>
<td>11.7</td>
<td>44.8</td>
<td>110</td>
</tr>
<tr>
<td>Co</td>
<td>3.38</td>
<td>2.19</td>
<td>5.95</td>
<td>8.97</td>
<td>2.08</td>
<td>1.04</td>
<td>34.02</td>
<td>6.16</td>
<td>6.38</td>
<td>7.9</td>
<td>23</td>
</tr>
</tbody>
</table>

Table 1

Geochemical compositions of greywackes from the Huangcauo Group and Kubusuo Group.
sedimentary rocks, i.e., pelite and sandstone. The matrix (~30 vol.%) of the graywackes mainly consists of a matted mixture of tiny grains of quartz, feldspar and clay minerals with accessory chlorite and epidote.

3. Results

3.1. Geochemistry of graywackes

3.1.1. Major elements

The HG graywackes show a relatively narrow variation in SiO$_2$ content from 61.1 wt.% to 68.0 wt.%, with an average of 65.7 wt.%. The samples have wide ranges of Na$_2$O (1.54–5.73 wt.%), av. 3.04 wt.%) and K$_2$O (1.87–4.70 wt.%), av. 3.03 wt.%) with Na$_2$O/K$_2$O ratios between 0.3 and 1.8. In comparison with the Post-Archean Australian average shale (PAAS) (Taylor and McLennan, 1985), the HG samples yield lower Al$_2$O$_3$ (av. 5.36 wt.%) and Fe$_2$O$_3$ (av. 5.30 wt.%) and higher MgO (av. 6.33) than those of the KG samples (LaN/YbN av.=4.60), they all show similar moderate negative Eu anomalies (HG: Eu/Eu*$\text{av.} =0.66$; KG: Eu/Eu*$\text{av.} =0.76$), implying intensified plagioclase fractionation in the source.

3.1.2. Trace elements

The sampled graywackes show positive correlations in the K$_2$O versus Ba and K$_2$O versus Rb diagrams (Fig. 4a, b). These correlations suggest that K-bearing clay minerals (e.g., illite, kaolinite) control the abundances of Ba, K and Rb in the graywackes (McLennan et al., 1983). No clear trends are observed in the K$_2$O versus Sr plot (Fig. 4c).

Cr and Ni are well correlated in the graywackes (Fig. 4), suggesting no fractionation between them during weathering (Feng and Kerrich, 1990). Compared with the average composition of the upper continental crust, the HG and KG samples have respectively higher Cr and lower Ni abundances. The increase of Cr, Ni and MgO in the HG versus KG sediments confirms that the HG sediments were derived from a more mafic source. Unlike Cr, Ni and MgO, the High Field Strength Elements (HFSE) are usually abundant in felsic rocks and, therefore, we would expect a lower abundance in the HG compared to the KG samples. However, the HG samples exhibit slightly higher HFSEs than the KG samples. Because the HFSEs are usually abundant in accessory minerals (e.g. rutile and zircon), we suggest that the slightly higher HFSEs in the HG samples indicate a greater abundance of accessory minerals in the source of the HG compared to the KG.

All rock samples are enriched in light Rare Earth Element (REE) and show relatively horizontal heavy REE patterns (LaN/YbN =1.95–3.1.0). The HG samples exhibit slightly higher HFSEs than the KG samples. Because the HFSEs are usually abundant in accessory minerals (e.g. rutile and zircon), we suggest that the slightly higher HFSEs in the HG samples indicate a greater abundance of accessory minerals in the source of the HG compared to the KG.
KG: Eu/Euᵢ av. = 0.73), resembling PAAS (Eu/Euᵢ av. = 0.65, Taylor and McLennan, 1985). Both graywackes display REE patterns and spider diagrams similar to the Habahe flysch sediments in the neighboring Chinese Altai, which are thought to have been deposited in a fore-arc setting (Fig. 5; Long et al., 2008, 2010).

3.2. Detrital zircon U–Pb dating

3.2.1. Huangcaopo Group

Zircons in samples of the HG are 70 to 140 μm in size, transparent, mostly euhedral prismatic or, to a lesser degree, (sub)rounded. The zircons possess clear oscillatory zoning and high Th/U ratios (mostly >0.2, Fig. 6f), suggesting an igneous origin. Three samples were dated (Fig. 6a–c) and two of them (YW31 and YW34) yielded similar age spectra (Fig. 7a–b). In these two samples, prismatic zircons yielded Early Paleozoic ⁴⁰⁷⁷Pb/²³⁸⁷U ages, which exhibit a prominent age peak at ~490 Ma and a younger age peak at ~440 Ma. The remaining (sub)rounded zircons yielded various Precambrian ages (Supplementary Table A1), with the main age peak in the Neoproterozoic (~930 Ma, Fig. 7a–c). Five Paleoproterozoic ⁴⁰⁷⁷Pb/²³⁸⁷U ages (1.77–2.03 Ga) were identified in sample YW31 (Fig. 7a).

Zircons from the third sample (YW40) exhibit much younger ⁴⁰⁷⁷Pb/²³⁸⁷U ages (Fig. 6d). The prismatic zircons yielded Carboniferous to Cambrian ages, with two prominent age peaks: Early Carboniferous

Fig. 3. Geochemical diagrams of major elements for the Paleozoic graywackes in East Junggar. Data for PAAS are from Taylor and McLennan (1985).
(~353 Ma) and Early Silurian (~443 Ma). The latter age peak is similar to the younger age peak in the other two samples (YW31 and YW34) of the HG. The (sub)rounded zircons in sample YW40 also yielded Neoproterozoic ages, which fall into two age-groups with peaks at ~550 Ma and ~930 Ma (Fig. 7c). The ~930 Ma peak is also present in the age spectra of the other two samples of the HG group.

3.2.2. Kubusu Group

For the KG graywackes, only one sample (KP04) yielded sufficient dateable zircons. The zircons are very small (50 to 100 μm), transparent, and most of them are euhedral prismatic grains. All of the zircon grains possess clear oscillatory zoning and high Th/U ratios (>0.48), indicating a source dominated by igneous rocks. U–Pb dating results for this sample yielded Early Carboniferous ^{206}Pb/{^{238}U} ages spanning a very narrow interval between 323 Ma and 395 Ma, with a clear peak at ~346 Ma that is similar to the youngest age peak in sample YW40 of the HG (Figs. 6e and 7d).

4. Constraints on depositional age

The depositional age of the Early Paleozoic sedimentary sequence in East Junggar is not well constrained due to the low abundance of dateable fossils (BGMRX, 1993). The HG was originally assigned to the middle–Late Ordovician (BGMRX, 1993). Later, the group was divided
into three formations (Fig. 2), but the depositional ages did not change (Cai, 1999). In this study, samples YW31 and YW34 were collected from the lowest subdivision of the HG, the Wuliegai Formation. The youngest zircon population in both samples gave Early Paleozoic 206Pb/238U ages of ~440 Ma, indicative of a post-Early Silurian depositional age for the Wuliegai Formation. Sample YW40 was collected from the uppermost subdivision, the Miaoergou Formation. The youngest 206Pb/238U age population in this sample peaks at ~355 Ma, suggesting a younger post-Early Carboniferous depositional age for the Miaoergou Formation. The most abundant age population of detrital zircons in YW40 spans the interval 335–400 Ma. However, no zircons with these ages have been identified in the stratigraphically older Wuliegai Formation. If the Wuliegai Formation was deposited after the Early Devonian (<400 Ma), the Devonian detrital zircons found in the Miaoergou Formation should also be present in the Wuliegai Formation. The absence of such zircons suggests that the Wuliegai Formation was deposited during the period from the Silurian to the Early Devonian (400–440 Ma). Therefore, depositional age of the HG may be younger than previously thought. The greywackes of the KG are thrust onto Devonian strata within the study area and were previously considered to be part of the Middle to Late Silurian Hongliuxia Formation (BGMRX, 1993). However, all of the 206Pb/238U ages of the analyzed zircons in sample KP04 cluster around a single age peak at ~346 Ma. This suggests a younger depositional age for the KG greywackes and a source that was dominated by Early Carboniferous igneous rocks. Given that both the KG and the Miaoergou Formation have similar rock assemblages to those of the Early Carboniferous Nanningshui Formation in this area (BGMRX, 1993) and have Carboniferous depositional ages, we suggest that the two sequences should be regarded as a part of the Nanningshui Formation. Therefore, the HG used in the following discussion does not include the Miaoergou Formation.

5. Discussion

5.1. Weathering characteristics

The Chemical Index of Alteration (CIA), the Plagioclase Index of Alteration (PIA) and the Index of Compositional Variability (ICV) are frequently used parameters of the weathering characteristics and source composition of sedimentary rocks (McLennan et al., 1993; Cox et al., 1995; Fedo et al., 1995; Cullers and Podkovyrov, 2000; Bhat and Ghosh, 2001). The greywackes in East Junggar have very low CIA values (50–66), indicating that they are not strongly weathered, or that compositionally mature alumina-rich minerals were absent in the source (Nesbitt and Young, 1982; Fedo et al., 1995). The CIA values of the KG samples (av. 52) are lower than those of the HG samples (av. 60), which suggest that the source of the KG greywackes was less weathered before deposition. More evidence can be found in their respective PIA values (KG samples: av. 51.7; HG samples: av. 61.3). In the ACNK (ACNK = molar ratio of Al$_2$O$_3$/[CaO + Na$_2$O + K$_2$O]) diagram (Fig. 8), the KG samples plot along the average gabbro-tonalite–granodiorite line, implying more fresh feldspars in the source, which had experienced no significant chemical weathering. The HG samples, however, plot away from the predicted weathering trend of gabbro-tonalite–granodiorite. This suggests that the HG greywackes were likely altered by post-depositional K-metasomatism. The identical average ICV values (~1.1) for both the KG and HG samples point to an immature source for the Paleozoic greywackes in East Junggar.
The geochemistry of the graywackes and the large proportion of andesitic-felsic igneous rocks among the rock fragments suggest a magmatic arc source. All the graywackes show relatively wide variations of Th/Sc and a narrow range of Zr/Sc, which are positively correlated in the Th/Sc–Zr/Sc diagram (Fig. 9a). This reveals variable contributions of less reworked source material, which suggests that the provenance of the graywackes was controlled more by source composition than by sediment recycling (McLennan et al., 1993; Cullers, 1994). The graywackes were probably derived from a source dominated by felsic-andesitic igneous rocks that are marked by their low La/Th ratios and relatively high Hf contents (Fig. 9b).

5.2. Tectonic settings and provenance

The geochemistry of sediments deposited in oceanic island arc, continental island arc, active continental margin and passive margin tectonic settings, has been investigated by many researchers (e.g., Bhatia and Taylor, 1981; Bhatia and Crook, 1986; Roser and Korsch, 1986; McLennan et al., 1990; McLennan and Taylor 1991). Generally, Al₂O₃, Fe₂O₃ + MgO, TiO₂ and Al₂O₃/SiO₂ ratios decrease in sandstones from oceanic island arc settings to passive margins, while SiO₂ and K₂O/Na₂O ratios increase (Bhatia, 1983). The HG and KG samples have moderate SiO₂, Al₂O₃, TiO₂ and Al₂O₃/SiO₂ ratios that clearly differ from those of the graywackes formed in either setting. Instead, they show a strong affinity with graywackes from continental island arc or active continental margin settings (Table 2). The contents and ratios of trace elements (including REEs) in the HG and KG samples exhibit the greatest similarity to graywackes from continental island arcs (Table 2). In the discriminatory La–Th–Sc and Th–Sc–Zr/10 diagrams (Bhatia and Crook, 1986), most samples plot in continental arc field (Fig. 10a–b). Similar results are revealed by the Sc/Cr–La/Y and La/Sc–Ti/Zr diagrams (Bhatia and Crook, 1986) (Fig. 10c–d). These geochemical features, in combination with their weak weathering characteristics and immature source composition, suggest that the graywackes in East Junggar were deposited in a basin adjacent to a continental arc.

Fig. 6. U–Pb concordia diagrams and Th–U plots for detrital zircons from the Paleozoic graywackes with representative CL images.
The detrital zircon ages of the sampled graywackes can be grouped at ~350 Ma, ~440 Ma, ~500 Ma, 740–950 Ma, 1.7–2.0 Ga, and ~2.7 Ga (Fig. 7). Several recent studies have revealed that voluminous Late Devonian–Early Carboniferous volcanic rocks and granitoids are exposed in the Dulate arc (Zhang et al., 2006; Lin et al., 2008; Su et al., 2008; Tan et al., 2009), in the neighboring Chinese Altai (Wang et al., 2006; Tong et al., 2007; Yuan et al., 2007; Sun et al., 2008; Cai et al., 2010; Wang et al., 2010) and in South Mongolian arcs (Bibikova et al. 1992; Kozakov et al., 2002; Kröner et al., 2007; Yarmolyuk et al., 2008; Demoux et al., 2009a). The immature source and poorly sorted minerals and rock fragments of the graywackes suggest that one of the magmatic arcs could be the main source for the KG and the Miaoergou Formation. Early Paleozoic igneous rocks, especially ones older than 420 Ma, are sparse in East Junggar. However, ~440 and ~500 Ma igneous rocks are common in southern Mongolia (Bibikova et al. 1992; Kozakov et al., 2002; Kröner et al., 2007; Yarmolyuk et al., 2008; Demoux et al., 2009a). The immature source and poorly sorted minerals and rock fragments of the graywackes suggest that one of the magmatic arcs could be the main source for the KG and the Miaoergou Formation. Early Paleozoic igneous rocks, especially ones older than 420 Ma, are sparse in East Junggar. However, ~440 and ~500 Ma igneous rocks are common in southern Mongolia (Bibikova et al. 1992; Kozakov et al., 2002; Kröner et al., 2007; Yarmolyuk et al., 2008; Demoux et al., 2009a) and in the Chinese Altai (Wang et al., 2006; Yuan et al., 2007; Sun et al., 2008, 2009; Long et al., 2010). The older ages of 740–950 Ma, 1.7–2.0 Ga and ~2.7 Ga have been reported for the Tuva–Mongolian, Dzabkhan, Baga Bogd and South Gobi microcontinents (Kozakov et al., 1999, 2007; Kuzmichev, et al., 2001; Demoux et al., 2009b, 2009c). This suggests a potential source for the Precambrian materials of the graywackes. Precambrian rocks are also exposed in the Tarim and North China blocks, but their detrital zircon age distributions lack the age peaks at 500–700 Ma and 1.0–1.8 Ga (Gehrels and Yin, 2003; Darby and Gehrels, 2006). It is therefore unlikely that the two blocks supplied much clastic material to the graywackes of East Junggar (Fig. 11). Instead, we suggest that the Precambrian clastic material of the HG was derived from a source located to the north of East Junggar.

5.3. Evolution of the southern branch of the Paleo-Asian Ocean

Ophiolites represent remnants of oceanic crust, therefore, the presence of ophiolites in East Junggar is essential to our understanding of the Late Paleozoic evolution of the southern CAOB (Khain et al., 2002; Xiao et al., 2003, 2004; Windley et al., 2007). The Armantai and Kalamaili ophiolite belts are the largest ophiolites in East Junggar, which formed during the Paleozoic evolution of the southern PAO (Xiao et al., 2009). Recent zircon SHRIMP U–Pb dating of gabbros and a plagiogranite from the Armantai ophiolite yielded ages of 481±5 to 489±4 Ma (Jian et al., 2003) and 503±7 Ma (Xiao et al., 2009), respectively, which indicate that the Armantai branch of the PAO was already open before the Early Ordovician. However, these ages do not provide close constraints on the closure of the Armantai Ocean. The occurrence of Ordovician and Middle–Late Devonian radiolarian cherts in the region suggests that the Armantai Ocean was still a wide ocean at that time and characterized by calm-water conditions (Li, 1991; Xiao and Tang, 1991, 1992; He et al., 2001). Based on the uniform Late Carboniferous continental volcanic-sedimentary rocks on the both sides of the Armantai ophiolite belt, Li (2004) suggested that closure of this oceanic branch predated the Late Carboniferous. Our detrital zircon age spectra for the Early Paleozoic HG (samplesYW31 and YW34; Fig. 1) resemble that of the Habae sediments in the Chinese Altai (Fig. 11). This suggests that no ocean or other geographical boundary existed between East Junggar and the Chinese Altai at the time the HG and Habae sediments were deposited. Therefore, we suggest that the Armantai ophiolite was emplaced prior
to oceanic closure and, hence, prior to the deposition of the HG and Habahe sediments. Since the HG and the Habahe sediments were deposited between the Silurian and Early Devonian, the emplacement of the Armantai ophiolite must at least predate the Early Devonian.

The Kalamaili ophiolite has been considered as the boundary between the East Junggar area and the Late Paleozoic Harlik arc (Li, 1995; Li et al., 2009). The Kalamaili tholeiitic gabbros and basalts possess island-arc affinities and plot in the fields of IAB and MORB in geochemical diagrams (Wang et al., 2003; Wang et al., 2009). Liang et al. (1999) suggested that the Kalamaili ophiolite formed in a fore-arc setting. Zircon SHRIMP U–Pb dating of plagiogranite and gabbros from the Kalamaili ophiolite yielded ages of 403±9, 336±4 and 330±2 Ma, suggesting that the southern branch of the PAO was already open in the Early Devonian (Ping et al., 2005; Tang et al., 2007; Wang et al., 2009). Recent U–Pb dating of detrital zircons from a Carboniferous sandstone sample on the south side of the ophiolite yielded major age peaks at 365, 403, 464 and 516 Ma, and scattered Neoproterozoic to Neoarchean ages (Li et al., 2007). The age distribution is characterized by relatively high percentages of zircons with Early Paleozoic ages (33%) and Precambrian ages (27%). This differs from the age spectra of detrital zircons from sandstone samples of the Harlik arc, which are dominated by Early Paleozoic zircon ages (93%) (Sun et al., 2007). The detrital zircon age spectra of the Carboniferous samples in this study (YW40 and KP04) differ from both the Carboniferous sandstone in the southern Kalamaili ophiolite belt and the Carboniferous samples of the Harlik arc (Fig. 7). These differences suggest that an oceanic branch of the PAO may have persisted between East Junggar and the Harlik arc during the deposition of the KG and the Miaoergou Formation (b 350 Ma), which is consistent with the discovery of Late Devonian to Early Carboniferous radiolarian fossils in siliceous rocks in the Kalamaili ophiolite belt (Shu and Wang, 2003).

5.4. Tectonic implications for the southern CAOB

Many different models have been proposed to explain the tectonic evolution of the CAOB, including punctuated accretion by closure of multiple oceans (Coleman, 1989; Zonenshain et al., 1990), the formation of the Kipchak arc a single subduction zone (Şengör et al., 1993; Şengör and Natal’in, 1996), fore-arc accretion punctuated by opening and closure of back-arc basins (Yakubchuk et al., 2001, 2002), and collision

Table 2

Average chemical compositions of graywackes in East Junggar and graywackes in representative tectonic settings.

Data for graywackes of various tectonic settings are from Bhatia (1983, 1985) and Bhatia and Crook (1986).

<table>
<thead>
<tr>
<th>Tectonic setting</th>
<th>OIA</th>
<th>CIA</th>
<th>ACM</th>
<th>PM</th>
<th>Huangcaopo G.</th>
<th>Kubusu G.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>Range Average</td>
<td>Range Average</td>
</tr>
<tr>
<td>SiO₂</td>
<td>59</td>
<td>71</td>
<td>74</td>
<td>82</td>
<td>61.1–68.0 65</td>
<td>62.5–73.5 68.8</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.06</td>
<td>0.64</td>
<td>0.46</td>
<td>0.49</td>
<td>0.58–0.87 0.72</td>
<td>0.30–0.81 0.62</td>
</tr>
<tr>
<td>Al₂O₃/SiO₂</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.02–0.30 0.025</td>
<td>0.16–0.28 0.21</td>
</tr>
<tr>
<td>Ba</td>
<td>370</td>
<td>444</td>
<td>522</td>
<td>253</td>
<td>232–637 436</td>
<td>129–1278 526</td>
</tr>
<tr>
<td>Pb</td>
<td>7</td>
<td>15</td>
<td>24</td>
<td>16</td>
<td>6.44–22.1 13.6</td>
<td>7.28–15.0 9.87</td>
</tr>
<tr>
<td>Th</td>
<td>2</td>
<td>11</td>
<td>19</td>
<td>17</td>
<td>4.29–12.9 10.7</td>
<td>2.75–6.33 4.62</td>
</tr>
<tr>
<td>U</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>1.68–13.2 2.46</td>
<td>1.20–2.35 1.85</td>
</tr>
<tr>
<td>Zr</td>
<td>96</td>
<td>229</td>
<td>179</td>
<td>298</td>
<td>190–301 225</td>
<td>101–217 166</td>
</tr>
<tr>
<td>Hf</td>
<td>2.1</td>
<td>6.3</td>
<td>6.8</td>
<td>10.1</td>
<td>4.44–6.51 5.34</td>
<td>3.26–6.36 4.92</td>
</tr>
<tr>
<td>Nb</td>
<td>2.0</td>
<td>8.5</td>
<td>10.7</td>
<td>7.9</td>
<td>8.29–10.7 9.99</td>
<td>4.10–6.28 5.42</td>
</tr>
<tr>
<td>Nd</td>
<td>11</td>
<td>21</td>
<td>25</td>
<td>29</td>
<td>27.1–35.4 31.0</td>
<td>10.0–22.7 18.7</td>
</tr>
<tr>
<td>La/Yb₉</td>
<td>2.8</td>
<td>7.5</td>
<td>8.3</td>
<td>10.8</td>
<td>4.74–7.80 6.33</td>
<td>1.95–10.2 4.60</td>
</tr>
<tr>
<td>Eu/Eu*</td>
<td>1.0</td>
<td>0.8</td>
<td>0.6</td>
<td>0.6</td>
<td>0.52–0.70 0.66</td>
<td>0.61–0.87 0.73</td>
</tr>
<tr>
<td>Ba/Sr</td>
<td>1.0</td>
<td>3.6</td>
<td>3.8</td>
<td>4.7</td>
<td>0.7–13 2.2</td>
<td>0.4–0.40 1.5</td>
</tr>
<tr>
<td>Th/U</td>
<td>2.1</td>
<td>4.6</td>
<td>4.8</td>
<td>5.6</td>
<td>2.55–5.5 4.3</td>
<td>2.3–2.9 2.5</td>
</tr>
<tr>
<td>Zr/Hf</td>
<td>46</td>
<td>36</td>
<td>26</td>
<td>30</td>
<td>38–46 42</td>
<td>31–35 34</td>
</tr>
<tr>
<td>Zr/Th</td>
<td>48</td>
<td>22</td>
<td>10</td>
<td>19</td>
<td>16–70 21</td>
<td>20–77 36</td>
</tr>
</tbody>
</table>

Abbreviations: OIA, oceanic island arc; CIA, continental island arc; ACM, active continental margins; PM, passive margins.

Eu/Eu* = 2 × Eu/Eu₉/(Sm₉ + Gd₉).
Fig. 10. Tectonic discriminating diagrams for the Paleozoic graywackes (after Roser and Korsch, 1986; Bhatia and Crook, 1986). Abbreviations for tectonic settings: A, oceanic island arc; B, continental arc; C, active continental margin; D, passive continental margin. Symbols are as in Fig. 3.

Fig. 11. Comparative relative probability plots for detrital zircons from the Paleozoic graywackes in the Chinese Altai and East Junggar. Original data: (a) from Long et al. (2010); (b) from Li et al. (2007); (c) and (d) from this study (data with disc.% > 10 are excluded).
of Gondwana-derived terranes to form the Kazakhstan–Baikal composite continent which later collided with the Siberian continent (Dobretsov and Buslov, 2007; Buslov, 2011). In the southern CAOB, there are multiple linear accretionary orogenic collages consisting of terranes of different geodynamic origins, including Paleozoic arcs, ophiolites, accretionary wedges and microcontinents (Coleman, 1989; Xiao et al., 1992; Mossakovsky et al., 1993; Buchan et al., 2001; Yakubchuk et al., 2002; Buslov et al., 2004; Windley et al., 2007; Xiao et al., 2008, 2009). A branch of the PAO has been proposed to exist between East Junggar and the Chinese Altai, which is characterized by a Paleozoic ophiolite belt that includes the Kuerti and southern Qinghe ophiolites (Xu et al., 2003; Wu et al., 2006a, 2006b). SHRIMP U–Pb zircon dating of plagiogranite and basalt from these two ophiolites yielded 206Pb/238U ages of 372±19 Ma and 352±4 Ma, respectively (Zhang et al., 2003; Wu et al., 2006a, 2006b). These Paleozoic ages suggest that there was still a wide ocean between the two terranes in the Late Devonian to Early Carboniferous. However, the similar detrital zircon age spectra of Early Paleozoic sediments in East Junggar and the Chinese Altai imply that no ocean existed between them prior to their deposition (i.e., at 400–440 Ma). Given the similarity of the Early Paleozoic sediments in the two terranes and the absence of pre-Silurian basement rocks in the East Junggar terrane, we suggest that the pre-Silurian sedimentary rocks in East Junggar were part of the forearc accretionary complex of the Chinese Altai before the opening of the Kuerti and southern Qinghe oceans. In combination with the emplacement age of the Armantai and Kalamaili ophiolites, the age spectra of detrital zircons and the ages of igneous rocks in East Junggar, a three-phase tectonic model is proposed for the evolution of the southern CAOB involving a long-lasting northward subduction–accretion process accompanied by the opening of a back-arc basin. This model also provides insights into the history of the East Junggar and adjacent terranes (Fig. 12).

Phase (1) During Ordovician time (480–440 Ma), the Armantai Ocean, which was a branch of the southern PAO, subducted northward beneath the Chinese Altai arc (Fig. 12a). As parts of the ocean floor, the present fragments of the Armantai ophiolite dominated by E-MORB and OIB-type basalts were not yet emplaced (Jin et al., 2001).

Phase (2) In the Silurian (440–400 Ma), a large sequence of accretionary complexes was formed along the southern margin of the Chinese Altai and the present fragments of the Armantai ophiolite were accreted into the previously formed accretionary complexes (Fig. 12b). The Yemaquan magmatic arc was built over the accretionary complexes by continuous subduction of the ocean floor. This interpretation is supported by the active continental margin tectonic setting and northward provenance of the pre-Early Paleozoic detrital zircons.

Phase (3) During a period from the Early Devonian to Early Carboniferous (400–330 Ma), the present fragments of the Kalamaili ophiolite were accreted onto the southern margin of the Yemaquan arc (Fig. 12c). Rollback of the subduction zone resulted in the formation of back-arc basins along the southern margin of the Chinese Altai, which are represented by the Kuerti and Qinghe ophiolites (Xu et al., 2003; Wu et al., 2006a, 2006b). Potential southward subduction of the oceanic floor of the back-arc basins is favored by the existence of coeval arc-related rocks in the Dulata magmatic arc (e.g., Mg-rich andesites, Nb-rich basalts, boninites, and adakites: Niu et al., 1999, 2006; Zhang et al., 2005), and in the formation of the Dulata magmatic arc to the north of the Yemaquan arc.

6. Conclusions

(1) The Wuliegai Formation, the lowest subdivision of the HG, was deposited during a period from the Silurian to the Early Devonian (400–440 Ma). This suggests a younger depositional age for the HG than previously assumed. The KG and the uppermost subdivision of the HG were deposited after ~355 Ma.
and can be incorporated into the Early Carboniferous Nan-mingshui Formation.

(2) The Paleozoic graywackes in East Junggar were probably derived from an immature source dominated by felsic–andesitic igneous rocks and deposited at an active continental margin. Precambrian materials in the graywackes were derived from a source located to the north.

(3) The Armanlai ophiolite was probably emplaced prior to the Early Devonian, whereas the emplacement of the Kalamali ophiolite postdates the Early Carboniferous.

Supplementary materials related to this article can be found online at doi:10.1016/j.gr.2011.05.015.

Acknowledgments

We are very grateful to R.D. Nance and the three reviewers, whose polishing work and constructive comments have greatly improved the manuscript. This study was supported by the National Basic Research Program of China (2007CB411308), the National Natural Science Foundation of China (NSFC 40803009, 40725009 and 40721063) and the Hong Kong RGC (HKU704307P). We express our appreciation to K.J. Hou, Y. Liu and X.L. Tu for their laboratory assistance. This is contribution No. IS-1345 from GIGCAS.

Appendix A. Analytical methods

A.1. Geochemistry

Samples chosen for elemental and isotopic analysis were crushed into small pieces, ultrasonically cleaned in distilled water, then dried and powdered. Major element oxides (wt.%) were determined on fused disks with a 1:8 sample to Li2B4O7 flux ratio, using a Rigaku ZSX100e X-ray fluorescence spectrometer at the Key Laboratory of Isotope Geochronology and Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. The accuracies of the XRF analyses are estimated to be ca. 1% for SiO2, ca. 5% for MnO and Geochemistry, Chinese Academy of Sciences. The accuracies of the performed on a Thermo-Finnigan Neptune multi-collector ICP-MS –try, Chinese Academy of Sciences. The zircon U-Pb dating was accomplished off-line (207Pb/206Pb and 208Pb/238U ratios) using the ICPSM DataCal 4.3 program (Liu et al. 2008). Common-Pb can be considered negligible because of the low 206Pb/238U ratios (>1000) for most of the analyzed spots (Wu et al., 2006a, 2006b). The Plesovice zircon was used as a secondary standard to check the accuracy of the analyses and yielded a 206Pb/238U age weighted mean of 337±2 Ma (2SD, n=12), which is in good agreement with the ID-TIMS result (206Pb/238U age = 337.1±0.37 Ma (2SD), Sláma et al., 2008). Ages and concordia diagrams were calculated using Isoplot/Ex 3.0 (Ludwig, 2003). Since 206Pb/238U ratios generally provide more precise younger ages, whereas 206Pb/206Pb ratios provide more precise older ages, we used 206Pb/238U ages for zircons <1000 Ma and 206Pb/206Pb ages for zircons >1000 Ma (Gehrels et al., 2006; Supplementary Table A1).

References

