Челябинский метеорит, сообщение 11.

552.63

МИНЕРАЛЬНЫЕ АССОЦИАЦИИ В ПУСТОТАХ ТЕМНОЙ ЛИТОЛОГИИ МЕТЕОРИТА ЧЕЛЯБИНСК (ЧЕБАРКУЛЬСКИЙ ФРАГМЕНТ)

В.В. Шарыгин^{1,2}, Г.А. Яковлев³, Н.С. Карманов¹, В.И. Гроховский³, Н.М. Подгорных¹

¹ Институт геологии и минералогии им. В.С. Соболева СО РАН, г. Новосибирск sharygin@igm.nsc.ru ² Новосибирский государственный университет, г. Новосибирск ³ Институт физики и технологий, Уральский федеральный университет им. Б.Н.Ельцина, г. Екатеринбург

MINERAL ASSOCIATIONS IN CAVITIES FROM DARK LITHOLOGY OF **CHELYABINSK METEORITE (CHEBARKUL FRAGMENT)**

V.V. Sharygin^{1,2}, G.A. Yakovlev³, N.S. Karmanov¹, V.I. Grokhovsky³, N.M. Podgornykh¹

V.S. Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk, sharygin@igm.nsc.ru ² Novosibirsk State University, Novosibirsk ³ Institute of Physics and Technology, B.N. Eltsin Ural Federal University, Ekaterinburg

Fe-Ni-

Fo₄₁₋₆₉Fa₃₁₋₅₉.

- Fo₇₀₋₈₄Fa₁₆₋₃₀, Mg, Ti Al, $(Fe_{0.98}Mn_{0.02})(Cr_{1.89-1.94}Fe_{0.04-0.09}V_{0.02-0.03})O_4$.

Ni (13.5-19.6 -33. . Na-Fe- $(Fe^{2+}, Mn^{2+})_3(PO_4)_2$ $Na(Fe^{2+}, Mn^{2+})_4(PO_4)_3$ $Na_2(Fe^{2+},Mn^{2+})_5(PO_4)_4.$ Na-Fe-Fe-Ni-S-O

Ключевые слова:

Fe-Ni-

(

Ni).

Ideally faceted crystals of olivine, chromite and Fe-Ni-metal (taenite) as well as aggregate of dendriticskeletal metal crystals in association with troilite were found on the walls of the gas cavities in areas with complete shock-induced melting of host chondrite (dark lithology of the Chelyabinsk meteorite, Chebarkul fragment). It is suggested that mineral formation in the cavities was with participation of gas phase. Olivine on the cavity walls and near is zoned: centre - $Fo_{70-84}Fa_{16-30}$, rim $Fo_{41-69}Fa_{31-59}$. Octahedral chromite is virtually free in Mg, Ti and Al: (Fe_{0.98}Mn_{0.02}) (Cr_{1.89-1.94}Fe_{0.04-0.09}V_{0.02-0.03})O₄. Skeletal metal crystals from metal-troilite aggregate are also zoned: centre kamacite with high Ni (13.5-19.6 wt.%), rim taenite (28.1-33.6 wt.% Ni). Chromite, Na-Fe-phosphate globules and pentlandite also occur in these aggregates. Three mineral phases were found in the phosphate globules: sarcopside (Fe²⁺,Mn²⁺)₃(PO₄)₂, galileiite $Na(Fe^{2+},Mn^{2+})_4(PO_4)_3$ and unidentified Na-Fe-phosphate $Na_2(Fe^{2+},Mn^{2+})_5(PO_4)_4$. Their formation is due to the separation of a phosphatic liquid from the Fe-Ni-S-O melt on the final stages of metal crystallization.

Figures 11. Tables 4. References 40.

Key words: meteorite Chelyabinsk, impact melt, phosphate globules, Fe-Ni-metal, olivine, chromite, sarcopside, galileiite, skeletal crystals

Введение

Borovicka et al., 2013; Grokhovsky et al., 2013; Popova et al., 2013,

Kohout et al., 2014; Ozawa et al., 2014;

Popova et al., 2013; Sharygin et al., 2013a-b;

(

у

Olympus BX51

TESCAN MIRA 3MLU (BSE)) _ SE). 20-40 , **TESCAN MIRA** 3MLU Energy 450+ (Oxford Instrument Analytical Ltd ₂ (Si, O), Al₂O₃ $_{2}P_{2}O_{7}$ (P), Cl BaF_2 (F), Cr_2O_3 Ni, Co (EBSD)

FE SEM Sigma VP

EBSD

Краткие сведения о метеорите Челябинск

LL5 (S4-5, W0) (

).

Ozawa et al. (2014)

-2000

_

-

Примечание: chondrite	dark zone, gray zone	
avities	Ν	Ae+Tro
-	Fe-Ni-	

Fig. 1. Relationship between initial chondritic paragenesis with product of its metlting (dark lithology) and large cavities with aggregate of dendritic/skeletal metal crystals and with blebs and films of metal-troilite composition in the gray zone of the dark lithology, section of the Chebarkul fragment of the Chelyabinsk meteorite. *Notes:* chondrite initial chondritic paragenesis; dark zone, gray zone different zonet of the dark lithology; dendritic/skeletal metal crystals covered by troilite; Me+Tro metal-troilite aggregate; red-brown Fe-Ni-hydroxides.

Чебаркульский фрагмент метеорита Челябинск

_

_

_

-

Первая зона

.

Вторая зона

_

_

Scott, 1982; Rubin, 1985).

-

-

Минералогия силикатной части вокруг газовых пустот

-5).

,

_

_

_

Fo70-84Fa16-30,

_

-

,

;

 $\begin{array}{c} 20\text{-}30 & . \\ Fo_{41\text{-}69}Fa_{31\text{-}59}, \end{array}$

_

Fa_{>50}

Рис. 2. Примечание: Crt

01

Fig. 3. Small cavities are partially filled by metal+troilite aggregate, gray zone, Chebarkul fragment of the Chelyabinsk meteorite (BSE images).

Note: Me metal; Tro troilite; Ol olivine; Gl interstitial devitrified aggregate (former glass).

Puc. 4.

Gl), BSE

Fig. 4. Silicate part near the cavities: zoned olivine crystals and rapid-quenched interstitials (GI), BSE images.

Mg-Fe-

EDS

NaCa₉(Mg,Fe)(PO₄)₇. EDS

Fe,

Mg Na

Table 2. Cl	nemical cor	npositio	n (EDS, v	vt.%) of	zoned	olivine	in silica	te part.	near cav	ities.		
Sample	Grain		SiO ₂	Cr_2O_3	FeO	MnO	MgO	CaO	Sum	Fo	Fa	Lar
Me-2	large	с	37.64	0.00	25.94	0.44	35.79	0.00	99.81	70.74	29.26	0.00
		m	38.24	0.28	24.52	0.39	35.92	0.56	99.91	71.41	27.79	0.80
Me-2	large	с	37.63	0.00	26.93	0.41	35.33	0.00	100.30	69.72	30.28	0.00
		m	38.25	0.38	22.47	0.39	38.34	0.13	99.96	74.79	25.03	0.18
Me-2	large	с	37.41	0.00	26.72	0.56	34.98	0.00	99.67	69.55	30.45	0.00
		m	38.37	0.37	22.00	0.36	38.36	0.14	99.60	75.20	24.60	0.20
Me-2-2	small	с	39.70	0.38	14.63	0.18	44.93	0.00	99.82	84.39	15.61	0.00
		r	37.52	0.47	26.18	0.46	34.22	0.15	99.00	69.44	30.34	0.22
Me-12	small	c	39.23	0.31	19.88	0.46	39.85	0.21	99.94	77.50	22.21	0.29
		r	37.24	0.50	27.77	0.68	33.52	0.13	99.84	67.60	32.21	0.19
Me-25-1	large	c	37.28	0.00	26.51	0.48	35.13	0.00	99.40	69.87	30.13	0.00
		с	37.38	0.00	26.89	0.48	35.16	0.00	99.91	69.59	30.41	0.00
		с	37.56	0.00	26.31	0.41	35.68	0.00	99.96	70.41	29.59	0.00
		m	38.76	0.32	20.69	0.36	39.72	0.11	99.96	76.96	22.89	0.15
		m	38.48	0.28	19.85	0.43	40.48	0.17	99.69	77.87	21.90	0.24
		m	39.08	0.44	19.06	0.25	40.93	0.14	99.90	78.91	20.90	0.19
		r	37.43	0.41	25.56	0.48	35.24	0.00	99.12	70.68	29.32	0.00
Me-25-3	small	r	33.58	0.38	46.85	0.50	18.64	0.00	99.95	41.23	58.77	0.00
Me-25-4	small	с	36.71	0.25	28.94	0.40	33.00	0.24	99.54	66.48	33.17	0.35
Примечани	e: large -			>80)-100	sma	ıll			-		c, m, r -
-	-		; Ni				(<0.0)5	Fo		; Fa	
(+):	; Lar		. %.									

EDS • . •

(+); Lar . %. *Note:* large - large olivine grains (>80- m); small small olivine grains (10- m); c, m, r - core-middle-rim of crystal; Ni is below detection limit (<0.5 wt.%). Fo forsterite; Fa fayalite (+tephroite); Lar larnite in mole %.

Mg-Fe-

Fig. 5. Silicate part in the contact of large cavity with metal-troilite aggregate, BSE images. *Note:* Crt chromite; PG phosphate globules; Merr merrillite?; Ph unidentified Na-Ca-Mg-Fe-phosphate. Other symbols see Figs. 1-4.

(30)

 $(Fe_{0.98}Mn_{0.02})(Cr_{1.89\text{-}1.94}Fe_{0.04\text{-}0.09}V_{0.02\text{-}0.03})O_4$

 $(Fe_{0.87\text{-}0.90}Mg_{0.10\text{-}0.13}Mn_{0.02})(Cr_{1.55\text{-}1.65}Al_{0.22\text{-}0.28}Fe_{0.09\text{-}0.15}Ti_{0.06\text{-}0.10}V_{0.01\text{-}0.02})O_4$

Table 2. Ch	iemical con	position (I	EDS, wt.%)	of chrom	ite in and no	ear cavities	•		
Sample		TiO ₂	Cr_2O_3	V_2O_3	Al_2O_3	FeO	MnO	MgO	Sum
Me-2	in Ol	2.40	55.15	0.84	6.22	33.02	0.49	1.53	99.65
Me-2	с	0.00	64.14	0.71	0.00	33.75	0.74	0.20	99.54
Me-7-2	с	0.00	64.91	0.85	0.00	33.28	0.44	0.00	99.48
	r	0.00	64.36	0.50	0.23	33.64	0.75	0.00	99.48
Me-12	с	0.00	63.53	0.65	0.00	34.71	0.52	0.00	99.41
Me-12	с	0.00	64.39	0.88	0.00	33.70	0.77	0.00	99.74
Me-12	с	0.00	64.40	0.60	0.00	33.94	0.41	0.00	99.35
Me-25	с	0.00	64.29	0.68	0.00	33.86	0.61	0.00	99.44
	r	0.00	63.74	0.74	0.00	34.39	0.59	0.00	99.46
	r	0.00	63.57	0.51	0.00	34.65	0.68	0.00	99.41
	r	0.00	63.56	0.50	0.00	34.73	0.67	0.00	99.46
Примечание	e: in Ol				c. r -	-		: Ni	

2. EDS Table 2 Chemical composition (EDS, wt %) of chromite in and near cavities

(<0.05

Note: in Ol inclusion in large olivine; c, r - core-rim of crystal; Ni is below detection limit (<0.05 wt.%).

Рис. 6.

BSE

Fig. 6. Morphology of dendritic/skeletal metal crystals from large cavities, images in BSE and reflected light.

Металл-троилитовый скелетный агрегат в пустотах

EDS

_

)

(EDS EBSD 7-8).

Puc. 7. BSE

Fig. 7. BSE image and elemental maps for a part of dendritic-skeletal metal crystal.

EBSD

Ni

: Fe -64.7-70.1; Ni 28.1-33.6; Co 1.2-1.6).

_

Рис. 8. EBSD *Примечание:*

Ni-

_

Fig. 8. EBSD mapping for a part of dendritic-skeletal metal crystal. *Note:* reference standards kamacite, taenite and troilite.

_

Ni

Фазовый и химический состав фосфатных глобул в металл-троилитовом агрегате

$$\begin{array}{ccc} Na(Fe^{2+},Mn^{2+})_4(PO_4)_3 & \{Fe^{2+}\}\{Na_8\}\{Fe^{2+}_4Na_4\}\{Fe^{2+}_{43}\}(PO_4)_{36} \\ , \ (Fe^{2+},Mn^{2+},Na)_3(PO_4)_2 & Na-Fe- \ (NFP) \\ Na_2(Fe^{2+},Mn^{2+})_5(PO_4)_4. & Na \\ Na_4Fe^{2+}_7(PO_4)_6, & - \end{array}$$

Table 3. Chemical composition (EDS, wt.%) of kamacite and taenite from dendritic/skeletal crystals in metal-troilite aggregate.

Sample	Mineral	Fe	Со	Ni	Sum
Me-3-1	Kamacite	84.22	1.44	14.26	99.92
Me-3-3	Kamacite	83.87	1.34	14.55	99.76
	Kamacite	82.49	1.30	15.37	99.16
Me-3-4	Kamacite	78.71	1.67	18.74	99.12
Me-3-5	Kamacite	83.05	1.41	14.66	99.12
Me-4-1	Kamacite	85.07	1.45	13.30	99.82
	Taenite	67.19	1.35	31.63	100.17
Me-4-2	Kamacite	83.15	1.39	14.80	99.34
	Kamacite	79.66	1.39	18.73	99.78
	Taenite	69.55	1.04	28.92	99.51
	Taenite	64.87	1.16	33.78	99.81
	Taenite	66.21	1.30	32.50	100.01
	Taenite	66.97	1.23	31.63	99.83
Me-5-1	Kamacite	84.38	1.30	13.98	99.66
	Taenite	66.34	1.34	31.56	99.24
	Taenite	66.14	1.25	32.40	99.79
Me-5-2	Kamacite	85.17	1.23	13.63	100.03
Me-7-2	Kamacite	79.61	1.45	17.95	99.01
	Kamacite	83.90	1.59	14.28	99.77
Me-14-1	Kamacite	83.00	1.21	15.38	99.59
	Kamacite	82.61	1.37	15.40	99.38
	Taenite	69.40	1.55	28.36	99.31
Me-25-1	Kamacite	83.21	1.28	15.15	99.64
Me-25-5	Taenite	70.06	1.47	28.06	99.59
Me-25-6	Taenite	70.02	1.47	28.12	99.61
Me-25-8	Taenite	69.32	1.43	28.78	99.53
Me-25-11	Kamacite	79.26	1.48	18.92	99.66
Me-30	Kamacite	83.94	1.47	14.16	99.57
	Kamacite	83.40	1.58	14.60	99.58
	Kamacite	82.07	1.33	16.61	100.01
	Kamacite	82.31	1.38	15.61	99.30
	Kamacite	83.67	1.39	14.51	<u>99.5</u> 7

Fig. 9. Position of phosphate globules in the metal-troilite aggregate (reflected light).

(Olsen et al., 1999; Grew et al., 2010).

-11

NFP + Fe-

NFP,

Fig. 10. Phase composition of phosphate globules in the metal-troilite aggregate (BSE images). Src sarcopside; Gal galileiite; NFP unidentified Na-Fe-phosphate.

NFP

NFP

Fig. 11. Elemental maps for a phosphate globule in the metal-troilite aggregate.

BSE	,		(. 11).
	-1	1).		

	SO_3	SiO ₂ , NiO,
MnO	NFP	K ₂ O
NFP		
SiO ₂ (0.7 Mg0	O (1.5 aO (0.8	
	MnO NFP SiO ₂ (0.7 Mge	SO ₃ MnO NFP NFP SiO ₂ (0.7 MgO (1.5 aO (0.8

EDS

0.75 .% C	aO.	(<	0.1	.%).				-11. * -			1.48	5.%	MgU
Примечание:	Src	1.	; Ga	al	; N	IFP		11 ৬	Na-I	Fe-	; Ca	Mg	M-0
PG-25-9*	4	NFP	0.74	38.55	0.98	0.00	43.38	6.63	0.32	7.38	0.14	0.38	100.73
	1	Src	0.34	38.56	0.95		53.24	5.55	0.32	0.61	0.00	0.10	100.15
PG-25-11	4	NFP	0.26	39.75	0.43		47.21	3.86	0.00	8.28	0.12	0.24	99.81
	1	Src		38.82	0.52		52.94	5.46	0.53	0.78			99.05
PG25-10	1	Gal		38.65	0.65		50.52	4.21	0.28	6.19			100.50
	1	Src		38.69	0.51		55.63	3.95	0.38	0.82	0.00		99.98
PG25-6	1	Gal		38.49	0.87		47.84	5.71	0.36	6.34	0.00		99.61
PG14-1	4	NFP		40.10	0.50	0.00	46.74	3.87	0.00	8.09	0.06	0.00	99.35
PG3-6	3	Gal		38.99	0.34	0.00	49.30	4.67	0.00	6.39	0.10	0.19	99.99
	5	Gal		38.88	0.47	0.00	48.49	4.71	0.00	6.10	0.15		98.80
PG3-5	2	Src		39.34	0.70	0.00	50.94	8.42	0.00	0.39	0.00		99.78
	3	Gal		38.81	0.54	0.00	48.71	5.10	0.34	6.11	0.00	0.00	99.61
PG3-4	3	Src		38.59	0.52	0.05	51.33	7.93	0.09	0.41	0.00	0.17	99.11
PG3-3	1	Gal		39.62	0.57	0.00	48.93	5.16	0.00	6.17	0.12		100.57
PG3-2	3	NFP		39.96	0.51	0.31	42.34	7.69		8.83	0.20	0.45	100.28
PG3-1	3	Gal		38.10	0.54	0.00	49.68	4.72	0.98	6.27	0.07		100.37
Globula	n	Phas	SiO_2	P_2O_5	SO_3	Cr_2O_3	FeO	MnO	NiO	Na_2O	K_2O	Cl	Sum

Table 4. Chemical composition (EDS, wt %) of phosphate minerals from globules in metal-troilite aggregate

Note: Src sarcopside; Gal galileiite; NFP unidentified Na-Fe-phosphate; Ca and Mg are below detection limits (<0.1 wt.%). Globule numbers see Fig. 10-11. * - sum includes 1.48 wt.% MgO and 0.75 wt.% CaO.

Na

Na-Fe-

(Calvo, 1968; Moore, 1972; Nord, Ericsson, 1982; Steele et al., 1991; Grew et al., 2007) ²⁺)₃](PO₄)₂

 $+ P^{5+}$ $+ Si^{4+}, 2 + P^{5+}$ $+ Al^{3+} + Fe^{2+}$ + +

Na₂O (

Na

%

).

 $FeFe_2(PO_4)_2$

LiLiFe₂(PO₄)₂ (Moore, 1972).

_

Na-Fe-

,

(

Mg-Fe-

LL Jones et al., 2014). -Mg-Mn-₃(PO₄)₂

 Na^+

Na-Ca-

4

IIIAB (Olsen, Fredriksson, 1966; Bild, 1974; Steele et al., 1991; Floss, 1999; McCoy et al., 2006; Grew et al., 2007; 2010) Na-Fe-(

-Mn-Mg-

IIIAB 1997; Olsen et al., 1999; Grew et al., 2010). Na-Fe-

, Krymka LL3.1

2005; Xie et al., 2014).

(Yanzhuang H6

(Chen, Xie, 1996; Semenenko, Perron, Na-Fe-

(Floss, 1999; Olsen, Steele, 1993,

(

Na-Fe-

Yanzhuang

_

Na₂(Fe,Mn)₁₇(PO₄)₁₂ (Xie et al., 2014).

Обсуждение

, Rubin, 1985)

PT-

_

_

S5 S6.

Mg, Ti Al;

Sharygin et al., 2013 a-b).

-

		-
		-
-		
		-
		-
	Yanzhuang Na-Fe- Fe-Ni-S-O	Xie et al. (2014)
		-

(

Na-Fe-

_

Fe-Ni-

NFP).

Fe-Ni-S-O

(

-

NFP) -

Yanzhuang H6 Krymka LL3.1 (Chen, Xie, 1996; Semenenko, Perron, 2005; Xie et al., 2014).

-

Na-Fe-

,

,

,

C, O, Cl

Grokhovsky et al.,

2015).

 $(Fe,Ni)_{23}C_6$

Fe-

(

-35-21164 mol_a_ved)

OPTEC Литература Анфилогов В.Н., Белогуб Е.В., Блинов И.А., Еремяшев В.Е., Кабанова Л.Я., Лебедева С.М., Лонщакова Г.Ф., Хворов П.В. . . 118-129. . 2013. Бадюков Д.Д., Райтала Й., Костама П., Игнатьев А.В. 23. 128. // 2015. Берзин С.В., Ерохин Ю. В., Иванов К.С., Хиллер В.В. . 106 117. Богомолов Е.С., Скублов С.Г., Марин Ю.Б., Степанов С.Ю., Антонов А.В., Галанкина О.Л. Sm Nd // H. 2013. 548 553. Галимов Э.М., Колотов В.П., Назаров М.А., Костицын Ю.А., Кубракова И.В., Н.Н. Кононкова, Рощина И.А., Алексеев В.А., Кашкаров Л.Л., Бадюков Д.Д., Севастьянов В.С. . 2013. . . 580 598. Дудоров А.Е., Майер А.Е. -57. Коротеев В.А., Берзин С.В., Ерохин Ю.В., Иванов К.С., Хиллер В.В. . 2013. . 451. . 446-450. Мороз Т.Н., Горяйнов С.В., Похиленко Н.П., Подгорных Н.М. H. 2014, 457. -C . 81 84. Силаев В.И., Голубева И.И., Филиппов В.Н., Лютоев В.П., Симакова Ю.С., Потапов С.С., Петровский В.А., Хазов А.Ф. . 2013. // . . 8-27. Ханчук А.И., Гроховский В.И., Игнатьева А.В., Веливетикая Т.А., Кияшко С.И. . 452. H. . 317-320. Шарыгин В.В. . . 183-186. Шарыгин В.В., Карманов Н.С., Подгорных Н.М., Томиленко А.А. 2014 . . 637-653. Шарыгин В.В., Тимина Т.Ю., Карманов Н.С., Томиленко А.А., Подгорных Н.М.

Bild R.W. New occurrences of phosphates in iron meteorites // Contributions to Mineralogy and Petrology. 1974. V. 45. P. 91 98.

Borovicka J., Spurny P., Brown P., Wiegert P., Kalenda P., Clark D., Shrbeny L. The trajectory, structure and origin of the Chelyabinsk asteroidal impactor // Nature. 2013. V. 503. Iss. 7475. P. 235-237.

Calvo C. The crystal structure of graftonite // American Mineralogist. 1968. V. 53. P. 742 750.

Chen M., Xie X. Na behavior in shock-induced melt phase of the Yanzhuang (H6) chondrite // European Journal of Mineralogy. 1996. V. 8. V. 325 333.

Floss C. Fe,Mg,Mn-bearing phosphates in the GRA95209 meteorite: Occurrences and mineral chemistry // American Mineralogist. 1999. V. 84. P. 1354 1359.

Grew E.S., Armbruster T., Medenbach O., Yates M.G., Carson C.J. Chopinite, [(Mg,Fe)₃ 4)₂, a new mineral isostructural with sarcopside, from a fluorapatite segregation in granulite-facies paragneiss, Larsemann Hills, Prydz Bay, East Antarctica // European Journal of Mineralogy. 2007. V. 19. P. 229 245.

Grew E.S., Yates M.G., Beane R.J., Floss C., Gerbi C. Chopinite-sarcopside solid solution, [(Mg,Fe)₃ ₄)₂, in GRA95209, a transitional acapulcoite: Implications for phosphate genesis in meteorites // American Mineralogist. 2010. V. 95. P. 260 272.

Grokhovsky V.I., Brusnitsyna E.V., Yakovlev G.A. Haxonite in Chelyabinsk LL5 meteorite // 78th Annual Meeting of the Meteoritical Society, Bearkly, USA, 2015. Abstract 5274.

Grokhovsky V.I., Gladkovsky S.V., Ryzhkov M.A., Ishchenko A.V. Mechanical and thermal properties of the Chelyabinsk meteorite // Meteoritics and Planetary Science. 2013. V. 48, P. A147-A147.

Jones R.H., McCubbin F.M, Dreeland L., Guan Y., Burger P.V., Shearer C.K. Phosphate minerals in LL chondrites: A record of the action of fluids during metamorphism on ordinary chondrite parent bodies // Geochimica et Cosmochimica Acta. 2014. V. 132. P. 120 140.

Kohout T., Gritsevich M., Grokhovsky V.I., Yakovlev, G.A., Haloda J., Halodova P., Michallik R.M., *Penttila A., Muinonen K.* Mineralogy, reflectance spectra, and physical properties of the Chelyabinsk LL5 chondrite insight into shock-induced changes in asteroid regoliths // Icarus. 2014. V. 228. P. 78 85.

McCoy T.J., Carson W.D., Nittler L.R., Stroud R.M., Bogard D.D., Garrison D.H. Graves Nunataks 95209: A snapshot of metal segregation and core formation // Geochimica et Cosmochimica Acta. 2006. V. 70. P. 516 531.

Moore P.B. Sarcopside: Its atomic arrangement // American Mineralogist. 1972. V. 57. P. 24 35.

Olsen E.J., Fredriksson K. Phosphates in iron and pallasite meteorites // Geochimica et Cosmochimica Acta. 1966. V. 30. P. 459 470.

Olsen E.J., Kracher A., Davis A.M., Steele I.M., Hutcheon. I.D., Bunch T.E. The phosphates of IIIAB iron meteorites // Meteoritics and Planetary Science. 1999. V. 34. P. 285-300.

Olsen E.J., Steele I.M. New alkali phosphates and their associations in the IIIAB iron meteorites // Meteoritics. 1993. V. 28. P. 415-415.

Olsen E.J., Steele I.M. Galileiite: A new meteoritic phosphate mineral // Meteoritics and Planetary Science. 1997. V. 32. P. A155 A156.

Ozawa S., Miyahara, M., Ohtani E., Koroleva O.N., Ito Y., Litasov K.D., Pokhilenko N.P. Jadeite in Chelyabinsk meteorite and the nature of an impact event on its parent body //Scientific Reports. 2014. V. 4. Article 5033.

Nord A.G., Ericsson T. The cation distribution in synthetic (Fe,Mn)₃(PO₄)₂ graftonite-type solid solutions // American Mineralogist. 1982. V. 67. P. 826–832.

Popova O.P., Jenniskens P., Emel'yanenko V., Kartashova A., Biryukov E., Khaibrakhmanov S., Shuvalov V., Rybnov Yu., Dudorov A., Grokhovsky V.I., Badyukov D.D., Yin Q.-Z., Gural P.S., Albers J., Granvik M., Evers L.G., Kuiper J., Kharlamov V., Solovyov A., Rusakov Y.S., Korotkiy S., Serdyuk I., Korochantsev A.V., Larionov M.Yu., Glazachev D., Mayer A.E., Gisler G., Gladkovsky S.V., Wimpenny J., Sanborn M.E., Yamakawa A., Verosub K.L., Rowland D.J., Roeske S., Botto N.W., Friedrich J.M., Zolensky M.E., Le L., Ross D., Ziegler K., Nakamura T., Ahn I., Lee J.I., Zhou Q., Li X.-H., Li Q.-L., Liu Y., Tang G.-Q., Hiroi T., Sears D., Weinstein I.A., Vokhmintsev A.S., Ishchenko A.V., Schmitt-Kopplin P., Hertkorn N., Nagao K., Haba M.K., Komatsu M., Mikouchi T. Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization // Science. 2013. V. 342, P. 1069-1073.

Rubin A.E. Impact melt products of chondritic material // Reviews of Geophysics. 1985. V. 23. P. 277 300.

Scott E.R.D. Origin of rapidly solidified FeNi-FeS grains in chondrites and iron meteorites // Geochimica et Cosmochimica Acta. 1982. V. 46. P. 813 823.

Semenenko V.P., Perron C. Shock-melted material in the Krymka LL3.1 chondrite: Behavior of the opaque minerals // Meteoritics and Planetary Science. 2005. V. 40. P. 173 185.

Sharygin V.V., Karmanov N.S., Timina T.Yu., Tomilenko A.A., Podgornykh N.M. Mineral composition of the Chelyabinsk LL5 chondrite, Russia // 3rd International

Abstract Volume (eds., T.B. Bekker, K.D. Litasov, N.V. Sobolev). Novosibirsk: Publishing House of SB RAS, 2013a. P. 280-281.

Sharygin V.V., Timina T.Yu., Karmanov N.S., Tomilenko A.A., Podgornykh N.M. Mineralogy of the Chelyabinsk meteorite, Russia // Mineralogical Magazine. 2013b. V. 77. no. 5. P. 2189 (Goldschmidt2013 Conference Abstracts).

Steele I.M., Olsen E., Pluth J.J., Davis A.M. Occurrence and crystal structure of Ca-free beusite in the El Sampal IIIA iron meteorite // American Mineralogist. 1991. V. 76. P. 1985-1989.

Xie X., Chen M., Zhai S.-M., Wang F. Eutectic metal + troilite + Fe-Mn-Na phosphate + Al-free chromite assemblage in shock-produced chondritic melt of the Yanzhuang chondrite // Meteoritics and Planetary Science. 2014. V. 49. P. 2290 2304.