На правах рукописи

НИКОЛАЕВА Александра Тимофеевна

ПЕТРОЛОГИЯ МЕЛИЛИТСОДЕРЖАЩИХ ПОРОД ВУЛКАНОВ КУПАЕЛЛО И КОЛЛЕ ФАББРИ (ЦЕНТРАЛЬНАЯ ИТАЛИЯ)

25.00.04 - «петрология, вулканология»

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата геолого-минералогических наук

НОВОСИБИРСК – 2014

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте геологии и минералогии имени В.С. Соболева Сибирского отделения Российской академии наук и в Федеральном государственном бюджетном образовательном учреждении высшего профессионального образования «Новосибирский национальный исследовательский государственный университет»

Научный руководитель:

Панина Лия Ивановна, кандидат геолого-минералогических наук, ведущий научный сотрудник ФБГУН Института геологии и минералогии им. В.С. Соболева СО РАН

Официальные оппоненты:

Арзамасцев Андрей Александрович, доктор геологоминералогических наук, ведущий научный сотрудник ФБГУН Института геологии и геохронологии докембрия РАН

Сазонов Анатолий Максимович, доктор геологоминералогических наук, профессор Института горного дела, геологии и геотехнологий ФГАОУ ВПО «Сибирский федеральный университет»

Ведущая организация:

Федеральное государственное бюджетное учреждение науки Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН (г. Москва)

Защита состоится <u>27 мая 2014 г. в 10:00</u> часов на заседании диссертационного совета Д 003.067.03, созданного на базе ФБГУН Института геологии и минералогии имени В.С. Соболева СО РАН, в конференцзале. Адрес: 630090, г. Новосибирск, просп. Акад. Коптюга, д. 3. Факс: (383)3332792, e-mail: turkina@igm.nsc.ru

С диссертацией можно ознакомиться в библиотеке и на сайте ФГБУН Института геологии и минералогии имени В.С. Соболева СО РАН (адрес сайта <u>http://www.igm.nsc.ru</u>, раздел «Образование»). Автореферат разослан <u>2 апреля 2014 г.</u>

Ученый секретарь диссертационного совета доктор геол.-мин. наук

О.М. Туркина

введение

Актуальность работы. Камафугиты – ультраосновные ультракалиевые близповерхностными высококальциевые породные комплексы являются аналогами глубинных щелочно-ультраосновных комплексных массивов. На территории России камафугиты не встречаются, но их изучение чрезвычайно важно, т.к. выяснение генезиса глубинных массивов затруднено из-за длительности их формирования, эволюционных преобразований и наложенных процессов. Вместе с тем с глубинными массивами связаны крупнейшие месторождения фосфора, ниобия, редких земель, флогопита, вермикулита (Егоров, 1969; Костюк, 2001; Арзамасцев и др., 1998, 2013; Расс, 2000; Сазонов и др. 2001). При изучении камафугитов важно получить информацию об источниках, составе родоначальных магм, их эволюции, флюидонасыщенности, кристаллизации. Изучаемые автором камафугитовые температурах мелилитсодержащие породы встречаются в Центральной Италии. Для них особенно ценным является получение с помощью изучения флюидных и расплавных включений в минералах прямой информации о генезисе камафугитов, влиянии корового вещества, источниках, процессах жидкостной несмесимости в магме (Stoppa et al., 1997; Sharygin, 2001; Панина и др., 2003; Stoppa, Sharygin, 2009). Результаты исследований Solovova et al., 2005; предоставят такую информацию, а также данные о химическом И редкоэлементном составе исходных расплавов, их флюидонасыщенности, эволюции, температурах кристаллизации, геохимии минералов, данные о которых недостаточно отражались в предыдущих работах.

<u>Объекты исследования.</u> Объектами исследования являются кальсилитовые мелилититы вулкана Купаелло, лейцит-волластонитовые микромелилитолиты и контактовые породы вулкана Колле Фаббри, слагающие их минералы и расплавные включения в них.

Цель работы и задачи. Целью работы является получение прямых данных о физико-химических условиях формирования одной из разновидностей камафугитов – мелилитсодержащих пород вулканов Центральной Италии с помощью широкого привлечения методов изучения расплавных включений. Для достижения цели были сформулированы следующие задачи:

- Комплексное изучение минерального и химического состава: а) кальсилитовых мелилититов Купаелло, б) лейцит-волластонитовых микромелилитолитов и контактовых пород Колле Фаббри.
- 2) Выявление особенностей химического состава минералов изучаемых пород.
- 3) Выяснение температуры и особенностей кристаллизации породообразующих минералов в рассматриваемых породах Купаелло и Колле Фаббри.

- Установление химического состава, флюидонасыщенности и эволюции законсервированных расплавов в минералах, из которых кристаллизовались данные породы.
- 5) Определение концентраций редких и редкоземельных элементов в породообразующих минералах и стеклах расплавных включений для получения информации об источниках исходных магм.

Фактический материал, методы исследований и личный вклад

В основу диссертационной работы положены результаты исследований камафугитовых пород Центральной Италии. Фактический материал был получен в результате исследований коллекции образцов мелилитсодержащих пород из вулканов Купаелло и Колле Фаббри. Каменный материал был любезно предоставлен для исследований автору научным руководителем, к.г.-м.н., Паниной Л.И., к.г.-м.н., В.В. Шарыгиным и проф. F. Stoppa (G.d'Annunzio University, Chieti, Italy), а также был отобран автором во время полевых работ в Италии в 2012 году. Автором были изготовлены и исследованы полированные с двух сторон пластинки толщиной 0,1-0,3 мм (60 штук), а также шлифы, покрытые стеклом (40 штук).

В работе были использованы общепринятые методы термобарогеохимии методы изучения включений минералообразующих сред, описанные в работах Н.П. Ермакова (1972), Т.Ю. Базаровой и др. (1975), дополненные Э. Реддером (1987), А.В. Соболевым (1996) и Л.В. Данюшевским и др. (2002). Были проведены более 150 термометрических экспериментов с расплавными включениями при постоянном наблюдении за происходящими изменениями под микроскопом, получены более 100 изображений в обратно-рассеянных электронах и более 800 анализов включений и минералов с помощью методов сканирующей электронной микроскопии (LEO 1430 VP), более 70 рамановских спектров минералов, кристаллических и газово-жидких фаз во включениях методом КР-спектроскопии, а также более 1000 анализов минералов и включений рентгеноспектральным методом (Cameca Camebax-Micro). Все исследования проводились в ИГМ СО РАН (г. Новосибирск). Кроме того, определены содержания редких и редкоземельных элементов в минералах и стеклах, а также содержания H₂O и F в последних методом масс-спектрометрии вторичных ионов (SIMS) на приборе Cameca IMS-4f в Ярославском филиале Физико-Технологического института РАН.

Научная новизна. В настоящей работе приведены результаты первого комплексного термобарогеохимического, в том числе минералогического и геохимического, исследования мелилитсодержащих пород вулканов Купаелло и Колле Фаббри Центральной Италии. Для исследуемых пород на основе изучения расплавных включений были впервые определены: температуры кристаллизации

минералов, состав исходных расплавов, их флюидонасыщенность, а также эволюция и источники.

Практическая значимость работы. В результате проведенного термобарогеохимического исследования получены уникальные прямые данные исходных расплавов, участвовавших по составам И температурам в формировании мелилитсодержащих ассоциаций вулканов Купаелло и Колле Фаббри Центральной Италии. Полученные результаты внесут определенную ясность в генезис изучаемых пород, послужат основой для построения моделей формирования камафугитовых комплексов и позволят приблизиться к проблеме образования сложных щелочно-ультраосновных карбонатитовых массивов, с которыми связаны крупнейшие месторождения фосфора, ниобия, редких земель и других

Апробация работы и публикации

Автором опубликовано 14 работ по теме диссертации, из них 2 статьи в рецензируемых российском и зарубежном журналах и 12 тезисов в трудах Результаты международных конференций. исследований российских и Международной конференциях: представлены следующих на научной студенческой конференции, Новосибирск - 2010, 2011; пятой, шестой Сибирской международной конференции молодых ученых по наукам о Земле, Новосибирск - 2010, 2012; международной конференции "ACROFI-III & TBG-XIV" - 2010; международной конференции "ECROFI-XXI" - 2011; XV всероссийской конференции "Термобарогеохимия" - 2012; 28-ой и 29-ой международной конференции "Рудный потенциал щелочного, кимберлитового и карбонатитового магматизма" – 2012, 2013.

Структура и объем работы

Диссертация состоит из введения, 6 глав и заключения общим объемом 148 страниц. В ней содержится 38 рисунков и 35 таблиц. Список литературы состоит из 134 наименований.

Во введении определены цели, задачи работы, методы и объемы исследования, а также сформулированы защищаемые положения. В первой главе приводится краткий обзор наиболее интересных публикаций, посвященных изучению камафугитов в целом. Во второй главе приведены описания методов исследования, использованных в диссертационной работе. В третьей главе рассматривается краткая геолого-петрографическая характеристика и результаты термобарогеохимических исследований кальсилитовых мелилититов вулкана Купаелло. В четвертой главе приведена краткая геолого-петрографическая характеристика и результаты термобарогеохимических исследований пород вулкана Колле Фаббри. В пятой главе рассматриваются геохимические особенности исследуемых пород вулканов Купаелло и Колле Фаббри, слагающих их минералов и расплавных включений в них. В шестой главе обсуждаются полученные результаты и изложены выводы относительно генетических особенностей формирования рассматриваемых пород.

Благодарности

Работа выполнена в лаборатории термобарогеохимии (№ 436) Института геологии и минералогии СО РАН. Автор выражает искреннюю благодарность своему научному руководителю к.г.-м.н. Л.И. Паниной за неоценимую помощь в выполнении работы. Автор благодарит к.г.-м.н. В.В. Шарыгина и профессора F. Stoppa, предоставивших материалы для исследования. Диссертант признателен сотрудникам Лаборатории термобарогеохимии (№436) ИГМ СО РАН за поддержку и содействие на разных этапах выполнения работы, конструктивные критику и советы при обсуждении результатов. Особую признательность автор выражает Л.М. Усольцевой за помощь в организации термометрических исследований, Л.Н. Поспеловой и С.В. Ковязину за помощь при проведении ионно-микрозондовых микрозондовых И исследований. Отдельную благодарность автор выражает д.г.-м.н. О.М. Туркиной за всестороннюю помощь при интерпретации геохимических данных, а также советы и замечания при прочтении диссертации. Автор также признателен д.г.-м.н. Ю.Р. Васильеву и д.г.-м.н. А.Э. Изоху за неоценимые замечания и советы при прочтении диссертационной работы. Работа выполнена в соответствии с планом научноисследовательских работ лаборатории «термобарогеохимии» (№436) ИГМ СО РАН и при финансовой поддержке грантов ОПТЭК и РФФИ (№ 14-05-31096) для молодых ученых.

Обозначения, принятые в работе:

Ak – акерманит, An – анортит, Gh – геленит, Ks – кальсилит, Lc – лейцит, Na-Mel – натровый мелилит, Px – пироксен, Wo – волластонит, Mg# = 100·Mg/(Mg+Fe), PM – примитивная мантия; ITEM – Итальянская обогащенная мантия; T_{гом} – температура гомогенизации; PB – расплавное включение; г.ф. – газовая фаза; р.ф. – рудная фаза.

СОДЕРЖАНИЕ РАБОТЫ И ОБОСНОВАНИЕ ЗАЩИЩАЕМЫХ ПОЛОЖЕНИЙ

В центральной Италии выходы камафугитов – вулканических щелочных ультраосновных пород, богатых К и Са (рис. 1а, во вкладке) – отмечаются в пределах Апеннинской горной цепи. Здесь отмечаются небольшие по объему вулканические центры Купаелло (рис. 16, во вкладке), Колле Фаббри (рис. 1в, во вкладке), Сан Венанцо, Полино и другие (Stoppa, Lavecchia, 1992; Lavecchia et al., 2006), которые связаны с плиоцен-четвертичной системой нормально падающих разломов, окаймляющих систему горстов и грабенов ССЗ-ЮЮВ простирания. Относительно геологического положения и петрографического состава итальянских камафугитов имеются многочисленные работы (Stoppa, 1996; Stoppa,

Rosatelli, 2009; Stoppa, Sharygin, 2009; Cundari, Ferguson, 1991; Stoppa, Lavecchia, 1992; Stoppa, Cundari, 1995; Rosatelli et al., 2000, 2010; Peccerillo, 1995, 1998, 2004, 2005; Панина и др., 2003; Solovova et al., 2005).

Из-за необычного состава и своеобразных изотопных характеристик происхождение камафугит-карбонатитовых комплексов Центральной Италии является объектом продолжительных дебатов. Некоторые исследователи объясняли специфическую природу итальянских камафугитов вкладом коровых пород. Они полагали, что камафугиты и карбонатиты Италии образовались за счет ассимиляции осадочных карбонатов силикатными расплавами во время их прохождения через слои известняков, мергелей, терригенных осадков, которые располагаются вдоль Апеннинского полуострова (Hurley et al., 1966; Turi, Taylor, 1976; Turi et al., 1986; Peccerillo, 1994, 2004, 2005). L. Melusso (2003, 2005) выдвинул гипотезу образования мелилитсодержащих пород Колле Фаббри за счет «горения лигнита». Другие авторы приписывают уникальные особенности итальянских пород магматизму, связанному с субдукцией (Holm, Munksgaard, 1982; D'Antonio et al., 1996; Serri, 1997; Lustrino, 2000; Gasperini et al., 2002; Conticelli et al., 2002; Boari et al., 2009; Carminati et al., 2012) или считают их результатом внутриплитного магматизма и мантийного метасоматоза (Hawkesworth, Vollmer, 1979; Cundari, 1994; Lavecchia, Stoppa, 1996; Castorina et al., 2000; Bell et al., 2003; Bell, Kjarsgaard, 2006). Плюмовая модель формирования итальянских камафугитов, и в том числе присутствие под Апеннинским полуостровом необычного обогащенного мантийного источника, ITEM (Italian Enriched Mantle), характеризующегося высоким 0,7200 ⁸⁷Sr/⁸⁶Sr отношением, является наиболее популярной в наши дни (Bell et al., 2004, 2005, 2006; Lavecchia, Bell, 2012).

<u>Первое</u> защищаемое положение: Клинопироксены в кальсилитовых мелилититах Купаелло кристаллизовались при 1150-1180°С из гомогенной мелилититовой магмы, обогащенной CO₂ и содержащей 0,5-0,6 мас.% H₂O и 0,1-0,2 мас.% F. При 1080-1150°С в законсервированных во включениях расплавах проявлялась силикатно-карбонатно-солевая несмесимость. Состав карбонатно-солевого расплава, обособившегося в глобулу, был щелочно-карбонатным, обогащенным Ва и Sr. Силикатный расплав в процессе охлаждения и кристаллизации эволюционировал в сторону увеличения Si и Al и уменьшения Mg и Ca.

Классическим представителем камафутитов Центральной Италии является **вулкан Купаелло** (Gallo et al., 1984), который располагается у восточной границы разлома бассейна Риетти. Он представлен (рис. 16, во вкладке) карбонатитовыми туфами и лавовым потоком кальсилитовых мелилититов протяженностью около 750 м (Gallo et al., 1984; Stoppa, Cundari, 1995; Cundari, Ferguson, 1991). *К* мелилититы (местное название – купаеллиты) состоят из вкрапленников

клинопироксена и флогопита, а также основной массы, представленной клинопироксеном, мелилитом. кальсилитом, оливином. монтичеллитом. перовскитом, редкими Zr-минералами (хибинскитом, гетзенитом) и стеклом. Их химический состав является недосыщенным по SiO₂ (43,4-44 мас.%). характеризуется низким содержанием Al₂O₃ (7,1-7,3 мас.%), и высокими CaO (14,7-15,4 мас.%), щелочей (7,3-8,9 мас.% К₂О, 0,5-0,7 мас.% Na₂O), MgO (10,4-11 мас.%) и FeO (7,1-7,7 мас.%). Он очень близок к составу оливиновых мелилититов Сан Венанцо (Cundari, Ferguson, 1991), но по сравнению с микромелилитолитами Колле Фаббри (около 11 мас.% Al₂O₃, 37-39 мас.% CaO) содержит меньше Al₂O₃ и CaO. Фенокристы клинопироксена в породе имеют короткостолбчатый, призматический облик. Их химический состав отвечает диопсиду (Mg# 93-95). Вкрапленники породе корродированы. флогопита В Иx состав высокомагнезиальный (Мg# 93-94). Зерна мелилита в породе идиоморфные, в их составе присутствует около 86 мол.% Ак, до 2 мол.% Gh и около 12 мол.% Na-mel. Кальсилит из основной массы содержит 2,4-4,9 мас.% FeO.

В **К***ѕ* мелилититах первичные **расплавные включения** были обнаружены в ядрах и по зонам роста вкрапленников **клинопироксена**. Первичность изучаемых включений определялась согласно критериям Н. П. Ермакова (1972), Т. Ю. Базаровой и др. (1975) и Э. Реддера (1987). Включения одиночные и не обнаруживают никакой приуроченности к трещинам. Они имеют округлую, неправильную или близкую к призматической форму. Их размеры варьируют от 10-15 мкм до 50 мкм. Содержимое включений состоит из остаточного стекла, тонкозернистых агрегатов бесцветных, светло-зеленоватых и буроватых фаз и зажатой между ними газовой фазы (рис. 2а).

Рис. 2. Первичные расплавные включения в клинопироксене Ks мелилититов Купаелло: а – до прогрева; б – во время прогрева при 1120°С. Условное обозначение: г.ф. – газовая фаза. Проходящий свет.

Среди дочерних фаз с помощью сканирующего микроскопа и КРспектроскопии были определены: флогопит, кальсилит, пектолит, комбит, кальцит, баритокальцит, барит и апатит. Формула пектолита – Ca₂NaH[Si₃O₉] согласно У.А. Дир и др. (1966), комбита – Na_{4,5}Ca_{3,5}Si₆O_{17,5}(OH)_{0,5} согласно R.X. Fischer, E. Tillmanns (1987), И.В. Пекову и др. (Pekov et al.,2009). Дочерний кальсилит содержит до 15,3 мас.% FeO. Дочерний флогопит является более железистым (Mg# 83-87 %) по сравнению с вкрапленниками флогопита.

Во время прогрева при 740-790°С в силикатном расплаве включений обособились несколько карбонатно-солевых глобул, которые при 970°С объединились в одну с газовым пузырем (рис. 26). При 1080-1150°С газовый пузырь в глобуле исчез, а при 1170-1190°С гомогенизировалась и сама глобула. Температура полной гомогенизации (Т_{гом}) содержимого включений сопоставима с экспериментальными данными А. Cundari, A.K. Ferguson (1991), которые были ликвидусных температур (1240°C) получены кристаллизации для клинопироксенов в лавах Купаелло. При охлаждении гомогенизированные включения вели себя по-разному: 1) при медленной закалке они грубо раскристаллизовывались с обособлением карбонатно-солевой фракции от силикатной, при этом в силикатной части отмечались флогопит, кальсилит, пектолит, апатит и остаточное стекло; 2) при быстрой закалке они тонко раскристаллизовывались без отделения карбонатно-солевой глобулы.

Химический состав тонкораскристаллизованного стекла в прогретых и быстро закаленных включениях в клинопироксене (табл. 1 во вкладке) является однородным и содержит (мас.%): SiO₂ – 35,0-41,3, TiO₂ – 0,8-1,3, Al₂O₃ – 4,0-7,3, FeO – 4,9-7,1, MgO – 5,9-8,5, CaO – 10,6-13,1, Na₂O – 4,2-9,5, K₂O – 11,1-14,1. Согласно результатам ионного микрозонда, содержание H₂O и F в нем составляло 0,5-0,6 и 0,1-0,2 мас.%, соответственно. Этот состав похож на составы мелилитовых пород в камафугитовых комплексах Центральной Италии (Панина и др., 2003; Stoppa et al., 2003), Восточно-Африканской рифтовой системы (Белоусов и др., 1974; Peccerillo, 1992; Stoppa, Schiazza, 2013), Бразилии (Sgarbi, Gaspar, 2002; Melusso et al., 2008; Guarino et al., 2013) и Китая (Stoppa, Schiazza, 2013). Т.е. законсервированные в клинопироксене кальсилитовых мелилититов Купаелло расплавы являются типичными представителями камафугитовых расплавов.

Химический состав карбонатно-солевого расплава (табл. 2 во вкладке), обособившегося в глобулу при медленной закалке включений, характеризуется (в мас.%): SiO₂ – 1,7-4,8, FeO – 0,5-1,1, MgO – 0,6-1,3, CaO – 23,1-31,2, Na₂O – 1,4-4,5, K₂O – 8,9-13,2, BaO – 3-4,4, SrO – 2,4-3,1, P₂O₅ – 0,3-2, Cl – до 0,4, SO₃ – 0,2-0,4, т.е. он является щелочно-карбонатным с высокими содержаниями BaO и SrO и похож на появившиеся при силикатно-карбонатной несмесимости составы щелочных высококальциевых сульфатно-карбонатных включений в мелилите Маломурунского массива на Алдане (Панина, Усольцева, 1999), отличаясь от них пониженным SO₃ (0,2-0,4 против 5-7 мас.%) и повышенными BaO и SrO, а также типом щелочности (значение K₂O/(K₂O+Na₂O) – 0,7-0,9 против 0,2-0,4). Наличие кремнистых карбонатитовых туфов на вулкане является дополнительным подтверждением проявления процессов силикатно-солевой несмесимости в мелилитовой магме. Высокое содержание SiO₂ (14,2-18,8 мас.%) в составе карбонатитовых туфов по сравнению с таковым карбонатно-солевого расплава, обособившегося в глобулу, объясняется наличием в туфах большого количества лапиллей измененного мелилитита.

Таким образом, полученные результаты согласуются нами с экспериментальным данными (Veksler et al., 1998; Сук, 2003), согласно которым при несмесимости между силикатной и солевой фазами Ва и Sr концентрируются в солевом (карбонатном) расплаве. Учитывая результаты исследований силикатно-карбонатной несмесимости во включениях минералообразующих сред (Sharygin, 2001; Панина и др., 2003; Solovova et al., 2005; Панина, Моторина, 2008; Panina et al., 2013; Nikolaeva, Panina, 2013) в минералах мелилитсодержащих пород вулканов Центральной Италии (Купаелло, Пиан ди Челле, Колле Фаббри, Вултури), а также данные изучения экспериментальных систем (Hamilton, Kjarsgaard, 1993; Lee, Wyllie, 1997; Veksler et al., 1998; Martin et al., 2012), можно предположить, что силикатно-карбонатная несмесимость играла главную роль в появлении карбонатитов в Центральной Италии в целом.

Состав остаточных стекол в непрогретых включениях в клинопироксене сильно варьирует по петрогенным компонентам и содержит (мас.%): $SiO_2 - 40,9-52,9$, $Al_2O_3 - 6,1-17,1$, FeO – 3,1-10, MgO – 2,1-8,7, CaO – 3,5-12,7, Na₂O – до 4,7, K₂O – 8-19,8. В отличие от него химический состав остаточного стекла в медленно закаленных прогретых включениях (табл. 2 во вкладке, ан. 2-3) является менее кремнистым и более однородным. По сравнению с составом тонкораскристаллизованного стекла в гомогенизированных включениях остаточные стекла непрогретых включений характеризуется пониженными значениями MgO, CaO и повышенными Si₂O и Al_2O_3 (рис. 3 во вкладке). Таким образом, отделившийся от карбонатно-солевой фракции силикатный расплав во включениях клинопироксена в процессе охлаждения и кристаллизации дочерних минералов эволюционировал в сторону увеличения Si и Al и уменьшения Mg и Ca.

Второе защищаемое положение. Мелилиты и волластониты в лейцитволластонитовых микромелилитолитах Колле Фаббри кристаллизовались при 1240-1320°C из гетерогенной силикатно-карбонатно-солевой магмы. Несмесимая силикатная фракция имела мелилититовый состав, который в процессе кристаллизации эволюционировал до лейцит-фонолитового. Несмесимая карбонатно-солевая фракция была обогащена кремнеземом, Fe, Al, Cl, S и щелочами. Контактовые породы Колле Фаббри образовались в результате ассимиляции мелилититовой магмой вмещающих пелитовых температурах, 1200°C. пород при превышающих Состав контаминированного расплава был высококремнистый, неоднородный и зависел от количества ассимилированного пелитового материала.

Вулкан Колле Фаббри расположен в юго-восточном секторе грабена долины Умбрия (Coltori, Pieruccini, 1997). Его центральная часть (рис. 1в во

вкладке) сложена лейцит-волластонитовыми (Lc-Wo) микромелилитолитами, а на периферии тела, на контакте с вмещающими пелитовыми породами, располагаются волластонит-анортит-пироксеновые (Wo-An-Px) породы (Stoppa, Sharygin, 2009). *Lc-Wo микромелилитолиты* Колле Фаббри, также как и другие высококалиевые, богатые Са породы Центральной Италии, относятся исследователями (Stoppa et al., 2002) к камафугитовой серии. Они состоят преимущественно из мелилита и волластонита, а также небольшого количества лейцита, кальсилита, плагиоклаза, Ті-граната, апатита, магнетита и Fe-Niсульфидов. Их химический состав сильно недосыщен по SiO₂ (около 42 мас.%), характеризуется относительно низким содержанием Al₂O₃ (10,7-11,2 мас.%) и экстремально высоким CaO (37,3-38,5 мас.%), Na₂O+K₂O составляет около 1,4-1,9 мас.%, MgO – 1,6-2,4 мас.% и FeO – 3,3-3,7 мас.%. Мелилит в породе представлен 44-53 мол.% Gh, 34-45 мол.% Ak и 8-15 мол.% Na-mel, т.е. он по сравнению с мелилитом Купаелло является более геленитовым. Волластонит имеет стандартный состав и является высокотемпературной β модификацией (псевдоволластонитом). Плагиоклаз классифицируется как анортит-лабрадор. Лейцит содержит повышенные количества ВаО, а гранат представлен шорломитом. Контактовые Wo-An-Px породы состоят из вкрапленников клинопироксена и волластонита, а также основной массы, представленной плагиоклазом, клинопироксеном, рудными фазами и стеклом. Контактовые Wo-Ап-Рх породы по сравнению с микромелилитолитами содержат более высокие количества SiO₂ (до 53,1 мас.%), Al₂O₃ (до 13,8 мас.%) и более низкие CaO (18,2-22,9 мас.%). Состав вкрапленников волластонита в контактовой породе аналогичен составу волластонитов в микромелилитолитах. Вкрапленники клинопироксена зональные: ядра представлены диопсидом (Mg# 63-78), края – диопсид-геденбергитом (Mg# 28-71), а зерна клинопироксена в основной массе – еще более железистые (Mg# 19-57). Состав плагиоклаза отвечает анортитбитовниту.

В минералах Lc-Wo микромелилитолитов и контактовых пород были обнаружены одиночные первичные расплавные включения.

В Lc-Wo микромелилитолитах расплавные включения встречаются в мелилите и волластоните. Они отмечаются преимущественно в центральных частях зерен минералов и не обнаруживают никакой приуроченности к трещинам. Важным критерием первичности одиночных включений является выявление их морфологической связи с отдельными секторами роста минералахозяина (Базарова и др., 1975; Реддер, 1987). В мелилите эта связь проявляется в том, что грани удлиненных включений параллельны призматическому габитусу минерала хозяина.

В мелилите (рис. 4a) включения частично раскристаллизованы, представлены стеклом (остаточным) с дочерними гранатом и рудным минералом.

Большинство включений содержит газовый пузырь. Дочерний гранат во включениях имеет желтоватую окраску и неправильную форму. Рудные фазы представлены глобулами черного цвета размером до 5 мкм.

В волластоните были найдены 2 типа включений. *I тип* представлен (рис. 4б) одиночными частично раскристаллизованными расплавными включениями размером 20х30 мкм. Их фазовый состав представлен гранатом, рудными фазами, остаточным стеклом и газовым пузырем. Для *II типа* характерны бурые одиночные расплавные включения овальной формы размером около 20 мкм (рис. 4в). Их фазовый состав представлен однородным тонкораскристаллизованным веществом и газовым пузырем.

Рис. 4. Первичные расплавные включения (PB) в минералах пород Колле Фаббри. *В Lc-Wo микромелилитолите*: **а**, **б** - силикатные PB, **в** - обогащенное SiO₂ карбонатное тонкораскристаллизованное PB; *в контактовой породе*: **г**, **д**, **е** - силикатные PB. г.ф. – газовая фаза; р.ф. – рудная фаза. Проходящий свет.

Во время термометрических экспериментов с расплавными включениями были установлены минимальные температуры кристаллизации мелилитов – 1320 ± 15°С и волластонитов – не менее 1230°С (по температурам гомогенизации включений I типа). Следует отметить, что температуры кристаллизации мелилита в щелочно-ультраосновных породах, определенные методом термометрии, обычно более низкие – 1235-1200°С (Панина, Усольцева, 1999; Панина и др., 2001). Эти различия, по-видимому, связаны с тем, что в указанных породах мелилит представлен, главным образом, твердым раствором Ak и Na-mel, а в микромелилитолитах Колле Фаббри – преимущественно Gh. Согласно экспериментальным исследованиям (Schairer et al., 1967), температура кристаллизации минерала в системе Gh-Ak-Na-mel зависит от компонентов, которые преобладают в твердом растворе мелилита. С увеличением в минерале

содержания Na-mel и Ak отмечается значительное падение температуры ликвидуса, а при преобладании Gh составляющей, наоборот, ее повышение. Например, ликвидусные температуры кристаллизации мелилита состава Gh₄₄₋₅₃Ak₃₄₋₄₅Na-mel₈₋₁₅ в эксперименте достигали 1450-1470 °C.

Химический состав стекол прогретых первичных расплавных включений в мелилите (табл. 3 во вкладке, ан. 1-5) характеризуется сравнительно низкими значениями (в мас.%) SiO₂ (38,5-39,6), Al₂O₃ (14,5-19,1), K₂O (0,7-7,4), высокими содержаниями CaO (27,1-30,6) и умеренными FeO (3,1-6,6), MgO (1,0-2,8), Na₂O (0,4-1,1) и SO₃ (0,1-1,3). Содержание H₂O в стеклах включений в мелилите – около 0,9 мас.%. Некоторая вариация в составе включений, очевидно, связана с тем, что расплавные включения были захвачены на различных стадиях роста мелилита и эволюции расплава.

Химический состав стекол (табл. 3 во вкладке, ан. 7-9) из прогретых первичных включений (**I тип**) в волластоните также отвечает мелилититовым расплавам, но по сравнению с таковыми в мелилите он содержит (рис. 5 во вкладке) больше Fe и меньше Mg, Si, Al и Ca. Это свидетельствует об эволюции исходного расплава в связи с кристаллизацией из него при более высоких температурах мелилита. С процессом эволюции расплава связано также увеличение в прогретых включениях из волластонита содержаний Ba, Sr и P. Химический состав остаточного стекла непрогретых включений отражает еще более дифференцированный состав расплава и характеризуется повышенными значениями Si, Na и K, умеренными Al и пониженными Fe, Mg, Ti (рис. 5 во вкладке). Т.е. при кристаллизации мелилита и волластонита состав расплава изменялся от мелилититового до лейцит-фонолитового. Такая дифференциация типична для камафугитовых магм и ярко выражена в камафугитах Западной Ветви Восточно-Африканской рифтовой зоны (Белоусов и др., 1974).

Следует особо подчеркнуть, что состав законсервированных расплавов в мелилите и волластоните лейцит-волластонитового микромелилитолита Колле Фаббри близок к составу расплавных включений в мелилите из мелилитолита Крестовской интрузии (Панина и др., 2001) и мелилитита Пиан ди Челле (Панина и др., 2003), несколько отличаясь от них более высокими содержаниями СаО (рис. 5 во вкладке). Кроме того, он похож на состав волластонитового мелилитита из Eble Zone (Германия) и содержащихся в его оливине расплавных включений (Seifert, Thomas, 1995), а также на состав включений из оливиновых мелилитолитов Гулинского плутона, Сибирь (Расс, Плечов, 2000). Таким образом, на основе полученных результатов микромелилитолиты Колле Фаббри, так же как и мелилититы Купаелло, кристаллизовались из высокотемпературного расплава мелилититового состава. Эти данные опровергают предположение L. Melusso et al. (2003; 2005) о том, что породы Колле Фаббри формировались в

результате плавления и перекристаллизации мергелей во время «горения лигнита». Дополнительным аргументом, отрицающим данное предположение, является наблюдаемая во включениях закономерная химическая эволюция расплава при кристаллизации мелилита и волластонита, которая никогда не отмечается в паралавах.

Химический состав стекол из прогретых первичных включений (II тип) в волластоните (T_{гом} = 1140 ± 15 °C), характеризуется (табл. 3 во вкладке, ан. 10; в мас.%): SiO₂ – 25,5-26, Al₂O₃ – 6,3-6,4, FeO – 16,4-16,6, MgO – до 1,1, CaO – 26,8-26,9, Na₂O - 0,7-0,8, K₂O - 2,4-2,5, BaO - 1,1-1,2, SrO - до 0,3, P₂O₅ - до 1,5, Cl -1,2-1,3 и SO₃ – 1,0-1,1. Этот состав по сравнению с составом стекла из прогретых включений I muna в волластоните имеет экстремально низкие количества Si и Al, более высокие значения Fe, Ba и Cl и близкие содержания Mg, Ca, K и S. Oн имеет большое сходство с составом карбонатитовых лав вулкана Форт Портал (Eby et al., 2009) в Восточно-Африканской рифтовой системе. Кроме того, он очень близок к составу бурой низкокремнистой карбонатной каемки (табл. 3 во вкладке, ан. 6) вокруг газового пузыря в прогретых включениях из мелилита, а также к составу обогащенных SiO₂ карбонатных включений в минералах мелилитовых пород и карбонатитов из других регионов (Seifert, Thomas, 1995; Панина и др., 2001; Панина и др., 2003). Сходство проанализированных включений с включениями карбонатитовых расплавов в минералах мелилититов и мелилитолитов из других регионов, а также с карбонатитовыми лавами Форт Портал позволяет автору допустить наличие карбонатитовых расплавов также при формировании микромелилитолитов Колле Фаббри.

В контактовой породе первичные расплавные включения присутствуют в волластоните, анортите и клинопироксене. Они располагаются в центральных частях зерен минералов и не обнаруживают никакой приуроченности к трещинам.

Во вкрапленниках **волластонита** первичные расплавные включения бесцветные, размером 10-20 мкм, имеют округлую и призматическую форму (рис. 4г, д), частично раскристаллизованы. Их фазовый состав: стекло + газовый пузырь + дочерний ферробустамит, иногда присутствует ксеногенный волластонит. Температура гомогенизации включений составляет приблизительно 1210 °C или выше, что согласуется с данными, полученными F. Stoppa, V.V. Sharygin (2009).

В работе F. Stoppa, V.V. Sharygin (2009) приведены данные о *химическом* составе стекол непрогретых включений в волластоните, которые отражают их высококремнистую специфику (72-72,9 мас.% SiO₂). А полученные в настоящей работе данные охватывают более широкий диапазон составов включений. Так, *химический состав стекол прогретых расплавных включений* (табл. 4 во вкладке, ан. 1-6) в волластоните резко варьирует (мас.%): SiO₂ – от 49,9 до 71,8, Al₂O₃ – 5,4-

13,6, CaO – 2,3-22,4, FeO – 0,7-6,2, MgO – 0,6-1,8, Na₂O – 0,4-1,2 и K₂O – 2,2-12,8. Состав остаточных стекол непрогретых расплавных включений (табл. 4 во вкладке, ан. 7-9) также существенно меняется (мас.%): SiO₂ – 57,9-72,8, Al₂O₃ – 9,5-20,6, CaO – 1,9-12,8, FeO – 0,7-2,5, MgO – до 0,5, Na₂O – 0,4-1,5 и K₂O – 4,3-7,3. В целом, химический состав прогретых и непрогретых стекол расплавных включений в волластоните отличается от такового в мелилите из Lc-Wo микромелилитолита более высокими количествами Si и Al, а также незакономерным изменением их соотношений. Это, без сомнения, связано с ассимиляцией в мелилититовой магме вмещающих пелитовых пород, которые содержат высокие концентрации Si и Al. При этом количество захваченного и растворенного пелитового материала в разных участках магмы, по-видимому, было разным.

Об этом также свидетельствуют найденные в **анортите** рассматриваемой породы первичные расплавные включения неправильной формы с глобулами, которые являются стекловатыми, бледно-желтоватой окраски, размером 20-30 мкм. Бесцветные стекловатые глобулы с газовым пузырьком размером около 1,5 мкм содержатся в бледно-желтоватом стекле включений (рис. 4е). В *химическом составе бурого стекла в непрогретых включениях* содержится (мас.%): SiO₂ – 55,7-58,2, Al₂O₃ – 6,4-9,2, CaO – 18,4-21,7, FeO – 6,5-8, MgO – 2,6-3,6, K₂O – 1,9-3,6 и TiO₂ – 0,8-1,1. В *химическом же составе бесцветных глобул в непрогретых включениях* присутствуют (мас.%): SiO₂ – 64,5-74,1, Al₂O₃ – 10,1-12,5, CaO – 6,4-13,9, FeO – 1,6-4, MgO – 0,6-1,3, Na₂O – до 0,6 и K₂O – 3,8-5,8, т.е. он более кислый, содержит больше Al, K и меньше Ca, Fe, Mg и Ti.

Кроме того, бесцветные одиночные стекловатые включения размером около 10 мкм отмечены во вкрапленниках клинопироксена. Химический состав стекол непрогретых включений из клинопироксена следующий (мас.%): SiO₂ – 63,5, Al₂O₃ – 11,5, CaO – 10,3, FeO – 6,6, K₂O – 5,8, TiO₂ – 1,4 и Na₂O – 0,8. Показательно, что химический состав стекла непрогретых включений в волластоните, клинопироксене и глобулах из включений анортита очень близок химическому составу стекла из основной массы породы (табл. 4 во вкладке, ан. 10-11).

Таким образом, полученные результаты свидетельствуют о том, что ассимиляция боковых пород поднимающимися мелилититовыми расплавами приводит к появлению неоднородностей в расплавах и отсутствию закономерностей в их эволюционном преобразовании. В то же время силикатные расплавы, участвовавшие в формировании микромелилитолитов Колле Фаббри, были однородными, и их эволюция при кристаллизации осуществлялась с увеличением Si, Al и щелочей, а также с уменьшением Ca, Mg и Fe. Следовательно, предположение (Hurley et al., 1966; Turi, Taylor, 1976; Turi et al., 1986; Рессеrillo, 1994, 2004, 2005) об образовании камафугитовых пород за счет взаимодействия силикатной магмы с осадочными породами нашими исследованиями не подтверждаются. Разработанная D.K. Bailey (2005) количественная модель для смешивания силикатных магм с известняком также отвергает это предположение.

Третье защищаемое положение: Разный минеральный состав исследуемых пород обусловлен генетическими особенностями исходных нелосышенных SiO₂ мелилититовых магм: ИЗ гомогенной высокомагнезиальной высокощелочной кристаллизовались магмы мелилититы Купаелло, а из гетерогенной богатой кальцием, но содержащей меньше щелочей магмы – микромелилитолиты Колле Фаббри.

Обобщая полученные данные, следует отметить, что составы стекол, законсервированных в минералах Купаелло и Колле Фаббри, соответствуют составам изучаемых пород в обоих вулканах и несколько отличаются друг от друга (рис. 9 во вкладке). В общем, породы в Купаелло и законсервированные в клинопироксене расплавы недосыщены по SiO₂, обогащены MgO и щелочами, а породы Колле Фаббри и законсервированные в мелилите расплавы также недосыщены по SiO₂, обогащены по SiO₂, обогащены по SiO₂, обогащены по SiO₂, обогащены саО, но содержат меньше щелочей.

Эти различия отражаются как в минеральном составе рассматриваемых пород, так и в химическом составе минералов: в мелилититах Купаелло присутствуют оливин, монтичеллит и диопсид, а волластонит – в микромелилитолитах Колле Фаббри; калиевые фельдшпатоиды в мелилититах Купаелло представлены кальсилитом, а в микромелилитолитах Колле Фаббри – кальсилитом и лейцитом. Мелилит в мелилититах Купаелло акерманитовый, а в микромелилитолитах Колле Фаббри преимущественно геленитовый.

Согласно термометрии включений, температуры кристаллизации мелилита и волластонита в микромелилитолитах Колле Фаббри составляют 1320-1240 °С, а температура кристаллизации диопсида в мелилититах Купаелло – 1150-1180 °С. Обычно же мелилит кристаллизуется при более низких температурах после клинопироксена (Егоров, 1969; Панина и др., 2003) и его состав представлен преимущественно акерманитовым компонентом. Увеличение геленитового компонента в составе мелилита, согласно Schairer et al. (1967), повышает его температуру кристаллизации, что и отмечается в мелилите Колле Фаббри.

Исходные мелилититовые расплавы были по-разному обогащены летучими компонентами. В момент кристаллизации вкрапленников клинопироксена мелилититовый расплав Купаелло был гомогенным и включал в себя карбонатитовую фракцию, обогащенную летучими компонентами. А расплав Колле Фаббри был гетерогенный мелилититовый в момент кристаллизации мелилита и волластонита и был пространственно отделен от карбонатитовой фракции, что, вероятно, привело к понижению количества летучих компонентов в отделившемся мелилититовом расплаве.

Для получения информации об источниках расплавов, формировавших рассматриваемые породы, были изучены редкоэлементный состав Ks мелилититов Купаелло, Lc-Wo микромелилитолитов и контактовых пород Колле Фаббри, а также слагающих их породообразующих минералов и расплавных включений в них. Было установлено, что везде их состав обогащен некогерентными, особенно, крупноионными литофильными (LILE) и легкими редкоземельными (LREE) элементами, а в спектрах присутствуют отрицательные аномалии высокозарядных (HFSE) элементов и Ті (рис. 6-8 во вкладке). Подобные аномалии ранее отмечались практически во всех итальянских камафугитах и ассоциирующих с ними карбонатитах. Их наличие одни исследователи (Turi et al., 1986; Taylor, McLennan, 1995; Peccerillo, 1994, 2004, 2005) объясняют коровой контаминацией камафугитовой магмы, другие (Bell et al., 2006, 2013; Lavecchia, Bell, 2012) - наличием обогащенного мантийного источника ITEM (Italian Enriched Mantle). Вариант коровой контаминации для камафугитовых пород Италии не согласуется с термобарогеохимическими исследованиями данной работы, а также не может объяснить систематически наблюдаемую Nb аномалию и очень высокие ⁸⁷Sr/⁸⁶Sr отношения (Bailey, 2005; Boari et al., 2012). Более вероятно, что эти аномалии связаны с обогащенным мантийным источником ITEM, который характеризуется самым высоким 87 Sr/ 86 Sr (> 0,7200), низким 143 Nd/ 144 Nd (0,5118) и промежуточными 206 Pb/ 204 Pb (18,70) изотопными отношениями (Bell et al., 2005, 2006, 2013). С такими обогащенными значениями ITEM мог образоваться либо за счет плавления древней пред-Альпийской континентальной коры, которая была вовлечена в мантию, либо за счет метасоматической деятельности, вызванной присутствием глубинного плюма.

ЗАКЛЮЧЕНИЕ

По результатам комплексного термобарогеохимического исследования мелилитсодержащих пород вулканов Купаелло и Колле Фаббри (Ц. Италия) установлено, что:

1. Клинопироксены в Ks мелилититах Купаелло кристаллизовались при 1170-1190°С из гомогенной мелилититовой магмы, обогащенной CO₂ и содержащей 0,5-0,6 мас.% H₂O и 0,1-0,2 мас.% F. Процесс силикатно-карбонатно-солевой несмесимости, зафиксированный во включениях при 1080-1150°С, является ответственным за образование карбонатитовых туфов на вулкане.

2. Мелилиты и волластониты в Lc-Wo микромелилитолитах Колле Фаббри кристаллизовались при 1240-1320°С из гетерогенной магмы, состоящей из несмесимых силикатной и карбонатно-солевой фракций. Силикатная фракция имела щелочной высококальциевый состав, который в процессе кристаллизации

изменялся от мелилититового до лейцит-фонолитового. Содержание H₂O в силикатном расплаве составляло около 0,9 мас.%.

3. Контактовые породы Колле Фаббри образовались в результате ассимиляции мелилититовой магмой вмещающих пелитовых пород при температурах, превышающих 1200°С. Состав контаминированного расплава был высококремнистым, неоднородным и зависел от количества ассимилированного пелитового материала.

3. Карбонатно-солевой расплав, законсервированный в расплавных включениях клинопироксенов Купаелло, имел щелочно-карбонатный состав с высокими содержаниями Ва и Sr, тогда как таковой в мелилитах и волластонитах Колле Фаббри был обогащен кремнеземом и содержал высокие концентрации Fe, Al, Cl и S.

4. Разный минеральный состав исследуемых пород обусловлен генетическими особенностями исходных недосыщенных SiO₂ мелилититовых магм: из гомогенной высокомагнезиальной высокощелочной магмы кристаллизовались мелилититы Купаелло, а из гетерогенной богатой кальцием, но содержащей меньше щелочей магмы – микромелилитолиты Колле Фаббри.

5. Мелилититовые расплавы были обогащены некогерентными, особенно крупноионными литофильными (LILE) и легкими редкоземельными (LREE) элементами, а в их спектрах присутствуют отрицательные аномалии высокозарядных (HFSE) элементов и Ті. Подобные геохимические особенности, характерные также для всех итальянских камафугитов, вероятно, следует связывать с наличием мантийного источника ITEM (Italian Enriched Mantle), испытавшего метасоматизм и обогащенность несовместимыми элементами.

Основные публикации по теме диссертации:

Статьи в рецензируемых журналах, рекомендованных ВАК:

Панина Л.И., **Николаева А.Т.,** Рокосова Е. Ю. Условия кристаллизации щелочнобазитовой дайки Ыллымахского массива (Центральный Алдан): данные изучения расплавных включений в минералах // Геохимия, 2011, №2 с.128-148.

Panina L. I., **Nikolaeva A. T.**, Stoppa F. Genesis of melilitolites from Colle Fabbri: inference from melt inclusions // Mineralogy and Petrology, 2013, v. 107 p. 897-914.

Материалы и тезисы конференций:

Рокосова Е.Ю., **Николаева А.Т.** Данные изучения расплавных включений в минералах щелочно-базитовой дайки Ыллымахского массива (Центральный Алдан) // Тезисы Международной Научной Студенческой Конференции, 2010, Новосибирск, с. 73-74.

Nikolaeva A. T. Physico-chemical crystallization conditions of leucite-wollastonite melilitolites and contact wollastonite-pyroxene rocks of Colle Fabbri (Central Italy) // Abstract ACROFI-III and TBG-XIV, 2010, Novosibirsk, Russia, p. 152-153.

Николаева А.Т. Геохимия лейцит-волластонитовых мелилитолитов Колле Фаббри (Центральная Италия) // Тезисы Международной Научной Студенческой Конференции, 2011, Новосибирск, с. 15.

Nikolaeva A.T. Generation and crystallization conditions of the Colle Fabbri melilitite melts, Italy: melt inclusions data // Abstract ECROFI-XXI, 2011, Leoben, Austria, p. 152-153.

Nikolaeva A.T. The first discovery of combeite and pectolite in kamafugitic rocks of Central Italy // Abstracts of the 6th International Siberian Early Career GeoScientists Conference, Novosibirsk, 2012, p. 75-76.

Nikolaeva A.T. Phiysico-chemical crystallization conditions of kalsilite-bearing melilitite from Cupaello volcano, Central Italy // Abstracts of 4 th Biennial Conference on Asian Current Research on Fluid Inclusions ACROFI IV, Brisbane, Australia, 2012, p. 56-57.

Николаева А. Т. Особенности формирования мелилитсодержащих пород Колле Фаббри и Купаелло, Центральная Италия // Тезисы XXIX Международной конференции "Рудный потенциал щелочного, кимберлитового и карбонатитового магматизма", Москва ГЕОХИ РАН, 2012, с. 106-107.

Николаева А. Т. Особенности состава расплава при формировании кальсилитовых мелилититов вулкана Купаелло, Ц. Италия // Тезисы XV Всероссийской конференции по термобарогеохимии, Москва ИГЕМ РАН, 2012, с. 119-120.

Nikolaeva A.T., Panina L.I. The kamafugite-carbonatite associations of Central Italy: silicatecarbonate immiscibility // Abstracts of XXX International Conference "Ore potential of alkaline, kimberlite and carbonatite magmatism". School "Alkaline magmatism of the Earth", 2013, p.42.

ПРИЛОЖЕНИЕ

Рис. 1. Схематические геологические карты (а) камафугитовых пород Центральной Италии; (б) – вулкан Купаелло (Stoppa, Cundari, 1995), (в) – вулкан Колле Фаббри (Stoppa, Rosatelli, 2009). Условные обозначения: 1 – вулканиты Вулсини; 2 – карбонатит-камафугитовые магматические центры; 3 – плейстоценовые разломы растяжения; 4 – осадки, заполняющие Плио-Плейстоценовый грабен; 5 – пре-плейстоценовые террейны; 6 – лавовый поток мелилититов; 7 – разломы; 8 – глины; 9 – А-брекчия (нижняя); 10 – Б-брекчия (верхняя); 11 – силлы и дайки; 12 – микромелилитолитовый шток; 13 – детритовые осадки; 14 – гипотетические очертания канала-кратера; 15 – разломы; 16 – дома.

Рис. 9. Треугольные диаграммы соотношения петрогенных оксидов: (a) MgO – SiO₂ – CaO; (б) MgO – Al₂O₃ – CaO; (в) (Na₂O+K₂O) – Al₂O₃ – (MgO+FeO+CaO). Условные обозначения: 1 – стекла гомогенизированных первичных PB в клинопироксене из Ks мелилититов Купаелло; 2 – стекла гомогенизированных певичных PB в мелилите из Lc-Wo микромелилитолитов Колле Фаббри; 3 – Ks мелилитит Купаелло; 4 – Lc-Wo микромелилитолит Колле Фаббри.

Рис. 3. Бинарная диаграмма соотношения петрогенных оксидов в зависимости от количества SiO₂ в первичных PB в клинопироксенах из Ks мелилитита Купаелло. Условные обозначения: 1 – тонкораскристаллизованные стекла гомогенизированных PB; 2 – остаточные стекла непрогретых PB; 3 – Ks мелилитит Купаелло; 4 – оливиновый мелилитит Пиан ди Челле (Панина и др., 2003).

Рис. 5. Бинарная диаграмма соотношений петрогенных оксидов в стеклах первичных РВ и пород в зависимости от SiO₂ для вулкана Колле Фаббри и других мелилитсодержащих объектов. Условные обозначения: 1-4 – РВ в мелилите и волластоните Lc-Wo микромелилитолита Колле Фаббри: (1) прогретые РВ в мелилите; (2) прогретые РВ в волластоните; (3) непрогретые РВ в мелилите; (4) непрогретые РВ в волластоните. 5 – силикатные РВ в мелилите мелилитолитов Крестовской интрузии (Панина и др., 2001). 6 – силикатные РВ в мелилите из оливиновых мелилититов Пиан ди Челле (Панина и др., 2003). 7 – Lc-Wo микромелилитолиты Колле Фаббри; 8 – волластонитовый мелилитолит Вултури.

Рис. 7. Нормированные на хондрит (по Anders, Grevesse, 1989) редкоземельные спектры клинопироксенов из Ks мелилитита Купаелло.

Рис. 6. Нормированные на примитивную мантию (McDonough, Sun, 1995) мультиэлементные спектры пород и стекол. Условные обозначения: 1 – стекло из гомогенизированных первичных PB в клинопироксене из Ks мелилитита Купаелло; 2 – Ks мелилитит Купаелло; 3 – стекло из гомогенизированных первичных PB в мелилите из Lc-Wo микромелилитолита Колле Фаббри; 4 – Lc-Wo микромелилитолит Колле Фаббри.

Рис. 8. Нормированные на примитивную мантию (McDonough, Sun, 1995) мультиэлементные спектры минералов из пород Колле Фаббри. Условные обозначения: 1 – мелилит из Lc-Wo микромелилитолитов, 2 – волластонит из Lc-Wo микромелилитолита, 3 – волластонит из контактовой An-Wo-Px порфировой породы.

Таблица 1. Химический состав (мас.%)

тонкораскристаллизованных стекол из гомогенизированных и быстро закаленных расплавных включений в клинопироксене кальсилитовых мелилититов Купаелло

N⁰	1	2	3	4	5	6	7	8	9	10
SiO ₂	36,54	37,48	39,5	39,21	36,56	40,33	38,44	38,66	35,02	41,30
TiO_2	0,90	0,87	1,01	0,93	0,83	0,95	0,77	1,05	0,78	1,32
Al_2O_3	5,50	3,95	7,32	5,18	5,46	4,42	4,87	7,25	5,25	7,24
FeO	5,63	5,18	6,55	5,22	5,53	5,38	5,89	5,95	4,85	7,05
MgO	7,94	8,37	8,17	7,05	5,92	8,51	7,50	6,12	5,95	6,28
CaO	10,79	12,48	11,5	10,84	10,55	13,05	11,87	11,21	10,75	11,66
Na ₂ O	7,47	8,07	4,57	7,05	8,06	6,25	6,48	5,33	9,49	4,17
K_2O	14,07	11,61	11,69	14,01	14,12	12,99	14,13	12,47	13,82	11,11
BaO	нпо	нпо	0,29	0,48	0,47	0,47	0,60	0,73	0,65	0,80
SrO	нпо	нпо	0,26	0,64	1,02	0,56	0,76	0,77	0,82	0,72
P_2O_5	1,01	1,33	0,82	1,26	1,51	0,92	1,10	1,50	1,26	1,74
Cl	нпо	нпо	0,06	0,16	0,24	0,08	0,10	0,11	0,21	нпо
SO ₃	нпо	нпо	0,18	0,55	0,95	0,35	0,20	0,60	0,87	0,32
Сумма	89,85	89,35	92,01*	92,59	91,22	94,25	92,71	91,71	89,72	93,70

Примечание: нпо – ниже предела обнаружения; * в том числе MnO-0,09 мас. %.

Таблица 2. Химический состав (мас.%) солевых глобул (СС) и остаточного силикатного стекла (SiC_{ост}) из прогретых и медленно закаленных расплавных включений в клинопироксене кальсилитовых мелилититов Купаелло

Nº		1		2	3		
Объект	CC	SiC _{oct}	CC	SiC _{oct}	CC	SiC _{oct}	
SiO ₂	1,71	49,14	4,15	41,63	4,81	43,64	
TiO ₂	0,22	1,87	нпо	1,38	0,08	0,21	
Al_2O_3	0,02	12,87	нпо	9,94	нпо	7,30	
FeO	0,86	8,10	0,51	7,23	1,05	6,59	
MgO	0,69	2,15	1,28	1,01	0,64	3,83	
MnO	0,15	0,12	нпо	нпо	нпо	0,09	
CaO	24,84	3,52	23,07	3,92	31,22	6,55	
Na ₂ O	1,41	0,38	3,9	1,21	4,49	4,67	
K ₂ O	8,85	5,78	13,21	18,11	12,47	10,03	
BaO	4,36	0,38	2,99	нпо	3,83	1,02	
SrO	2,43	0,19	2,46	нпо	3,04	0,76	
P_2O_5	0,47	0,22	1,95	0,67	0,25	0,17	
Cl	0,08	0,13	0,44	нпо	0,06	0,04	
SO_3	0,27	0,22	0,17	нпо	0,37	0,15	
Сумма	46,22	85,07	54,14	85,10	62,31	85,05	

Примечание: нпо – ниже предела обнаружения; **1** – включение, прогретое до 920°С, **2** – до 1120°С, **3** – до 1150°С. Фазовый состав включений: 1 – флогопит + кальсилит + CC + SiC_{ocr}; 2 – флогопит + апатит + CC + SiC_{ocr}; 3 – флогопит + пектолит + апатит + CC+SiC_{ocr}.

Таблица 3. Химический состав (мас.%) стекол прогретых расплавных включений в мелилите и волластоните из лейцитволластонитового микромелилитолита Колле Фаббри

N⁰	1(2)	2	3(3)	4	5(2)	6	7(2)	8	9(2)	10(3)
SiO ₂	38,68	38,54	38,67	39,57	39,06	27,27	34,63	35,06	35,58	25,69
TiO_2	0,81	0,31	0,81	2,29	1,65	0,74	4,50	4,36	4,21	0,61
Al_2O_3	16,99	19,06	16,98	15,97	14,56	13,29	11,98	11,62	11,77	6,39
FeO	6,62	3,10	4,35	3,95	6,00	3,55	14,11	13,23	14,08	16,48
MnO	0,09	0,08	0,11	0,09	0,14	0,14	0,30	0,30	0,28	0,58
MgO	2,79	1,01	1,58	1,35	1,50	2,94	0,44	0,45	0,43	1,07
CaO	30,47	27,07	28,74	28,49	29,18	29,13	25,47	25,87	25,53	26,84
Na ₂ O	0,42	1,05	0,88	0,75	0,57	0,50	0,89	0,85	0,83	0,74
K_2O	0,65	7,37	5,89	4,57	5,06	4,36	1,58	1,60	1,63	2,43
BaO	нпо	0,26	0,22	0,25	0,28	0,11	0,45	0,39	0,27	1,15
SrO	0,03	0,02	0,04	0,01	0,05	нпо	0,22	0,21	0,18	0,32
P_2O_5	0,31	0,27	0,36	0,92	0,52	0,43	1,08	1,16	1,09	1,49
Cl	нпо	0,01	0,02	0,01	0,02	0,06	0,06	0,06	0,05	1,25
SO ₃	1,14	0,12	0,53	0,28	0,94	6,05	0,54	0,53	0,68	1,04
Сумма	99,09	98,27	99,18	98,53	99,48	88,57	96,21	95,69	96,58	86,08

Примечание: нпо – ниже пределов обнаружения; 1-5 – стекла прогретых включений в мелилите; 6 – бурая каемка вокруг газового пузыря в прогретом включении в мелилите; 7-9 - стекла прогретых включений в волластоните; 10 – обогащенные SiO₂ карбонатные включения в волластоните. В скобках – количество анализов.

Таблица 4. Химический состав (мас.%) основной массы и стекол расплавных включений в волластоните контактовой анортитволластонит-пироксеновой породы Колле Фаббри

N⁰	1	2	3	4	5	6	7	8	9	10	11
SiO ₂	49,86	58,83	60,08	64,84	68,51	71,82	57,86	69,40	71,97	69,04	71,71
TiO_2	0,45	0,40	1,34	0,86	1,14	0,72	0,30	2,64	1,29	0,94	0,72
Al_2O_3	13,57	21,44	9,36	10,51	11,81	10,71	20,61	11,78	13,18	12,86	13,38
FeO	2,90	1,87	4,45	4,28	3,96	1,00	2,29	2,43	0,98	1,45	0,83
MnO	0,05	0,02	0,05	0,07	0,06	нпо	0,01	нпо	нпо	0,02	0,02
MgO	1,25	0,20	1,47	0,80	0,35	0,00	0,48	0,09	0,04	0,01	0,01
CaO	22,44	9,55	15,07	10,68	6,38	6,81	12,80	4,30	1,89	3,51	1,62
Na ₂ O	0,62	1,22	0,71	0,46	0,56	нпо	1,52	0,69	0,56	0,49	0,7
K ₂ O	2,72	6,12	4,35	4,94	5,33	8,91	4,35	6,81	7,34	8,69	7,36
BaO	0,13	0,34	0,20	0,15	0,20	нпо	нпо	нпо	нпо	нпо	нпо
P_2O_5	3,29	0,12	0,19	0,07	0,19	0,00	0,29	0,40	0,01	0,11	0,08
Сумма	97,31	100,1	97,28	97,64	98,49	100,0	100,5	98,54	97,26	97,12	96,47

Примечание: нпо – ниже предела обнаружения; 1-6 – стекла прогретых включений; 7-9 – стекла непрогретых включений; 10-11 – стекло основной массы породы.