Федеральное государственное бюджетное учреждение науки Институт
геологии и минералогии им. В.С. Соболева Сибирского отделения Российской
академии наук

На правах рукописи

Яковлев Игорь Викторович

ОСОБЕННОСТИ СОСТАВА И СТРОЕНИЯ ЛИТОСФЕРНОЙ МАНТИИ ПОД ВЕРХНЕМУНСКИМ КИМБЕРЛИТОВЫМ ПОЛЕМ ПО ДАННЫМ ИЗУЧЕНИЯ ПЕРИДОТИТОВЫХ КСЕНОЛИТОВ И МИНЕРАЛОВ СПУТНИКОВ АЛМАЗА

1.6.4 — «Минералогия, кристаллография. Геохимия, геохимические методы поисков полезных ископаемых»

Диссертация на соискание ученой степени кандидата геологоминералогических наук

> Научный руководитель к.г.-м.н. Мальковец Владимир Григорьевич

Оглавление

Введение	5
Глава 1. Состояние проблемы изучения состава, строения и эволюции	
литосферной мантии (по литературным данным)	9
1.1 Общие сведения	10
1.2. Глубинные ксенолиты как основной источник информации о составе	
литосферной мантии	14
1.3. Метасоматические процессы в литосферной мантии	15
1.4. Химический состав минералов глубинных ксенолитов, как ключ к изуче литосферной мантии.	
Глава 2. Геологическая характеристика Верхнемунского кимберлитового поля	ı 20
2.1. Литературный обзор по исследованиям Верхнемунского кимберлитовог	o
поля	20
2.2. Геологическая характеристика Верхнемунского кимбелритового поля	21
Глава 4. Геологическая характеристика исследованных кимберлитовых трубов месторождений Верхнемунского кимберлитового поля	
Глава 5. Материалы, пробоподготовка и методы исследования	34
Методы пробоподготовки	37
Пробоподготовка перидотитовых ксенолитов	
Пробоподготовка шлиховых проб	37
Методика изготовления шашек	37
Методы исследований	38
Глава 6. Результаты исследований	43
6.1 Результаты исследования перидотитовых ксенолитов	43
6.1.1 Результаты исследования минералов спутников алмаза из перидотитов ксенолитов трубки Комсомольская-Магнитная	
6.1.2 Результаты исследования минералов спутников алмаза из перидотитов ксенолитов трубки Деймос	
6.2. Результаты исследования минералов спутников алмаза из протолочных шлиховых проб кимберлитовых тел Верхнемунского поля	
6.2.1. Результаты исследования минералов спутников алмаза из шлиховых п кимберлитовой трубки Комсомольская-Магнитная.	-

	6.2.2. Результаты исследования минералов спутников алмаза из шлиховых проб кимберлитовой трубки Деймос
	6.2.3. Результаты исследования минералов спутников алмаза из шлиховых проб кимберлитовой трубки Заполярная
	6.2.4. Результаты исследования минералов спутников алмаза из протолочных и шлиховых проб кимберлитовой трубки Интеркосмос
	6.2.4. Результаты исследования минералов спутников алмаза из шлиховых и протолочных проб кимберлитовой трубки Космос-2
	6.2.5. Результаты исследования минералов спутников алмаза из шлиховых и протолочных проб кимберлитовой трубки 325 лет Якутии
	6.2.6. Результаты исследования минералов спутников алмаза из шлиховых проб кимберлитового тела Вилюйская-2019
	6.2.7. Результаты исследования минералов спутников алмаза из протолочных проб кимберлитового тела Жила-1.
	6.2.8. Результаты исследования минералов спутников алмаза из шлиховых и протолочных проб кимберлитового тела Жила-2
	6.2.9. Результаты исследования минералов спутников алмаза из шлиховых и протолочных проб кимберлитового тела 1/15
	6.2.10. Результаты исследования минералов спутников алмаза из шлиховых и протолочных проб кимберлитового тела 1/94
	6.2.11. Результаты исследования минералов спутников алмаза из шлиховых и протолочных проб кимберлитового тела 3/15
	6.2.11. Результаты исследования минералов спутников алмаза из протолочных проб кимберлитового тела M-2
Ι	лава 7. Обсуждение результатов
	7.1. Сопоставление химического состава оливинов из перидотитовых ксенолитов и шлиховых проб трубки Комсомольская-Магнитная с оливинами из кимберлитовых трубок других регионов мира
	7.2. Расшифровка редкоземельных спектров гранатов из шлиховых проб кимберлитовой трубки Комсомольская-Магнитная
	7.3. Расшифровка редкоземельных спектров гранатов из пердидотовых ксенолитов кимберлитовой трубки Комсомольская-Магнитная
	7.4. Корреляция составов оливинов из перидотитовых ксенолитов тр. Комсомольская-Магнитная и гранатов из тех же перидотитов
	7.4. Реконструкция палеогеотермы и разрезов мантийных колонн под трубками Комсосомльская-Магнитная и Деймос

7.5. Гетерогенность составов минералов спутников алмаза кимберлито	вых тел
Верхнемунского кимберлитового поля	155
ЗАКЛЮЧЕНИЕ	162
Список Литературы	164
Приложение А	176
Приложение Б	187

Введение

Проблемы поиска и оценки коренных алмазоносных месторождений за последние два десятилетия приобрели особую актуальность в алмазодобывающей индустрии. За этот период значительно сократилось количество обнаруженных алмазоносных кимберлитовых тел, что наводит на мысль о необходимости пересмотра и совершенствования существующих методов и подходов их поиска.

Для разработки более эффективных методов поиска и оценки месторождений алмаза важно понимать процессы, при котором образовались не только эти месторождения, но и сами алмазы. В настоящее время достоверно известно, что генезис большинства алмазов из кимберлитов, связан с субконтинентальной литосферной мантией [1, 2, 3, 4], их образование происходит при высоких давлениях, на глубинах 150-250 км и температурах 900-1400°С [5, 6, 7], а сами кимберлиты являются лишь транспортерами алмаза к земной поверхности. Однако проблемы оценки алмазоносности кимберлитовых месторождений, а также прогнозирования алмазоносных трубок до сих пор являются ключевыми в алмазодобывающей промышленности.

Наряду с алмазом кимберлиты являются транспортерами разнообразных глубинных ксенолитов, собой которые представляют фрагменты дезинтегрированных коровых или мантийных пород, захваченных и вынесенных кимберлитовой магмой к земной поверхности. Количество ксенолитов значительно варьирует для различных кимберлитовых трубок. Обычно общее количество ксенолитов не больше 2% всего объема породы, но в некоторых случаях их количество достигает 20-30 % (например, в трубке Матсоку, Лесото) [8]. Как правило ксенолиты мантийных пород имеют овоидную или дисковидную форму, их размеры обычно не превышают 30 см, хотя изредка могут достигать в длину 1 Мантийные ксенолиты представлены широком спектром Μ. составов глубинных ультраосновных пород: перидотитами различного состава (дунитами, вебстеритами, лерцолитами, гарцбургитами, а также их гранатовыми шпинелевыми разновидностями), эклогитами и пироксенитами. Особый интерес

представляют перидотитовые ксенолиты, так как их состав наиболее близок к моделируемым составам верхней мантии, а также они дают возможность не только определить условия образования этих пород, но и степень метасоматической переработки алмазоносного киля, а также его мощность и область распространения алмазоносных пород в литосферной мантии.

Верхнемунское кимберлитовое поле является уникальным объектом небольшой территории исследования, так как на относительно вмещает кимберлитовых значительное количество тел, относящимся разным рудоконтролирующим разломам и характеризующихся различной степенью алмазоносности. Таким образом, исследование Верхнемунского кимберлитового поля может пролить свет на ключевые аспекты алмазоносности кимберлитовых тел, способствуя разработке более эффективных методов поиска и оценки коренных месторождений алмаза.

Целью данной работы является исследование особенностей состава и строения литосферной мантии под Верхнемунским кимберлитовым полем.

Для выполнения цели поставлены следующие задачи:

- 1. Исследование химического состава минералов спутников алмаза из перидотитовых ксенолитов и концентрата кимберлитовых тел Верхнемунского поля.
- 2. Сравнение составов минералов спутников алмаза из разных кимберлитовых тел (в том числе принадлежащих к разным рудоконтролирующим структурам).
- 3. Оценка влияния метосоматических процессов на область литосферной мантии в пределах Верхнемунского кимберлитового поля.
- 4. Реконструкция палеогеотермы, выявление мощностей литосферной мантии и "алмазного окна" под Верхнемунским кимберлитовым полем.

Предмет исследования — литосферная мантия в пределах Верхнемунского кимберлитового поля.

Объект исследования — минералы спутники алмаза из ксенолитов и шлиховых проб различных кимберлитовых тел Верхнемунского кимберлитового поля.

Основные защищаемые положения

- 1. Литосферная мантия под Верхнемунским кимберлитовым полем сложена преимущественно гранат- и хромитсодержащими дунитами и гарцбургитами, а также зернистыми гранатовыми лерцолитами. Высокая доля (~30%) перидотитов с высокомагнезильными оливинами Mg# >93 мол. %, а также наличие гранатов с аномально низкими содержаниями Cr₂O₃ (<5 мас. %), CaO (<4 мас. %) и TiO₂ (<90 ррm) свидетельствует о наличии в литосферной мантии под Верхнемунским кимберлитовым полем блока высокодеплетированных пород.
- 2. На момент кимберлитового магматизма (365 млн. лет) мощность литосферы Верхнемунским кимберлитовым полем составляла ~220 Геохимические характеристики гранатов позволяют выделить в литосферной мантии рубеж 180-190 км, выше которого метасоматические преобразования перидотитов были вызваны воздействием карбонатитовых расплавов/флюидов, а ниже – силикатными расплавами. "Алмазное окно" – область распространения перидотитов алмазной фации глубинности, не воздействия испытавших существенного силикатного метасоматоза, располагалось в интервале глубин 125-190 км.
- 3. Разнообразие парагенетических групп минералов спутников алмаза, а также значительные разбросы их составов и содержаний в индивидуальных кимберлитовых телах Верхнемунского кимберлитового поля свидетельствуют о значительной гетерогенности литосферной мантии под этим полем.

Соответствие результатов работы научным специальностям

Результаты диссертационного исследования соответствуют пунктам 1 и 4 (пункт 1: Минералогия земной коры и глубинных геосфер Земли, ее поверхности и дна

объектов; минералогия внеземных минералогия водоемов; техногенных образований; биоминералогия; ПУНКТ 4: Минералогия месторождений металлического и неметаллического сырья; минералогическое картирование и минералогические методы, используемые для прогноза, поисков, разведки и оценки месторождений полезных ископаемых) паспорта специальности 1.6.4 «Минералогия, кристаллография. Геохимия, геохимические методы поисков полезных ископаемых».

Апробация работы

Основные положения диссертации были доложены и обсуждены на научных конференциях:

- 1. VIII, IX, X, XI, XII, XIV Всероссийские научно-практические конференции "Геология и минерально-сырьевые ресурсы Северо-Востока России (Якутск, 2018, 2019, 2020, 2021, 2022).
- 2. 31 молодёжная научная школа-конференция, посвящённая памяти чл.-корр. АН СССР К.О. Кратца (Санкт-Петербург, 2020 г.).
- 3. 9 Всероссийская молодежная научная конференция «Минералы: строение, свойства, методы исследования» (Екатеринбург, 2018).
- 4. 11 Международная научно-практическая конференция научно-методические основы прогноза, поисков, оценки месторождений алмазов, благородных и цветных металлов (Москва, 2022).
- 5. Международная научная конференция молодых ученых «Молодые Наукам о Земле» (Москва, 2022).
- 6. The EGU General Assembly (Вена, Австрия, 2020, 2022).
- 7. А также на всероссийском научном форуме «Наука будущего наука молодых» (Москва, 2020).

Список опубликованных работ в журналах из перечня ВАК:

1. Dymshits A.M., Sharygin I.S., Zhe Liu, Korolev N., Malkovets V.G., Alifirova T.A., Yakovlev I.V. and Yi-Gang Xu, Oxidation state of the lithospheric mantle

- beneath Komsomolskaya–Magnitnaya Kimberlite Pipe, upper Muna field, Siberian Craton //Minerals. -2020. -T. 10. N $\!_{\odot}.$ 9. C. 740.
- 2. Dymshits A.M, Sharygin I.S., Malkovets V.G., Yakovlev I.V., Gibsher A.A., Alifirova T.A., Vorobei S.S., Potapov S.V. and Garanin V.K., Thermal state, thickness, and composition of the lithospheric mantle beneath the Upper Muna Kimberlite Field (Siberian Craton) constrained by clinopyroxene xenocrysts and comparison with Daldyn and Mirny Fields //Minerals. − 2020. − T. 10. − №. 6. − C. 549.
- 3. Яковлев И.В., Мальковец В.Г., Гибшер А.А., Дымшиц А.М., Кузьмин Д.В., Даниловская В.А., Милаушкин М.В., Похиленко Н.П., Соболев Н.В. Минералогия перидотитовых ксенолитов из кимберлитовой трубки Комсомольская-Магнитная (Верхнемунское поле, Сибирский кратон) // Доклады Академии наук. Науки о Земле. 2022, том 506, № 1, с. 43–49.

В иных изданиях:

Яковлев, И.В., В. Г. Мальковец, А. А. Гибшер, Минералогия оливинов и гранатов из перидотитовых ксенолитов кимберлитовой трубки комсомольская-магнитная (Верхнемунское поле, Сибирский кратон) // Вопросы естествознания. — 2018. — № 4(18). — С. 140-144.

Структура и объем диссертации.

Диссертация состоит из введения, семи глав, заключения и списка литературы из 112 наименований. Объем диссертации составляет 176 страниц, в том числе 91 рисунка и одной таблицы.

Благодарности. Автор выражает благодарность: научному руководителю к.г.-м.н. Мальковцу В.Г. за организацию полевых работ, высокоточных аналитических исследований, а также за помощь в интерпретации полученных данных, академику Похиленко Н.П., к.г.-м.н. Гибшер А.А., д.г.-м.н. Сокол А.Г., д.г.-м.н. Сокол Э.В., к.г.-м.н. Тычкову Н.С., к.г.-м.н. Даку А.И., к.г.-м.н. Дымшиц А.М., Шарыгину И.С. за ценные консультации и советы при подготовке диссертации, Королюку В.Н.,

Усовой Л.В., Даниловской В.А. за помощь в проведении аналитических измерений. Автор также выражает благодарность за поддержку всем коллегам лаборатории № 451 литосферной мантии и алмазных месторождений ИГМ СО РАН. Работа выполнена в рамках плановых тем НИР ИГМ СО РАН и финансово поддержана грантами РФФИ № 20-35-90097 и РНФ № 18-17-00249, № 22-27-00724.

Глава 1. Состояние проблемы изучения состава, строения и эволюции литосферной мантии (по литературным данным).

1.1 Общие сведения

Впервые термин "литосфера" был предложен американским геологом Дж. Баррелом в 1914 году. До 60-х годов 20 века литосфера понималась как синоним земной коры, позже было установлено, что она включает и верхний слой мантии мощностью до 200 км. Нижняя граница литосферы нерезкая, выделяется по уменьшению вязкости, скорости сейсмических волн и увеличению электропроводности, обусловленным повышением температуры и частичным плавлением веществ. Таким образом литосфера является верхней реологической оболочкой Земли, которая отличается от подстилающей ее астеносферы повышенными значениями вязкости [9].

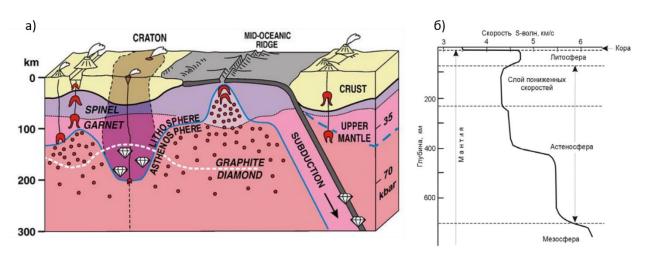


Рисунок 1. а) Схематический разрез через земную кору и часть верхней мантии [10]. б) Скорости поперечных волн в литосфере и астеносфере [11].

Верхняя мантия подразделяется на два минералогических слоя: шпинелевую (лиловая) и гранатовую (розовая) фации (рис.1). Небольшие по объему расплавные

образования, обуславливающие низкую скорость сейсмических волн в астеносфере, показаны красными точками. Область между линией перехода графит/алмаз и основанием кратонной литосферы является "алмазным окном" – главным источником алмазов, которые выносятся на поверхность глубинными магматическими породами (кимберлитами, оливиновыми лампроитами) [10].

Вязкость литосферы оценивается величинами порядка $10^{23} - 10^{24}$ П, в то время как вязкость астеносферы около $10^{19} - 10^{20}$ П, т.е. на 4 - 5 порядков меньше, чем в литосфере (для сравнения: вязкость воды -10^{-2} П, жидкой базальтовой лавы -10^{5} П, льда -10^{13} П, каменной соли -10^{18} П). Литосфера включает земную кору (океаническую/континентальную) и верхний слой мантии. Мощность океанической литосферы закономерно варьирует с ее возрастом 5-120 км (минимум под срединно-океаническими хребтами, максимум на периферии океанов). Под континентами мощность литосферы возрастает. Наибольшей мощности (до 200-250 км и более (до 400 км)) литосфера достигает под древними участками континентов (кратонами) [12].

Кратоны представляют крупные сегменты архейской или протерозойской континентальной земной коры, длительное время сохраняющие стабильность и испытавшие тектоническую переработку преимущественно в окраинных областях. Они характеризуются мощным (> 180 км), холодным (до 40 мВт/м2), тугоплавким, плавучим и реологически прочным литосферным килем [13, 14].

Архейские кратоны, возрастом от 3,6 до 2,5 млрд лет, слагают как щиты, так и фундамент древних платформ. В то же время возраст океанической литосферы не превышает 120 млн. лет, так как по мере удаления от срединно-океанических хребтов происходит ее остывание, увеличение плотности, и как следствие погружение в мантию в зонах субдукции [15].

Особый интерес представляет субконтинентальная литосферная мантия, находящаяся в нижней части разреза жестких и "холодных" литосферных плит, которые двигаются по более пластичной и горячей астеносфере. До сих пор одним

из ключевых вопросов остается проблема длительной сохранности и устойчивости литосферной мантии под древними кратонами. В 1975 году в работах [16, 17] впервые была обнаружена разница в скорости прохождения сейсмических волн между кратонной и внекратонной литосферой и, следовательно, разница в составе (плотность породных ассоциаций в зависимости от степени фертильности перидотитов) и термальных режимах (плотность породных ассоциаций в зависимости от температуры перидотитов). С этого момента началась активная стадия исследования состава, строения и изучения термального режима литосферной мантии в различных геодинамических обстановках.

Чаще всего на стадии регионального прогноза алмазоносных месторождений используются косвенные критерии. Это, прежде всего, возраст кратонизации 1966 г. Т. Клиффордом было сделано кристаллического фундамента. В предположение, что алмазоносные кимберлиты приурочены исключительно к областям с возрастом кристаллического фундамента свыше 1500 млн. лет (по его мнению, архейского возраста). Это предположение получило в дальнейшем название «правила Клиффорда». Последующие исследования на различных континентах мира подтвердили справедливость этого правила, ЛИШЬ кимберлитам. Обнаружение нового применительно к классическим алмазоносных пород — лампроитов — в структурах с протерозойским возрастом фундамента повлекло за собой частичную ревизию правила Клиффорда.

В 1992 году Янсе А.Д. выделил различные типы продуктивных на алмазы геотектонических элементов: архоны (древнее 2,4 млрд лет), протоны (2,4-1,6 млрд лет) и тектоны (1,6-0,8 млрд лет). Архоны представляют собой древнейшие образования Земли - гранит-зеленокаменные ядра (или нуклеары), а протоны и тектоны - полициклические подвижные пояса. В пределах архонов возможно обнаружение коренных месторождений алмазов всех типов, в пределах протонов — только лампроитового типа, а тектоны в этом отношении считаются бесперспективными [18, 19].

В зависимости от геотектонической обстановки и возраста становления фундамента различные блоки литосферы отличаются мощностью и значениями теплового потока. На рисунке 2 приведены геотермы, характерные для различных геодинамических обстановок, а также разных возрастов литосферных плит [20]. В данной работе используются геотермы по модели [21], в которой взяты усредненные значения теплогенерации в земной коре по всей Земле, а также учитывается теплогенерация в литосферной мантии, связанная с радиоактивным распадом. Однако позднее в работе [22], авторы представляют новую модель оценки теплогенерации при радиоактивном распаде для континентальной литосферы, которая учитывает различия в составе горных пород и геологических условиях в разных регионах мира, они используют более сложную модель, учитывающую изменения концентраций радиоактивных элементов в вертикальном профиле, в то время как в более ранних моделях предполагалось равномерное распределение радиоактивных элементов. Это может привести к различиям в расчетах температурных градиентов и, следовательно, к различиям в форме геотермы для разных моделей.

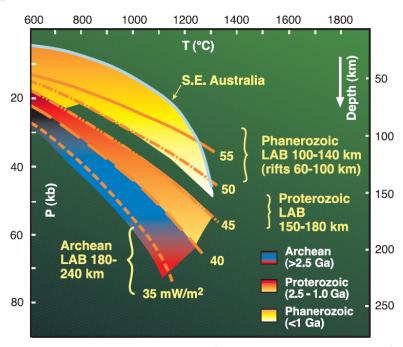


Рисунок 2. Диапазон Р-Т условий и глубин до границы литосферы и астеносферы (LAB) для геотерм различных геотектонических обстановок, имеющих различный возраст становления фундамента [20].

1.2. Глубинные ксенолиты как основной источник информации о составе литосферной мантии.

Ксеногенный материал, вынесенный на поверхность кимберлитами, является основным источником информации о составе и строении литосферной мантии древних кратонов. Глубинные ксенолиты (по Dowson 1980 [8]) разделяются на пять крупных групп:

- 1. Перидотит-пироксенитовые породы
- 2. Эклогиты и гроспидиты
- 3. Метасоматизированные перидотиты, обогащенные амфиболом и (или) слюдой
- 4. Глиммериты и "мариды"
- 5. Прочие ксенолиты

Количество представителей этих пяти групп значительно варьирует для различных кимберлитовых трубок. Обычно общее количество ксенолитов не больше 2% всего объема породы, но в некоторых случаях их количество достигает 20-30 % (например, в трубке Матсоку, Лесото). Чаще всего в кимберлитовых трубках преобладают ксенолиты перидотитов, однако имеются редкие кимберлитовые тела, где распространены ксенолиты пироксенитов (Матсоку, Лесото) или эклогитов (Загадочная, Россия; Орапа, Ботсвана; Гарент-Ридж и Мозес-Рок, США; Боббеян и Ритфонтейн, ЮАР).

Среди перидотитовых ксенолитов наиболее распространены пироповые лерцолиты, похожий состав которых является причиной рассмотрения их в качестве первичного материала мантии, наряду с лерцолитами распространены вебстериты и пироксениты [2]. Особенности состава ксенолитов послужили основой для создания пиролитовой модели верхней мантии [23]. На данный момент считается, что пиролит состоит главным образом из оливина, пироксенов и граната в отношении 4 : 2 : 1, а петрохимически состоит из 25% базальта и 75% перидотита [24]. Однако вещество мантии в некоторой степени дифференцировано, что подтверждают данные по изучению минеральных

включений в алмазах, а также алмазоносных ксенолитов, состав которых колеблется от дунит-гарцбургитов до эклогитов. Также региональная неоднородность верхней мантии подтверждается различными содержаниями в кимберлитах индикаторных оксидов, таких как FeO_{tot}, TiO₂, K₂O [2].

Литосферная обстановках мантия различных геодинамических В существенно отличается по составу (степени фертильности и деплетированности), мощности, и геотермическим градиентам [20, 25, 26, 27]. Она имеет существенно перидотитовый состав, который может варьировать от наиболее деплетированных дунитов (Ol±Sp) и гарцбургитов (Ol+Opx±Sp) до фертильных лерцолитов (Ol+Opx+Cpx±Grt±Sp). Особый интерес вызывает глубинная часть литосферной мантии в поле стабильности алмаза. Линия перехода графит-алмаз имеет положительный наклон, и при пониженных значениях тепловых потоков, характерных для древних кратонов, переход графит-алмаз происходит на глубинах 130-150 км. Алмаз достаточно часто содержит разнообразные минеральные включения, которые предоставляют информацию о составе субстрата, с которым алмаз находился в равновесии на момент своего образования. Образование алмаза в литосферной мантии древних кратонов происходило в достаточно широком возрастном интервале, начиная с архея (3,5 млрд. лет) и вплоть до момента внедрения кимберлитов. Алмаз, ввиду своих физических характеристик, является уникальным контейнером, который надежно бронирует захваченные минеральные включения от наложенных метасоматических процессов, которые проистекали в мантии за миллиарды лет.

По данным изучения минеральных равновесий предполагается, что образование алмазов во всех перечисленных ассоциациях происходит на глубинах 150-200 км при температуре 900-1400°C [28, 29, 30, 31].

1.3. Метасоматические процессы в литосферной мантии.

Геохимическая эволюция вещества субконтинентальной литосферной мантии под влиянием процессов магма - и флюидо - переноса по сей день является предметом научных дискуссий. Одна из наиболее признанных гипотез предполагает, что первичная литосфера возникла вследствие процесса

интенсивного плавления, как ультрадеплетированный гарцбургитовый остаток после ухода коматиитовых расплавов [32, 33]. Затем гарцбургитовое вещество было обогащено петрогенными и редкими несовместимыми элементами во время древнего этапа "скрытого" метасоматизма, который не проявился в развитии метасоматических минералов [32, 34].

В целом, изучение ксенолитов перидотитов выявило важную роль метасоматических преобразований литосферной мантии в образовании алмаза [35, 36, 37, 38, 39]. На данный момент существует множество работ, посвященных изучению метасоматических процессов в литосферной мантии, по данным изучения ксеногенного материала кимберлитов (Соболев, 1974; Pearson et al., 1995a, 6, 2003; Pokhilenko et al., 1999; Simon et al., 2003, 2007; Shirey et al., 2013) [2, 37, 40, 41, 42, 43, 44, 45, 46]. Прямым доказательством воздействия метасоматических расплавов на породы литосферной мантии считается наличие флогопита в мантийных перидотитах [47, 48, 49].

Мантийным метасоматозом называется процесс, при котором происходит изменения химического состава мантийной породы под воздействием расплава или флюида, при этом модальный состав породы может оставаться неизменным. Такой метасоматоз называется "скрытым". При скрытом метасоматозе происходит обогащение несовместимыми элементами первичных минералов и пород. Одним из примеров такого процесса является превращение гарцбургита в лерцолит с развитием граната лерцолитового парагенезиса вместо гарцбургитового. Если же при метасоматическом процессе в ассоциации образуются новые минералы, меняется соотношение минералов первичной ассоциации, то есть происходит модального состава породы, такой метасоматоз изменение называется "модальным". При этом зачастую проявляются реакционные взаимодействия между наложенными минералами и минералами первичной ассоциации, а также сопутствующее изменение состава первичных минералов и пород [50, 51].

Процесс метасоматоза может быть приурочен к мантийным процессам (мантийный метасоматоз), но также происходит и после того, как мантийные породы были захвачены кимберлитовой магмой (кимберлитовый метасоматоз).

Выделяют два основных геохимических типа мантийного метасоматоза карбонатитовый и силикатный. Карбонатитовый метасоматоз проявляется в обогащении пород и минералов несовместимыми элементами, без значительных изменений модального состава и наиболее часто наблюдается в деплетированных алмазоносных) дунит-гарцбургитах средней части разреза литосферной мантии. Силикатный, в свою очередь, приводит к значительному росту модальных содержаний граната и клинопироксена в перидотитах и приурочен к корневым частям литосферы, либо к верхним слоям разреза литосферной мантии [38]. Предполагается, что с карбонатитовым метасоматозом связан процесс образования алмаза, на это указывает химический состав флюидных включений в алмазах [52, 53, 54]. Силикатный метасоматоз, как правило, более поздний, чем карбонатитовый, приводит к значительному росту модальных содержаний граната и клинопироксна в мантийных перидотитах и приурочен к корневым частям литосферы [37]. Такой метасоматоз является причиной алмаза, что может стать причиной убогой алмазоносности киберлитовых тел или отсутствием алмаза в трубках.

Изучение химического состава минералов перидотитовых ксенолитов, а также минералов спутников алмаза позволяет оценить степень метасоматической переработки литосферной мантии под кимберлитовым телом и его потенциальную алмазоносность.

1.4. Химический состав минералов глубинных ксенолитов, как ключ к изучению литосферной мантии.

Оливин

Оливин является основным породообразующим минералом перидотитовых пород литосферной мантии. Исследование химического состава оливина предоставляет нам информацию как о степени частичного плавления литосферной

мантии (повышение Mg#), так и о более поздних наложенных метасоматических процессах, которые, наоборот, понижают магнезиальность оливинов. Установлена средняя магнезиальность оливинов — включений в алмазах (Mg# 92,6 мол. %), которая отражает состав оливинов, ассоциирующихся с алмазами [55]. Также накоплена достаточно обширная база данных по содержанию элементов примесей в оливинах из ксенолитов и включений в алмазах, для разных регионов мира [56, 57, 58, 59, 60]. Кроме того, на данный момент существуют методы мономинеральной термометрии, основанной на закономерностях распределения Сг и А1 между оливином и другими минералами ассоциации [61].

Гранат

Химический состав гранатов из перидотитовых ксенолитов и шлиховых проб позволяет с достаточной достоверностью провести генетическую классификацию пород, содержавших этот гранат, и с достаточной достоверностью определить находился ли гранат в ассоциации с алмазом. Кроме того, по содержаниям Са и Сг, а также спектрам распределения редкоземельных элементов в гранатах можно не только судить о степени развития метасоматических процессов, но и определить геохимические типы мантийного метасоматоза, влияющего на развитие пород литосферной мантии [62, 38]. Для определения Р-Т условий образования гранатов используется термометр, основанный на реакции обмена Ni между оливином и гранатом и барометр, основанный на реакции обмена Сг между ортопироксеном и гранатом. На основании сравнения содержания Y (г/т) в гранатах с температурой их образования, можно делать выводы о положении основания деплетированной литосферы ("Y край"), а также о мощности алмазного окна [25].

Клинопироксен

По составам клинопироксенов из шлиховых проб и перидотитовых ксенолитов можно получить информацию о генетических типах пород, в которых кристаллизовался этот пироксен [63]. Это необходимо как для составления представления о присутствии различных пород в литосфере под кимберлитовым полем, так и для корректной работы с мономинеральным клинопироксеновым

термобарометром (Nimis, Tailor 2000). По данным термобарометрии производятся построения геотермы и расчёт мощности литосферы [64, 65, 66].

Хромшпинелид

Хромшпинелиды, встречающиеся в кимберлитах условно можно разделить на ксенокристы, захваченные из перидотитов литосферной мантии, хромшпинелиды входящие в состав основной массы кимберлитов (кристализовавшиеся в кимберлитовом расплаве) и хромшпинелиды в реакционных продуктах, возникших взаимодействия результате минералов ИЗ попрод литосферы протокимберлитовым расплавом (например, в келифитовых каймах вокруг граната). По содержанию Cr_2O_3 - Al_2O_3 в хромшпинелидах можно в первую очередь определить относился ли хромшпинелид к перидотитовой ассоциации пород литосферной мантии, находился ли он в ассоциации с алмазом, а также определить глубинную фацию этих пород [2, 67]. Кроме того, состав хромшпинелидов метосоматические преобразования попорд литосфеной связанные с силикатными астеносферными расплавами и изменения, связанные с изменением окислительно восстановительных условий [62].

Ильменит

В отличие от граната, имеющего множество разных мантийных источников, ильменит является минералом, доминирующая часть которого генетически связана с формированием кимберлитов [68].

Однако генезис пикроильменита до сих пор является предметом дискуссий. В настоящее время существует несколько гипотез образования ильменита из кимберлитов: за счет дезинтеграции ильменитсодержащих пород литосферной мантии [69, 70], как результат кристаллизации в астеносферном слое [71], в результате процессов кристаллизации, сопряженных с процессами формирования кимберлитов [72, 73, 74, 75].

Согласно экспериментам [76] ильменит относится к минералам, чутко реагирующим на изменение состава кристаллизующей среды.

Особенности распределения состава ильменита в координатах MgO-Cr₂O₃, четко выраженны на графиках, получивших название «парабола Haggerty» [77]. Низко-Мд ветвь параболы отражает распределение составов ильменита, происходящее в процессе их первичной кристаллизации в астеносферном слое и их изменение при восхождении кимберлитового расплава-флюида астеносферного происхождения через литосферную мантию. Высоко-Мд ветвь параболы отражает, процесс вторичной субсолидусной перекристаллизации ильменита, вызванного изменением окислительно-восстановительного кимберлитового потенциала расплава [78].

Глава 2. Геологическая характеристика Верхнемунского кимберлитового поля.

2.1. Литературный обзор по исследованиям Верхнемунского кимберлитового поля.

Верхнемунское кимберлитовое поле является на данный момент одним из наименее изученных в вопросах состава, строения и эволюции литосферной кратонной мантии. В 2018 году АК "АЛРОСА" начала промышленную эксплуатацию коренных месторождений Верхнемунского поля.

Возраст кимберлитов данного поля принимается как среднепалеозойский (D3-C1) на том основании, что кимберлиты рвут терригенные и осадочные породы нижнего палеозоя, а в трубках не обнаружены ксенолиты траппов [79]. Кимберлиты Верхнемунского поля датируются по цирконам методом треков: 362±5 млн. лет [80], тр. Интеркосмос - 369±11 млн. лет [81] а также U/Pb методом в ряде работ: тр. 325 лет Якутии – 440 млн. лет [82], 355,5±1,5 млн. лет [83], тр. Заполярная - 361±10 млн. лет [84].

Одной из немногих работ по исследованию литосферной мантии под Верхнемунским полем является диссертация Яковлева Д.А. 2009 года и несколько работ этого автора, которые легли в ее основу [85]. В данной работе автор подробно описывает состав и строение кимберлитов, однако подробного исследования ксеногенного материала не производилось. Тем не менее, по минералам индикаторам из кимберлитов сделан вывод об особом, деплетированном

составе литосферной мантии под этим полем в сравнении с другими алмазоносными полями. По данным И.В. Серова (2002) [86] для кимберлитов Верхнемунского поля (трубки Новинка, Зимняя, 325 лет Якутии) типично низкое содержание Рb и как следствие повышенные U/Pb и Th/Pb.

По данным изучения клинопироксенов из концентрата с трубки Новинка, относящейся к Верхнемунскому полю, проведены термобарометрические расчеты, показавшие, что образование данных клинопироксенов происходило в широком диапазоне температур от 900 до 1400 °C и давлений 40-65 кбар, причем образование подавляющей части проанализированных клинопироксенов происходило в области стабильности алмаза [66].

кимберлитовые тела Кимберлитовые трубки Верхнемунского поля, и Далдынского поля имеют близкий возраст внедрения (~360 млн лет), но принадлежат различным террейнам в соответствие с тектонической схемой Розена (2006) [87]; Далдынское поле относится к Мархинскому террейну, а Верхнемунское к Далдынскосу террейну. Многие авторы считают, что эти террейны имели независимую историю формирования и, следовательно, их литосферная мантия также имеют независимую историю образования. Однако недавние геохронологические исследования цирконов из коровых ксенолитов и обломочных цирконов из кимберлитов обнаруживают близость тектонотермальной истории этих террейнов и ставят под сомнение необходимость выделения этих террейнов как независимых структурных единиц [88, 89].

2.2. Геологическая характеристика Верхнемунского кимбелритового поля.

Якутская алмазоносная провинция (ЯАП) занимает северо-восточную часть Сибирской платформы, охватывает Анабарскую антеклизуи ее восточный и южный склоны, покрытые верхнепалеозойскими и мезозойскими осадками. Около 25 полей кимберлитовых и родственных магматитов беспорядочно расположены здесь на территории более 1,5 млн. км², в пределах которых известно более 1000 различных тел: трубок, штоков, даек, жил, иногда образующих сложные сопряженные конструкции [79]. Верхнемунское поле входит в состав южных

полей провинции. Месторождение Верхнемунского кимберлитового поля расположено в бассейне верхнего течения р. Муна и ее правого притока р. Улаах-Муна, в 180 км к северо-востоку от г. Удачный.

Структура Верхнемунского кимберлитового определяется поля дизьюнктивно-блоковой решеткой, проявленной системой структурных элементов кристаллического фундамента и диагональной системой в структуре осадочного чехла. Рассматриваемое поле – одно из самых небольших в провинции, однако оно характеризуется высокой плотностью кимберлитовых тел [90]. К настоящему времени в пределах поля известны 23 кимберлитовых тела (18 трубок и 5 даек). Кимберлитовые тела образуют 3 линейно расположенные цепочки северозападного простирания. Наиболее протяженной является центральная цепочка, состоящая из 11 кимберлитовых трубок и 5 даек (трубки: Зимняя, Легкая, Комсомольская-Магнитная, Новинка, Вымпел, Интеркосмос, 325 лет Якутии, Космос-2, Космос-3, Вилюйская-2019 (кимберлитовое тело вытянутой формы, может быть интерпретировано как дайка); дайки: Жила-1 (примыкает к к.т. Интеркосмос), Жила-2, к.т. 1/94, к.т. 1/15, к.т. 3/15). Известно, что эти тела приурочены к малоамплитудному сбросу, протяженностью около 15 километров. При дешифрировании космофотоматериалов выявлены аналогичные разрывные нарушения, имеющие ту же ориентировку (Рис. 1 [91]). Вторая, менее выраженная цепочка из 5 кимберлитовых трубок (М-10, Малая, Заполярная, Деймос, Поисковая) находится в 3,5 км к северо-востоку от центральной, третья цепочка из 3 кимберлитовых трубок (М-1, Верхняя, М-2) расположена в 2 км к западу от центральной, эти цепочки также имеют северо-западное простирание (Рис. 2).

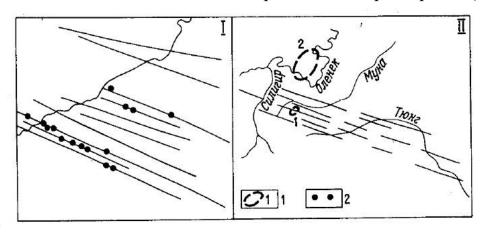


Рисунок 3. Разрывные элементы Муно-Тюнгской зоны, выявленные дешифрированием космических снимков [91].

Форма кимберлитовых трубок на уровне современного эрозионного среза достаточно разнообразна. Выделяется несколько морфологических групп трубчатых тел: 1) изометрические – почти округлые (Зимняя, Легкая, 325 лет Якутии, Верхняя, Малая); 2) удлиненные (Комсомольская-Магнитная, Поисковая); 3) тела сложной формы (Новинка, Заполярная) Изометрические трубки представляют собой простые тела, образованные одной фазой внедрения кимберлитового расплава, тогда как кимберлитовые тела с более сложным строением сложены породами, внедрившимися в несколько фаз [90].

В целом кимберлитовые породы Верхнемунского поля отличаются от подобных пород центральных полей (Мирнинского, Далдынского, Алакит-Мархинского) следующим (по Харькив, 1998):

- 1) низким содержанием ксенолитов осадочных пород, многие из которых подверглись высокотемпературному метаморфизму;
- 2) относительно слабыми вторичными изменениями кимберлитов, особенно в трубках Зимняя, Комсомольская-Магнитная, Новинка, Легкая; в основной массе кимберлитов этих трубок сохраняется свежий оливин второй генерации, который нередко замещается более поздним монтичеллитом и периклазом; в кимберлитах перечисленных трубок отмечаются повышенные количества апатита, перовскита, и позднего флогопита;
- 3) наличием в трубках Зимняя Комсомольская-Магнитная и Новинка желваков (мегакристы) энстатита (размер по удлинению 0,5— 0,6 см), окруженных широкими (1—4 мм) реакционными каймами, сложенными амфиболом, монтичеллитом, флогопитом, серпентином, карбонатом;
- 4) присутствием в кимберлитах ряда трубок двух групп мегакристов: хромистой и титанистой; первая представлена высокохромистым (Сг₂Оз достигает 7 %) гранатом, нередко с повышенным содержанием титана (ТіО₂ иногда превышает 1

- %), высокомагнезиальным оливином, редко крупными (до 1 см) выделениями хромшпинелида; титанистая группа включает желваки низкохромистого оранжевого граната, ильменита (трубка Зимняя), пластинчатые кристаллы флогопита; в кимберлитах трубки Легкая впервые найден мегакрист (размер 1,5 см в поперечнике) грязно-зеленого граната пироп-уваровитового состава;
- 5) широким развитием мощных келифитовых кайм вокруг граната из кимберлитового цемента и глубинных ксенолитов, сложенных флогопитом, шпинелью, орто- и клинопироксенами и некоторыми другими минералами; относительно широко распространены глубинные породы и мегакристы граната с признаками глубинного плавления (трубки Зимняя, Новинка, Комсомольская-Магнитная, Заполярная); раскристаллизованные участки микропорций расплава в этих породах сложены орто- и клинопироксенами, хромшпинелидом, флогопитом, амфиболом, редко оливином; более поздние фазы представлены серпентином, хлоритом, кальцитом;
- 6) низким содержанием в кимберлитах ильменита (за исключением трубок Зимняя и 325 лет Якутии);
- 7) специфичностью фазового состава вторичных минералов (наличие прожилков и жил брусита, гнезд и прожилков таумасита и хантита, выделений пироаурита);
- 8) высокой долей гранатов и хромшпинелидов алмазной ассоциации (кноррингитсодержащий гранат и высокохромистый хромшпинелид);
- 9) несколько необычным составом ксенолитов глубинных пород (резкое преобладание существенно оливиновых разновидностей, очень редкие находки эклогитов, пироксенитов и слюдистых типов пород), которые представлены нодулями деплетированной мантии; встречен также оригинальный ксенолит хромитового верлита.

Возраст кимберлитов данного поля принимается как среднепалеозойский (D3-C1) на том основании, что кимберлиты рвут терригенные и осадочные породы нижнего палеозоя, а в трубках не обнаружены ксенолиты траппов. Кимберлиты

Верхнемунского поля датируются по цирконам методом треков: 362 ± 5 млн. лет [80], тр. Интеркосмос - 369 ± 11 млн. лет [81] а также U/Pb методом в ряде работ: тр. 325 лет Якутии – 440 млн. лет [82], $355,5\pm1,5$ млн. лет [83], тр. Заполярная - 361 ± 10 млн. лет [84].

Поле расположено вне областей среднепалеозойских палеорифтов в пределах стабильной части Сибирского кратона. Кимберлитовый магматизм этого возраста является наиболее алмазоносным на Сибирском кратоне и инициирован термохимическим Якутским плюмом, существование которого подтверждается рядом геологических и петролого-геохимических свидетельств [92, 93, 94].

Кимберлитовые тела Верхнемунского поля были открыты в 1950-х годах Амакинской экспедицией. Поисково-оценочные и разведочные работы проводились в 3 этапа: 1) 1956-1958 гг.- изучение поверхностными горными выработками и скважинами, 2) 1988-1989 гг. кондиционные поисково-оценочные работы с использованием вертикального бурения, 3) 2002-2005 гг. разведочные работы с использованием наклонно-направленного бурения и крупнообъемного опробования кимберлитов. В результате проведенных работ тр. Заполярная была разведана до глубины 400м, тр. Новинка и Комсомольская-Магнитная - до 300-320 м, тр. Поисковая и Деймос - до 200м.

Наиболее крупными являются трубки Заполярная, (в которой сосредоточено свыше половины запасов Верхнемунского поля) Комсомольская-Магнитная, Деймос, Новинка, Поисковая, Зимняя. На данный момент трубки Заполярная, Деймос, Поисковая, Комсомольская-Магнитная и Новинка переведены в разряд месторождений и с 2018 года разрабатываются открытым способом. По кристалломорфологии алмаза преобладают округлые формы— 40-75%, октаэдрические и переходные кристаллы в сумме составляют 14-33%, остальная часть представлены обломками, сростками кристаллов и агрегатами. Абсолютное большинство алмазов обладает заметными признаками травления [90].

Территория Верхнемунского поля контролируется куполовидным поднятием, размеры которого 30х15 км [78]. В тектоническом плане Муно-Тюнгский алмазоносный район приурочен к юго-восточному склону Анабарской антеклизы. В строении территории принимают участие породы двух структурных комплексов: кристаллического фундамента и осадочного чехла. В рельефе фундамента к востоку от Верхнемунского поля выделяется Мунское поднятие. Другой крупной структурой фундамента является Верхнемунская впадина, в пределах которой и находится Верхнемунское кимберлитовое поле. Глубинные разломы в пределах поля подразделяются на мантийные и коровые, при этом с мантийными связаны проявления ультраосновных пород.

Магматические образования в районе Верхнемунского поля представлены породами трапповой формации и кимберлитами. Породы трапповой формации представлены отдельными дайками долеритов, протяженностью 0,5-3 км и мощностью до 60 м. Возраст даек позднепермский-раннетриасовый (P₂-T₁). Кимберлитовые тела образующие Верхнемунское поле сложены порфировыми кимберлитами и автолитовыми кимберлитовыми брекчиями разных фаз внедрения. Большинство кимберлитов поля алмазоносны.

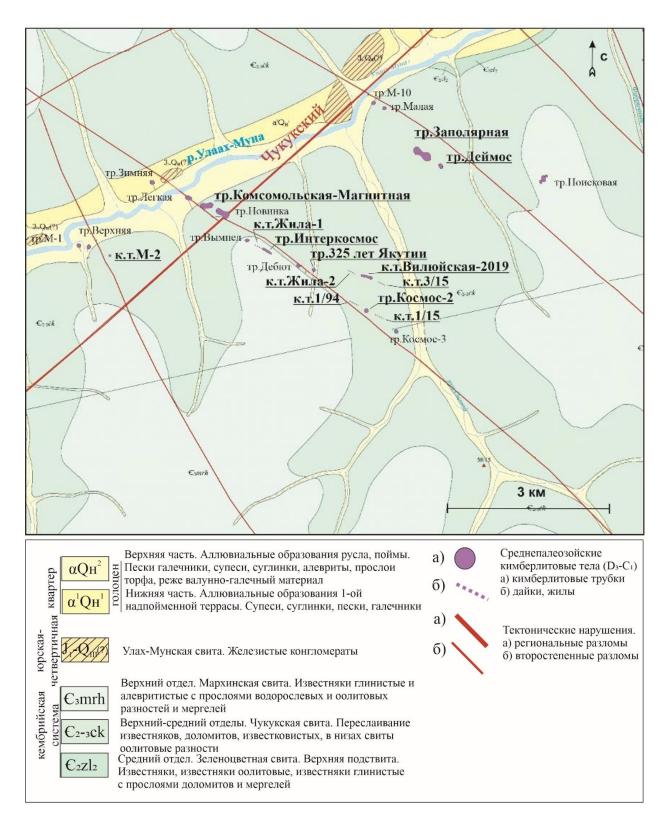


Рисунок 4. Геологическая карта Верхнемунского кимберлитового поля (источник – по данным АК "АЛРОСА" (ПАО)).

На данный момент принято считать, что Верхнемунское кимберлитовое поле относится к Далдынскому террейну (Рис.3). Однако это до сих пор остается дискуссионным вопросом. А некоторые исследователи и вовсе ставят под сомнение необходимость выделения этих террейнов как независимых структурных единиц [88, 89].

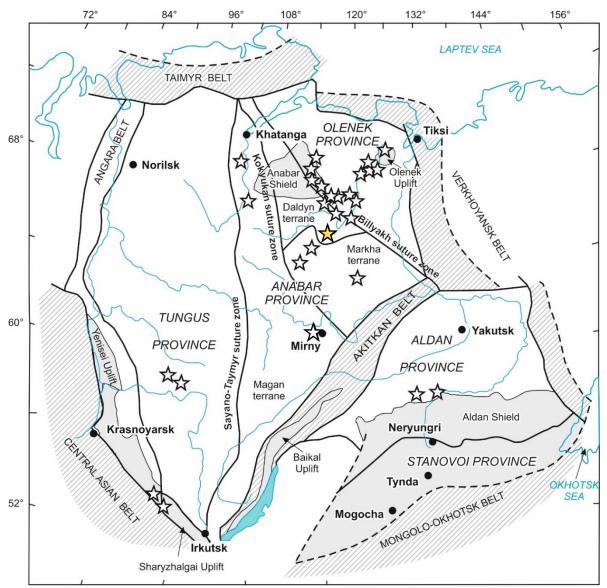


Рисунок 5. Схема положения террейнов Сибирской платформы, звездочками обозначены кимберлитовые поля, желтой звездочкой - Верхнемунское кимберлитовое поле [87].

Глава 4. Геологическая характеристика исследованных кимберлитовых трубок-месторождений Верхнемунского кимберлитового поля.

Тр. Комсомольская-Магнитная

Трубка Комсомольская-Магнитная расположена в непосредственной близости (100 м) от тр. Новинка, в 5 км к западу от трубок Заполярная и Деймос. Сверху она перекрыта верхнечетвертичными аллювиальными отложениями надпойменной террасы р. Муна, залегающими на элювиальных образованиях. Средняя мощность перекрывающих трубку отложений составляет 9-11 м на западном фланге и до 5 м на восточном. Вмещающими породами служат известковистые образования верхнего кембрия. В плане трубка имеет гантелевидную форму, вытянутую в субширотном направлении, что может свидетельствовать о двух подводящих каналах (Рис. 6). Размеры трубки 280х115 м. Она состоит из двух рудных тел: западного и восточного. Рудные тела сложены двумя типами руд: массивным порфировым кимберлитом и автолитовой кимберлитовой брекчией. Порфировый кимберлит западного тела менее разубожен ксеногенным материалом. Углы бортов почти вертикальные. Контакты трубки с вмещающими породами четкие, резкие. В зоне эндоконтакта отмечается повышенная трещиноватость кимберлитов, а также обогащенность ксеногенным материалом. В зоне экзоконтакта часто фиксируется широкое развитие зеркал скольжения, трещин, часть из которых залечена вторичными минералами.

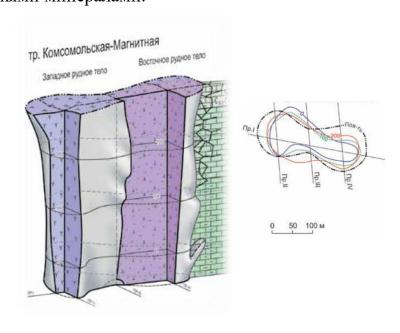


Рисунок 6. Объемная модель кимберлитовой трубки Комсомольская-Магнитная [78].

Трубка выполнена тремя разновидностями кимберлитов, которые отражают 3 разные фазы внедрения: кимберлитовыми брекчиями, массивными монтичеллитовыми и безмонтичеллитовыми кимберлитами. Кимберлитовые брекчии слагают узкую полосу в северной части трубки на контакте с вмещающими породами [78].

Структура породы литокристаллокластическая. Она содержит повышенное количество ксенолитов вмещающих пород (в среднем 27,1 % по объему, в отдельных участках до 45%) Автолит в брекчиях в среднем составляют 26 %. Цементом обломочного материала служит карбонатно-серпентиновый агрегат, в котором заключены псевдоморфозы серпентина по оливину, редкие зерна перовскита, магнетита. Массивные кимберлиты без монтичеллита развиты в трубки. В них наблюдается повышенное восточной части псевдоморфоз по оливину. Значительная часть псевдоморфоз представлена крупными выделениями (1,5-4 см). По размеру их можно отнести к группе мегакристов. Осовная масса имеет карбонат-серпентиновый состав, содержит мало псевдоморфоз по оливину, практически лишена флогопита. Из других минералов присутствуют перовскит, апатит, магнетит. Кимберлиты трубки содержат мало глубинных минералов, причем количество пиропа в них почти на порядок выше, чем пикроильменита [78].

Ксенолиты осадочных пород встречаются редко, так как они подверглись высокотемпературному метасоматозу, превратившись в роговики. Термальное изменение претерпели также некоторые ксенолиты кристаллических сланцев, часто встречающиеся в трубке. Они представлены в основном породами гранулитовой фации. В порфировых кимберлитах с монтичеллитсодержащей массой широко развиты ксенолиты глубинных пород. Как правило, это небольшие (1-3 см) нодули существенно оливинового состава: их не менее 98 % всех находок. При этом гранатовые разности составляют 60%, а безгранатовые 38,5%. Гранат

большинства ксенолитов характеризуется повышенным содержанием Cr₂O₃ (в 66,7 % образцов концентрация Cr₂O₃ превышает 5 %). Среднее содержание Cr₂O₃ в гранатах из 21 нодуля равно 6,49 %, что более чем в 3 раза выше, чем в гранатах из кимберлитового цемента. Гранаты алмазной ассоциации составляют 15,6 %. Таким образом, магнезиальные гранаты ксенолитов отличаются от гранатов из кимберлитового концентрата более высоким содержанием Cr₂O₃ и разностей алмазной ассоциации (более чем в 5 раз), пониженной железистостью. Эти данные свидетельствуют о том, что изученные нодули глубинных пород могут быть источником лишь высокохромистых гранатов, рассеянных в кимберлите, которые составляют очень небольшую часть всех зерен пиропа кимберлитов. Материнские породы низкохромистых гранатов, которыми обычно являются либо некоторые катализированные лерцолиты, либо ильменитовые гипербазиты, подверглись интенсивной дезинтеграции при прорыве их кимберлитовой магмой [90].

Тр. Заполярная и Деймос

Трубка Заполярная находится на правом берегу р. Улаах-Муна. Имеющая в горизонтальном сечении гантелеобразную форму, вытянутую в северо-западном (305°) направлении, трубка в верхних горизонтах состоит из двух кимберлитовых северо-западного и юго-восточного, объединенных протяженным пережимом, образованным, по-видимому, третьим центральным телом (Рис. 7). На глубине 250-300 м СЗ тело становится самостоятельным и отделяется от ЮВ тела перемычкой вмещающих пород. Юго-восточное тело, в свою очередь, на глубинах 300-400 м демонстрирует явную тенденцию к разделению на два отдельных тела. Таким образом, трубка Заполярная состоит из трех крутопадающих (под углом 80-90°) тел, обладающих, самостоятельными подводящими каналами. Кимберлиты выходят непосредственно на дневную поверхность. Верхняя зона трубки мощностью около 1 м интенсивно разрушена, а отдельные участки превращены в желто-бурую элювиальную глину, сильно обогащенную гранатом и оливином.

При визуальном осмотре керна тр. Заполярная были выделены три разновидности кимберлитов — массивный ПК, брекчия ПК (с базисом породы, характерным для ПК, но содержащим ксенолиты вмещающих пород в количестве >5 %) и АКБ.

В работе А.Д. Харькива и др. (1991) [95], обобщены результаты изучения вещественного состава кимберлитовых пород верхних горизонтов трубки Заполярная, полученные в процессе разведочных работ 60-х годов. Выделены породы трех фаз внедрения кимберлитового вещества. Брекчии первой фазы слагают область пережима в центральной части трубки и небольшие по площади приконтактовые участки в зонах расширений (в плане) кимберлитового тела. Вторая фаза внедрения, сформировавшая большую часть юго-восточного расширения кимберлитового тела, представлена крупнопорфировым кимберлитом. К юго-западному флангу расширенной части трубки пространственно приурочен блок атакситовых кимберлитов. Кимберлиты третьей фазы внедрения образуют, как предполагают авторы, северо-западное расширение трубки.

Содержание минералов-спутников в кимберлитах трубки Заполярная низкое, по сравнению с кимберлитовыми телами южных районов, но несколько выше, чем в других Верхнемунских трубках. Химический состав кимберлитов разных фаз внедрения очень близок. Практически не видно разницы между содержаниями показательных оксидов (TiO₂, P₂O₅, MgO). Ксенолиты глубинных пород отмечаются в значительных количествах в обоих типах кимберлитов, обнаруживая при этом большое видовое разнообразие. В основном это гранатовые и гранатшпинелевые дуниты, гранатовые лерцолиты, гранатовые гарцбургиты. Кроме ксенолитов перидотитовой серии отмечаются единичные включения эклогитов. кристаллического фундамента подвергнуты тем же изменениям, что и вмещающий кимберлит. Они интенсивно серпентинизированы, карбонатизированы, нередко окварцованы. Временные взаимоотношения ПК и кимберлитовых брекчий устанавливаются сложно. Факт частого присутствия единичных образцов ПК в разрезах многочисленных скважин позволяет сделать вывод о том, что их консолидация проходила до образования кимберлитовых брекчий.

Среди минералов-спутников в обоих петрографических типах лидирующее место занимает гранат. Ильменит, пироксен, хромшпинелиды отмечаются в единичных знаках. Особое внимание при изучении штуфных образцов под бинокуляром привлекает наличие значительного количества полностью замещенных гранатов. Подавляющая часть вкрапленников в той или иной степени замещена келифитовым веществом. Процент этого замещения варьирует от 10-20 % до 90 и более. В некоторых образцах практически все зерна нацело замещены келифитом, без сохранения реликтов граната. При этом сохраняются реликты самих келифитовых кайм, которые отличаются более темной окраской. Это свидетельствует о повышенных окислительно-восстановительных условиях кимберлитовой магмы и, в свою очередь, ее высокой агрессивности по отношению к минералам-спутникам и самому алмазу [78].

Месторождение трубки Деймос открыто при шлиховом опробовании территории в 1956 г. Трубка расположена на правом берегу р. Улах-Муна, близ устья рч. Онгхой в 100 м к ЮВ от тр. Заполярная. Трубка имеет форму овала, вытянутого в СЗ (305°) направлении (Рис. 7). С глубиной (до горизонта +250 м) кимберлитовое тело сужается, имея в поперечном сечении округлую дайкообразную форму, а на горизонтах +210...+125 м поперечное сечение постепенно приобретает овальную форму с длинной осью, ориентированной в СЗ направлении. Падение контактов трубки на всех горизонтах субвертикальное. Жерловая фация трубки Деймос представлена, главным образом, монтичеллитовыми ПК массивной текстуры и КБ, не содержащими монтичеллит. Неизмененный оливин, не затронутый процессами серпентинизации, оливкового и желтого цвета, отмечается довольно часто, сохраняясь как в центральных частях псевдоморфоз, так и в виде отдельных зерен. Ha месте некоторых вкрапленников отмечаются пустоты И каверны выщелачивания серпентина, сохранившегося в виде корочек стенкам ПО Наиболее своеобразных жеод. интенсивно процесс проявлен этот приповерхностных частях трубки.

Кимберлитовые брекчии слагают большую часть объема рудного тела.

Незначительные масштабы процессов «автолитообразования» вообще свойственны трубкам Верхнемунского поля. Отчасти, это может быть связано с невысоким (относительно других трубок) содержанием ксенолитов вмещающих пород (в среднем около 12 %) [78].

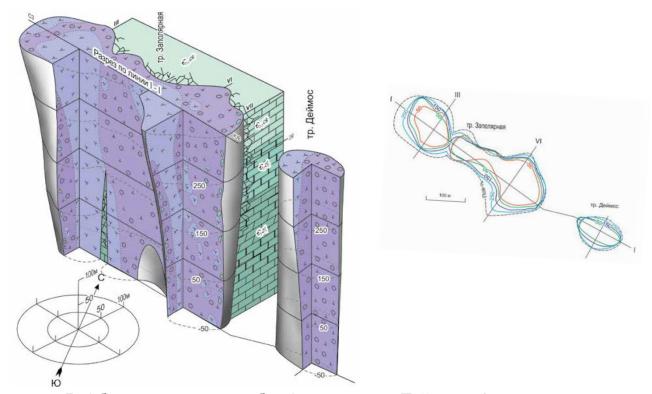


Рисунок 7. Объемная модель трубок Заполярная и Деймос [78].

Глава 5. Материалы, пробоподготовка и методы исследования.

Из всех трубок Верхнемунского кимберлитового поля в трубке Комсомольская-Магнитная найдено наибольшее количество не измененных перидотитовых ксенолитов. Также они выделяются своими размерами, большая часть ксенолитов имеет размер ~ 5 см, до 20 см.

Нами было проведено изучение химического состава минеральных ассоциаций 170 перидотитовых ксенолитов. Изученная коллекция ксенолитов включает 81 дунит (из них 5 хромит-пироповых, 26 пироповых и 22 хромитовых), 75 гарцбургитов (из них 9 хромит-пироповых, 24 пироповых и 11 хромитовых) и 14

лерцолитов (из них 1 хромит-пироповый, 3 пироповых). В трех образцах (два гарцбургита и один лерцолит) присутствует флогопит (рис. 8).

Всего было исследовано 850 зерен оливина (по 5 зерен из различных частей ксенолита для проверки гомогенности породы) из 170 перидотитовых ксенолитов, а также 158 зерен граната из 35 ксенолитов, а также 95 зерен клинопироксена из 16 ксенолитов, представленных гранатовыми и безгранатовыми гарцбургитами.

Кроме того, проведено изучение минеральных ассоциаций 34 перидотитовых ксенолитов трубки Деймос. Все они представлены гранатовыми (n=13) и безгранатовыми (n=21) гарцбургитами. Исследованы составы оливина (n=34) и граната (n=13) из каждого ксенолита.

Исследовано 1690 зерен граната, 1311 зерен оливина, 2087 зерен хромшпинелидов и 351 зерно ильменита из протолочных и шлиховых проб 13 кимберлитовых тел Верхнемунского кимберлитового поля (тр. М-2, тр. Комсомольская-магнитная, тр. Интеркосмос, тр. 325 лет Якутии, к.т Вилюйская-2019, тр. Космос-2, тр. Заполярная, тр. Деймос, к.т. 1/15, к.т. 3/15, к.т. 1/94, к.т. Жила-1, к.т. Жила-2).

Таблица 1. Количество исследованных минералов спутников алмаза из различных кимберлитовых тел Верхнемунского кимберлитового поля.

принадлежнос	кимберлитовые тела	Grt	Chrt	Ol	Срх	Ilm
ть к						
разломным						
зонам						
центральная	Тр. Интеркосмос	201	201	19	-	148
цепочка к.т.	Тр. Космос-2	9	266	30	-	-
	Тр. 325 лет Якутии	258	281	202	29	184
	Тр. Комсомольская-	626	211	435	314	46
	Магнитная					
	к.т. 1/15	2	94	-	-	1
	к.т. 3/15	31	130	-	-	4
	к.т. 1/94	2	98	58	-	2
	к.т. Вилюйская-2019	111	329	127	-	4
	к.т. Жила-2	4	62	-	-	-

	к.т. Жила-1	45	51	-	-	5
восточная	Тр. Деймос	200	233	324	-	ı
цепочка к.т.	Тр. Заполярная	224	294	240	99	-
западная	к.т. М-2	11	98	-	_	2
цепочка к.т.						

Для выяснения характера метасоматических процессов в литосферной мантии нами также были изучены геохимические характеристики гранатов из ксенолитов перидотитов трубки Комсомольская-Магнитная (35 зерен) и гранатов из шлиховых проб из трубок Комсомольская-Магнитная (310 зерен) и Деймос (146 зерен).



Рисунок 8. Образцы перидотитовых ксенолитов трубки Комсомольская-Магнитная. А. Хромитовый гарцбургит. Б. Гранатовый лерцолит. В. Гранатовый дунит. Г. Гранатовый лерцолит. Д. Гранатовый гарцбургит. Е. Дунит.

Методы пробоподготовки

Пробоподготовка перидотитовых ксенолитов

определения химического состава породообразующих минералов перидотитовых ксенолитов, a также минералов индикаторов алмаза, пробоподготовка проводилась следующим образом. В первую очередь образцы глубинных перидотитовых ксенолитов были исследованы визуально при помощи бинокуляра, для первичного определения основного состава ксенолитов. Далее образцы ксенолитов были подвергнуты частичному механическому разрушению, для отбора зерен оливина, граната, клино- и ортопироксена, хромита. Отобранные зерна монтировались в специальные "шашки" из эпоксидной смолы (диаметр 8 мм, толщина 7 мм), в которых зерна были частично выведены на поверхность и заполированы, для исследования локальными методами, такими как ЕРМА и LAM-ICPMS. Исследование петрографического состава и структурных и текстурных особенностей проводилось в стандартных петрографических шлифах.

Пробоподготовка шлиховых проб

Шлиховые пробы с помощью сит были разделены на фракции +2; -2+1; -1+0.5; -0.5+0.25. Для отсадки тяжелой фракции материал засыпался в емкость, заливался бромофором и размешивался стеклянной палочкой. После того, как легкая фракция всплывала, а тяжелая оседала на дне, легкая фракция сливалась, вместе с бромофором. После этого тяжелая фракция несколько раз промывалась ацетоном или спиртом и просушивалась.

Методика изготовления шашек

Технология изготовления шашек включала следующие этапы:

1) Зерна выкладываются рядами на специальную металлическую подложку (шайба диаметром 25 мм), на которую была нанесена двухсторонняя клейкая лента, для лучшей фиксации зерен;

- 2) После монтирования минералов и фрагментов горных пород на подложку устанавливается пластиковая форма;
 - 3) В форму заливается эпоксидная смола (PetroEpoxy, Struers);
- 4) После застывания смолы выполняется полировка рабочей поверхности шашки, в начале на грубых абразивных бумагах (материал карборунд, размерность Р800, Р1000, Р1200) для вывода зерен на поверхность и первичной полировки, и затем финальная полировка на алмазных пастах (размерностью 7, 5, 3.5, 2.5, 1.5, 1, 0.5 мкм) для получения наименьшего рельефа.

Методы исследований

Химический состав клинопироксена, зерен оливина, граната, хромшпинелидов И ильменитов определялся рентгеноспектральным Содержание микроанализом волново-дисперсионным методом. редких редкоземельных элементов в гранатах определялось методом масс-спектрометрии с индукционно-связанной плазмой в Институте Земных наук, Академия Sinica (Тайвань). Для реконструкции палеогеотермы использовался мономинеральный клинопироксеновый термобарометр Nimis, Taylor (2000) [64]. Для определения РТ условий образования гранатов использовались Ni-in-Gar геотермометр и Cr-in-Gar геотермобарометр [25].

Оптические методы

Минералого-петрографические исследования ксенолитов проводились с использованием оптического микроскопа OLYMPUS BX-51, снабженного цифровой фотокамерой высокого разрешения ColorView III и бинокулярного микроскопа.

Рентгеноспетральный микроанализ

Содержания главных и примесных элементов в оливинах, гранатах, и клинопироксенах из перидотитовых ксенолитов и концентрата, определялись на электронно-зондовом микроанализаторе JEOL JXA-8100 (с 5 волновыми спектрометрами) методом ВДС в центре коллективного пользования научным

оборудованием для многоэлементных и изотопных исследований ИГМ СО РАН (г. Новосибирск) и в ОЛО ГРР (ЦАЛ) (г. Мирный).

При выполнении анализа, необходимо обеспечение стока отрицательных зарядов с поверхности, поэтому, при исследовании диэлектрических образцов, на рабочую поверхность наносится тонкая проводящая углеродная пленка, толщиной порядка 25 нм.

При использовании метода ВДС большое внимание требуется уделять подготовки образцов, выбору стандартов и контролю точности и правильности измерений.

Для определения низких концентраций примесей в оливинах с помощью рентгеноспектрального микроанализа была использована модифицированная методика, предложенная Батановой с соавторами [96]. Для регистрации интенсивностей микрокомпонентов использовались следующие кристаллы анализаторы: TAP (Na, Mg, Al, Si), PET (P, Ca, Ti, Cr), LIF (Mn, Fe, Co, Ni, Zn).

Ускоряющее напряжение составляло 20 кВ, ток пучка 900 нА для регистрации концентраций примесей и 50 нА — для макрокомпонентов, диаметр зонда — 1 мкм. Рентгеновские интенсивности элементов регистрировались на пиках, соответствующих К α —линий. Фон измеряли с обеих сторон от пика, для Са, Сг и Si на расстоянии \pm 2 мм, Mg — +1, -2 мм, Fe — +3, -2 мм, Na — +1.4, -1,7 мм, Al — +2, -1 мм, Со — +0,8, -0,5 мм, Zn — \pm 0,7 мм, Ti — +0,9, -1,2 мм, P — +2, -1,8 мм, Ni — \pm 1,6 мм, Mn — +1,2, -2,5 мм.

Определение макрокомпонентов было проведено с использованием образцов сравнения (стандартов) оливина (Ch-1). Время набора сигнала на пике и фоне составляло по 10 с.

Образцами сравнения (стандартами) для расчета концентраций примесей выступали природные соединения: альбит (Na), голубой диопсид (Ca), марганцевый гранат (Mn), пироп (Al), апатит (P), оксиды (Co, Ti, Cr) и шпинелиды (Zn, Ni). Время набора сигнала для Na, Co, P, Mn на пике и фоне составляло по 160 с, для Al, Zn, Ti, Ca – по 180 с, для Cr – по 90 с и для Ni – по 80 с.

Матричные поправки рассчитывались по методу ZAF. Пределы обнаружения компонентов по критерию 3σ составляют Mg - 0,08 мас %, Si - 0,03 мас %, Fe - 0,02 мас %, Na, Ti, Ni - 0,005 мас %, Al, P - 0,003 мас %, Co, Mn - 0,004 мас %, Zn - 0,007 мас %, Ca - 0,002 мас %, Cr - 0,01 мас %, стандартное отклонение не превышало 0,50 мас. %.

Для рентгеноспектрального анализа гранатов ускоряющее напряжение составляло 20 кВ, ток пучка 75 нА. Время накопления сигнала составляло 10с для аналитической линии и по 5 секунд для фона, который снимался с 2х сторон от образца. Как образцы для сравнения (стандарты) использовались пироп О-145 (для Mg, Si, Al, Fe), Cr-гранат Ud-92 (для Cr), альбит (для Na), голубой диопсид ВD (для Ca), стекло Gl-6 (для Ti), Mn-гранат IGEM_3 (для Mn). Пределы обнаружения компонентов по критерию 3σ составляют Mg - 0,02 мас %, Si - 0,018 мас %, Fe - 0,015 мас %, Na- 0,015 мас %, Ti - 0,02 мас %, Mn - 0,012 мас %, Ca - 0,007 мас %, Cr - 0,02 мас %, стандартное отклонение не превышало 0,50 мас. %.

Для клинопироксенов анализы проводились по стандартной методике с ускоряющим напряжением 20 кВ и током пучка 100 нА. Время накопления сигнала составляло 10с для аналитической линии и по 5 секунд для фона, который снимался с 2х сторон от образца. Как образцы для сравнения (стандарты) использовались пироп О-145 (для Mg, Si, Al, Fe), Cr-augite (для Cr), альбит (для Na), голубой диопсид ВD (для Ca), стекло Gl-6 (для Ti), Mn-гранат IGEM_3 (для Mn). Пределы обнаружения компонентов по критерию 3σ составляют Mg - 0,025 мас %, Si - 0,008 мас %, Fe - 0,007 мас %, Na- 0,012 мас %, Ti - 0,009 мас %, Mn - 0,007 мас %, Ca - 0,004 мас %, Cr - 0,009 мас %, стандартное отклонение не превышало 0,50 мас. %.

Методы масс-спектрометрии

Определение редкоэлементного состава гранатов проводилось с помощью метода индуктивно-связанной плазменной масс-спектрометрии (ICP-MS) с лазерным пробоотборником (LA: laser ablation или LAM: laser ablation microprobe) LA-ICP-MS в CCFS/GEMOC ARC National Key Centre, Университет Маккуори, Сидней, Австралия, с использованием квадрупольного ICP-MS масс-спектрометра Agilent 7700, совмещенного с системой эксимерного лазерного пробоотбора Photon

Масhines Excimer 193 nm, а также LAM-ICPMS Agilent 7700cs с системой лазерной абляции Photon Machines Excite Excimer laser ablation system в институте наук о Земле при академии Sinica (Тайвань). Диаметр лазерного пучка составлял 60 мкм, частота лазера 5 Гц, энергия ~8 Дж/см². Подробная информация об аналитических процедурах и условиях редкоэлементного анализа гранатов приведена в работах (Norman et al., 1996, 1998).

Обработка исходного производилась аналитического сигнала cиспользованием программного обеспечения (http://www.glitter-**GLITTER** gemoc.com; [97]), разработанного В Национальном ключевом центре Австралийского совета по научным исследованиям "Флюидные системы от ядра к коре" /"Геохимическая эволюция и металлогения континентов" (CCFS/GEMOC ARC National Key Centre), Университет Маккуори, Сидней, Австралия.

Для установления геохимических особенностей гранатов проводился анализ 47 элементов (REE, Li, Be, B, P, Sc, Ti, V, Fe, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Cs, Ba, а также главные петрогенные элементы).

При анализе гранатов использовалось стандартные стекла NIST 610, а также стандарт BCR-2G и внутренний стандарт центра CCFS/GEMOC MONGOL-1 — мегакристовый гранат из вулкана Шаварын-Царам (Монголия). Каждый анализ нормализовывался по содержанию Са в гранате, которое определялось для каждого зерна граната на рентгеноспектральном микроанализаторе. Пределы обнаружения составляли 10 ppb для REE, Ba, Rb, Th, U, Nb, Ta, Pb, Sr, Zr, Hf и Y; 100 ppb для V и Sc; 2 ppm для Ti, Ni, Co и Cr; и 5 ppm для A1 и Ca. Точность анализа составляла 2-7%. Для обработки геохимических данных использовалось программное обеспечение GLITTER.

Метод мономинеральной клинопироксеновой термобарометрии Nimis, Taylor (2000).

Данный термобарометр основан на обменных реакциях между клинопироксеном, ортопироксеном и гранатом. Для определения давления обмена Cr используется реакция содержащих компонентов между клинопироксеном и гранатом, а термометр основывается на реакции обмена

энстатитового компонента между клинопироксеном и ортопироксеном [29]. В первую очередь необходимо провести ряд проверок на соответствие клинопироксена всем критериям для корректной работы термобарометра Nimis, Taylor (2000) [64, 66]:

- 1. Сумма катионов на 6 кислородов должна находиться в интервале от 3,98 до 4,02;
- 2. Зерна клинопироксена должны быть без выраженной зональности, такие пироксены указывают на то, что система была равновесна;
- 3. Для проверки на то, что клинопироксен был в равновесии с гранатом, используют содержания хрома и алюминия. Если выполненяются следующие условия $Cr_2O_3 > 0,5$ мас. % и $Al_2O_3 \le 4,0$ мас. % (если $Cr_2O_3 < 2,25$ мас. %) или $Al_2O_3 \le 5,0$ мас. % (если $Cr_2O_3 > 2,25$ мас. %) считается что клинопироксен находился в равновесии с гранатом;
- 4. Также существует уточнение по содержаниям магния и алюминия: клинопироксен подходит, если $Al_2O_3 \ge 0.7$ мас. % и $Al_2O_3 \ge 12,175 0.6375*MgO$ мас. %;
- 5. Хромистость должна находится в пределах 0,1 ≤ #Cr ≤ 0,65 при этом, рекомендуется быть внимательными для составов #Cr 0,5-0,65, так как их было мало при калибровке;
- 6. Если полученная температура ниже 700°C, скорее всего этот пироксен не был в равновесии с ортопироксеном и его нельзя использовать как термометр.

При исследовании составов клиноироксенов рентгеноспетральным микроанализом, анализировалось 3 точки для каждого зерна (край-центр-край), для проверки гомогенности зерен. Далее составы не зональных клинопироксенов таблицу Exel, где происходило вносились отсеивание всем Из вышеперечисленным 320 проанализированных критериям. зерен клинопироксена, после отбор по критериям осталось 93 штуки.

Для модельной реконструкции палеогеотермы под трубкой Комсомольская-Магнитная мы использовали данные по P-T оценкам на основе концентрата клинопироксена. Расчет параметров производился в программе FITPLOT [98]. В расчете были использованы только те точки, для которых значение давления не превышало 5,5 ГПа, что связано с ограниченностью термообарометра Nimis, Taylor (2000).

Ni-in-Gar геотермометр и Cr-in-Gar геотермобарометр Griffin (1995).

Данный термобарометр основан на обменных реакциях между гранатом, оливином и ортопироксеном. Термометр основан на реакции обмена Ni между хромистым пиропом и оливином. Барометр основан на реакции распределения Сг между гранатом ортопироксеном в равновесии с хромитом, такой барометр дает минимальную оценку давления для каждого зерна. Фактически барометр работает корректно лишь для гарцбургитовых деплетированных низко-Y гранатов, с содержаниями Y<10ppm [25].

Глава 6. Результаты исследований

- 6.1 Результаты исследования перидотитовых ксенолитов.
- 6.1.1 Результаты исследования минералов спутников алмаза из перидотитовых ксенолитов трубки Комсомольская-Магнитная Результаты исследования оливинов из перидотитовых ксенолитов кимберлитовой трубки Комсомольская-Магнитная.

Оливин является основным породообразующим минералом перидотитовых ксенолитов. Исследование химического состава оливина предоставляет нам информацию как о степени частичного плавления литосферной мантии (повышение Mg#), так и о более поздних наложенных метасоматических процессах, которые, наоборот, понижают магнезиальность оливинов.

Для выявления гомогенности химического состава ксенолитов из каждого образца отбиралось в среднем не менее пяти зерен оливина. Всего было исследовано 880 зерен оливина из 171 перидотитового ксенолита из кимберлитов трубки Комсомольская-Магнитная.

Исследование химического состава оливинов из перидотитовых ксенолитов показало, что магнезиальность оливинов варьирует от 82,2 до 94,04 мол. %, при

этом магнезиальность большинства (64%) исследуемых зерен превышает 92 мол. % и 30% зерен имеют магнезиальность >93 мол. %. Средняя магнезиальность оливинов составляет 91,83 мол. %, а медианное значение составляет 92,53 мол. %. Содержание элементов-примесей в оливинах варьирует в следующих пределах (в мас. %): NiO 0,145–0,438 (среднее содержание \overline{x} = 0,358, медиана = 0,365), CaO нпо–0,08 (\overline{x} = 0,025, медиана = 0,023), MnO 0,08–0,175 (\overline{x} = 0,1, медиана = 0,097), Cr₂O₃ 0,01–0,08 (\overline{x} = 0,03, медиана = 0,02), TiO₂ нпо–0,04 (\overline{x} = 0,017, медиана = 0,018), Al₂O₃ 0,003-0,061, Na₂O нпо-0,071.

Таким образом, по магнезиальности оливина можно выделить две группы ксенолитов перидотитов: группа 1 с "типичными" мантийными значениями Мg# 88,39-90,70, характерными для фертильных перидотитов и группа 2 с высокодеплетированными составами Мg# 91,2-94,12 (Рис. 6). К первой группе ксенолитов относится 44 образца, вторая группа более обширна и включает 127 образцов (Рис. 6). Ксенолиты группы 2 представлены преимущественно дунитами и гарцбургитами, тогда как ксенолиты группы 1 представлены в большей мере гранатовыми лерцолитами.

По содержанию элементов-примесей также наблюдаются отличия в оливинах первой и второй группы. Оливины из ксенолитов второй группы более обогащены Cr, так содержание Cr₂O₃ для первой группы (в мас. %) 0,01-0,03 (кроме двух зерен с аномальными содержаниями 0,04 и 0,08 мас. %) для 8 зерен содержание Cr₂O₃ ниже предела обнаружения. Для второй группы Cr₂O₃ (в мас. %) 0,015-0,06, однако большинство содержит больше 0,03 мас. %. Также имеется группа из 12-ти оливинов, содержание Cr₂O₃ в которых ниже предела обнаружения (<0,009 мас. %). По содержанию CaO оливины второй группы напротив наиболее деплетированы, так CaO для первой группы 0,02-0,08 мас. %, для второй начиная от предела обнаружения до ~0,03 мас. %, причем большинство содержат менее 0,02 мас. %. По распределению TiO₂ для оливинов первой группы характерны содержания от 0,02 до ~0,04 мас. % (за исключением двух зерен с TiO₂<0,01 мас. %), для второй группы от предела обнаружения до 0,04 мас. %, однако большинство зерен содержит TiO₂ меньше 0,02 мас. %, и

меньше предела обнаружения. По содержанию MnO наблюдается линейная зависимость увеличения содержания MnO от более магнезиальных оливинов к менее магнезиальным. Распределение содержаний Al_2O_3 аналогично содержанию CaO, так для первой группы характерны содержания ~ 0.01 -0.061 мас. %., для второй от предела обнаружения до 0,12 мас. %, однако 5 зерна имеют содержания от 0,015 до 0,25 мас. %. По содержанию Na_2O обе группы примерно одинаковые, однако во второй группе, в отличие от первой, присутствуют оливины с содержаниями от предела обнаружения до 0,01 мас. % (Рис.). Оливины из второй группы более обогащены NiO и имеют меньший разброс по его содержанию (Рис. 10).

Для оливинов из двух образцов обнаружены аномально низкие значения магнезиальности Mg# 82,2-83,6 мол. %; мы предполагаем, что эти образцы относятся к серии глубинных мегакристов, имеющих магматическое происхождение. Для них характерны крайне низкие содержания Cr_2O_3 (ниже предела обнаружения), пониженные содержания NiO (0,15-0,21 мас. %), а также повышенные содержания MnO (0,16-0,18 мас. %).

По распределению FeO-Cr₂O₃ в область составов, характерных для включений оливина в алмазе (по Sobolev et al., 1989) попадает 112 зерен (65,5%) оливина из разных перидотитовых ксенолитов.

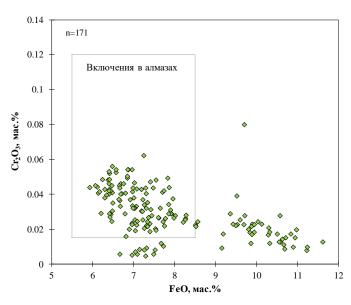


Рисунок 9. Диаграмма Cr₂O₃-FeO с фигуративными точками составов оливинов из перидотитовых ксенолитов кимберлитовой трубки Комсомольская-Магнитная, поле включений в алмазах по [57].

Рисунок 10. Соотношение элементов-примесей и форстеритового минала (Fo) в оливинах из перидотитовых ксенолитов кимберлитовой трубки Комсомольская-Магнитная.

Результаты исследования гранатов из перидотитовых ксенолитов кимберлитовой трубки Комсомольская-Магнитная.

Гранат является одним из наиболее информативных минералов - индикаторов кимберлитов, использующихся при поисково-оценочных работах на алмазоносные кимберлиты, а также при генетических реконструкциях процессов мантийного метасоматического обогащения. В связи с этим актуальным является установление типоморфизма гранатов алмазоносных парагенезисов, так как их присутствие в кимберлитовых трубках или россыпях является необходимым условием алмазоносности.

Химический состав гранатов был исследован в 35 ксенолитах. Все исследованные гранаты представлены пиропами. По классификации (Соболев, 1974 [2]) выделяется 9 пиропов лерцолитового парагенезиса (3 них имеют содержание Cr₂O₃<2 мас. %), 3 верлитового и 22 пиропа гарцбургит-дунитового парагенезиса, из них 13 пиропов (37%) попадают в поле алмазной ассоциации (рис. 11).

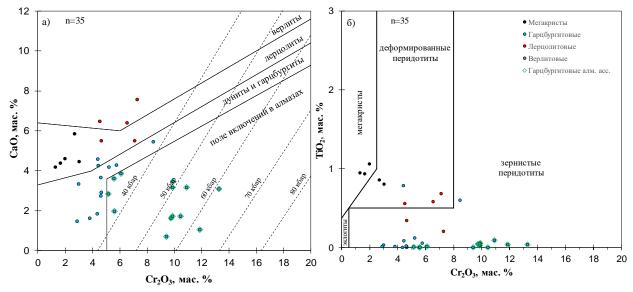


Рисунок 11. Особенности химического состава гранатов из перидотитовых ксенолитов кимберлитовой трубки Комсомольская-Магнитная.

Парагенетическая ассоциация по [99]; а) классификация перидотитовых гранатов на диаграмме $CaO-Cr_2O_3$ по [2], изобары Cr-в-гранате рассчитаны для геотермального градиента 38 mW/m² [100]; б) классификация гранатов на диаграмме $TiO_2-Cr_2O_3$ по [101].

пиропах гарцбургит-дунитового Содержание главных элементов В парагенезиса (мас. %): Cr₂O₃ 2,87–13,53, CaO 0,68–5,46, TiO₂ 0,01–0,2, а в лерцолитовых: Cr₂O₃ 1,27–8,76, CaO 1,25–5,8, TiO₂ 0,35–1,10. На диаграмме TiO₂-Cr₂O₃ практически все пиропы гарцбургит-дунитового парагенезиса попадают в область зернистых перидотитов один из этих гранатиов имеет повышенные содержания TiO_2 (>0,5 мас. %), составы 6 пиропов попадают в область гранатов из деформированных (катаклазированных) перидотитов, 3 пиропа в область мегакристовых гранатов (по Ramsay, 1993 [101]). По классификации (Schulze, 2003 [99]) 5 высокотитанистых гранатов отнесены к мегакристам, 30 к перидотитовым гранатам, из которых 25 гарцбургитового парагенезиса, 5 лерцолитового. По классификации (Grutter, 2004 [102]) преобладают низкокальциевые, хромистые пиропы из гарцбургитов группы G10 (23 зерна), из которых 10 зерен относятся к G10D – низкокальциевые, хромистые пиропы из гарцбургитов алмазной ассоциации. Кроме того, 5 зерен гранатов относятся к группе G1 – низкохромистые, высокотитанистые мегакристовые гранаты, 1 зерно к группе G9 – пиропы из зернистых лерцолитов, 5 зерен к группе G11 – высокотитанистые деформированных (катаклазированных) пиропы ИЗ перидотитов, 1 зерно к G12 – высококальциевые пиропы из верлитов.

По распределению редкоземельных элементов можно выделить две группы гранатов (рис, 12), К группе 1 относятся гранаты с типичными для гранатов из фертильных лерцолитов спектрами распределения редкоземельных элементов (рис, 12 а), а к группе 2 гранаты с синусоидальными спектрами (рис, 12 б), которые характерны для низкокальциевых гранатов алмазной ассоциации из гарцбургитов. Наличие достаточно многочисленной группы ксенолитов с гранатами группы 2 (20 из 35-ти проанализированных зерен) может свидетельствовать о наличии деплетированных перидотитов (не подверженных

в значительной степени силикатному метосоматозу) в составе литосферной мантии.

Для гранатов первой группы характерны пониженные содержания легких редкоземельных элементов (P3Э) (La/Yb<1), также наблюдается обогащение средними и тяжелыми P3Э, начиная с Nd. На диаграмме Cr_2O_3 -CaO гранаты первой группы относятся к лерцолитовому парагенезису и образуют тренд с линейной зависимостью содержания Cr_2O_3 от CaO (рис.12).

Для второй группы гранатов, имеющих синусоидальные спектры распределения РЗЭ, характерно сильное обогащение Се, Рг по сравнению со спектрами гранатов первой группы, и обеднение в области Ть, Dy, Но, По содержанию легких РЗЭ (La, Ce) в группе 2 можно выделить 2 типа распределения: а) с содержаниями типичными для фертильных гранатов (обедненные относительно хондрита) и б) обогащенные легкими РЗЭ относительно первой группы (обогащенные относительно хондрита).

При этом содержание тяжелых РЗЭ для всех типов гранатов 2-ой группы приблизительно одинаковые, однако гранаты группы 2а обогащены по содержанию средних РЗЭ (Gd, Tb, Dy, Ho) в отличие от группы 2б. В связи с этим для гранатов группы 2а характерны спектры с отношением La/Dy≤1, а для гранатов группы 2б La/Dy>1.

На диаграмме CaO-Cr₂O₃ гранаты первой группы попадают в поле лерцолитового парагенезиса. Гранаты второй группы на диаграмме CaO-Cr₂O₃ четко разделяются на два типа, гранаты группы 26 (для которых La/Dy>1) гарцбургит-дунитового образуют области парагенезиса кластер В содержаниями Cr₂O₃ от 8,5 до 13 мас. %, тогда как гранаты группы 2a (La/Dy≤1) образуют тренд, параллельный лерцолитовому и занимают промежуточное дунит-гарцбургитового между гранатами положение И лерцолитового

парагенезисов(рис.12).

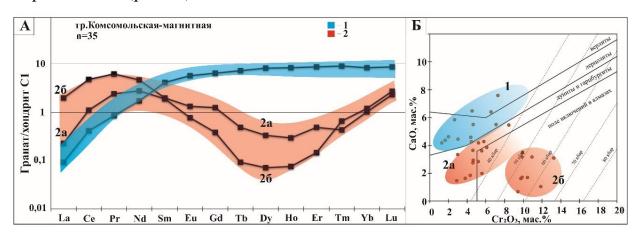


Рисунок 12. Спектры распределения РЗЭ в перидотитовых гранатах из ксенолитов кимберлитовой трубки Комсомольская-Магнитная. Пояснения к группам 1, 2а и 26 см. в тексте.

Результаты исследования клинопироксенов из перидотитовых ксенолитов кимберлитовой трубки Комсомольская-Магнитная.

Химический состав клинопироксенов из 16 перидотитовых ксенолитов трубки Комсомольская-Магнитная был выполнен для 95 зерен клинопироксена.

Содержание основных и примесных элементов в пироксенах (в мас, %): MgO 15,18–20,73 (среднее содержание $\overline{x}=16,88$, медиана = 16,51), CaO 15,59–24,43 ($\overline{x}=18,54$, медиана = 17,9), MnO 0,03-0,13 ($\overline{x}=0,08$, медиана = 0,07), Cr₂O₃ 0,35-3,58 ($\overline{x}=2,06$, медиана = 2,35), TiO₂ 0,04-0,52 ($\overline{x}=0,23$, медиана = 0,22), Al₂O₃ 0,23-3,94 ($\overline{x}=2,37$, медиана = 1,94), Na₂O 0,57-3,34 ($\overline{x}=2,3$, медиана = 2,22).

В координатах Al_2O_3 - Cr_2O_3 наклонной прямой (Cr_2O_3 =0,45* Al_2O_3) отделяются зоны гранатовых и безгранатовых перидотитов [101, 103]. Таким образом клинопироксены из 11 перидотитовых ксенолитов (69%) парагенетически связаны с гранатовыми перидотитами, из них них 3 клинопироксена имеют аномально высокие содержания натрия ($Na_2O>3$ мас. %). Подавляющее большинство эклогитовых пироксенов содержат менее 0,22 мас. % Cr_2O_3 . Повышенные содержания (MgO>18 мас. %) характерны для пироксенов из деформированных лерцолитов. Для пироксенов мегакристовой ассоциации характерны низкие содержания хрома ($Cr_2O_3<0,35$ мас. %) и узкий диапазон колебаний $Al_2O_3(2,30-2,66)$

мас. %), а также высокие содержания MgO (16,9-21,1 мас. %). Однако в работе Тычкова 2018г. замечено, что похожие составы наблюдаются у клинопироксенов из деформированных, вторично обогащенных перидотитов. Таким образом 5 перидотитовых ксенолитов по составам клинопироксена (высокие содержания MgO 19,1-20,7 мас. % и низкие содержания $Cr_2O_3O_35-0_7$ мас. %) можно отнести к деформированным лерцолитам (рис. 13).

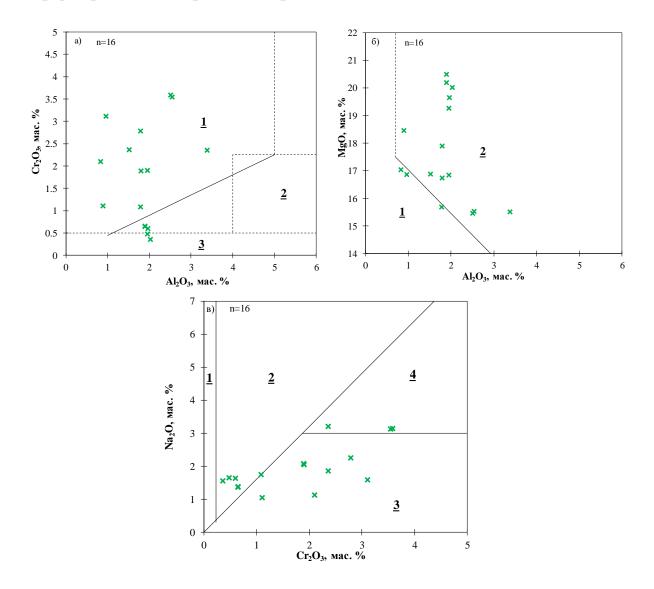


Рисунок 13. Составы клинопироксенов из перидотитовых ксенолитов трубки Комсомольская-Магнитная. А. Поля:1-внутрикратонных гранатовых перидотитов, 2-внекратонных гранатовых И шпинелевых перидотитов, 3-эклоогитов Б. мегакристовой ассоциации; 1пироксены ИЗ эклогитов происхождения, 2- пироксены из перидотитов, В. Поля составов клинопироксенов из:1-эклогитов, 2-гранатовых клинопироксенитов и вебстеритов, 3-перидотитов,

шпинелевых пироксенитов и ранатовых ортопироксенитов, 4-высоконатриевие клинопироксены из перидотитов.

Результаты исследования хромшпинелидов из перидотитовых ксенолитов кимберлитовой трубки Комсомольская-Магнитная.

Исследованы составы хромшпинелидов из 10 перидотитовых ксенолитов трубки Комсомольская-Магнитная. Содержание основных и примесных элементов в хромшпинелидах (в мас, %): MgO 11,35–12,94 (среднее содержание $\overline{x}=12$, медиана = 11,76), Cr₂O₃ 55,03-65,04 ($\overline{x}=59$,2, медиана = 58,9), TiO₂ 0,05-3,19 ($\overline{x}=0$,63, медиана = 0,22), Al₂O₃ 5,52-11,96 ($\overline{x}=9$,08, медиана = 11,33), FeO 15,42-19,84 ($\overline{x}=17$,31, медиана = 17,37), Fe₂O₃ (рассчитанное) 0,07-4,99 ($\overline{x}=2$,55, медиана = 1,8).

На графике Cr_2O_3 - Al_2O_3 фигуративные точки составов хромшпинелидов ложатся на двойной перидотитовый тренд, 2 зерна (10%) попадают в поле алмазной ассоциации (по Соболев, 1974 [2], рис. 13 а). Для 7 зерен хромшпинелидов, составы которых смещены в сторону магматического тренда характерны повышенные содержания TiO_2 (до 3,19 мас. %) и повышенные содержания Fe^{3+} , что может свидетельствовать о более окислительных условиях их образования. Среднее значение $Fe^{3+}/(Cr+Al+Fe^{3+}) - 0.03$ (максимальное значение для включений в алмазах составляет 0,07) в поле включений в алмазах по $Fe^{3+}/(Cr+Al+Fe^{3+})$ попадают все 20 зерен (по Malkovets, 2007 [62]) (рис. 13 в).

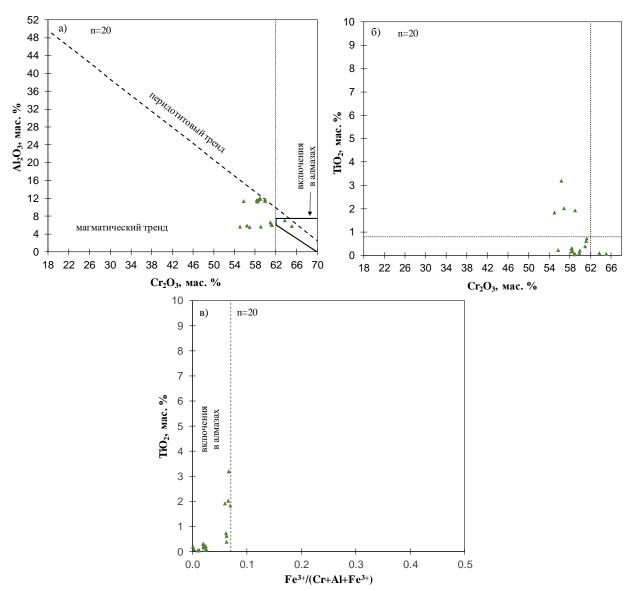


Рисунок 13. Особенности химического состава хромшпинелидов из перидотитовых ксенолитов кимберлитовой трубки Комсомольская-Магнитная: а, б – классификация хромшпинелидов по (Соболев, 1974 [2]), в – поле включений в алмазах по (Malkovets et al., 2007 [62]).

6.1.2 Результаты исследования минералов спутников алмаза из перидотитовых ксенолитов трубки Деймос

Результаты исследования оливинов из перидотитовых ксенолитов кимберлитовой трубки Деймос

Для выявления гомогенности химического состава ксенолитов из каждого образца отбиралось в среднем не трех пяти зерен оливина. Всего было

исследовано 95 зерен оливина из 34 перидотитового ксенолита из кимберлитов трубки Деймос.

Исследование химического состава оливинов из перидотитовых ксенолитов показало, что магнезиальность оливинов варьирует от 89,1 до 93,8 мол. % (Мg#<90 мол.% имеет оливин лишь из 1го ксенолита), средняя магнезиальность оливинов составляет 92,5%, а медианное значение составляет 92,8 мол. %. Содержание элементов-примесей в оливинах варьирует в следующих пределах (в мас. %): NiO 0,315-0,441 (среднее содержание \bar{x} = 0,386, медиана = 0,39), CaO 0,005–0,03 (\bar{x} = 0,01, медиана = 0,008), MnO 0,08–0,173 (\bar{x} = 0,098, медиана = 0,096), Cr₂O₃ нпо–0,035 (\bar{x} = 0,003, медиана = нпо), TiO₂ нпо–0,041 (\bar{x} = нпо, медиана = нпо), Al₂O₃ 0,001-0,047, Na₂O нпо-0,029.

По содержанию элементов примесей в оливине выделяется группа из 5 перидотитовых ксенолитов (включая ксенолит с оливином магнезиальность которого 89,1 мол. %) с повышенными содержаниями TiO_2 (до 0,041 мас. %) также, в этих ксенолитах (кроме ксенолита с оливином Mg#=89,1 мол. %) наблюдаются повышенные содержания Cr_2O_3 в составе оливина (до 0,035 мас. %).

По распределению FeO-Cr₂O₃ в область составов, характерных для включений оливина в алмазе (по Sobolev et al., 1989) попадает 4 зерна (12%) оливина из разных перидотитовых ксенолитов (рис. 14).

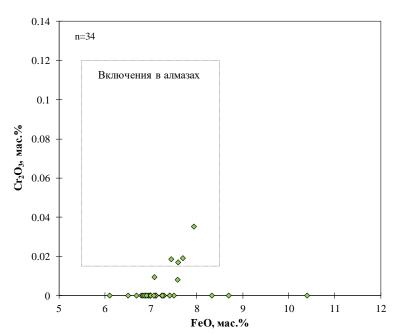


Рисунок 14. Диаграмма Cr_2O_3 -FeO с фигуративными точками составов оливинов из перидотитовых ксенолитов кимберлитовой трубки Деймос, поле включений в алмазах по Sobolev, 1989.

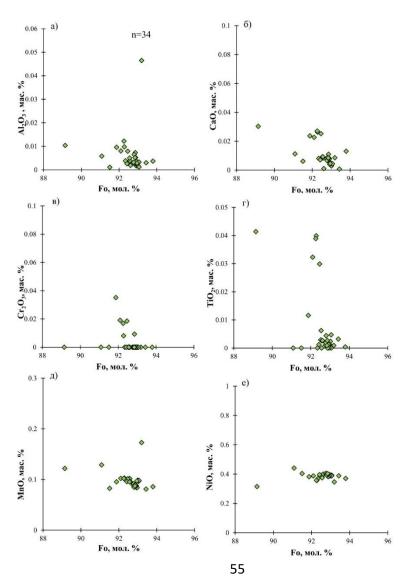


Рисунок 15. Соотношение элементов-примесей и форстеритового минала (Fo) в оливинах из перидотитовых ксенолитов кимберлитовой трубки Комсомольская-Магнитная.

Результаты исследования гранатов из перидотитовых ксенолитов кимберлитовой трубки Деймос.

Химический состав гранатов был исследован в 13 ксенолитах. Все исследованные гранаты представлены пиропами. По классификации (Соболев, 1974) все гранаты попадают в поле дунитов и гарцбургитов, гранаты алмазной ассоциации отсутствуют (рис. 16).

Содержание главных и примесных элементов в гранатах из перидотитовых ксенолитов (мас. %): Cr_2O_3 1,67–4,77 (\overline{x} = 2,79, медиана = 2,3), CaO 0,77–4,2 (\overline{x} = 2,63, медиана = 2,74), TiO_2 нпо, MgO 21,2–24,2 (\overline{x} = 22,7, медиана= 22,84), Al_2O_3 20,02–22,64 (\overline{x} = 21,74, медиана = 22,07), MnO 0,36–0,42 (\overline{x} = 0,39, медиана = 0,4), PaCO FeO 6,79–7,39 (\overline{x} = 7,05, медиана = 6,98).

На диаграмме TiO_2 - Cr_2O_3 все пиропы попадают в область зернистых перидотитов (по Ramsay, 1993) причем содержание TiO_2 в гранатах крайне низкое (ниже предела обнаружения). По классификации (Schulze, 2003) все исследование гранаты так же относятся к гарцбургитовому парагенезису. По классификации (Grutter, 2004) все гранаты относятся к группе G10, из которых 1 гранат относятся к G10D — гарцбургитовый гранат алмазной ассоциации.

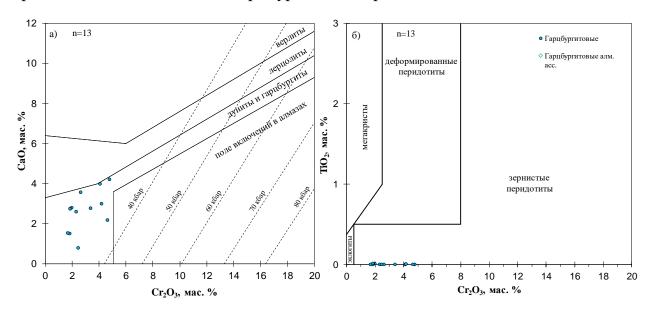


Рисунок 16. Особенности химического состава гранатов из перидотитовых ксенолитов кимберлитовой трубки Деймос. Парагенетическая ассоциация по Shulze (2003); а) классификация перидотитовых гранатов на диаграмме CaO- Cr_2O_3 по Соболев (1974), изобары Cr-в-гранате рассчитаны для геотермального градиента 38 mW/m² (Grutter et al., 2006); б) классификация гранатов на диаграмме TiO_2 - Cr_2O_3 по Ramsay (1993).

Результаты исследования клинопироксенов из перидотитовых ксенолитов кимберлитовой трубки Деймос.

Химический состав клинопироксенов из 16 перидотитовых ксенолитов трубки Комсомольская-Магнитная был выполнен для 95 зерен клинопироксена.

Содержание основных и примесных элементов в пироксенах (в мас. %): MgO 11,36-16,57 (среднее содержание $\overline{x}=14,28$, медиана =13,95), CaO 13,28-21,34 ($\overline{x}=18,76$, медиана =18,78), MnO 0,05-0,09 ($\overline{x}=0,07$, медиана =0,06), Cr₂O₃ 1,72-5,4 ($\overline{x}=2,6$, медиана =2,5), TiO₂ нпо=0,24 ($\overline{x}=0,08$, медиана =0,05), Al₂O₃ 2,02-6,25 ($\overline{x}=4,19$ медиана =4,72), Na₂O 1,55-6,01 ($\overline{x}=3,27$, медиана =3,44).

Клинопироксены из всех 8 исследованных перидотитов на диаграмме Cr_2O_3 - Al_2O_3 попадают в поле внутрикратонных гранатовых перидотитов, из них 5 клинопироксенов имеют аномально высокие содержания натрия (Na₂O>3 мас. %). Кроме того, клинопироксены с аномально высокими содержаниями натрия имеют повышенные содержания Al_2O_3 4,5–6,25 мас. %.

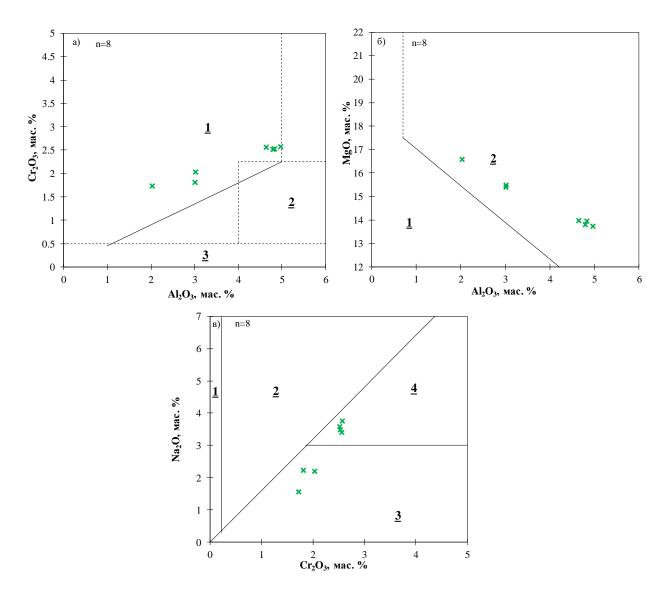


Рисунок 17. Составы клинопироксенов из перидотитовых ксенолитов трубки Деймос. А. Поля:1-внутрикратонных гранатовых перидотитов, 2-внекратонных гранатовых и шпинелевых перидотитов, 3-эклогитов и мегакристовой ассоциации; Б. 1- пироксены из эклогитов и неясного происхождения, 2- пироксены из перидотитов, В. Поля составов клинопироксенов из:1-эклогитов, 2-гранатовых клинопироксенитов и вебстеритов, 3-перидотитов, шпинелевых пироксенитов и ранатовых ортопироксенитов, 4-высоконатриевие клинопироксены из перидотитов.

- 6.2. Результаты исследования минералов спутников алмаза из протолочных и илиховых проб кимберлитовых тел Верхнемунского поля.
- 6.2.1. Результаты исследования минералов спутников алмаза из шлиховых проб кимберлитовой трубки Комсомольская-Магнитная.

Результаты исследования оливинов из шлиховых проб кимберлитовой трубки Комсомольская-Магнитная.

Исследовано 407 зерен оливина из концентрата тяжелой фракции шлиховых проб, отобранных непосредственно с кимберлитовой трубки Комсомольская-Магнитная. Исследование химического состава оливинов показало, что магнезиальность оливинов варьирует от 81,6 до 94,2 мол. %, средняя магнезиальность оливинов составляет 91,38 мол. %, а медианное значение составляет 91,87 мол. %. Содержание элементов-примесей в оливинах варьирует в следующих пределах (в мас. %): NiO 0,143–0,587 (среднее содержание \overline{x} = 0,36, медиана = 0,367), CaO 0,003–0,093 (\overline{x} = 0,031, медиана = 0,027), MnO 0,081–0,187 (\overline{x} = 0,1, медиана = 0,1), Cr₂O₃ нпо–0,076 (\overline{x} = 0,026, медиана = 0,026), TiO₂ нпо–0,053 (\overline{x} = 0,029, медиана = 0,031), Al₂O₃ нпо-0,05 (\overline{x} = 0,016, медиана = 0,013), Na₂O 0,012-0,145 (\overline{x} = 0,029, медиана = 0,027).

По содержанию элементов примесей наблюдаются те же группы и закономерности что и для оливинов из перидотитовых ксенолитов (раздел 6.1.1.2).

По распределению FeO-Cr₂O₃ в область составов, характерных для включений оливина в алмазе (по Sobolev et al., 1989) попадает 237 зерен (58,2%) оливина из разных перидотитовых ксенолитов.

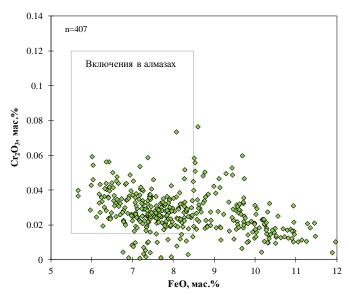


Рисунок 18. Диаграмма Cr_2O_3 -FeO с фигуративными точками составов оливинов из шлиховых проб кимберлитовой трубки Комсомольская-Магнитная, поле включений в алмазах по Sobolev, 1989.

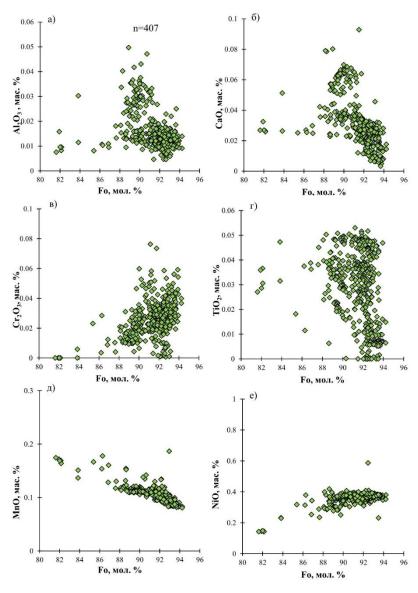


Рисунок 19. Соотношение элементов-примесей и форстеритового минала (Fo) в оливинах из шлиховых проб кимберлитовой трубки Комсомольская-Магнитная.

Результаты исследования гранатов из шлиховых проб кимберлитовой трубки Комсомольская-Магнитная.

Исследовано 626 зерен граната из концентрата тяжелой фракции шлиховых проб, отобранных непосредственно с кимберлитовой трубки Комсомольская-Магнитная.

По классификации (Соболев, 1974) 289 (46,2%) гранатов относятся к лерцолитовому парагенезису, 22 (3,5%) граната к верлитовому, 97 (15,5%) гранатов к гарцбургит-дунитовому, из которых 39 (9,6% от перидотитовых, 6,2% от всех) гранатов попадают в область алмазной ассоциации, кроме того, 218 гранатов (34,8%) имеют содержания $Cr_2O_3<2$ мас. % и условно не являются перидотитовыми.

По классификации (Schulze, 2003) лишь 302 (48,2%) граната относятся к перидотитовым парагенезисам, из них 178 (58,9% от перидотитовых, 28,4% от всех) гранатов лерцолитового парагенезиса, 122 (40,4% от перидотитовых, 19,5% от всех) граната гарцбургитового парагенезиса, 2 (0,7% от перидотитовых, 0,3% от всех) граната верлитового парагенезиса. Кроме того, 316 (50,5%) относятся к мегакристовым и 8 (1,3%) гранатов к эклогитовым, из которых 6 эклогитовых группы А, 1 группы В и 1 группы С (по Coleman, 1965). Из эклогитовых гранатов 6 имеют повышенные содержания Na₂O (>0,07 мас. %) и относятся к алмазной фации метаморфизма (по Gurney, 1984). По классификации (Ramsay, 1993) на диаграмме TiO₂-Cr₂O₃ 218 (34,8%) фигуративных точек составов гранатов попадают в область зернистых перидотитов, причем 10 из них имеют повышенные содержания TiO₂ (>0,5 мас. %), 194 (31%) граната отнесены к гранатам из деформированных перидотитов, 212 (33,9%) к мегакристам, 2 (0,3%) граната к эклогитовому парагенезису.

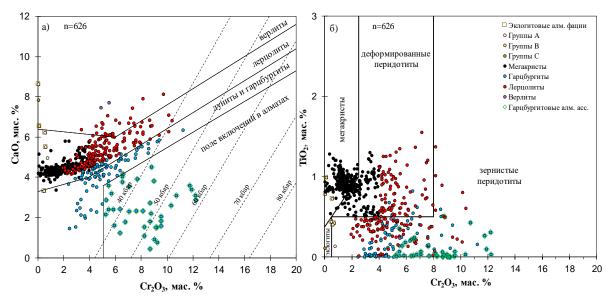


Рисунок 20. Особенности химического состава гранатов из шлиховых проб кимберлитовой трубки Комсомольская-Магнитная. Парагенетическая ассоциация по Shulze (2003); а) классификация перидотитовых гранатов на диаграмме CaO-Cr₂O₃ по Соболев (1974), изобары Cr-в-гранате рассчитаны для геотермального градиента 38 mW/m² (Grutter et al., 2006); б) классификация гранатов на диаграмме TiO₂-Cr₂O₃ по Ramsay (1993).

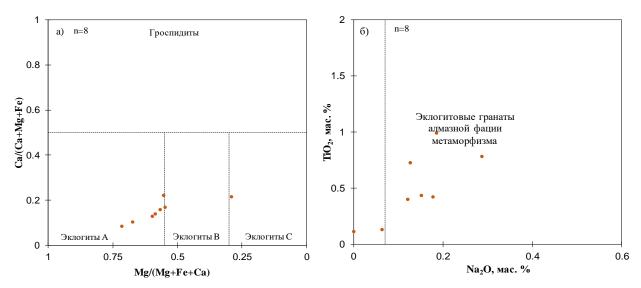


Рисунок 21. Особенности химического состава эклогитовых гранатов из шлиховых проб кимберлитовой трубки Комсомольская-Магнитная: а) парагенетическая классификация Са#-Мg# по (Coleman et al., 1965 [104]); б) гранаты из поля стабильности алмаза по (Grutter et al., 2004).

По классификации (Grutter, 2004) преобладают гранаты группы G1 (низкохромистые мегакристовые гранаты) – 331 (52,9%) зерно и гранаты группы G11 (высокотитанистые гранаты из деформированных перидотитов) – 147 (23,5%) зерен. Кроме того, к группе G9 (гранаты лерцолитового парагенезиса) отнесен 51 (8,1%) гранат, к группе G12 (гранаты верлитового парагенезиса) – 3 (0,5%) граната, к группе G10 (гранаты гарцбургитового парагенезиса) – 85 (13,6%) гранатов, из которых 48 (16,8% от перидотитовых, 7,7% от всех) зерен отнесены к группе G10D (гарцбургитовые гранаты алмазной ассоциации). Также присутствуют гранаты группы G0 (гранаты из неизвестных источников) – 3 зерна и эклогитовые гранаты групп G3 – 1 зерно и G4 – 5 зерен, из которых 3 граната относятся к G4D (эклогитовые гранаты алмазной фации метаморфизма).

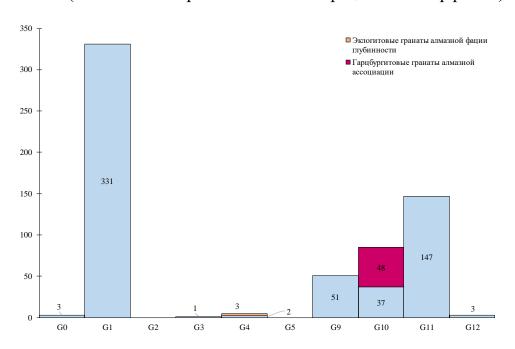


Рисунок 22. Распределение гранатов из шлиховых проб кимберлитовой трубки Комсомольская-Магнитная по химико-генетическим группам (по Grutter, 2004).

Содержание главных и примесных элементов для перидотитовых (по Schulze, 2003) гранатов (мас. %): Cr_2O_3 1,94–12,25 (\overline{x} = 5,47, медиана = 5), CaO 0,43–8,14 (\overline{x} = 4,7, медиана = 4,82), TiO_2 нпо-1,55 (\overline{x} = 0,42, медиана = 0,4), MgO 16,77–24,67 (\overline{x} = 20,97, медиана= 20,95), Al_2O_3 13,72–21,88 (\overline{x} = 18,6, медиана = 18,77), MnO 0,28–0,61 (\overline{x} = 0,37, медиана = 0,36), FeO 5,57–10,45 (\overline{x} = 7,11, медиана = 6,99).

Результаты исследования клинопироксенов из шлиховых проб кимберлитовой трубки Комсомольская-Магнитная.

Был выполнен рентгеноспектральный микроанализ 314 зерен клинпироксена из концентрата тяжелой фракции шлиховых проб трубки Комсомольская-Магнитная.

Содержание основных и примесных элементов в пироксенах (в мас. %): MgO 12,23–20,78 (среднее содержание $\overline{x}=17,05$, медиана = 17,06), CaO 13,54–23,13 ($\overline{x}=18,44$, медиана = 18,67), MnO 0,02–0,13 ($\overline{x}=0,1$, медиана = 0,1), Cr₂O₃ 0,12–4,4 ($\overline{x}=1,73$, медиана = 1,52), TiO₂ 0,02–1,21 ($\overline{x}=0,25$, медиана = 0,24), Al₂O₃ 0,47-6,42 ($\overline{x}=1,96$, медиана = 1,89), Na₂O 0,52–4,61 ($\overline{x}=2,09$, медиана = 2,02).

В координатах Al_2O_3 - Cr_2O_3 наклонной прямой (Cr_2O_3 =0,45* Al_2O_3) отделяются зоны гранатовых и безгранатовых перидотитов. Таким образом 95% всех исследованных зерен парагенетически связаны с гранатом. Повышенные одержания (MgO>18 мас.%) характерны для пироксенов из деформированных лерцолитов. На диаграмме Na₂O-Cr₂O₃ можно отделить перидотитовые и эклогитовые пироксены, поскольку перидотитовые составы должны быть обогащены обеднены хромом И натрием относительно эклогитовых. Подавляющее большинство эклогитовых пироксенов содержат менее 0,22 мас.% Cr₂O₃. На рисунке 23а видно, что подавляющее большинство клинопироксенов имеют перидотитовый парагенезис. Для пироксенов мегакристовой ассоциации характерны низкие содержания хрома (Сг₂О₃<0.35 мас.%) и узкий диапозон колебаний Al₂O₃ (2,30-2,66 мас.%), а также высокие содержания MgO (16,9-21,1 мас.%). Однако в работе Тычкова 2018г. замечено, что похожие составы наблюдаются у клинопироксенов из деформированных, вторично обогащенных перидотитов.

Таким образом из исследованных зерен клинопироксена около 95% относятся к гранатовым и гранат-шпинелевым перидотитам, из них около 2% имеют аномально высокие содержания Na₂O, оставшиеся 5% клинопироксенов, судя по низким содержаниям хрома, повышенным содержаниям магния и маленьким

разбросом составов по алюминию относятся к мегакристовой ассоциации. Интересно заметить полное отсутствие шпинелевых безгранатовых перидотитов и клинопироксенов, относящихся к эклогитовому парагенезису.

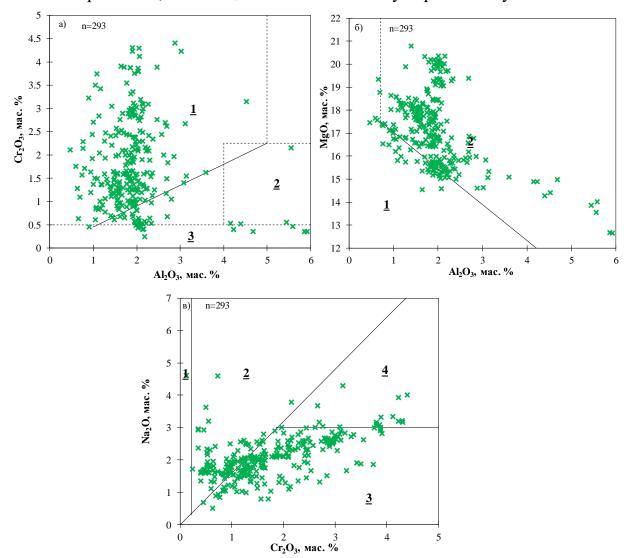


Рисунок 23. Составы клинопироксенов из шлиховых проб кимберлитовой трубки Комсомольская-Магнитная. А. Поля:1-внутрикратонных гранатовых перидотитов, 2-внекратонных гранатовых И шпинелевых перидотитов, 3-эклогитов Б. 1пироксены мегакристовой ассоциации; ИЗ эклогитов происхождения, 2- пироксены из перидотитов, В. Поля составов клинопироксенов из:1-эклогитов, 2-гранатовых клинопироксенитов и вебстеритов, 3-перидотитов, шпинелевых пироксенитов и ранатовых ортопироксенитов, 4-высоконатриевие клинопироксены из перидотитов.

Результаты исследования хромшпинелидов из шлиховых проб кимберлитовой трубки Комсомольская-Магнитная.

Исследовано 231 зерно хромшпинелидов из шлиховых проб, отобранных из трубки Комсомольская-Магнитная. горной выработки Обнаружено 25 хромшпинелидов (10,8%), попадающих в поле алмазной ассоциации по (Соболев, 1974). На диаграмме Cr₂O₃-Al₂O₃ преобладают хромшпинелиды, попадающие на двойной перидотитовый тренд (~98%), также присутствует группа, которая относится к магматическому тренду (для них характерны аномально низкие содержания Al_2O_3). Среднее содержание хромшпинелидах составляет 1,25 мас. % (медиана 0,38 мас. %), а среднее значение $Fe^{3+}/(Cr+Al+Fe^{3+}) - 0.08$ (максимальное значение для включений в алмазах составляет 0,07). Таким образом в поле включений в алмазах по $Fe^{3+}/(Cr+Al+Fe^{3+})$ и TiO_2 попадает 89 зерен (38,5%) (рис. 5 б, в). Содержание главных и примесных элементов для хромитов (мас. %): Cr_2O_3 22,38–65,78 (\overline{x} = 50,07, медиана = 51,96), CaO нпо-0,07, TiO₂ 0,02-30,64 (\bar{x} = 1,25, медиана = 0,38), MgO 7,28–19,75 (\overline{x} = 12,46, медиана= 12,25), Al₂O₃ 1,47–43 (\overline{x} = 12,39, медиана = 9,18), MnO 0,12–0,39 (\bar{x} = 0,25, медиана = 0,25), FeO 10,34–37,61 (\bar{x} = 21,41, медиана = 19,34).

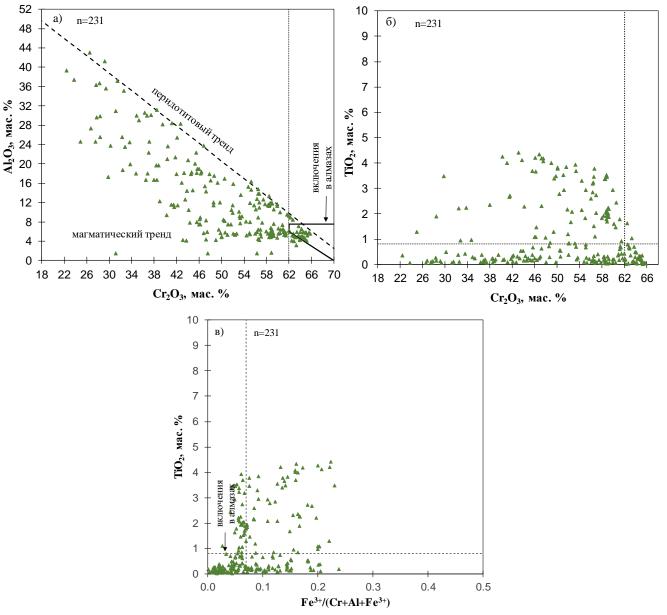


Рисунок 24. Особенности химического состава хромшпинелидов из шлиховых проб кимберлитовой трубки Комсомольская-Магнитная: а, б – классификация хромшпинелидов по Соболев (1974), в – поле включений в алмазах по (Malkovets et al., 2017).

Результаты исследования ильменитов из шлиховых проб кимберлитовой трубки Комсомольская-Магнитная.

Исследовано 46 ильменитов из шлиховых проб кимберлитовой трубки Комсомольская-Магнитная. Из исследованных зерен 4 ильменита относятся к не кимберлитовым. Содержания главных и примесных элементов для кимберлитовых ильменитов (мас. %): Cr_2O_3 0,01–8,22 (\overline{x} = 1,46), TiO_2 45,27–54,9

 $(\overline{x}=48,27)$, MgO 6,56–16,66 $(\overline{x}=8,53)$, Al₂O₃ 0,01–1,71 $(\overline{x}=0,59)$, MnO 0,17–0,96 $(\overline{x}=0,23)$, FeO 20,7–44,1 $(\overline{x}=38,93)$.

Степень сохранности алмазов (при их наличии) в ассоциации с данными ильменитами предполагается от минимальной до хорошей (преобладают ильмениты из полей плохой сохранности по Nowicki, 2007 [105]). На параболе Хаггерти [77] фигуративные точки составов кимберлитовых ильменитов преимущественно расположены вблизи левой ветви параболы, составы таких ильменитов указывают на преимущественно окислительные условия их формирования. Кроме того, отмечается ряд зерен, имеющих повышенные содержания Cr_2O_3 ($Cr_2O_3 > 2$ мас.%) и расоположенных ближе к правой ветви параболы, что указывает на восстановительные условия их образования.

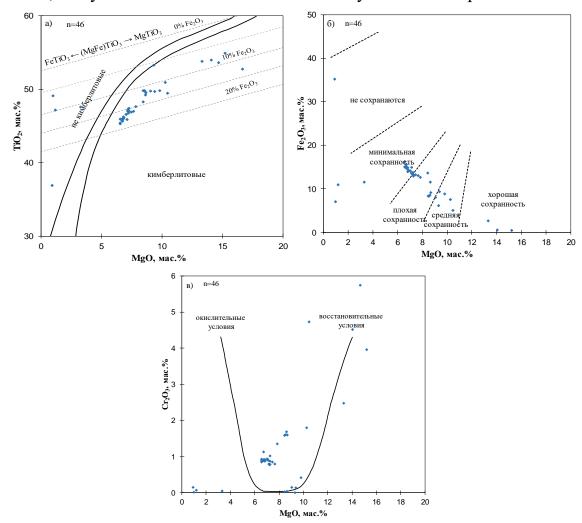


Рисунок 25. Особенности химического состава ильменитов из шлиховых проб кимберлитовой трубки Комсомольская-Магнитная: а) генезис ильменитов по (Wyatt, 2004 [106]); б) степень сохранности алмазов по (Nowicki, 2007); в)

окислительно-восстановительные условия формирования ильменитов по (Haggerty, 1975).

6.2.2. Результаты исследования минералов спутников алмаза из шлиховых проб кимберлитовой трубки Деймос.

Результаты исследования оливинов из шлиховых проб кимберлитовой трубки Деймос.

Исследовано 324 зерна оливина из концентрата тяжелой фракции шлиховых проб, отобранных непосредственно c кимберлитовой трубки Деймос. Исследование химического состава показало, что магнезиальность оливинов варьирует от 81,6 до 94,4 мол. %, средняя магнезиальность оливинов составляет 92,2 мол. %, а медианное значение составляет 92,4 мол. %. Содержание элементовпримесей в оливинах варьирует в следующих пределах (в мас. %): NiO 0,25-0,59 (среднее содержание $\bar{x} = 0.37$, медиана = 0.37), CaO 0.004–0.083 ($\bar{x} = 0.02$, медиана = 0,02), MnO 0,07–0,17 (\bar{x} = 0,1, медиана = 0,1), Cr₂O₃ нпо–0,07 (\bar{x} = 0,02, медиана = 0,02), TiO₂ нпо-0,042 (\overline{x} = 0,018, медиана = 0,013), Al₂O₃ нпо-0,03 (\overline{x} = 0,008, медиана = 0,009).

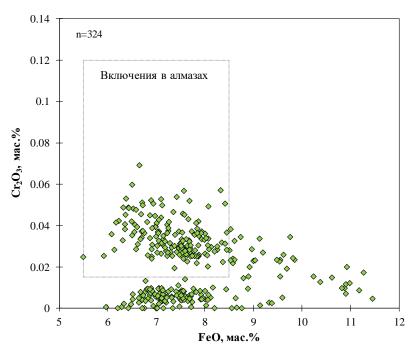


Рисунок 26. Диаграмма Cr_2O_3 -FeO с фигуративными точками составов оливинов из шлиховых проб кимберлитовой трубки Деймос, поле включений в алмазах по Sobolev, 1989.

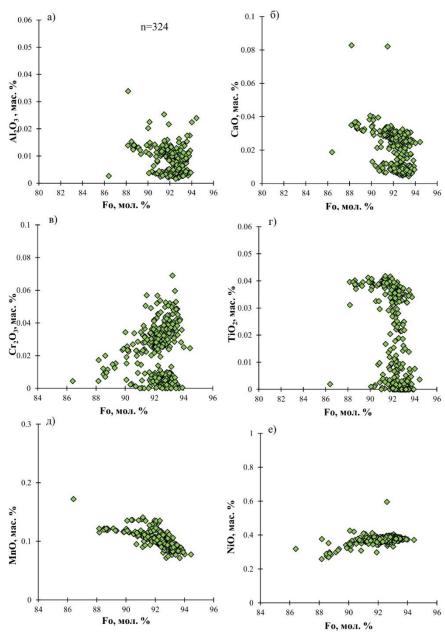


Рисунок 27. Соотношение элементов-примесей и форстеритового минала (Fo) в оливинах из шлиховых проб кимберлитовой трубки Деймос.

Результаты исследования гранатов из шлиховых проб кимберлитовой трубки Деймос.

Исследовано 200 зерен граната из концентрата тяжелой фракции шлиховых проб, отобранных непосредственно с кимберлитовой трубки Деймос.

По классификации (Соболев, 1974) 55 (27,5%) гранатов относятся к лерцолитовому парагенезису, 4 (2%) граната к верлитовому, 97 (48,5%) гранатов к гарцбургит-дунитовому, из которых 15 (9,6% от перидотитовых (по Schulze, 2003), 7,5% от всех) гранатов попадают в область алмазной ассоциации, кроме

того, 44 граната (22%) (из полей лерцолитового и верлитового парагенезисов) имеют содержания $Cr_2O_3<2$ мас. % и условно не являются перидотитовыми.

По классификации (Schulze, 2003) 157 (78,5%) гранатов относятся к перидотитовым парагенезисам, из них 48 (30,6% от перидотитовых, 24% от всех) гранатов лерцолитового парагенезиса, 109 (69,4% от перидотитовых, 54,5% от всех) гранатов гарцбургитового парагенезиса. Кроме того, 19 (9,5%) гранатов относятся к мегакристовым и 23 (11,5%) граната к эклогитовым, из которых 16 эклогитовых группы А и 7 группы В (по Coleman, 1965). Гранаты алмазной фации глубинности среди эклогитовых гранатов отсутствуют (по Gurney, 1984).

По классификации (Ramsay, 1993) на диаграмме TiO₂-Cr₂O₃ 155 (77,5%) фигуративных точек составов гранатов попадают в область зернистых перидотитов, причем 6 из них имеют повышенные содержания TiO₂ (>0,5 мас. %), 17 (8,5%) гранатов отнесены к гранатам из деформированных перидотитов, 13 (6,5%) к мегакристам, 15 (7,5%) гранатов к эклогитовому парагенезису.

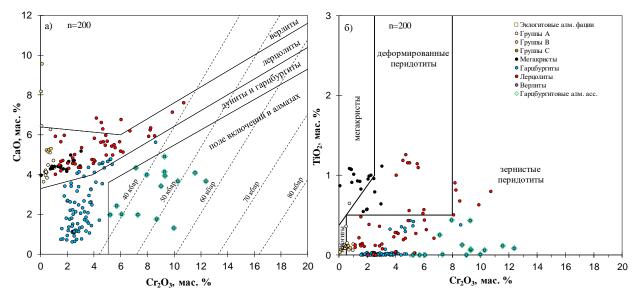


Рисунок 28. Особенности химического состава гранатов из шлиховых проб кимберлитовой трубки Деймос. Парагенетическая ассоциация по Shulze (2003); а) классификация перидотитовых гранатов на диаграмме CaO-Cr₂O₃ по Соболев (1974), изобары Cr-в-гранате рассчитаны для геотермального градиента 38 mW/m² (Grutter et al., 2006); б) классификация гранатов на диаграмме TiO_2 -Cr₂O₃ по Ramsay (1993).

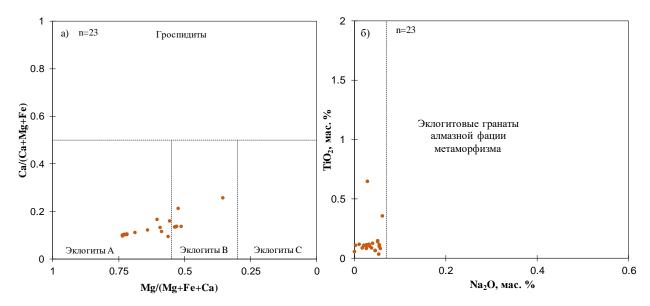


Рисунок 29. Особенности химического состава эклогитовых гранатов из шлиховых проб кимберлитовой трубки Деймос: а) парагенетическая классификация Са#-Мg# по (Coleman et al., 1965); б) гранаты из поля стабильности алмаза по (Grutter et al., 2004).

По классификации (Grutter, 2004) преобладают гранаты группы G10 (гранаты гарцбургитового парагенезиса) — 100 (50%) зерен, из которых 52 (33,3% от перидотитовых, 26% от всех) зерна относятся к G10D (гарцбургитовые гранаты алмазной ассоциации). Кроме того, 29 (14,5%) гранатов относятся к группе G9 (гранаты лерцолитового парагенезиса), 4 (2%) граната к группе G12 (гранаты верлитового парагенезиса), 23 (11,5%) граната к группе G11 (гранаты из деформированных перидотитов) и 20 (10%) гранатов к группе G1 (мегакристовые гранаты). Также присутствуют гранаты эклогитовых групп G3 — 5 зерен и G4 — 19 зерен, эклогитовые гранаты алмазной фации метаморфизма отсутствуют.

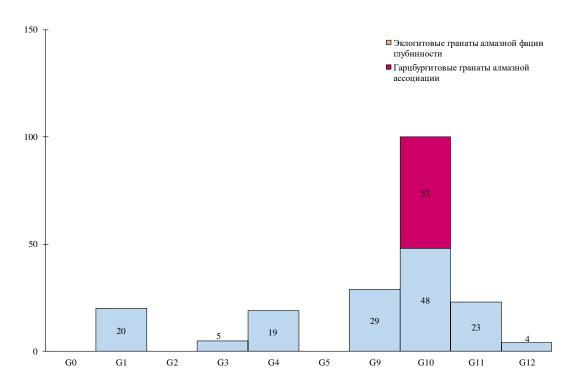


Рисунок 30. Распределение гранатов из шлиховых проб кимберлитовой трубки Деймос, по химико-генетическим группам (по Grutter, 2004).

Содержание главных и примесных элементов для перидотитовых (по Schulze, 2003) гранатов (мас. %): Cr_2O_3 1,12–12,38 (\overline{x} = 3,96, медиана = 3,08), CaO 0,62–7,61 (\overline{x} = 3,23, медиана = 3,25), TiO_2 нпо-1,26 (\overline{x} = 0,16, медиана = 0,02), MgO 13,13–25,12 (\overline{x} = 21,91, медиана= 21,89), Al_2O_3 14,39–22,84 (\overline{x} = 20,48, медиана = 21,32), MnO 0,24–0,73 (\overline{x} = 0,38, медиана = 0,37), FeO 5,51–17,76 (\overline{x} = 7,41, медиана = 7,27).

Результаты исследования хромшпинелидов из шлиховых проб кимберлитовой трубки Деймос.

Исследовано 232 зерна хромшпинелидов из шлиховых проб, отобранных из горной выработки трубки Деймос. Обнаружено 20 хромшпинелидов (8,6%), попадающих в поле алмазной ассоциации (по Соболев, 1974). На диаграмме Cr₂O₃-Al₂O₃ преобладают хромшпинелиды, попадающие на двойной перидотитовый тренд, группа из 7 зерен имеет аномально низкие содержания Al₂O₃ и ложится на магматический тренд. Среднее содержание TiO₂ в хромшпинелидах составляет 0,99 мас. % (медиана 0,25 мас. %), содержание TiO₂ для включений хромшпинелида в алмазах не превышает 0,8 мас. % (по Соболев, 1974). Среднее значение

 $Fe^{3+}/(Cr+Al+Fe^{3+})$ — 0,06 (максимальное значение для включений в алмазах составляет 0,07). Таким образом в поле включений в алмазах по $Fe^{3+}/(Cr+Al+Fe^{3+})$ и TiO_2 попадает 126 зерен (54,3%) (рис. 5 б, в). Содержание главных и примесных элементов для хромшпинелидов (мас. %): Cr_2O_3 26,55–65,91 (\overline{x} = 53,48, медиана = 56,01), CaO нпо–0,12, TiO_2 нпо–30,64 (\overline{x} = 0,99, медиана = 0,25), MgO 6,43–19,75 (\overline{x} = 12,09, медиана = 11,81), Al_2O_3 1,16–43 (\overline{x} = 11,71, медиана = 10,08), MnO 0,12–0,46 (\overline{x} = 0,26, медиана = 0,26), FeO 10,34–41,54 (\overline{x} = 20,14, медиана = 18,7).

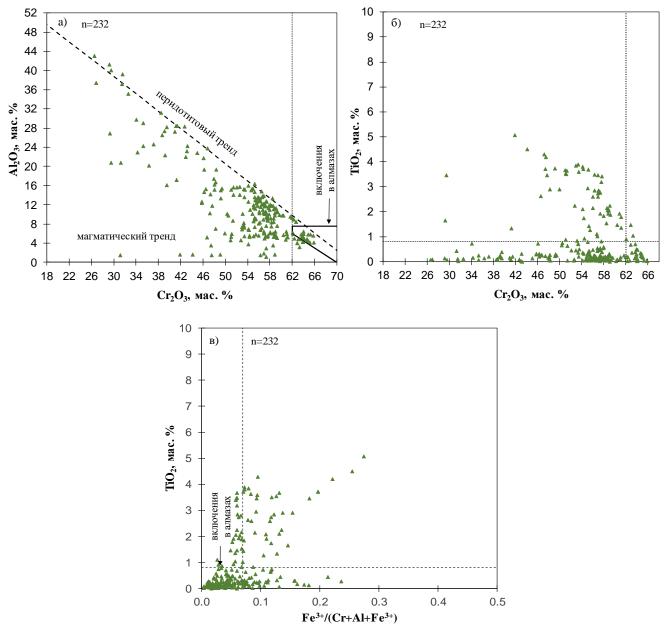


Рисунок 31. Особенности химического состава хромшпинелидов из шлиховых проб кимберлитовой трубки Деймос: а, б – классификация хромшпинелидов по Соболев (1974), в – поле включений в алмазах по (Malkovets et al., 2017).

Результаты исследования ильменитов из шлиховых проб кимберлитовой трубки Деймос.

Исследовано 15 ильменитов из шлиховых проб кимберлитовой трубки Деймос. Из исследованных зерен 6 ильменитов относятся к не кимберлитовым. Содержания главных и примесных элементов для кимберлитовых ильменитов (мас. %): Cr_2O_3 нпо-8,22 ($\overline{x}=1,46$), TiO_2 45,27-54,9 ($\overline{x}=48,27$), MgO 6,56-16,66 ($\overline{x}=8,53$), Al_2O_3 0,01-1,71 ($\overline{x}=0,59$), MnO 0,17-0,96 ($\overline{x}=0,23$), FeO 20,7-44,1 ($\overline{x}=38,93$).

Степень сохранности алмазов (при их наличии) в ассоциации с данными ильменитами предполагается от минимальной до средней (преобладают ильмениты из полей плохой сохранности по Nowicki, 2007). На параболе Хаггерти фигуративные точки составов кимберлитовых ильменитов преимущественно расположены вблизи левой ветви параболы, составы таких ильменитов указывают на преимущественно окислительные условия их формирования.

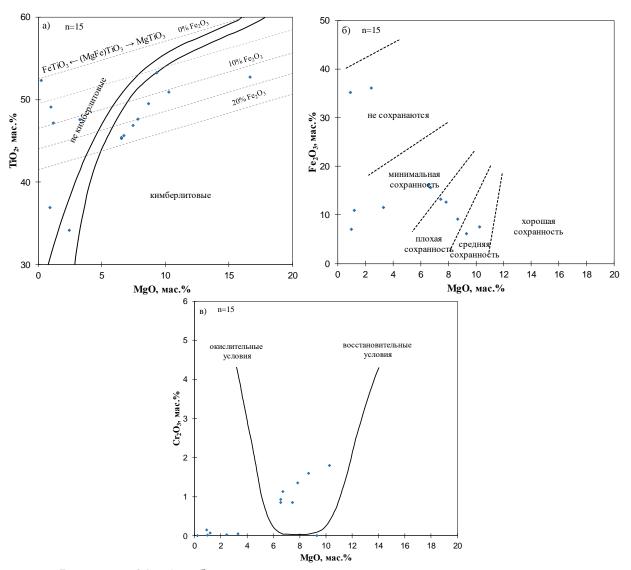


Рисунок 32. Особенности химического состава ильменитов из шлиховых проб кимберлитовой трубки Деймос: а) генезис ильменитов по (Wyatt, 2004); б) степень сохранности алмазов по (Nowicki, 2007); в) окислительновосстановительные условия формирования ильменитов по (Haggerty, 1975).

6.2.3. Результаты исследования минералов спутников алмаза из шлиховых проб кимберлитовой трубки Заполярная.

Результаты исследования оливинов из шлиховых проб кимберлитовой трубки Заполярная.

Исследовано 241 зерно оливина из концентрата тяжелой фракции шлиховых проб, отобранных непосредственно с кимберлитовой трубки Заполярная. Исследование химического состава показало, что магнезиальность оливинов варьирует от 81,3 до 94 мол. %, средняя магнезиальность оливинов составляет 91,9 мол. %, а медианное значение составляет 92,3 мол. %. Содержание элементов-

примесей в оливинах варьирует в следующих пределах (в мас. %): NiO 0,15–0,42 (среднее содержание $\overline{x}=0,37$, медиана = 0,38), CaO 0,002–0,047 ($\overline{x}=0,026$, медиана = 0,023), MnO 0,07–0,17 ($\overline{x}=0,1$, медиана = 0,1), Cr₂O₃ нпо–0,06 ($\overline{x}=0,02$, медиана = 0,02), TiO₂ нпо–0,086 ($\overline{x}=0,018$, медиана = 0,015), Al₂O₃ нпо-0,5 ($\overline{x}=0,012$, медиана = 0,009).

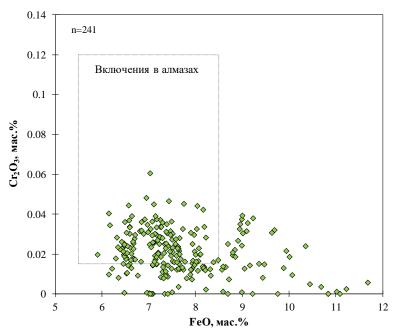


Рисунок 33. Диаграмма Cr_2O_3 -FeO с фигуративными точками составов оливинов из шлиховых проб кимберлитовой трубки Заполярная, поле включений в алмазах по Sobolev, 1989.

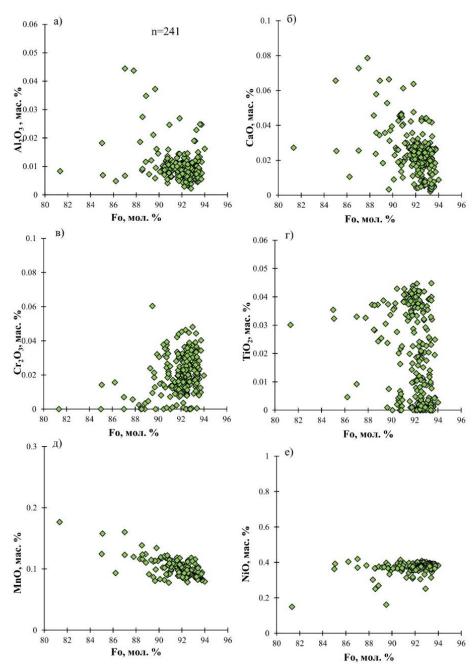


Рисунок 34. Соотношение элементов-примесей и форстеритового минала (Fo) в оливинах из шлиховых проб кимберлитовой трубки Заполярная.

Результаты исследования гранатов из шлиховых проб кимберлитовой трубки Заполярная.

Исследовано 224 зерна граната из концентрата тяжелой фракции шлиховых проб, отобранных непосредственно с кимберлитовой трубки Заполярная.

По классификации (Соболев, 1974) 126 (56,3%) гранатов относятся к лерцолитовому парагенезису, 2 (0,9%) граната к верлитовому, 25 (11,2%) гранатов к гарцбургит-дунитовому, из которых 11 (7,2% от перидотитовых (по

Schulze, 2003), 4,9% от всех) гранатов попадают в область алмазной ассоциации, кроме того, 71 гранат (31,7%) (из полей лерцолитового и верлитового парагенезисов) имеют содержания $Cr_2O_3<2$ мас. % и условно не являются перидотитовыми.

По классификации (Schulze, 2003) 118 (52,7%) гранатов относятся к перидотитовым парагенезисам, из них 70 (59,3% от перидотитовых, 31,3% от всех) гранатов лерцолитового парагенезиса, 47 (39,8% от перидотитовых, 21% от всех) гранатов гарцбургитового парагенезиса и 1 гранат верлитового парагенезиса. Кроме того, 99 (44,2%) гранатов относятся к мегакристовым и 7 (3,1%) граната к эклогитовым, из которых 6 эклогитовых группы А и 1 группы В (по Coleman, 1965), из них 3 граната имеют Na₂O>0,07 мас. % и относятся к алмазной фации глубинности (по Gurney, 1984).

По классификации (Ramsay, 1993) на диаграмме TiO₂-Cr₂O₃ 90 (40,2%) фигуративных точек составов гранатов попадают в область зернистых перидотитов, причем 3 из них имеют повышенные содержания TiO₂ (>0,5 мас. %), 73 (32,6%) граната отнесены к гранатам из деформированных перидотитов, 55 (24,6%) к мегакристам, 6 (2,7%) гранатов к эклогитовому парагенезису.

По классификации (Grutter, 2004) преобладают гранаты группы G1 (мегакристовые гранаты) – 108 (48,2%) зерен. Кроме того, 54 (24,1%) гранатов относятся к группе G11 (гранаты из деформированных перидотитов), 30 (13,4%) гранатов к группе G9 (гранаты лерцолитового парагенезиса), 26 (11,6%) гранатов к группе G10 (гранаты гарцбургитового парагенезиса), из них все 26 (23,6% от перидотитовых, 11,6% от всех) зерен относятся к G10G (гарцбургитовые гранаты алмазной ассоциации). Также присутствуют гранаты эклогитовых групп G3 – 1 зерно и G4 – 5 зерен, из которых 1 гранат относится к G3D и 1 гранат к G4D (эклогитовые гранаты алмазной фации глубинности).

Содержание главных и примесных элементов для перидотитовых (по Schulze, 2003) гранатов (мас. %): Cr_2O_3 1,35–7,8 (\overline{x} = 4,74, медиана = 4,86), CaO 1,45–7,8 (\overline{x} = 4,74, медиана = 4,86), CaO 1,45–7,8 (\overline{x} = 4,74, медиана = 0,39), CaO 18,38–23,54

 $(\overline{x}=20,84, \text{ медиана}=20,78), \text{ Al}_2\text{O}_3 \text{ 15,4-22,29} \ (\overline{x}=20,84, \text{ медиана}=20,78), \text{ MnO}$ 0,24-0,37 $(\overline{x}=0,29, \text{ медиана}=0,29), \text{ FeO } 6,02-9,38 \ (\overline{x}=7,4, \text{ медиана}=7,31).$

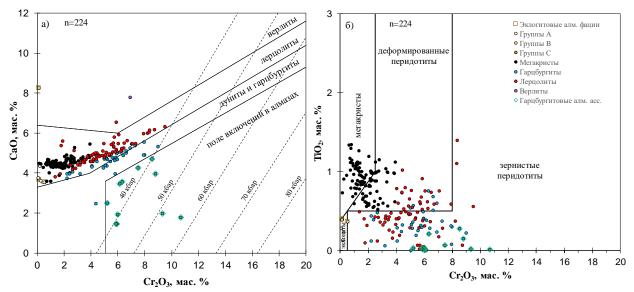


Рисунок 35. Особенности химического состава гранатов из шлиховых проб кимберлитовой трубки Заполярная. Парагенетическая ассоциация по Shulze (2003); а) классификация перидотитовых гранатов на диаграмме CaO-Cr₂O₃ по Соболев (1974), изобары Cr-в-гранате рассчитаны для геотермального градиента 38 mW/m^2 (Grutter et al., 2006); б) классификация гранатов на диаграмме TiO₂-Cr₂O₃ по Ramsay (1993).

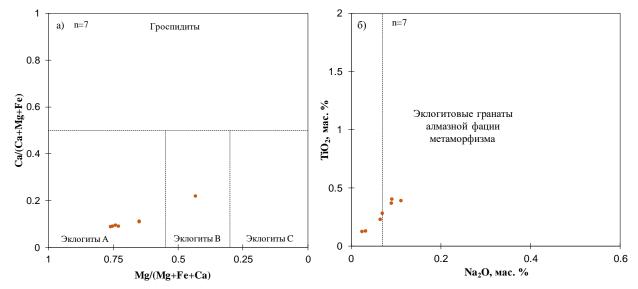


Рисунок 36. Особенности химического состава эклогитовых гранатов из шлиховых проб кимберлитовой трубки Заполярная: а) парагенетическая классификация Са#-Мg# по (Coleman et al., 1965); б) гранаты из поля стабильности алмаза по (Grutter et al., 2004).

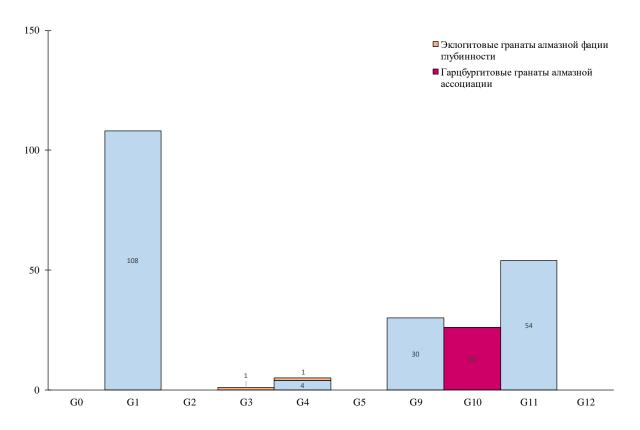


Рисунок 37. Распределение гранатов из шлиховых проб кимберлитовой трубки Заполярная по химико-генетическим группам (по Grutter, 2004).

Результаты исследования клинопироксенов из шлиховых проб кимберлитовой трубки Заполярная.

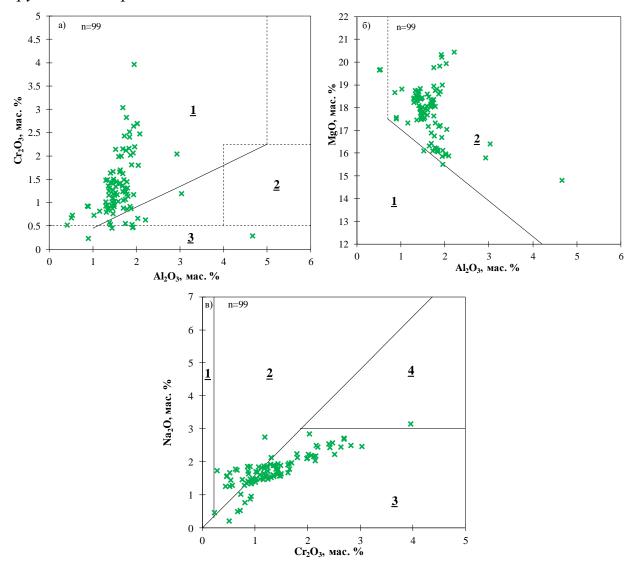


Рисунок 38. Составы клинопироксенов из шлиховых проб кимберлитовой трубки Заполярная. А. Поля:1-внутрикратонных гранатовых перидотитов, 2-внекратонных гранатовых и шпинелевых перидотитов, 3-эклогитов и мегакристовой ассоциации; Б. 1- пироксены из эклогитов и неясного происхождения, 2- пироксены из перидотитов, В. Поля составов клинопироксенов из:1-эклогитов, 2-гранатовых клинопироксенитов и вебстеритов, 3-перидотитов, шпинелевых пироксенитов и ранатовых ортопироксенитов, 4-высоконатриевие клинопироксены из перидотитов.

Был выполнен рентгеноспектральный микроанализ 99 зерен клинпироксена из концентрата тяжелой фракции шлиховых проб трубки Заполярная.

Содержание основных и примесных элементов в пироксенах (в мас. %): MgO 14,8–36,7 (среднее содержание $\overline{x}=18$, медиана = 18), CaO 15,4–24,3 ($\overline{x}=19$, медиана = 19,1), MnO 0,02–0,12 ($\overline{x}=0$,09, медиана = 0,09), Cr₂O₃ 0,23–3,95 ($\overline{x}=1$,36, медиана = 1,22), TiO₂ н.п.о–0,45 ($\overline{x}=0$,26, медиана = 0,28), Al₂O₃ 0,5-4,6 ($\overline{x}=1$,6, медиана = 1,6), Na₂O 0,45–3,15 ($\overline{x}=1$,7, медиана = 1,7).

В координатах Al_2O_3 - Cr_2O_3 наклонной прямой $(Cr_2O_3=0,45*Al_2O_3)$ отделяются зоны гранатовых и безгранатовых перидотитов. Таким образом 95% всех исследованных зерен относятся к гранатовым перидотитам. Повышенные одержания (MgO>18 мас.%) характерны для пироксенов из деформированных лерцолитов. Для пироксенов мегакристовой ассоциации характерны низкие содержания хрома (Cr_2O_3 <0.35 мас.%) и узкий диапозон колебаний Al_2O_3 (2,30-2,66 мас.%), а также высокие содержания MgO (16,9-21,1 мас.%). Однако в работе Тычкова 2018г. замечено, что похожие составы наблюдаются у клинопироксенов из деформированных, вторично обогащенных перидотитов.

Таким образом из исследованных зерен клинопироксена около 95% относятся к гранатовым и гранат-шпинелевым перидотитам, из них одно зерно имеет аномально высокие содержания Na₂O, оставшиеся 5% клинопироксенов, относены к мегакристовой ассоциации.

Результаты исследования хромшпинелидов из шлиховых проб кимберлитовой трубки Заполярная.

Исследовано 294 зерна хромшпинелидов из шлиховых проб, отобранных из горной выработки трубки Заполярная. Обнаружено 106 хромшпинелидов (36,1%), попадающих в поле алмазной ассоциации (по Соболев, 1974). На диаграмме Cr₂O₃-Al₂O₃ преобладают хромшпинелиды, попадающие на двойной перидотитовый тренд одно зерно имеет аномально низкие содержания Al₂O₃ и ложится на магматический тренд. Среднее содержание TiO₂ в хромшпинелидах составляет 1,08 мас. % (медиана 0,25 мас. %), среднее содержание TiO₂ для включений

хромшпинелида в алмазах не превышает 0,8 мас. % (по Соболев, 1974). Среднее значение $Fe^{3+}/(Cr+Al+Fe^{3+}) - 0,05$ (максимальное значение для включений в алмазах составляет 0,07). Таким образом в поле включений в алмазах по $Fe^{3+}/(Cr+Al+Fe^{3+})$ и TiO_2 попадает 164 зерна (55,8%) (рис. 5 б, в). Содержание главных и примесных элементов для хромшпинелидов (мас. %): Cr_2O_3 26,7–66,89 ($\overline{x}=55,8$, медиана = 59,8), CaO нпо–0,4, TiO_2 нпо-28,95 ($\overline{x}=1,08$, медиана = 0,25), MgO 8,77–19,85 ($\overline{x}=12,77$, медиана= 12,36), Al_2O_3 1,8–38,84 ($\overline{x}=10,19$, медиана = 6,13), MnO 0,12–0,39 ($\overline{x}=0,24$, медиана = 0,24), FeO 10,91–34,08 ($\overline{x}=18,4$, медиана = 17,34).

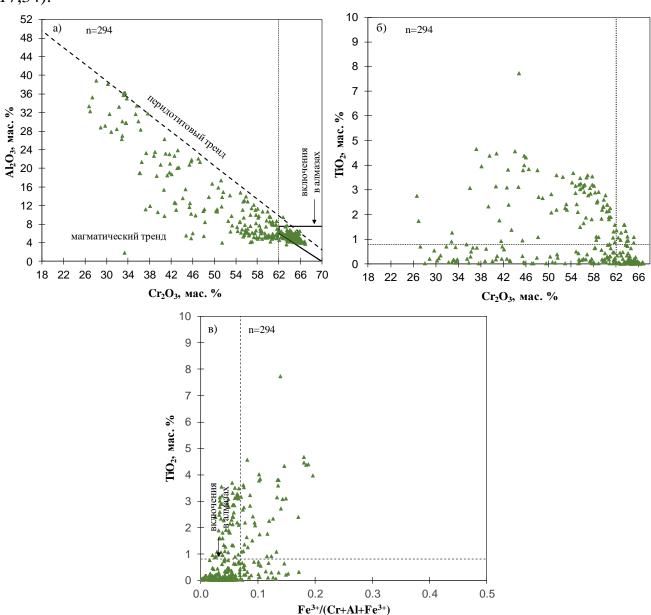


Рисунок 39. Особенности химического состава хромшпинелидов из шлиховых проб кимберлитовой трубки Заполярная: а, б – классификация хромшпинелидов по Соболев (1974), в – поле включений в алмазах по (Malkovets et al., 2017).

6.2.4. Результаты исследования минералов спутников алмаза из протолочных и шлиховых проб кимберлитовой трубки Интеркосмос.

Результаты исследования оливинов из шлиховых и протолочных пробкимберлитовой трубки Интеркосмос.

Исследовано 44 зерна оливина из концентрата тяжелой фракции шлиховых проб кимберлитовой трубки Интеркосмос. Исследование химического состава показало, что магнезиальность оливинов варьирует от 81,3 до 94 мол. %, средняя магнезиальность оливинов составляет 91,9 мол. %, а медианное значение составляет 92,3 мол. %. Содержание элементов-примесей в оливинах варьирует в следующих пределах (в мас. %): NiO 0,15–0,42 (среднее содержание $\overline{x}=0,37$, медиана = 0,38), CaO 0,002–0,047 ($\overline{x}=0,026$, медиана = 0,023), MnO 0,07–0,17 ($\overline{x}=0,1$, медиана = 0,1), Cr₂O₃ нпо–0,06 ($\overline{x}=0,02$, медиана = 0,02), TiO₂ нпо–0,086 ($\overline{x}=0,018$, медиана = 0,015), Al₂O₃ нпо-0,5 ($\overline{x}=0,012$, медиана = 0,009).

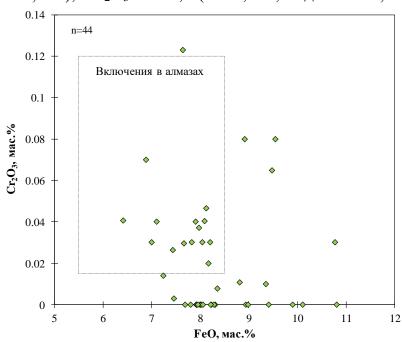


Рисунок 40. Диаграмма Cr_2O_3 -FeO с фигуративными точками составов оливинов из шлиховых проб кимберлитовой трубки Интеркосмос, поле включений в алмазах по Sobolev, 1989.

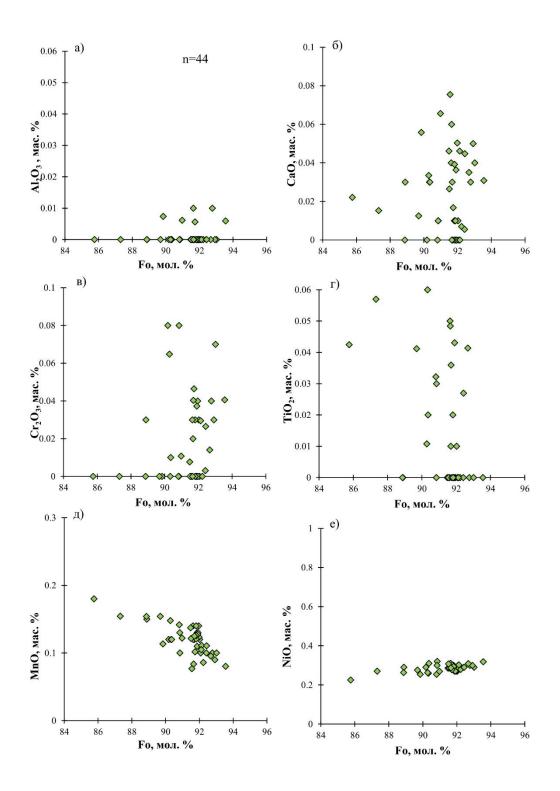


Рисунок 41. Соотношение элементов-примесей и форстеритового минала (Fo) в оливинах из шлиховых проб кимберлитовой трубки Интеркосмос.

Результаты исследования гранатов из шлиховых и протолочных проб кимберлитовой трубки Интеркосмос.

Исследовано 201 зерно граната из концентрата тяжелой фракции шлиховых и протолочных проб из кимберлитовой трубки Интеркосмос.

По классификации (Соболев, 1974) 94 (46,8%) гранатов относятся к лерцолитовому парагенезису, 8 (4%) гранатов к верлитовому, 47 (23,4%) гранатов к гарцбургит-дунитовому, из которых 6 (4% от перидотитовых (по Schulze, 2003), 3% от всех) гранатов попадают в область алмазной ассоциации, кроме того, 52 граната (25,9%) (из полей лерцолитового и верлитового парагенезисов) имеют содержания $Cr_2O_3<2$ мас. % и условно не являются перидотитовыми.

По классификации (Schulze, 2003) 152 (75,6%) граната относятся к перидотитовым парагенезисам, из них 101 (66,4% от перидотитовых, 50,2% от всех) гранатов лерцолитового парагенезиса, 50 (32,9% от перидотитовых, 24,9% от всех) гранатов гарцбургитового парагенезиса и 1 гранат верлитового парагенезиса. Кроме того, 30 (14,9%) гранатов относятся к мегакристовым и 19 (9,5%) гранатов к эклогитовым, из которых 10 эклогитовых группы А и 9 группы В (по Coleman, 1965), из них 8 (42% от эклогитовых, 4% от всех) гранатов имеют Na₂O>0,07 мас. % и относятся к алмазной фации глубинности (по Gurney, 1984).

По классификации (Ramsay, 1993) на диаграмме TiO_2 - Cr_2O_3 112 (55,7%) фигуративных точек составов гранатов попадают в область зернистых перидотитов, причем 3 из них имеют повышенные содержания TiO_2 (>0,5 мас. %), 70 (34,8%) гранатов относятся к гранатам из деформированных перидотитов, 2 (1%) к мегакристам, 17 (8,5%) гранатов к эклогитовому парагенезису.

По классификации (Grutter, 2004) преобладают гранаты группы G11 (гранаты из деформированных перидотитов) – 54 (26,9%) зерна. Кроме того, 49 (24,4%) граната относятся к группе G9 (гранаты лерцолитового парагенезиса), 43 (21,4%) граната к группе G10 (гранаты гарцбургитового парагенезиса), из которых 8 относятся к группе G10D (гранаты гарцбургитового парагенезиса алмазной ассоциации), 33 (16,4%) граната относятся к группе G1 (мегакристовые гранаты), 1 гранат к группе

G12 (гранаты верлитового парагенезиса) и 1 к группе G0 (гранаты из неизвестных источников). Также присутствуют гранаты эклогитовых групп G3 – 11 зерен и G4 – 9 зерен, из них 1 гранат группы G3D и 3 граната группы G4D (эклогитовые гранаты алмазной фации метаморфизма).

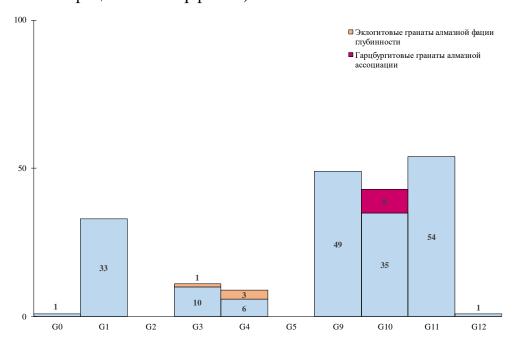


Рисунок 42. Распределение гранатов из шлиховых проб кимберлитовой трубки Интеркосмос по химико-генетическим группам (по Grutter, 2004).

Содержание главных и примесных элементов для перидотитовых (по Schulze, 2003) гранатов (мас. %): Cr_2O_3 1,01–12,25 (\overline{x} = 4,12, медиана = 4,13), CaO 1,11–7,95 (\overline{x} = 4,58, медиана = 4,68), TiO_2 нпо-1,51 (\overline{x} = 0,42, медиана = 0,24), MgO 16,95–23,52 (\overline{x} = 20,48, медиана= 20,27), Al_2O_3 11,9–23,19 (\overline{x} = 20,48, медиана = 20,27), MnO 0,3–0,68 (\overline{x} = 0,39, медиана = 0,37), FeO 5,94–11,94 (\overline{x} = 8,06, медиана = 7,8).

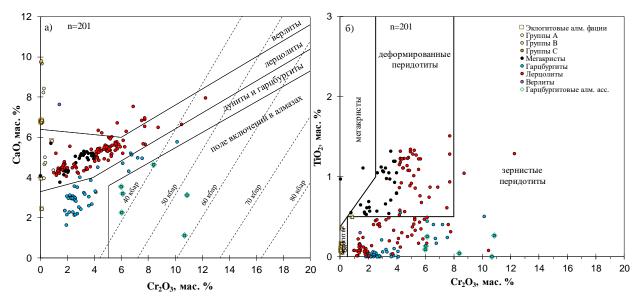


Рисунок 43. Особенности химического состава гранатов из шлиховых проб кимберлитовой трубки Интеркосмос. Парагенетическая ассоциация по Shulze (2003); а) классификация перидотитовых гранатов на диаграмме CaO-Cr₂O₃ по Соболев (1974), изобары Cr-в-гранате рассчитаны для геотермального градиента 38 mW/m^2 (Grutter et al., 2006); б) классификация гранатов на диаграмме TiO₂-Cr₂O₃ по Ramsay (1993).

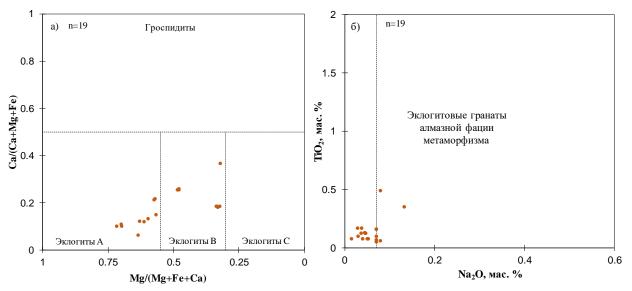


Рисунок 44. Особенности химического состава эклогитовых гранатов из шлиховых проб кимберлитовой трубки Интеркосмос: а) парагенетическая классификация Са#-Мg# по (Coleman et al., 1965); б) гранаты из поля стабильности алмаза по (Grutter et al., 2004).

Результаты исследования хромшпинелидов из шлиховых и протолочных проб кимберлитовой трубки Интеркосмос.

Исследовано 241 зерно хромшпинелидов из шлиховых и протолочных проб кимберлитовой трубки Интеркосмос. Обнаружено 18 хромшпинелидов (7,6%), попадающих в поле алмазной ассоциации (по Соболев, 1974). На диаграмме Сг₂О₃-Al₂O₃ преобладают хромшпинелиды, попадающие на двойной перидотитовый тренд, кроме того, присутствует группа зерен (~16% от всех хромшпинелидов), попадающих на магматический тренд и имеющих аномально низкие содержания Al_2O_3 . Среднее содержание TiO_2 в хромшпинелидах составляет 1,36 мас. % (медиана 0,47 мас. %), среднее содержание TiO₂ для включений хромшпинелида в алмазах не превышает 0,8 мас. % (по Соболев, 1974). Среднее значение $Fe^{3+}/(Cr+Al+Fe^{3+})$ – 0,1 (максимальное значение для включений в алмазах составляет 0,07). Таким образом в поле включений в алмазах по $Fe^{3+}/(Cr+Al+Fe^{3+})$ и TiO_2 попадает 106 зерен (44,9%) (рис. 5 б, в). Содержание главных и примесных элементов для хромшпинелидов (мас. %): Cr_2O_3 23,8–65,9 (\overline{x} = 52,8, медиана = 54,9), TiO_2 нпо-9,22 (\overline{x} = 1,36, медиана = 0,47), MgO 5,4–19,0 (\overline{x} = 11,0, медиана= 11,5), $Al_2O_3O_3O_4-42_41$ ($\overline{x}=8_189_2$, медиана = 6,34), MnO 0,14-0,49 ($\overline{x}=0_134_2$, медиана = 0,32), FeO 10,23–50,27 (\overline{x} = 23,4, медиана = 20,4).

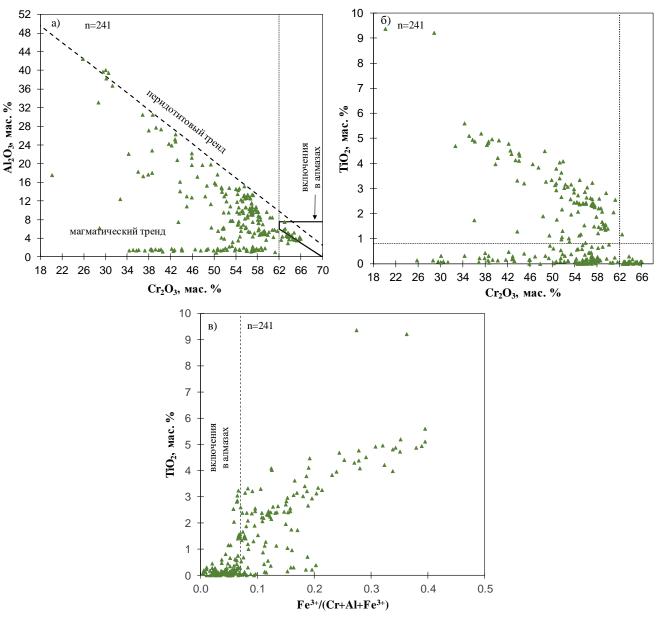


Рисунок 45. Особенности химического состава хромшпинелидов из шлиховых проб кимберлитовой трубки Интеркосмос: а, б — классификация хромшпинелидов по Соболев (1974), в — поле включений в алмазах по (Malkovets et al., 2017).

Результаты исследования ильменитов из шлиховых и протолочных проб кимберлитовой трубки Интеркосмос (включая ильмениты Жилы-2).

Исследовано 148 ильменита из шлиховых и протолочных проб кимберлитовой трубки Интеркосмос (включая ильмениты Жилы-2). Из исследованных зерен 1 ильменит относятся к не кимберлитовым. Содержания главных и примесных элементов для кимберлитовых ильменитов (мас. %): Cr₂O₃

0.7-7.31 (\overline{x} = 2.57), TiO₂ 39,3–54,2 (\overline{x} = 44,4), MgO 4,74–14,7 (\overline{x} = 7,27), Al₂O₃0,12–0.68 (\overline{x} = 0,41), MnO 0,19–0,77 (\overline{x} = 0,23), FeO 20,3–48,3 (\overline{x} = 43,3).

Степень сохранности алмазов (при их наличии) в ассоциации с данными ильменитами предполагается от минимальной до плохой (преобладают ильмениты из поля минимальной сохранности по Nowicki, 2007). На параболе Хаггерти фигуративные точки составов кимберлитовых ильменитов преимущественно расположены вблизи левой ветви параболы, составы таких ильменитов указывают на преимущественно окислительные условия их формирования.

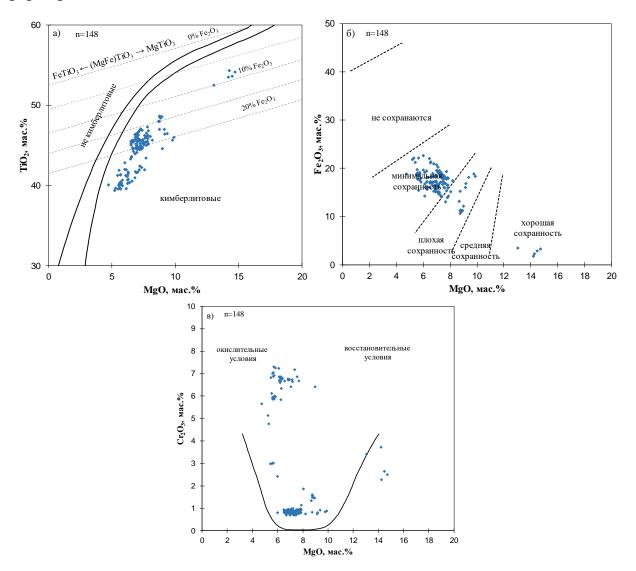


Рисунок 46. Особенности химического состава ильменитов из шлиховых проб кимберлитовой трубки Интеркосмос: а) генезис ильменитов по (Wyatt, 2004);

б) степень сохранности алмазов по (Nowicki, 2007); в) окислительновосстановительные условия формирования ильменитов по (Haggerty, 1975).

Интересно отметить значительное количество ильменитов с высокими содержаниями Cr_2O_3 . Около 40% ильменитов содержат Cr_2O_3 > 5мас.%. Кроме того, наблюдается группа из 5ти зерен ильменита, которые имеют повышенные (относительно остальных) содержания магния, фигуративные точки составов этих ильменитов лежат на правой ветви параболы Хаггерти, отвечающей восстановительным условиям образования.

6.2.4. Результаты исследования минералов спутников алмаза из шлиховых и протолочных проб кимберлитовой трубки Космос-2.

Результаты исследования оливинов из шлиховых и протолочных пробкимберлитовой трубки Космос-2.

Исследовано 30 зерен оливина из концентрата тяжелой фракции шлиховых и протолочных проб кимберлитовой трубки Космос-2. Исследование химического состава показало, что магнезиальность оливинов варьирует от 85,0 до 95,8 мол. %, средняя магнезиальность оливинов составляет 91,7 мол. %, медианное значение также составляет 92,7 мол. %. Содержание элементов-примесей в оливинах варьирует в следующих пределах (в мас. %): NiO 0,2–0,31 (среднее содержание \bar{x} = 0,27, медиана = 0,28), MnO 0,07–0,18 (\bar{x} = 0,1, медиана = 0,1), Cr₂O₃ нпо–0,1 (\bar{x} = 0,03, медиана = 0,03), TiO₂ нпо–0,08 (\bar{x} = 0,02, медиана = 0,01).

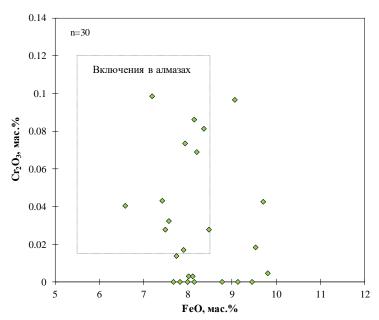


Рисунок 47. Диаграмма Cr_2O_3 -FeO с фигуративными точками составов оливинов из шлиховых проб кимберлитовой трубки Космос-2, поле включений в алмазах по Sobolev, 1989.

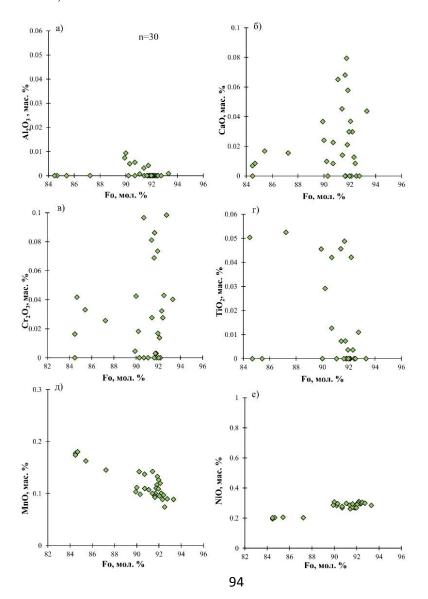


Рисунок 48. Соотношение элементов-примесей и форстеритового минала (Fo) в оливинах из шлиховых проб кимберлитовой трубки Космос-2.

Результаты исследования гранатов из шлиховых и протолочных пробкимберлитовой трубки Космос-2.

Исследовано 9 зерен граната из концентрата тяжелой фракции шлиховых и протолочных проб из кимберлитовой трубки Космос-2.

По классификациям (Соболев, 1974 и Schulze, 2003) 1 гранат относится к лерцолитовому парагенезису, 8 гранатов к гарцбургит-дунитовому, из которых 2 (22%) граната попадают в область алмазной ассоциации. По классификации (Ramsay, 1993) лерцолитовый гранат имеет повышенные содержания TiO₂ (>0,5 мас. %) и относится к деформированным перидотитам, все гарцбургитовые гранаты по составам соответствуют гранатам из зернистых перидотитов.

По классификации (Grutter, 2004) гранат лерцолитового парагенезиса (по Соболев, 1974) относится к группе G11 (высокотитанистый гранат из деформированных перидотитов), остальные 8 гранатов попадают в группу G10 (гранаты гарцбургитового парагенезиса) из которых 1 гранат относится к G10D (гарцбургитовый гранат алмазной ассоциации).

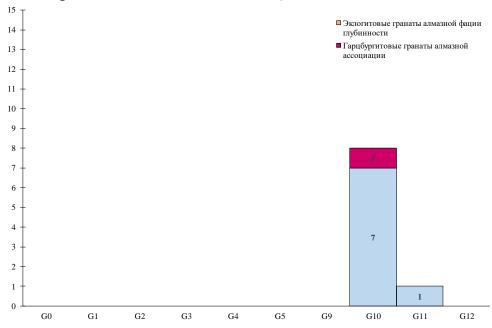


Рисунок 49. Распределение гранатов из шлиховых проб кимберлитовой трубки Космос-2 по химико-генетическим группам (по Grutter, 2004).

Содержание главных и примесных элементов для гранатов из кимберлитовой трубки Космос-2 (мас. %): Cr_2O_3 2,33–10,69 (\overline{x} = 4,67, медиана = 4,6), CaO 2,11–5,35 (\overline{x} = 3,36, медиана = 2,95), TiO_2 нпо-0,97 (\overline{x} = 0,12, медиана = нпо), MgO 20,06–22,59 (\overline{x} = 21,52, медиана= 21,93), Al_2O_3 15,28–23,08 (\overline{x} = 20,02, медиана = 19,97), MnO 0,33–0,45 (\overline{x} = 0,41, медиана = 0,43), FeO 6,16–8,18 (\overline{x} = 7,44, медиана = 7,49).

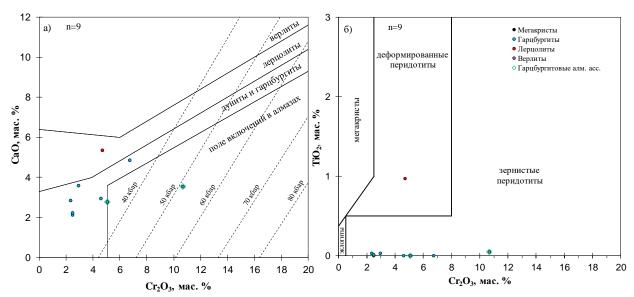


Рисунок 50. Особенности химического состава гранатов из шлиховых проб кимберлитовой трубки Космос-2. Парагенетическая ассоциация по Shulze (2003); а) классификация перидотитовых гранатов на диаграмме CaO-Cr₂O₃ по Соболев (1974), изобары Cr-в-гранате рассчитаны для геотермального градиента 38 mW/m² (Grutter et al., 2006); б) классификация гранатов на диаграмме TiO_2 -Cr₂O₃ по Ramsay (1993).

Результаты исследования хромшпинелидов из шлиховых и протолочных проб кимберлитовой трубки Космос-2.

Исследовано 266 зерен хромшпинелидов из шлиховых и протолочных проб кимберлитовой трубки Космос-2. Обнаружено 15 хромшпинелидов (5,6%), попадающих в поле алмазной ассоциации (по Соболев, 1974). На диаграмме Cr_2O_3 - Al_2O_3 преобладают хромшпинелиды, попадающие на двойной перидотитовый тренд, причем >80% фигуративных точек составов лежат непосредственно на перидотитовом тренде, для них характерны низкие содержания титана и Fe^{3+} .

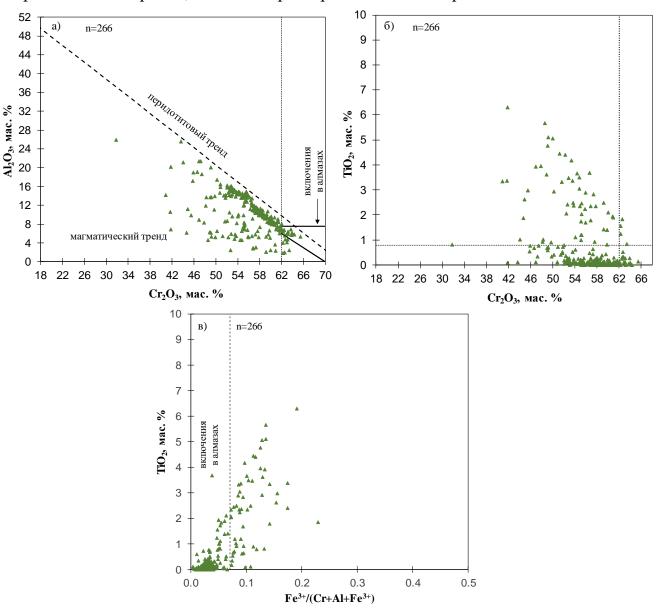


Рисунок 51. Особенности химического состава хромшпинелидов из шлиховых проб кимберлитовой трубки Космос-2: а, б – классификация хромшпинелидов по Соболев (1974), в – поле включений в алмазах по (Malkovets et al., 2017).

Среднее содержание TiO_2 в хромшпинелидах составляет 0,69 мас. % (медиана 0,12 мас. %), среднее содержание TiO_2 для включений хромшпинелида в алмазах не превышает 0,8 мас. % (по Соболев, 1974). Среднее значение $Fe^{3+}/(Cr+Al+Fe^{3+}) - 0,05$ (максимальное значение для включений в алмазах составляет 0,07). Таким образом в поле включений в алмазах по $Fe^{3+}/(Cr+Al+Fe^{3+})$ и TiO_2 попадает 196 зерен (73,7%) (рис. 5 б, в).

Содержание главных и примесных элементов для хромшпинелидов (мас. %): Cr_2O_3 31,8–65,5 (\overline{x} = 56,2, медиана = 57,1), TiO_2 нпо-6,3 (\overline{x} = 0,69, медиана = 0,12), MgO 8,14–15,1 (\overline{x} = 11,8, медиана= 11,8), Al_2O_3 1,9–25,9 (\overline{x} = 10,2, медиана = 9,8), MnO 0,21–0,44 (\overline{x} = 0,3, медиана = 0,3), FeO 13,7–36, 7 (\overline{x} = 18,6, медиана = 17,3).

6.2.5. Результаты исследования минералов спутников алмаза из шлиховых и протолочных проб кимберлитовой трубки 325 лет Якутии. Результаты исследования оливинов из шлиховых и протолочных проб кимберлитовой трубки 325 лет Якутии.

Исследовано 244 зерна оливина из шлиховых и протолочных проб, кимберлитовой трубки 325 лет Якутии. Исследование химического состава показало, что магнезиальность оливинов варьирует от 82 до 93,6 мол. %, средняя магнезиальность оливинов составляет 91,5 мол. %, а медианное значение составляет 91,8 мол. %. В область алмазной ассоциации (по Sobolev et al., 1989) попадает 89 зерен (36%).

Содержание элементов-примесей в оливинах варьирует в следующих пределах (в мас. %): NiO 0,1–0,33 (среднее содержание $\overline{x}=0,28$, медиана = 0,29), MnO 0,07–0,4 ($\overline{x}=0,1$, медиана = 0,1), Cr₂O₃ нпо–0,13 ($\overline{x}=0,02$, медиана = 0,02), TiO₂ нпо–0,09 ($\overline{x}=0,02$, медиана = 0,015), Al₂O₃ нпо-0,01 ($\overline{x}=0,01$, медиана = 0,01).

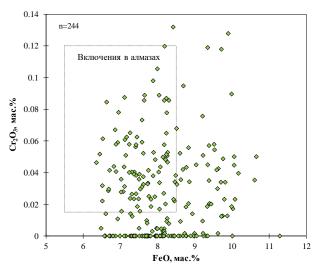


Рисунок 52. Диаграмма Cr_2O_3 -FeO с фигуративными точками составов оливинов из шлиховых проб кимберлитовой трубки 325 лет Якутии, поле включений в алмазах по Sobolev, 1989.

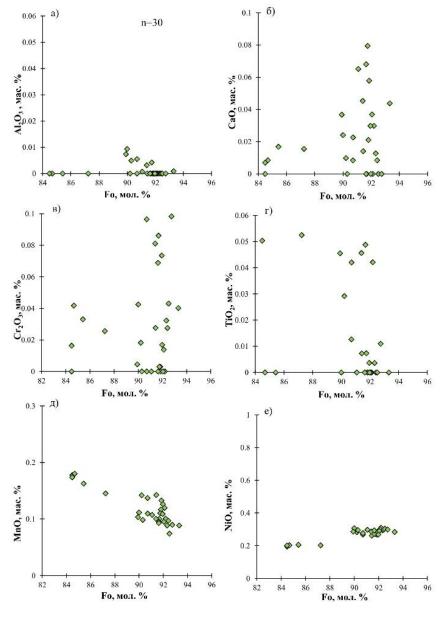


Рисунок 53. Соотношение элементов-примесей и форстеритового минала (Fo) в оливинах из шлиховых проб кимберлитовой трубки 325 лет Якутии.

Результаты исследования гранатов из шлиховых и протолочных пробкимберлитовой трубки 325 лет Якутии.

Исследовано 258 зерен граната из концентрата тяжелой фракции шлиховых и протолочных проб из кимберлитовой трубки 325 лет Якутии.

По классификации (Соболев, 1974) 104 (40,3%) гранатов относятся к лерцолитовому парагенезису, 22 (8,5%) гранатов к верлитовому, 73 (28,3%) гранатов к гарцбургит-дунитовому, из которых 13 (6,2% от перидотитовых (по Schulze, 2003), 5% от всех) гранатов попадают в область алмазной ассоциации, кроме того, 59 гранатов (22,9%) (из полей лерцолитового и верлитового парагенезисов) имеют содержания $Cr_2O_3<2$ мас. % и условно не являются перидотитовыми.

По классификации (Schulze, 2003) 211 (81,8%) гранатов относятся к перидотитовым парагенезисам, из них 107 (50,7% от перидотитовых, 41,5% от всех) гранатов лерцолитового парагенезиса, 95 (36,8% от перидотитовых, 45% от всех) гранатов гарцбургитового парагенезиса и 9 (4,3% от перидотитовых, 3,5% от всех) гранатов верлитового парагенезиса. Кроме того, 13 (5%) гранатов относятся к мегакристовым и 27 (10,5%) гранатов к эклогитовым, из которых 21 эклогитовый гранат группы А и 6 группы В (по Coleman, 1965), из них 12 (44,4% от эклогитовых, 4,7% от всех) гранатов имеют Na₂O>0,07 мас. % и относятся к алмазной фации глубинности (по Gurney, 1984).

По классификации (Ramsay, 1993) на диаграмме TiO_2 - Cr_2O_3 192 (74,4%) фигуративных точек составов гранатов попадают в область зернистых перидотитов, причем 4 из них имеют повышенные содержания TiO_2 (>0,5 мас. %), 39 (15,1%) гранатов относятся к гранатам из деформированных перидотитов, 11 (4,3%) к мегакристам, 16 (6,2%) гранатов к эклогитовому парагенезису.

По классификации (Grutter, 2004) преобладают гранаты группы G10 (гранаты гарцбургитового парагенезиса) – 84 (32,6%) зерна, из которых 20 (14,4% от

перидотитовых) относятся к группе G10D (гранаты гарцбургитового парагенезиса алмазной ассоциации). Кроме того, 66 (25,6%) граната относятся к группе G9 (гранаты лерцолитового парагенезиса), 50 (19,4%) гранатов к группе G11 (гранаты из деформированных перидотитов), 18 (7%) гранатов относятся к группе G1 (мегакристовые гранаты), 5 (1,9%) гранатов к группе G12 (гранаты верлитового парагенезиса). Также присутствуют гранаты эклогитовых групп G3 – 17 зерен и G4 – 18 зерен, из них 7 гранатов группы G3D и 6 гранатов группы G4D (эклогитовые гранаты алмазной фации метаморфизма).

Содержание главных и примесных элементов для перидотитовых (по Schulze, 2003) гранатов (мас. %): Cr_2O_3 1,03–12,56 (\overline{x} = 4,43, медиана = 4), CaO 1,33–8,41 (\overline{x} = 4.56, медиана = 4,51), TiO_2 нпо-1,3 (\overline{x} = 0,26, медиана = 0,14), MgO 17,51–23,61 (\overline{x} = 20,64, медиана = 20,67), Al_2O_3 14,21–23,52 (\overline{x} = 19,97, медиана = 20,25), MnO 0,21–0,59 (\overline{x} = 0,4, медиана = 0,39), FeO 6,16–10,32 (\overline{x} = 7,69, медиана = 7,58).

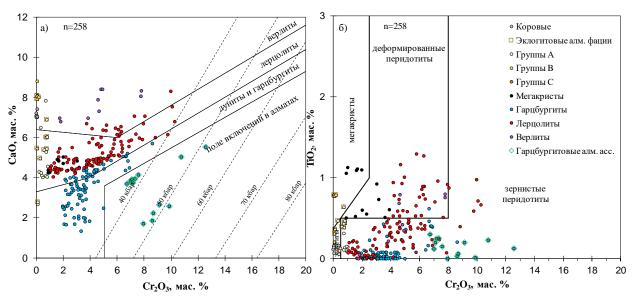


Рисунок 54. Особенности химического состава гранатов из шлиховых проб кимберлитовой трубки 325 лет Якутии. Парагенетическая ассоциация по Shulze (2003); а) классификация перидотитовых гранатов на диаграмме CaO-Cr₂O₃ по Соболев (1974), изобары Cr-в-гранате рассчитаны для геотермального градиента 38 mW/m^2 (Grutter et al., 2006); б) классификация гранатов на диаграмме TiO₂-Cr₂O₃ по Ramsay (1993).

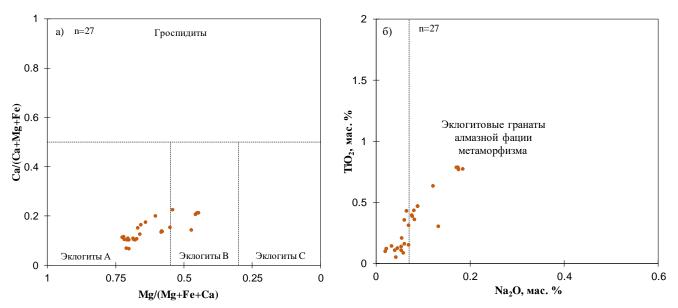


Рисунок 55. Особенности химического состава эклогитовых гранатов из шлиховых проб кимберлитовой трубки 325 лет Якутии: а) парагенетическая классификация Ca#-Mg# по (Coleman et al., 1965); б) гранаты из поля стабильности алмаза по (Grutter et al., 2004).

Результаты исследования хромшпинелидов из шлиховых и протолочных проб кимберлитовой трубки 325 лет Якутии.

Исследовано 281 зерно хромшпинелида из шлиховых и протолочных проб кимберлитовой трубки 325 лет Якутии. Обнаружено 26 хромшпинелидов (9,3%), попадающих в поле алмазной ассоциации (по Соболев, 1974). На диаграмме Cr₂O₃-Al₂O₃ преобладают хромшпинелиды, попадающие на двойной перидотитовый тренд, кроме того, присутствует группа зерен (~12% от всех хромшпинелидов), попадающих на магматический тренд и имеющих аномально низкие содержания Al₂O₃. Среднее содержание TiO₂ в хромшпинелидах составляет 1,36 мас. % (медиана 0,4 мас. %), среднее содержание TiO₂ для включений хромшпинелида в алмазах не превышает 0,8 мас. % (по Соболев, 1974). Среднее значение Fe³⁺/(Cr+Al+Fe³⁺) — 0,1 (максимальное значение для включений в алмазах составляет 0,07). Таким образом в поле включений в алмазах по Fe³⁺/(Cr+Al+Fe³⁺)

и TiO₂ попадает 150 зерен (53,4%) (рис. 5 б, в). Содержание главных и примесных элементов для хромшпинелидов (мас. %): Cr_2O_3 26,5–67,9 (\overline{x} = 53,9, медиана = 56,3), TiO_2 нпо-6,3 (\overline{x} = 1,38, медиана = 0,4), MgO 5,38–18,9 (\overline{x} = 10,6, медиана = 11,1), Al_2O_3 1,09–43,6 (\overline{x} = 7,81, медиана = 6,65), MnO 0,12–0,5 (\overline{x} = 0,3, медиана = 0,3), FeO 9,79–51, 4 (\overline{x} = 24,1, медиана = 20,3).

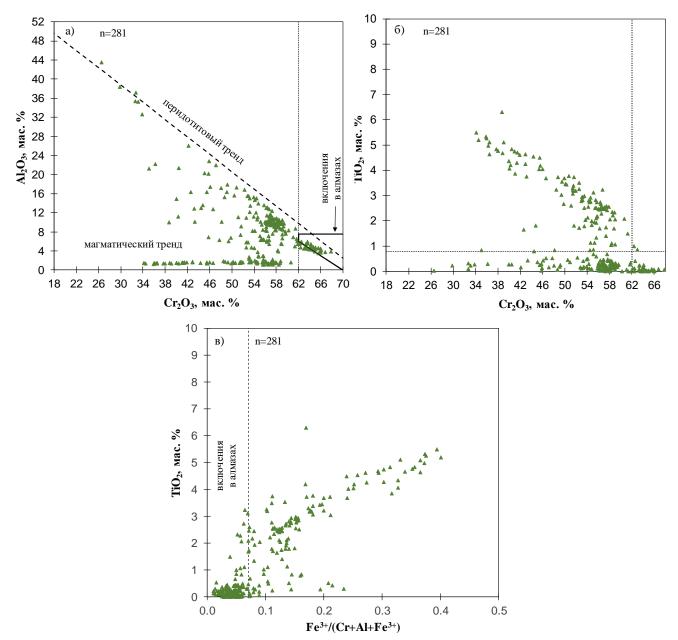


Рисунок 56. Особенности химического состава хромшпинелидов из шлиховых проб кимберлитовой трубки 325 лет Якутии: а, б – классификация хромшпинелидов по Соболев (1974), в – поле включений в алмазах по (Malkovets et al., 2017).

Результаты исследования ильменитов из шлиховых и протолочных проб кимберлитовой трубки 325 лет Якутии.

Исследовано 184 ильменита из шлиховых и протолочных проб кимберлитовой трубки 325 лет Якутии. Все исследованные зерна относятся к кимберлитовым. Содержания главных и примесных элементов (мас. %): Cr_2O_3 0,7–7,96 (\overline{x} = 3,02), TiO_2 34,0–53,4 (\overline{x} = 43,6), MgO 4,08–14,3 (\overline{x} = 6,77), Al_2O_3 0,12–0,62 (\overline{x} = 0,37), MnO 0,12–0,48 (\overline{x} = 0,22), FeO 26,4–53,02 (\overline{x} = 44,2).

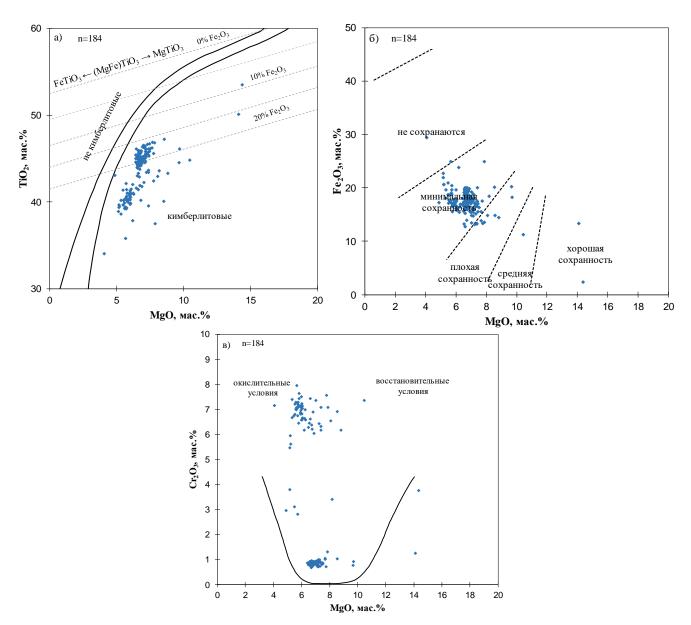


Рисунок 57. Особенности химического состава ильменитов из шлиховых проб кимберлитовой трубки 325 лет Якутии: а) генезис ильменитов по (Wyatt, 2004);

б) степень сохранности алмазов по (Nowicki, 2007); в) окислительновосстановительные условия формирования ильменитов по (Haggerty, 1975).

Степень сохранности алмазов (при их наличии) в ассоциации с данными ильменитами предполагается минимальной (по Nowicki, 2007). На параболе Хаггерти фигуративные точки составов кимберлитовых ильменитов преимущественно расположены вблизи левой ветви параболы, составы таких ильменитов указывают на преимущественно окислительные условия их формирования. Интересно отметить значительное количество ильменитов с высокими содержаниями Cr₂O₃. Около 30% ильменитов содержат Cr₂O₃> 5мас.%.

Результаты исследования клинопироксенов из шлиховых и протолочных проб кимберлитовой трубки 325 лет Якутии.

Был выполнен рентгеноспектральный микроанализ 29 зерен клинпироксена из концентрата тяжелой фракции шлиховых проб трубки 325 лет Якутии.

Содержание основных и примесных элементов в пироксенах (в мас. %): MgO 15,4–19,5 (среднее содержание $\overline{x}=17,7$, медиана = 18), CaO 17,9–19,7 ($\overline{x}=18,7$ медиана = 18,6), Cr₂O₃ 1,11–1,76 ($\overline{x}=1,48$, медиана = 1,51), TiO₂ 0,1–0,36 ($\overline{x}=0,28$, медиана = 0,28), Al₂O₃ 1,2-2,5 ($\overline{x}=1,6$, медиана = 1,5), Na₂O 1,55–3,12 ($\overline{x}=2,1$, медиана = 2,0).

Все исследованные зерна относятся к попадают в поле гранатовых перидотитов на диаграмме Al_2O_3 - Cr_2O_3 . Для 5 зерен замечены повышенные содержания натрия.

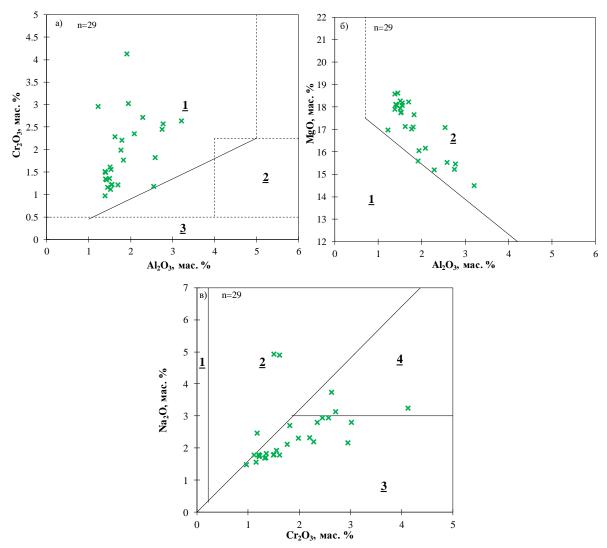


Рисунок 58. Составы клинопироксенов из шлиховых проб кимберлитовой трубки 325 лет Якутии. А. Поля:1-внутрикратонных гранатовых перидотитов, шпинелевых перидотитов, 3-эклогитов внекратонных гранатовых И мегакристовой ассоциации; Б. 1пироксены ИЗ эклогитов происхождения, 2- пироксены из перидотитов, В. Поля составов клинопироксенов из:1-эклогитов, 2-гранатовых клинопироксенитов и вебстеритов, 3-перидотитов, шпинелевых пироксенитов и ранатовых ортопироксенитов, 4-высоконатриевие клинопироксены из перидотитов.

6.2.6. Результаты исследования минералов спутников алмаза из шлиховых проб кимберлитового тела Вилюйская-2019.

Результаты исследования оливинов из шлиховых и протолочных проб кимберлитового тела Вилюйска-2019.

Исследовано 135 зерен оливина из шлиховых и протолочных проб, кимберлитовой трубки Вилюйская-2019. Исследование химического состава показало, что магнезиальность оливинов варьирует от 87,8 до 93,5 мол. %, средняя магнезиальность оливинов составляет 91,2 мол. %, а медианное значение составляет 90,9 мол. %. В область алмазной ассоциации (по Sobolev et al., 1989) попадает 33 зерна (24%).

Содержание элементов-примесей в оливинах варьирует в следующих пределах (в мас. %): NiO 0,1–0,37 (среднее содержание $\overline{x}=0,28$, медиана = 0,29), MnO 0,07–0,17 ($\overline{x}=0,11$, медиана = 0,11), Cr₂O₃ нпо–0,18 ($\overline{x}=0,04$, медиана = 0,03), TiO₂ нпо–0,09 ($\overline{x}=0,02$, медиана = 0,02), Al₂O₃ нпо–0,03 ($\overline{x}=0,01$, медиана = 0,01).

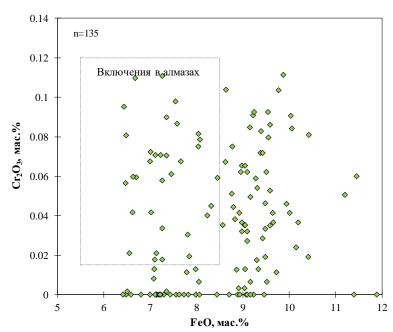


Рисунок 59. Диаграмма Cr_2O_3 -FeO с фигуративными точками составов оливинов из шлиховых проб кимберлитовой трубки Вилюйская-2019, поле включений в алмазах по Sobolev, 1989.

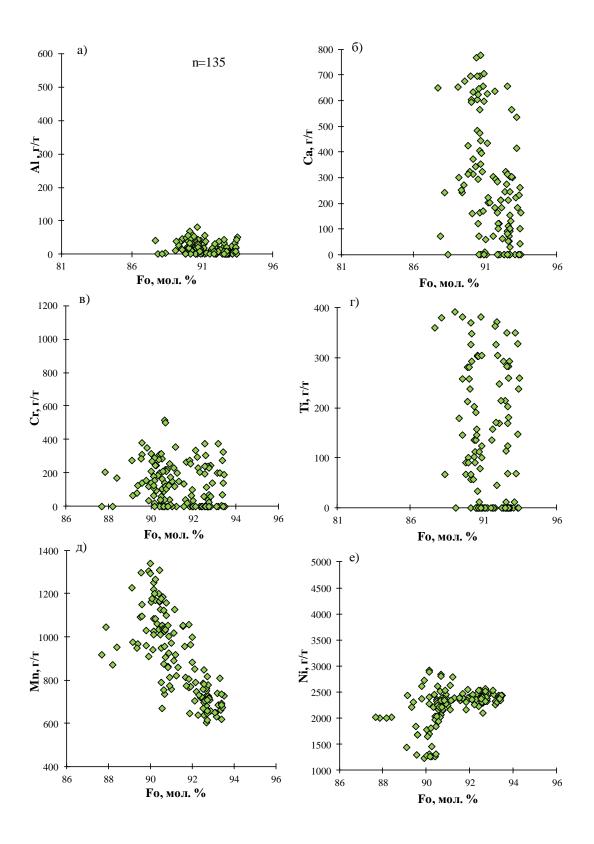


Рисунок 60. Соотношение элементов-примесей и форстеритового минала (Fo) в оливинах из шлиховых проб кимберлитовой трубки Вилюйская-2019.

Результаты исследования гранатов из шлиховых и протолочных проб кимберлитового тела Вилюйска-2019.

Исследовано 111 зерен граната из концентрата тяжелой фракции шлиховых и протолочных проб кимберлитовой трубки Вилюйская-2019.

По классификации (Соболев, 1974) 64 (57,7%) граната относятся к лерцолитовому парагенезису, 8 (7,2%) гранатов к верлитовому, 30 (27%) гранатов к гарцбургитдунитовому, из которых 2 (2% от перидотитовых (по Schulze, 2003), 1,8% от всех) гранатов попадают в область алмазной ассоциации, кроме того, 9 гранатов (8,1%) (из полей лерцолитового и верлитового парагенезисов) имеют содержания $Cr_2O_3<2$ мас. % и условно не являются перидотитовыми.

По классификации (Schulze, 2003) 93 (83,8%) граната относятся к перидотитовым парагенезисам, из них 51 (54,8% от перидотитовых, 45,9% от всех) гранат лерцолитового парагенезиса, 40 (43% от перидотитовых, 36% от всех) гранатов гарцбургитового парагенезиса и 2 (2,2% от перидотитовых, 1,8% от всех) граната верлитового парагенезиса. Кроме того, 18 (16,2%) гранатов относятся к мегакристовым. Эклогитовые гранаты отсутствуют.

По классификации (Ramsay, 1993) на диаграмме TiO_2 - Cr_2O_3 44 (39,6%) фигуративных точки составов гранатов попадают в область зернистых перидотитов, причем 5 из них имеют повышенные содержания TiO_2 (>0,5 мас. %), 59 (53,2%) гранатов относятся к гранатам из деформированных перидотитов, 8 (7,2%) к мегакристам.

По классификации (Grutter, 2004) преобладают гранаты группы G11 (гранаты из деформированных перидотитов) – 58 (52,3%) зерен. Кроме того, 3 (2,7%) граната относятся к группе G9 (гранаты лерцолитового парагенезиса), 32 (28,8%) гранатов к группе G10 (гранаты гарцбургитового парагенезиса) из которых 2 (2,2% от перидотитовых) относятся к группе G10D (гранаты гарцбургитового парагенезиса алмазной ассоциации), 18 (16,2%) гранатов относятся к группе G1 (мегакристовые гранаты).

Содержание главных и примесных элементов для перидотитовых (по Schulze, 2003) гранатов (мас. %): Cr_2O_3 2,24–10,08 (\overline{x} = 5,7, медиана = 5,42), CaO 3,26–8,67 (\overline{x} = 5,18, медиана = 5,06), TiO_2 нпо-1,35 (\overline{x} = 0,53, медиана = 0,57), MgO 17,75–21,91 (\overline{x} = 20,41, медиана= 20,45), Al_2O_3 13,68–22,25 (\overline{x} = 18,56, медиана = 18,71), MnO 0,25–0,53 (\overline{x} =0,36, медиана = 0,36), PaO 5,83–8,96 (\overline{x} = 7,17, медиана = 7,06).

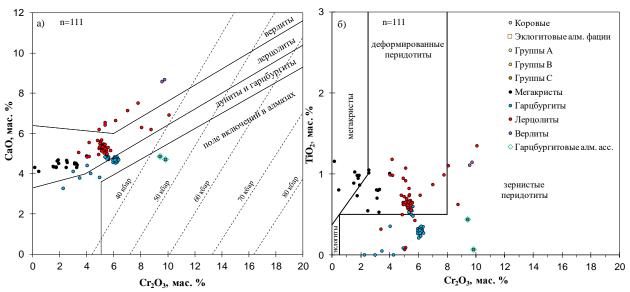


Рисунок 61. Особенности химического состава гранатов из шлиховых проб кимберлитовой трубки Вилюйская-2019. Парагенетическая ассоциация по Shulze (2003); а) классификация перидотитовых гранатов на диаграмме CaO-Cr₂O₃ по Соболев (1974), изобары Cr-в-гранате рассчитаны для геотермального градиента 38 mW/m^2 (Grutter et al., 2006); б) классификация гранатов на диаграмме TiO₂-Cr₂O₃ по Ramsay (1993).

Результаты исследования хромшпинелидов из шлиховых и протолочных проб кимберлитового тела Вилюйска-2019.

Исследовано 329 зерен хромшпинелида из шлиховых и протолочных проб кимберлитовой трубки Вилюйская-2019. Обнаружено 7 хромшпинелидов (2,1%), попадающих в поле алмазной ассоциации (по Соболев, 1974). На диаграмме Cr₂O₃-Al₂O₃ преобладают хромшпинелиды, попадающие на двойной перидотитовый тренд. Среднее содержание TiO₂ в хромшпинелидах составляет 1,84 мас. % (медиана 0,64 мас. %), среднее содержание TiO₂ для включений хромшпинелида в алмазах не превышает 0,8 мас. % (по Соболев, 1974). Среднее значение

 $Fe^{3+}/(Cr+Al+Fe^{3+})$ — 0,07 (максимальное значение для включений в алмазах составляет 0,07). Таким образом в поле включений в алмазах по $Fe^{3+}/(Cr+Al+Fe^{3+})$ и TiO_2 попадает 188 зерен (57,1%) (рис. 5 б, в). Содержание главных и примесных элементов для хромшпинелидов (мас. %): Cr_2O_3 21,5–64,5 (\overline{x} = 53,3, медиана = 53,7), TiO_2 нпо-7,8 (\overline{x} = 1,84, медиана = 0,64), MgO 8,82–20,6 (\overline{x} = 12,5, медиана = 12,5), Al_2O_3 1,56–45,9 (\overline{x} = 9,86, медиана = 9,29), MnO 0,12–0,42 (\overline{x} = 0,3, медиана = 0,3), FeO 8,95–38, 7 (\overline{x} = 20,2, медиана = 18,9).

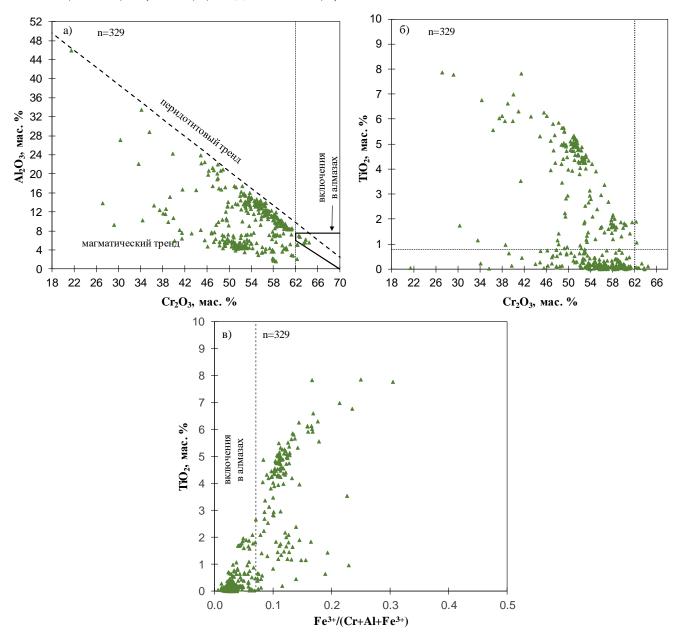


Рисунок 62. Особенности химического состава хромшпинелидов из шлиховых проб кимберлитовой трубки Вилюйская-2019: а, б — классификация хромшпинелидов по Соболев (1974), в — поле включений в алмазах по (Malkovets et al., 2017).

Результаты исследования ильменитов из шлиховых и протолочных проб кимберлитового тела Вилюйска-2019.

Исследовано 8 ильменита из шлиховых и протолочных проб кимберлитовой трубки Вилюйская-2019. Из них 2 отнесены к не кимберлитовым. Содержания главных и примесных элементов (мас. %): Cr_2O_3 0,05–1,11 (\overline{x} = 0,44), TiO_2 43,9–50,9 (\overline{x} = 47,7), MgO 1,28–10,6 (\overline{x} = 7,5), Al_2O_3 0,04–0,95 (\overline{x} = 0,5), MnO 0,05–0,25 (\overline{x} = 0,19), FeO 34,7–53,3 (\overline{x} = 41,9).

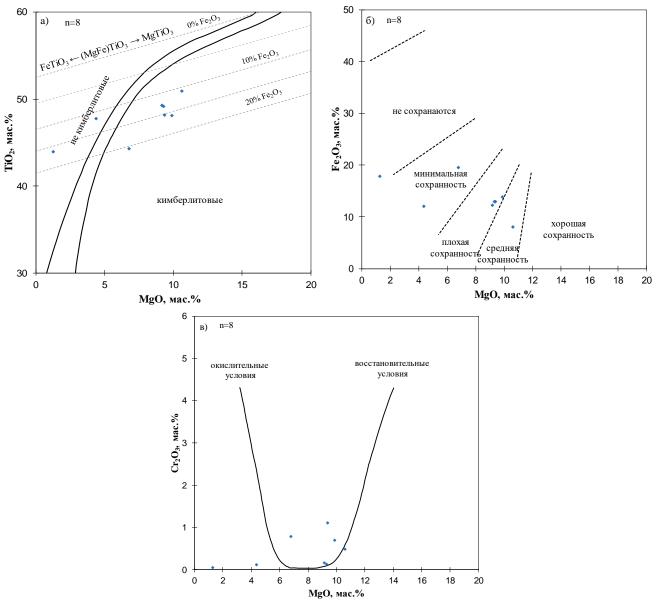


Рисунок 63. Особенности химического состава ильменитов из шлиховых проб кимберлитовой трубки Вилюйская-2019: а) генезис ильменитов по (Wyatt, 2004); б) степень сохранности алмазов по (Nowicki, 2007); в) окислительновосстановительные условия формирования ильменитов по (Haggerty, 1975).

Степень сохранности алмазов (при их наличии) в ассоциации с данными ильменитами предполагается минимальной (по Nowicki, 2007). На параболе Хаггерти фигуративные точки составов кимберлитовых ильменитов преимущественно расположены вблизи левой ветви параболы, составы таких указывают на преимущественно ильменитов окислительные условия формирования. Интересно отметить значительное количество ильменитов с высокими содержаниями Ст₂О₃. Около 30% ильменитов содержат Ст₂О₃> 5мас.%.

6.2.7. Результаты исследования минералов спутников алмаза из протолочных проб кимберлитового тела Жила-1.

Результаты исследования гранатов из протолочных проб кимберлитового тела Жила-1.

Исследовано 45 зерен граната из концентрата тяжелой фракции шлиховых и протолочных проб из кимберлитового тела Жила-1.

По классификации (Соболев, 1974) 13 (28,9%) гранатов относятся к лерцолитовому парагенезису, 3 (6,7%) гранатов к верлитовому, 11 (24,4%) гранатов к гарцбургитдунитовому, из которых 2 (7,4% от перидотитовых (по Schulze, 2003), 4,4% от всех) гранатов попадают в область алмазной ассоциации, кроме того, 18 гранатов (40%) (из полей лерцолитового и верлитового парагенезисов) имеют содержания $Cr_2O_3<2$ мас. % и условно не являются перидотитовыми.

По классификации (Schulze, 2003) 35 (77,8%) гранатов относятся к перидотитовым парагенезисам, из них 24 (68,6% от перидотитовых, 53,3% от всех) гранатов лерцолитового парагенезиса, 11 (31,4% от перидотитовых, 24,4% от всех) гранатов гарцбургитового парагенезиса. Кроме того, 2 (4,4%) гранатов относятся к мегакристовым и 8 (17,8%) гранатов к эклогитовым, из которых 6 эклогитовый гранат группы А и 2 группы В (по Coleman, 1965), из них 6 (75% от эклогитовых, 13,3% от всех) гранатов имеют Na₂O>0,07 мас. % и относятся к алмазной фации глубинности (по Gurney, 1984).

По классификации (Ramsay, 1993) на диаграмме TiO_2 - Cr_2O_3 39 (86,7%) фигуративных точек составов гранатов попадают в область зернистых

перидотитов, причем 1 из них имеет повышенные содержания TiO_2 (>0,5 мас. %), 2 (4,4%) гранатов относятся к гранатам из деформированных перидотитов, 1 (2,2%) к мегакристам, 3 (6,7%) граната к эклогитовому парагенезису.

По классификации (Grutter, 2004) преобладают гранаты группы G9 (гранаты лерцолитового парагенезиса) – 17 (37,8%) зерен. Кроме того, 11 (24,4%) гранатов относятся к группе G10 (гранаты гарцбургитового парагенезиса), из которых 1 (6,7% от перидотитовых) относятся к группе G10D (гранаты гарцбургитового парагенезиса алмазной ассоциации), 4 (8,9%) граната к группе G11 (гранаты из деформированных перидотитов), 5 (11,1%) гранатов относятся к группе G1 (мегакристовые гранаты). Также присутствуют гранаты эклогитовых групп G4 – 8 зерен, из них 6 гранатов группы G4D (эклогитовые гранаты алмазной фации метаморфизма).

Содержание главных и примесных элементов для перидотитовых (по Schulze, 2003) гранатов (мас. %): Cr_2O_3 1,19–10,02 (\overline{x} = 3,59, медиана = 3,18), CaO 1,39–7,46 (\overline{x} = 4,56, медиана = 4,41), TiO_2 нпо-0,92 (\overline{x} = 0,2, медиана = 0,13), MgO 18,84–23,27 (\overline{x} = 20,49, медиана= 20,14), Al_2O_3 15,78–23,64 (\overline{x} = 20,83, медиана = 21,37), MnO 0,31–0,56 (\overline{x} =0,41, медиана = 0,43), FeO 5,9–10,48 (\overline{x} = 7,95, медиана = 7,97).

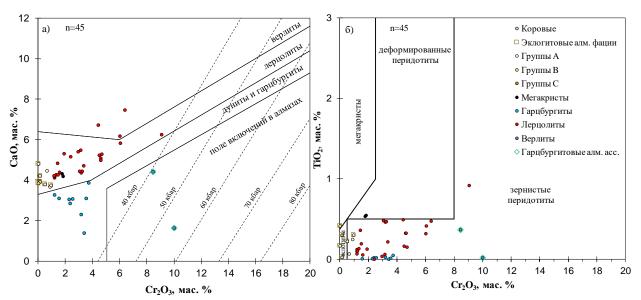


Рисунок 64. Особенности химического состава гранатов из шлиховых проб кимберлитового тела Жила-1. Парагенетическая ассоциация по Shulze (2003); а) классификация перидотитовых гранатов на диаграмме CaO-Cr₂O₃ по Соболев (1974), изобары Cr-в-гранате рассчитаны для геотермального градиента 38 mW/m² (Grutter et al., 2006); б) классификация гранатов на диаграмме TiO_2 -Cr₂O₃ по Ramsay (1993).

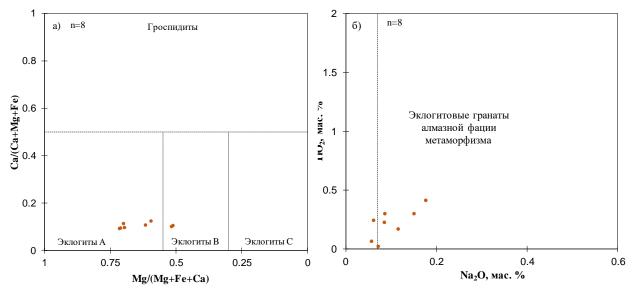


Рисунок 65. Особенности химического состава эклогитовых гранатов из шлиховых проб кимберлитового тела Жила-1: а) парагенетическая классификация Са#-Мg# по (Coleman et al., 1965); б) гранаты из поля стабильности алмаза по (Grutter et al., 2004).

Результаты исследования хромшпинелидов из протолочных проб кимберлитового тела Жила-1.

Исследовано 51 зерно хромшпинелида из шлиховых и протолочных проб кимберлитового тела Жила-1. Обнаружено 6 хромшпинелидов (11.7%),попадающих в поле алмазной ассоциации (по Соболев, 1974). На диаграмме Сг₂О₃-Al₂O₃ преобладают хромшпинелиды, попадающие на двойной перидотитовый тренд. Однако около ~35% фигуративных точек составов зерен лежат на магматическом тренде, для них характерны аномально низкие содержания Al₂O₃ (<2мас.%), а также повышенные содержания TiO_2 и Fe^{3+} . Среднее содержание TiO_2 в хромшпинелидах составляет 1,61 мас. % (медиана 0,75 мас. %), среднее содержание ТіО2 для включений хромшпинелида в алмазах не превышает 0,8 мас. % (по Соболев, 1974). Среднее значение $Fe^{3+}/(Cr+Al+Fe^{3+}) - 0.11$ (максимальное значение для включений в алмазах составляет 0,07). Таким образом в поле включений в алмазах по $Fe^{3+}/(Cr+Al+Fe^{3+})$ и TiO_2 попадает 19 зерен (37,2%) (рис. 5 б, в). Содержание главных и примесных элементов для хромшпинелидов (мас. %): Cr_2O_3 23,8–65,4 (\overline{x} = 50,6, медиана = 53,2), TiO_2 нпо-5,34 (\overline{x} = 1,61, медиана = 0,75), MgO 5,4–17,4 (\overline{x} = 10,5, медиана= 9,67), Al₂O₃ 1,06–41,9 (\overline{x} = 9,34, медиана = 4,67), MnO 0,15–0,49 (\overline{x} = 0,35, медиана = 0,36), FeO 11,74–48,3 (\overline{x} = 25,4, медиана = 25,3).

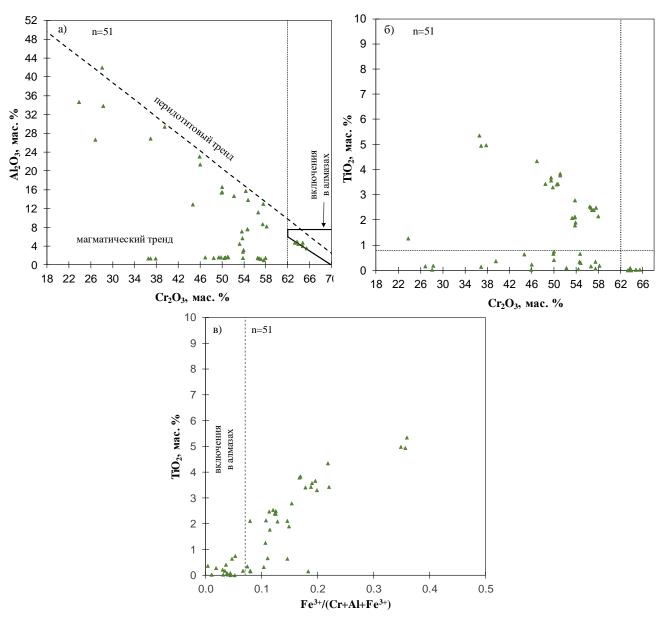


Рисунок 66. Особенности химического состава хромшпинелидов из шлиховых проб кимберлитового тела Жила-1: а, б – классификация хромшпинелидов по Соболев (1974), в – поле включений в алмазах по (Malkovets et al., 2017).

Результаты исследования ильменитов из протолочных проб кимберлитового тела Жила-1.

Исследовано 35 ильменитов из шлиховых и протолочных проб кимберлитового тела Жила-1. Все они отнесены к кимбелритовым. Содержания главных и примесных элементов (мас. %): Cr_2O_3 0,69–6,92 (\overline{x} = 1,92), TiO_2 39,6–54,3 (\overline{x} = 45,5), MgO 5,43–14,2 (\overline{x} = 7,4), Al_2O_3 0,15–0,68 (\overline{x} = 0,45), MnO 0,2–0,27 (\overline{x} = 0,23), FeO 26,6–48,2 (\overline{x} = 42,6).

Степень сохранности алмазов (при их наличии) в ассоциации с данными ильменитами предполагается от минимальной до плохой (преобладают зерна из поля минимальной сохранности, по Nowicki, 2007). На параболе Хаггерти фигуративные точки составов ильменитов преимущественно расположены вблизи левой ветви параболы, составы таких ильменитов указывают на окислительные условия их формирования. Можно отметить группу ильменитов с высокими содержаниями Cr_2O_3 . Около 25% ильменитов содержат Cr_2O_3 > 5мас.%.

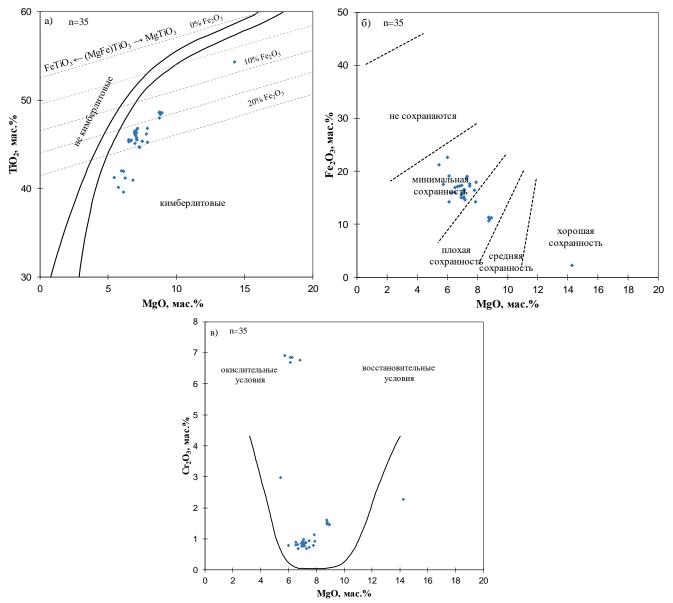


Рисунок 67. Особенности химического состава ильменитов из шлиховых проб кимберлитового тела Жила-1: а) генезис ильменитов по (Wyatt, 2004); б) степень сохранности алмазов по (Nowicki, 2007); в) окислительно-восстановительные условия формирования ильменитов по (Haggerty, 1975).

6.2.8. Результаты исследования минералов спутников алмаза из шлиховых и протолочных проб кимберлитового тела Жила-2.

Результаты исследования гранатов из шлиховых и протолочных проб кимберлитового тела Жила-2.

Исследовано 4 зерна граната из концентрата тяжелой фракции шлиховых и протолочных проб из кимберлитового тела Жила-2.

По классификации (Соболев, 1974) 1 гранат относятся к лерцолитовому парагенезису, 3 к гарцбургит-дунитовому, гранаты алмазной ассоциации отсутствуют. По классификации (Schulze, 2003) все 4 граната относятся к перидотитовым парагенезисам, из них 1 лерцолитового парагенезиса и 3 гарцбургитового парагенезиса. По классификации (Ramsay, 1993) на диаграмме TiO₂-Cr₂O₃ 3 фигуративных точки составов гранатов попадают в область зернистых перидотитов, 1 гранат относится к гранатам из деформированных перидотитов. По классификации (Grutter, 2004) 3 граната группы G10 (гранаты гарцбургитового парагенезиса), 1 гранат группы G11 (гранаты из деформированных перидотитов).

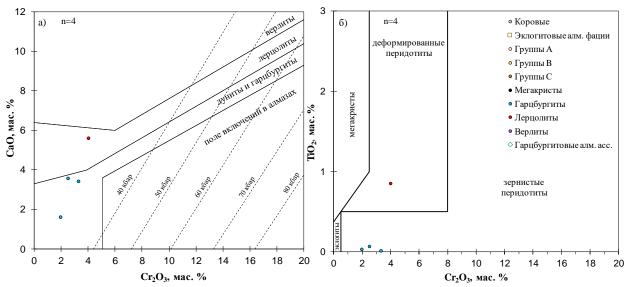


Рисунок 68. Особенности химического состава гранатов из шлиховых проб кимберлитового тела Жила-2. Парагенетическая ассоциация по Shulze (2003); а) классификация перидотитовых гранатов на диаграмме CaO-Cr₂O₃ по Соболев (1974), изобары Cr-в-гранате рассчитаны для геотермального градиента 38 mW/m^2 (Grutter et al., 2006); б) классификация гранатов на диаграмме TiO₂-Cr₂O₃ по Ramsay (1993).

Результаты исследования хромшпинелидов из шлиховых и протолочных проб кимберлитового тела Жила-2.

Исследовано 62 зерна хромшпинелида из шлиховых и протолочных проб кимберлитового тела Жила-2. Хромшпинелидов, попадающих в поле алмазной ассоциации (по Соболев, 1974) не обнаружено. На диаграмме Cr_2O_3 - Al_2O_3 преобладают хромшпинелиды, попадающие на двойной перидотитовый тренд. Среднее содержание TiO_2 в хромшпинелидах составляет 2,56 мас. % (медиана 2,88 мас. %), среднее содержание TiO_2 для включений хромшпинелида в алмазах не превышает 0,8 мас. % (по Соболев, 1974). Среднее значение $Fe^{3+}/(Cr+Al+Fe^{3+}) - 0,08$ (максимальное значение для включений в алмазах составляет 0,07). Таким образом в поле включений в алмазах по $Fe^{3+}/(Cr+Al+Fe^{3+})$ и TiO_2 попадает 26 зерен (41,9%) (рис. 5 б, в).

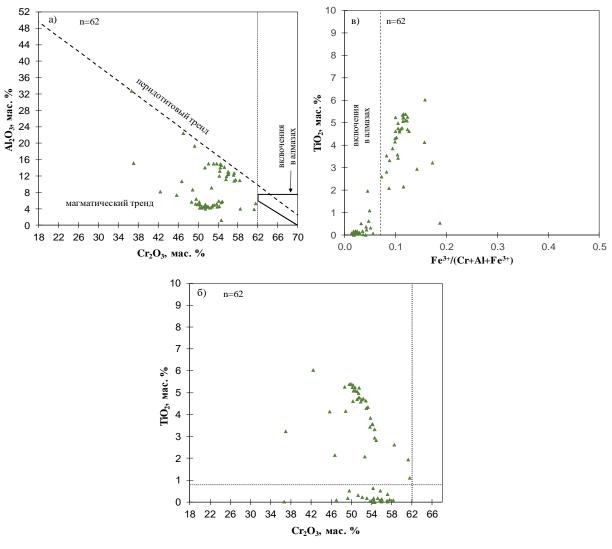


Рисунок 69. Особенности химического состава хромшпинелидов из шлиховых проб кимберлитового тела Жила-2: а, б — классификация хромшпинелидов по Соболев (1974), в — поле включений в алмазах по (Malkovets et al., 2017).

Содержание главных и примесных элементов для хромшпинелидов (мас. %): Cr_2O_3 36,6–61,5 (\overline{x} = 52,5, медиана = 52,9), TiO_2 нпо-6,03 (\overline{x} = 2,56, медиана = 2,88), MgO 8,29–15,5 (\overline{x} = 12,5, медиана= 12,6), Al_2O_3 1,21–32,8 (\overline{x} = 9,03, медиана = 6,14), MnO 0,21–0,47 (\overline{x} = 0,29, медиана = 0,29), FeO 12,6–31,8 (\overline{x} = 20,9, медиана = 22,2).

6.2.9. Результаты исследования минералов спутников алмаза из шлиховых и протолочных проб кимберлитового тела 1/15.

Результаты исследования гранатов из шлиховых и протолочных проб кимберлитового тела 1/15.

Исследовано 4 зерен граната из концентрата тяжелой фракции шлиховых и протолочных проб из кимберлитовго тела 1/15.

По классификации (Соболев, 1974) 1 гранат относятся к лерцолитовому парагенезису, 3 к гарцбургит-дунитовому, гранаты алмазной ассоциации отсутствуют. По классификации (Schulze, 2003) все 4 граната относятся к гарцбургитовому парагенезису. По классификации (Ramsay, 1993) на диаграмме ТіО₂-Сг₂О₃ фигуративных точки составов гранатов попадают в область зернистых перидотитов. По классификации (Grutter, 2004) 3 граната группы G10 (гранаты гарцбургитового парагенезиса), 1 гранат группы G11 (гранаты из деформированных перидотитов).

Результаты исследования хромшпинелидов из шлиховых и протолочных проб кимберлитового тела 1/15.

Исследовано 147 зерен хромшпинелида из шлиховых и протолочных проб кимберлитового тела 1/15. Обнаружено 7 хромшпинелидов (4,7%) попадающих в поле алмазной ассоциации (по Соболев, 1974). На диаграмме Cr₂O₃-Al₂O₃

преобладают хромшпинелиды, попадающие на двойной перидотитовый тренд. Среднее содержание TiO_2 в хромшпинелидах составляет 1,22 мас. % (медиана 0,2 мас. %), среднее содержание TiO_2 для включений хромшпинелида в алмазах не превышает 0,8 мас. % (по Соболев, 1974). Среднее значение $Fe^{3+}/(Cr+Al+Fe^{3+}) - 0,06$ (максимальное значение для включений в алмазах составляет 0,07). Таким образом в поле включений в алмазах по $Fe^{3+}/(Cr+Al+Fe^{3+})$ и TiO_2 попадает 95 зерен (64,6%) (рис. 5 б, в). Содержание главных и примесных элементов для хромшпинелидов (мас. %): Cr_2O_3 31,7–65,2 ($\overline{x}=54,5$, медиана = 55,3), TiO_2 нпо-5,02 ($\overline{x}=1,22$, медиана = 0,2), MgO 9,02–17,8 ($\overline{x}=12,5$, медиана = 12,3), Al_2O_3 2,24–36,4 ($\overline{x}=10,3$, медиана = 9,25), MnO 0,16–0,42 ($\overline{x}=0,29$, медиана = 0,29), FeO 11,4–33,5 ($\overline{x}=19,1$, медиана = 17,4).

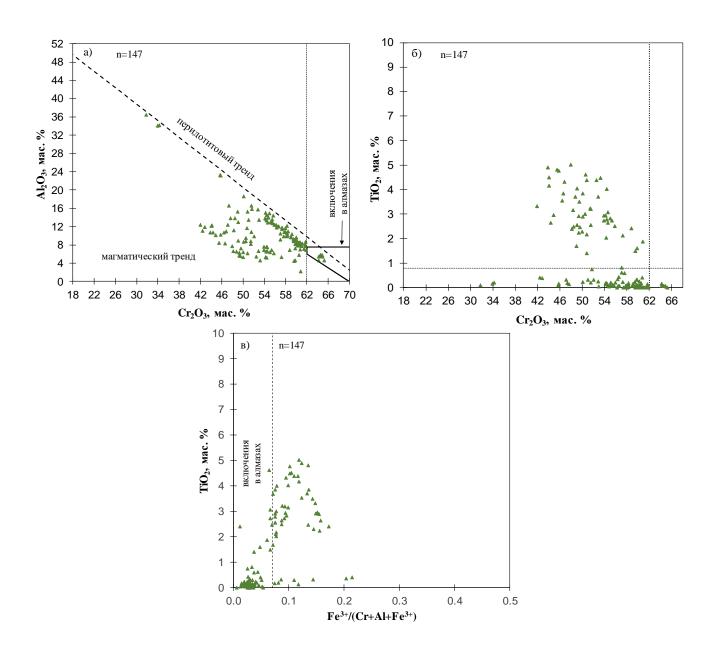


Рисунок 70. Особенности химического состава хромшпинелидов из шлиховых проб кимберлитового тела 1/15: а, б — классификация хромшпинелидов по Соболев (1974), в — поле включений в алмазах по (Malkovets et al., 2017).

6.2.10. Результаты исследования минералов спутников алмаза из шлиховых и протолочных проб кимберлитового тела 1/94.

Результаты исследования оливинов из шлиховых и протолочных проб кимберлитового тела 1/94.

Исследовано 57 зерен оливина из шлиховых и протолочных проб, кимберлитового тела 1/94. Исследование химического состава показало, что магнезиальность оливинов варьирует от 87,5 до 93,2 мол. %, средняя

магнезиальность оливинов составляет 91,4 мол. %, а медианное значение составляет 91,6 мол. %. В область алмазной ассоциации (по Sobolev et al., 1989) попадает 19 зерен (33,3%).

Содержание элементов-примесей в оливинах варьирует в следующих пределах (в мас. %): NiO 0,22–0,37 (среднее содержание $\overline{x}=0,29$, медиана = 0,29), MnO 0,07–0,16 ($\overline{x}=0,11$, медиана = 0,11), Cr₂O₃ нпо–0,17 ($\overline{x}=0,02$, медиана = 0,02), TiO₂ нпо–0,09 ($\overline{x}=0,02$), Al₂O₃ нпо-0,21 ($\overline{x}=0,05$, медиана = 0,03).

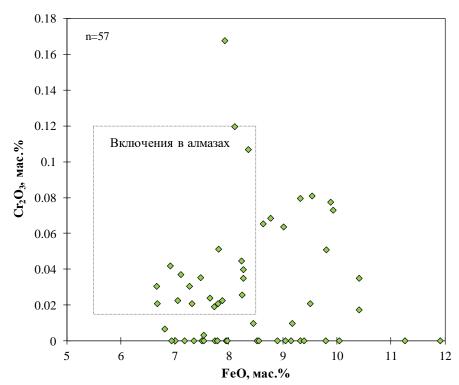


Рисунок 71. Диаграмма Cr_2O_3 -FeO с фигуративными точками составов оливинов из шлиховых про кимберлитового тела 1/94, поле включений в алмазах по Sobolev, 1989.

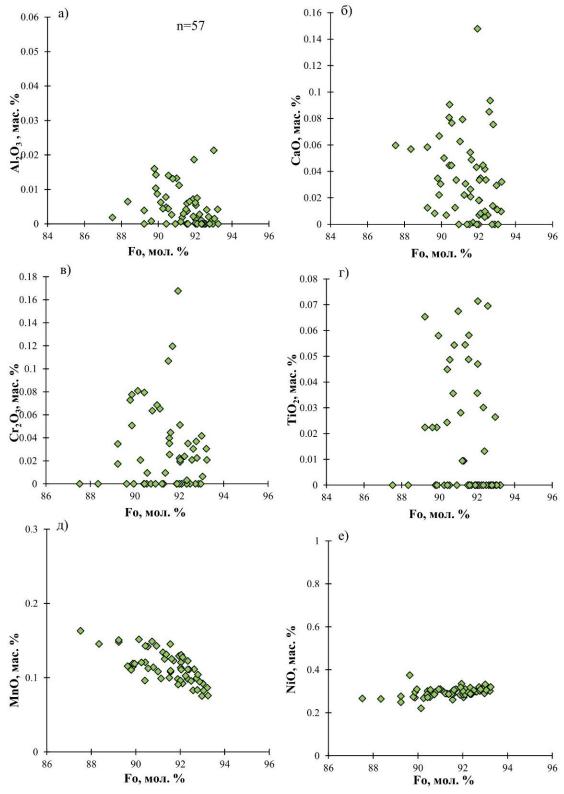


Рисунок 72. Соотношение элементов-примесей и форстеритового минала (Fo) в оливинах из шлиховых проб кимберлитового тела 1/94.

Результаты исследования гранатов из шлиховых и протолочных проб кимберлитового тела 1/94.

Исследовано 3 зерна граната из концентрата тяжелой фракции шлиховых и протолочных проб из кимберлитовго тела 1/94.

По классификациям (Соболев, 1974; Schulze, 2003; Grutter, 2004) все 3 граната относятся к гарцбургит-дунитовому парагенезису, гранаты алмазной ассоциации отсутствуют. По классификации (Ramsay, 1993) на диаграмме TiO₂-Cr₂O₃ фигуративных точки составов гранатов попадают в область зернистых перидотитов.

Результаты исследования хромшпинелидов из шлиховых и протолочных проб кимберлитового тела 1/94.

Исследовано 148 зерен хромшпинелида из шлиховых и протолочных проб кимберлитового тела 1/94. Обнаружено 11 хромшпинелидов (7,4%), попадающих в поле алмазной ассоциации (по Соболев, 1974). На диаграмме Cr_2O_3 - Al_2O_3 преобладают хромшпинелиды, попадающие на двойной перидотитовый тренд. Среднее содержание TiO_2 в хромшпинелидах составляет 1,04 мас. % (медиана 0,14 мас. %), среднее содержание TiO_2 для включений хромшпинелида в алмазах не превышает 0,8 мас. % (по Соболев, 1974). Среднее значение $Fe^{3+}/(Cr+Al+Fe^{3+}) - 0,05$ (максимальное значение для включений в алмазах составляет 0,07). Таким образом в поле включений в алмазах по $Fe^{3+}/(Cr+Al+Fe^{3+})$ и TiO_2 попадает 108 зерен (72,9%) (рис. 5 б, в). Содержание главных и примесных элементов для хромшпинелидов (мас. %): Cr_2O_3 36,8–64,8 (\overline{x} = 55,8, медиана = 56,5), TiO_2 нпо-5,2 (\overline{x} = 1,04, медиана = 0,14), MgO 8,82–16,4 (\overline{x} = 12,4, медиана= 12,1), Al_2O_3 3,49–22,0

 $(\overline{x}=10.2, \text{медиана}=9.9), \text{MnO } 0.13-0.39 (\overline{x}=0.29, \text{медиана}=0.29), \text{FeO } 14.3-34.1 (\overline{x}=18.2, \text{медиана}=17.2).$

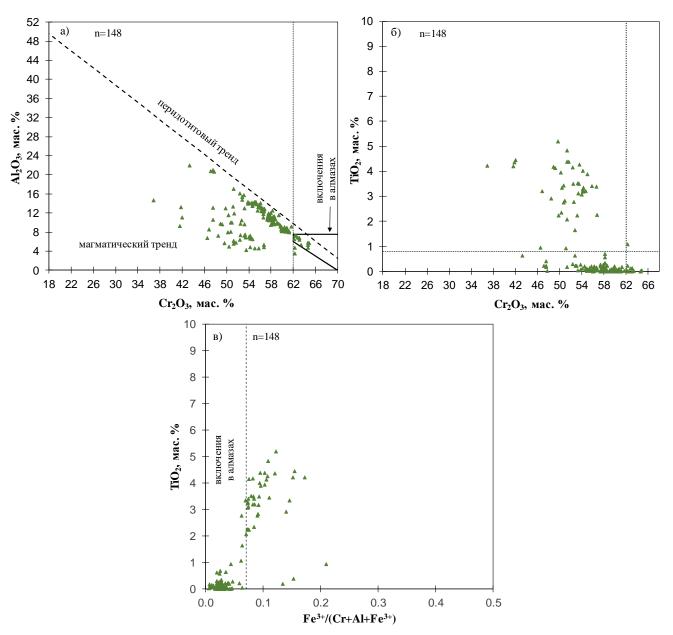


Рисунок 73. Особенности химического состава хромшпинелидов шлиховых проб кимберлитового тела 1/94: а, б – классификация хромшпинелидов по Соболев (1974), в – поле включений в алмазах по (Malkovets et al., 2017).

6.2.11. Результаты исследования минералов спутников алмаза из шлиховых и протолочных проб кимберлитового тела 3/15.

Результаты исследования гранатов из шлиховых и протолочных проб кимберлитового тела 3/15. Исследовано 31 зерно граната из концентрата тяжелой фракции шлиховых и протолочных проб кимберлитового тела 3/15.

По классификации (Соболев, 1974) все гранаты попадают в область лерцолитового парагенезиса, при этом 11 гранатов имеют содержание $Cr_2O_3 < 2$ мас.%., гранаты алмазной ассоциации отсутствуют.

По классификации (Schulze, 2003) 14 гранатов относятся к перидотитовым парагенезисам, из них 11 лерцолитового парагенезиса, 3 гарцбургитового парагенезиса. Кроме того, 17 гранатов относятся к мегакристовым.

По классификации (Ramsay, 1993) на диаграмме TiO_2 - Cr_2O_3 8 фигуративных точек составов гранатов попадают в область зернистых перидотитов, 12 в область деформированных перидотитов (TiO_2 >0,5 мас. %).

По классификации (Grutter, 2004) преобладают гранаты группы G1 (мегакристовые гранаты) – 18 зерен (58,1%), 6 гранатов (19,4%) относятся к группе G9 (лерцолитовые гранаты), 7 гранатов (22,6%) к группе G11 (гранаты из катаклазированных перидотитов).

Содержание главных и примесных элементов для перидотитовых (по Schulze, 2003) гранатов (мас. %): Cr_2O_3 3,37–4,91 (\overline{x} = 3,95, медиана = 4,0), CaO 4,39–5,44 (\overline{x} = 4,69, медиана = 4,65), TiO_2 0,2-0,94 (\overline{x} = 0,5, медиана = 0,4), MgO 20,3–21,7 (\overline{x} = 20,88, медиана = 20,85), Al_2O_3 18,3–20,2 (\overline{x} = 19,3, медиана = 19,4), MnO 0,32–0,37 (\overline{x} =0,34, медиана = 0,33), FeO 6,84–8,91 (\overline{x} = 8,04, медиана = 8,08).

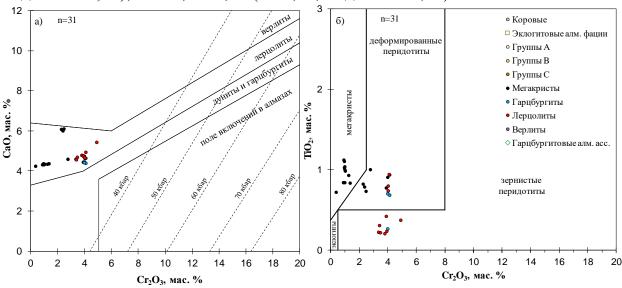


Рисунок 74. Особенности химического состава гранатов из шлиховых проб кимберлитового тела 3/15. Парагенетическая ассоциация по Shulze (2003); а) классификация перидотитовых гранатов на диаграмме CaO-Cr₂O₃ по Соболев (1974), изобары Cr-в-гранате рассчитаны для геотермального градиента 38 mW/m² (Grutter et al., 2006); б) классификация гранатов на диаграмме TiO₂-Cr₂O₃ по Ramsay (1993).

Результаты исследования хромшпинелидов из шлиховых и протолочных проб кимберлитового тела 3/15.

Исследовано 168 зерен хромшпинелида из шлиховых и протолочных проб кимберлитового тела 3/15. Обнаружен 1 хромшпинелид (0,6%), попадающий в поле алмазной ассоциации (по Соболев, 1974). На диаграмме Cr_2O_3 - Al_2O_3 преобладают хромшпинелиды, попадающие на двойной перидотитовый тренд. Среднее содержание TiO_2 в хромшпинелидах составляет 2,53 мас. % (медиана 2,49 мас. %), среднее содержание TiO_2 для включений хромшпинелида в алмазах не превышает 0,8 мас. % (по Соболев, 1974). Среднее значение $Fe^{3+}/(Cr+Al+Fe^{3+}) - 0,08$ (максимальное значение для включений в алмазах составляет 0,07). Таким образом в поле включений в алмазах по $Fe^{3+}/(Cr+Al+Fe^{3+})$ и TiO_2 попадает 68 зерен (40,5%) (рис. 5 б, в). Содержание главных и примесных элементов для хромшпинелидов (мас. %): Cr_2O_3 26,7–62,8 (\overline{x} = 52,5 медиана = 52,7), TiO_2 нпо-7,86 (\overline{x} = 2,53, медиана = 2,49), MgO 7,48–15,67 (\overline{x} = 12,6, медиана = 12,7), Al_2O_3 1,54–30,5 (\overline{x} =8,87, медиана = 8,31), MnO 0,18–0,45 (\overline{x} = 0,29, медиана = 0,28), FeO 13,9–35,8 (\overline{x} = 21,0, медиана = 22,5).

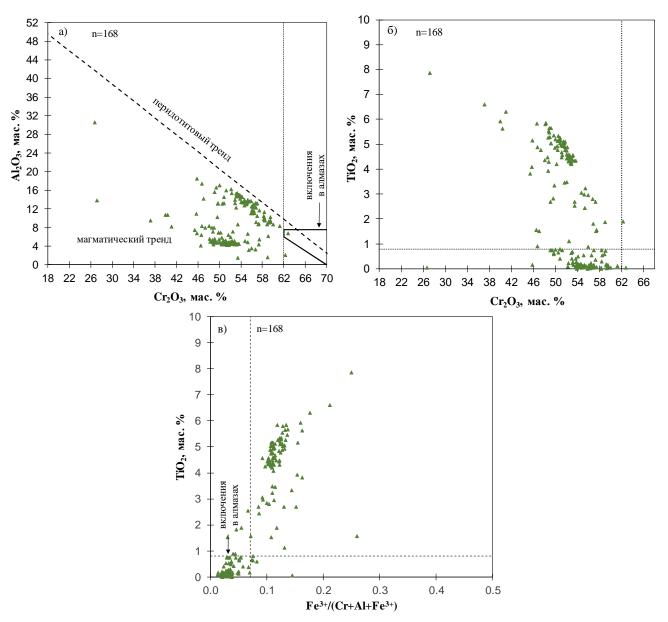


Рисунок 75. Особенности химического состава хромшпинелидов из шлиховых проб кимберлитового тела 3/15: а, б – классификация хромшпинелидов по Соболев (1974), в – поле включений в алмазах по (Malkovets et al., 2017).

6.2.11. Результаты исследования минералов спутников алмаза из протолочных проб кимберлитового тела М-2.

Результаты исследования гранатов из протолочных проб кимберлитового тела **М-2.**

Исследовано 11 зерен граната из концентрата тяжелой фракции шлиховых и протолочных проб из кимберлитового тела М-2.

По классификации (Соболев, 1974) 7 гранатов относятся к лерцолитовому парагенезису, 4 граната к гарцбургит-дунитовому, все 4 попадают в область алмазной ассоциации.

По классификации (Schulze, 2003) 9 гранатов относятся к перидотитовым парагенезисам, из них 4 лерцолитового парагенезиса, 5 гарцбургитового парагенезиса. Кроме того, 2 граната относятся к мегакристовым.

По классификации (Ramsay, 1993) на диаграмме TiO_2 - Cr_2O_3 8 фигуративных точек составов гранатов попадают в область зернистых перидотитов, 3 в область деформированных перидотитов (TiO_2 >0,5 мас. %).

По классификации (Grutter, 2004) преобладают гранаты группы G10 (гранаты гарцбургитового парагенезиса) – 5 зерен, из которых 1 относятся к группе G10D (гранаты гарцбургитового парагенезиса алмазной ассоциации). Кроме того, 3 граната относятся к группе G9 (гранаты лерцолитовго парагенезиса), 1 гранат к группе G11 (гранаты из деформированных перидотитов), 2 граната относятся к группе G1 (мегакристовые гранаты).

Содержание главных и примесных элементов для перидотитовых (по Schulze, 2003) гранатов (мас. %): Cr_2O_3 1,19–10,02 (\overline{x} = 3,59, медиана = 3,18), CaO 1,39–7,46 (\overline{x} = 4,56, медиана = 4,41), TiO_2 нпо-0,92 (\overline{x} = 0,2, медиана = 0,13), MgO 18,84–23,27 (\overline{x} = 20,49, медиана= 20,14), Al_2O_3 15,78–23,64 (\overline{x} = 20,83, медиана = 21,37), MnO 0,31–0,56 (\overline{x} =0,41, медиана = 0,43), FeO 5,9–10,48 (\overline{x} = 7,95, медиана = 7,97).

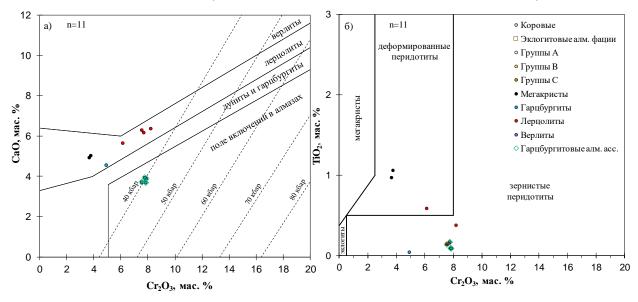


Рисунок 76. Особенности химического состава гранатов из шлиховых проб кимберлитовой трубки М-2. Парагенетическая ассоциация по Shulze (2003); а) классификация перидотитовых гранатов на диаграмме CaO-Cr₂O₃ по Соболев (1974), изобары Cr-в-гранате рассчитаны для геотермального градиента 38 mW/m² (Grutter et al., 2006); б) классификация гранатов на диаграмме TiO₂-Cr₂O₃ по Ramsay (1993).

Результаты исследования хромшпинелидов из протолочных проб кимберлитового тела М-2.

Исследовано 98 зерен хромшпинелида из шлиховых и протолочных проб кимберлитового тела М-2. Обнаружено 19 хромшпинелидов (19,4%), попадающих в поле алмазной ассоциации (по Соболев, 1974). На диаграмме Cr_2O_3 - Al_2O_3 преобладают хромшпинелиды, попадающие на двойной перидотитовый тренд. Среднее содержание TiO_2 в хромшпинелидах составляет 1,16 мас. % (медиана 0,28 мас. %), среднее содержание TiO_2 для включений хромшпинелида в алмазах не превышает 0,8 мас. % (по Соболев, 1974). Среднее значение $Fe^{3+}/(Cr+Al+Fe^{3+}) - 0,07$ (максимальное значение для включений в алмазах составляет 0,07). Таким образом в поле включений в алмазах по $Fe^{3+}/(Cr+Al+Fe^{3+})$ и TiO_2 попадает 49 зерен (50%) (рис. 5 б, в). Содержание главных и примесных элементов для хромшпинелидов (мас. %): Cr_2O_3 27,4—65,3 (\overline{x} = 53,9, медиана = 57,6), TiO_2 нпо-8,97 (\overline{x} = 1,16, медиана = 0,28), MgO 9,45—18,6 (\overline{x} = 12,9, медиана = 12,2), Al_2O_3 3,79—35,9 (\overline{x} = 10,7, медиана = 8,8), MnO 0,17—0,5 (\overline{x} = 0,29, медиана = 0,29), FeO 13,3—34,2 (\overline{x} = 19,0, медиана = 18,3).

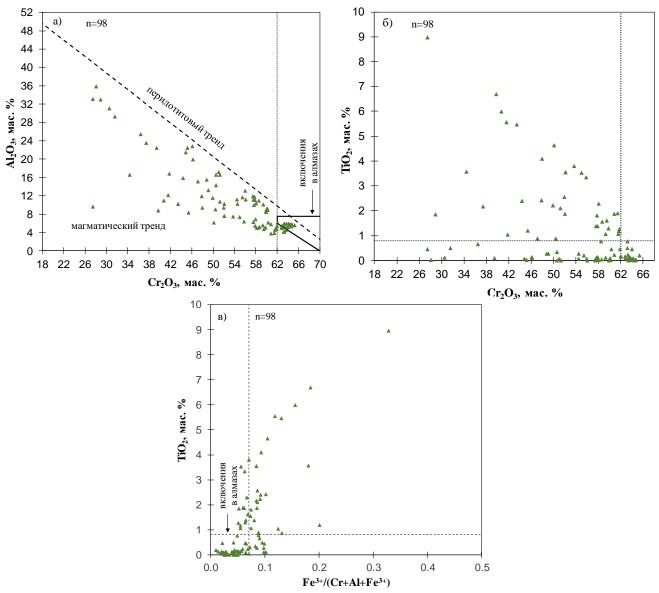


Рисунок 77. Особенности химического состава хромшпинелидов из шлиховых проб кимберлитовой трубки M-2: а, б – классификация хромшпинелидов по Соболев (1974), в – поле включений в алмазах по (Malkovets et al., 2017).

Глава 7. Обсуждение результатов

7.1. Сопоставление химического состава оливинов из перидотитовых ксенолитов и шлиховых проб трубки Комсомольская-Магнитная с оливинами из кимберлитовых трубок других регионов мира.

В результате сопоставления полученных результатов с литературными данными были сделаны следующие предположения. Оливины из низкомагнезиальной 1) вероятнее всего относится (группа К высокотемпературным катаклазированным (деформированым) перидотитам, которые распространены в трубке Удачная [57, 107]. Важно отметить достаточно высокий процент содержания оливинов первой группы, как для оливинов из перидотитовых ксенолитов, так и для концентрата ($\sim 35\%$), что может свидетельствовать о высоком содержании деформированных перидотитов в трубке Комсомольская-Магнитная.

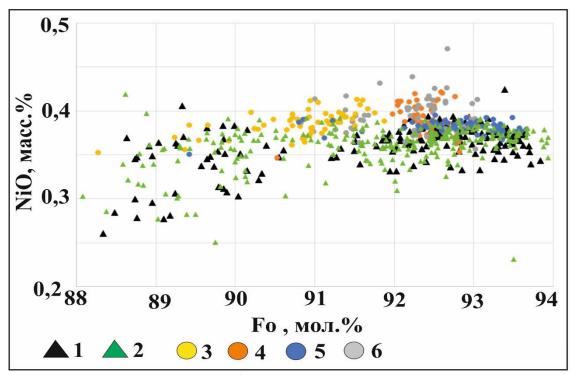


Рисунок 78. Диаграмма Fo-NiO с вынесенными составами оливинов из ксенолитов кимберлитов. Треугольники — оливины с трубки Комсомольская-Магнитная: 1 — из перидотитовых ксенолитов, 2 — из шлиховых проб. Кружки — оливины из перидотитов трубки Удачная [57]: 3 — деформированные перидотиты, 4 — гранат-шпинелевые перидотиты, 5 — мегакристаллические гарцбургит-дуниты, 6 — гранатовые перидотиты.

Кроме того, стоит заметить наличие в трубке Комсомольская-Магнитная высокомагнезиальных оливинов, по магнезиальности превосходящих оливины трубки Удачная.

Содержания элементов примесей в оливинах также были сопоставлены с содержаниями для других регионов мира (рис. 79).

Содержание Ca, Al и Cr в оливинах мантийных ксенолитов положительно коррелируется с температурой равновесия минеральных ассоциаций и, в меньшей степени, с модальной минералогией перидотитов (наличие или отсутствие шпинели, или граната в ассоциации) [61].

В целом по содержанию элементов-примесей, оливины второй группы ложатся в поле, характерное для включений оливина в алмазах. Однако присутствуют некоторые отличия.

Содержание Сг в оливинах из включений в алмазах, как правило, в разы выше, чем в оливинах из ксенолитов [108], несмотря на данные о положительной корреляции содержания Сг в оливине с температурой равновесия [61]. Повышенное содержание Сг в оливинах из включений в алмазах, наиболее вероятно, связано с резко восстановительной средой во время образования алмаза и вхождением в структуру оливина в виде двухвалентного катиона Сг²⁺ [109]. Однако это можно также частично объяснить и наличием в оливине субмикроскопических включений хромита [110]. Для оливинов второй группы трубки Комсомольская-Магнитная содержание Сг для большей части зерен (~90%) ложится в область, характерную для включений оливина в алмазах в трубке им. В. Гриба, Архангельской алмазоносной провинции.

Содержание Ті в оливинах контролируется валовым составом породы и температурой равновесия. Среднее содержание Ті в оливинах из ксенолитов перидотитов значительно выше, чем в оливинах из включений в алмазах. Большая часть оливинов второй группы имеют низкие содержания Ті, и попадают в поле для оливинов включений алмазах трубки им. В. Гриба., однако присутствует также

значительная часть оливинов с аномально высокими содержаниями титана, что не характерно для мантийных оливинов в целом.

Mn и Со ведут себя как несовместимые элементы и обнаруживают отрицательную корреляцию с Fo.

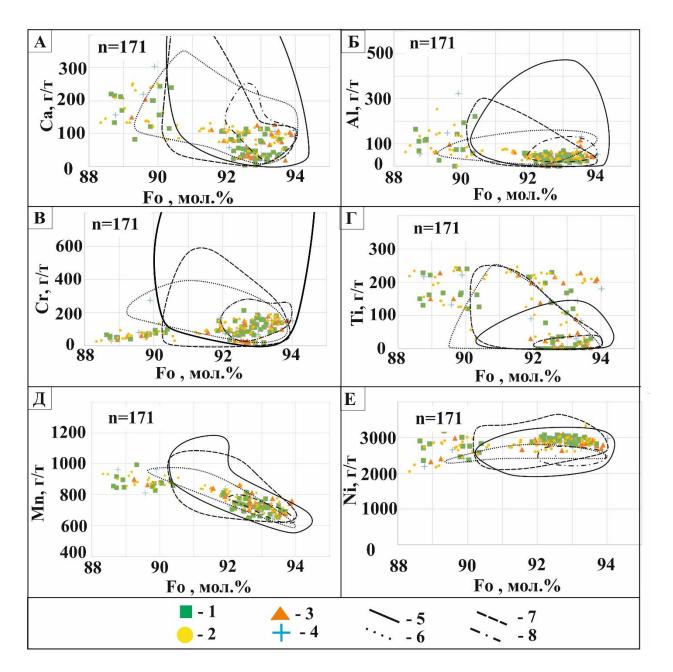


Рис. 79. Соотношение элементов-примесей и форстеритового минала (Fo) в оливинах из перидотитовых ксенолитов (n=171) кимберлитовой трубки Комсомольская-Магнитная. Полями ограничены соответствующие соотношения для оливинов из ксенолитов трубки Удачная и включений в алмазах из кимберлитов других регионов мира [57]. 1 – гранатовые перидотиты, 2 –

безгранатовые и безшпинелевые перидотиты, 3 — шпинелевые перидотиты, 4 — гранат-шпинелевые перидотиты 5 — включения в алмазах (98.6% наиболее высокомагнезиальных оливинов), 6 — зернистые низкотемпературные перидотиты, 7 — мегакристаллические перидотиты, 8 — включения оливина в алмазах трубки им. В. Гриба [108].

Содержание элементов примесей для оливинов из шлиховых проб в целом схоже с содержанием для перидотитовых ксенолитов, однако наблюдаются некоторые особенности (рис. 80). Например, значительно повышенные содержания алюминия для оливинов из шлиховых проб (~ в 2,5 раза) относительно оливинов из перидотитовых ксенолитов. Менее выраженная кореляция содержаний хрома в зависимости от магнезиальности. Наиболее выделяются пониженные содержания титана. В отличие от аномально высоких содержаний титана для оливина из перидотитовых ксенолитов 200-250 г/т, в оливинах из концентрата содержание титана не превышает 110 г/т.

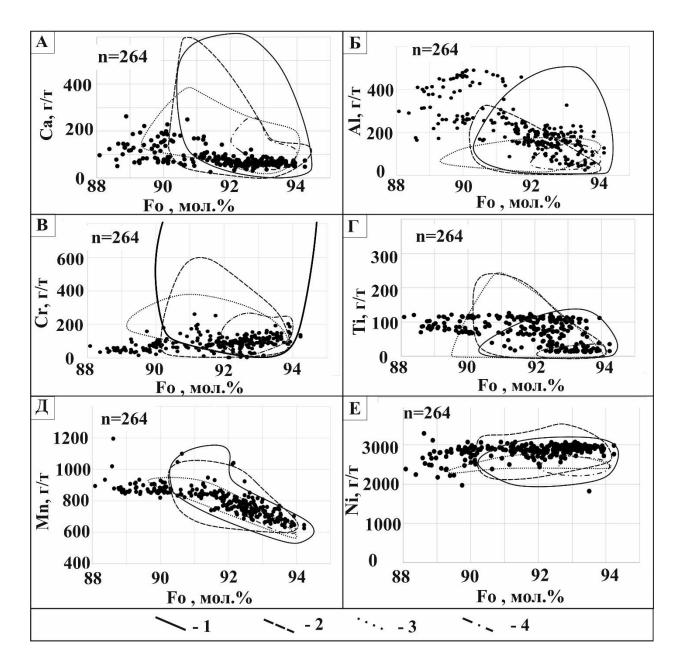


Рисунок 80. Соотношение элементов-примесей и форстеритового минала (Fo) в оливинах из шлиховых проб (n=264), взятых непосредственно из кимберлитовой трубки Комсомольская-Магнитная. Полями ограничены соответствующие соотношения для оливинов из ксенолитов трубки Удачная и включений в алмазах из кимберлитов других регионов мира. 1 — включения в алмазах (98.6% наиболее высокомагнезиальных оливинов), 2 — зернистые низкотемпературные перидотиты, 3 — мегакристаллические перидотиты, 4 — включения оливина в алмазах трубки им. В. Гриба [108].

Среднее содержание NiO в оливинах трубки им. В. Гриба увеличивается от оливинов из включений в алмазах к пироповым и флогопит-пироповым перидотитам [108]. Подобный характер поведения Ni отмечается также для оливинов из алмазов и из ксенолитов трубки Удачная [58]. Оливины из перидотитовых ксенолитов трубки Комсомольская-Магнитная в целом имеют повышенные содержания Ni. Оливины второй группы по большей части (~90%) ложатся в область, характерную для включений оливина в алмазах и мегакристовой ассоциации, среднее содержание Ni для этой группы 0,37 масс % (рис. 81).

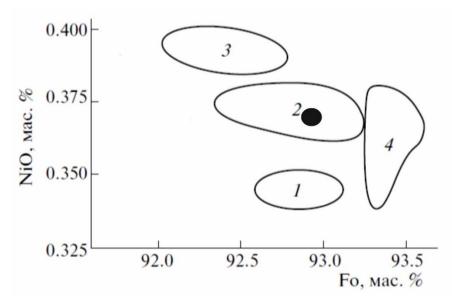
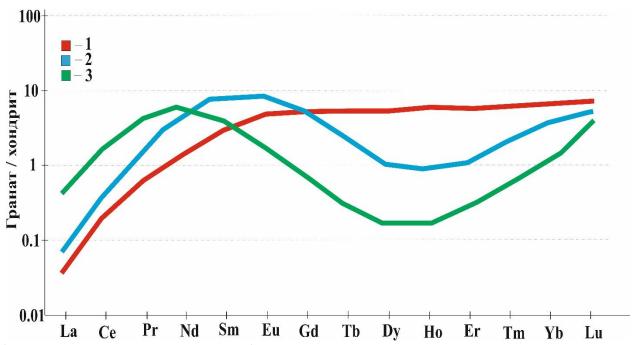


Рисунок 81. Соотношения среднего содержания NiO и форстеритового минала (Fo) в изученных оливинах из перидотитовых ксенолитов трубки Комсомольская-Магнитная (черный круг). Для сравнения приведены данные по оливинам из алмазов кимберлитовых трубок других регионов мира и из ксенолитов трубки Удачная [57, 58]: 1 — Архангельская алмазоносная провинция, 2 — Якутская алмазоносная провинция, 3 — зернистые перидотиты трубки Удачная, 4 — включения в алмазах из некоторых кимберлитов ЮАР.


Результаты проведенных исследований составов оливина свидетельствуют о наличии блока высокодеплетированных пород в литосферной мантии под Верхнемунским кимберлитовым полем. Оливины из перидотитовых ксенолитов трубки Комсомольская-Магнитная, отнесенные ко второй группе, по составу основных и примесных элементов в среднем можно отнести к типичным для

Якутской алмазоносной провинции. Однако следует отметить наличие особо деплетированных оливинов, не характерных ни для одного из известных кимберлитовых полей. Оливины первой группы вероятнее всего относятся к высокотемпературным деформированным перидотитам и их достаточно высокое содержание может свидетельствовать об относительно широком развитии этих пород в основании литосферы под данной трубкой.

7.2. Расшифровка редкоземельных спектров гранатов из шлиховых проб кимберлитовой трубки Комсомольская-Магнитная.

Изучены и проинтерпретированы содержания редкоземельных элементов более чем 300 зерен граната, как из шлиховых проб, так и из перидотитовых ксенолитов с трубки Комсомольская-Магнитная. Выделяются 3 типа спектров редкоземельных элементов (рис. 82). Такие вариации распределения РЗЭ в гранатах обусловлены влиянием различных метасоматических агентов, которые могут быть сильно фракционированы и имеют широкие вариации содержаний РЗЭ. На первом этапе, вследствии карбонатитовго метосоматоза, происходит обогащение легкими РЗЭ, при появлении в ассоциации клинопироксена происходит обеднение граната легкими РЗЭ и трансформация гарцбургитов в лерцолиты. Последующее обогащение граната тяжелыми РЗЭ может указывать на реакцию с силикатными расплавами, которые содержат в значительных количествах НREE.

Таким образом на рисунке 82 спектры с синусоидальным распределением РЗЭ (рис. 82-3) являются результатом воздействия на породы карбонатитового метосоматоза, такие спектры РЗЭ характерны для низкокальциевых гарцбургит-дунитовых гранатов. Далее при кристаллизации клинопироксена происходит обеднение легкими РЗЭ и трансформация синусоидальных спектров в спектры пониженным содержанием легких РЗЭ и повышенным тяжелых РЗЭ (рис. 82-2). В завершении вследствие силикатного (или базитового) метасоматоза происходит

обогащение тяжелыми РЗЭ и обеднение легкими, спектр РЗЭ граната имеет вид типичный для гранатов из фертильных перидотитов (рис. 82-1).

Рисунок 82. Основные типы распределения РЗЭ исследованных гранатов из шлиховых проб кимберлитовой трубки Комсомольская-Магнитная. 1 — спектры РЗЭ типичные для гранатов из фертильных перидотитов, 2 — синусоидальные спектры РЗЭ с пониженными содержаниями легких РЗЭ, 3 — синусоидальные спектры РЗЭ типичные для низкокальциевых гарцбургит-дунитовых гранатов. Концентрации РЗЭ нормированы к хондриту С1 (McDonough, Sun, 1995 [111].

7.3. Расшифровка редкоземельных спектров гранатов из пердидотовых ксенолитов кимберлитовой трубки Комсомольская-Магнитная.

По распределению редкоземельных элементов можно выделить две группы гранатов из перидототовых ксенолитов трубки Комсомольская-Магнитная (рис.

83). К группе 1 относятся гранаты с типичными для фертильных гранатов спектрами распределения редкоземельных элементов (рис. 83 а), а к группе 2 гранаты с S-образными спектрами (рис. 83 б), которые характерны для минеральных включений гранатов в алмазах. Наличие достаточно многочисленной группы ксенолитов с гранатами группы 2 (20 из 30ти проанализированных зерен) может свидетельствовать о высокодеплетированном составе литосферной мантии в области "алмазного" окна.

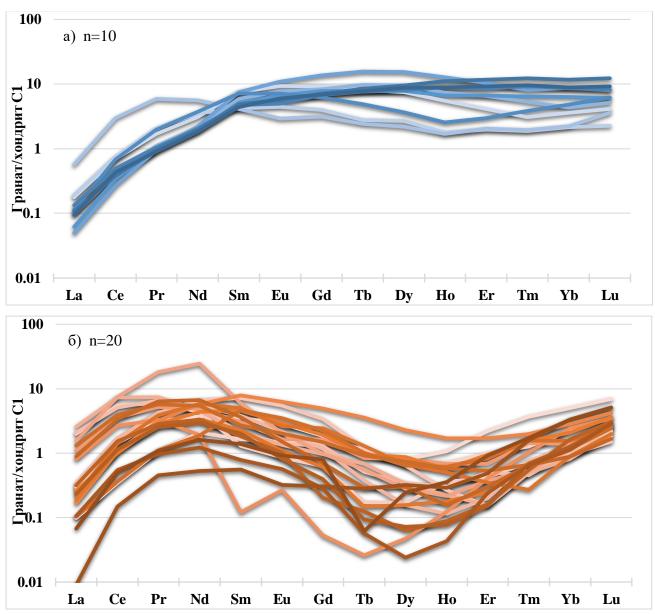


Рисунок 83. Геохимические особенности гранатов трубки Комсомольская-Магнитная. Представлены спектры распределения РЗЭ: а) типичные для фертильных лерцолитовых гранатов б) синусоидальные, типичные для гарцбургитдунитовых гранатов.

Для гранатов первой группы характерны пониженные содержания легких редкоземельных элементов (P3Э) (La/Yb<1), также наблюдается обогащение средними и тяжелыми P3Э, начиная с Nd. Как видно на рисунке 84 на диаграмме Cr_2O_3 -CaO гранаты первой группы относятся к лерцолитовому парагенезису и образуют тренд с линейной зависимостью содержания Cr_2O_3 от CaO.

Для второй группы гранатов, имеющих S-образные спектры распределения РЗЭ, характерно сильное обогащение Се, Pr по сравнению со спектрами гранатов первой группы, и обеднение в области Ть, Dy, Ho. По содержанию легких РЗЭ (La, Ce) в группе 2 можно выделить 2 типа распределения: 1- с содержаниями типичными для фертильных гранатов (обедненные относительно хондрита); 2- обогащенные легкими РЗЭ относительно первой группы (обогащенные относительно хондрита). При этом содержание тяжелых РЗЭ для всех типов гранатов 2ой группы приблизительно одинаковые, а также схожи с распределением тяжелых РЗЭ для 1ой группы. В связи с этим для гранатов второй группы 1го типа характерны спектры с отношением La/Yb<1, а для гранатов второго типа La/Yb≥1.

На диаграмме Cr₂O₃-CaO гранаты второй группы также четко разделяются на 2 типа, гранаты второго типа (для которых La/Yb≥1) образуют кластер в области гарцбургит-дунитового парагенезиса. Тогда как гранаты 1го типа второй группы (La/Yb<1) образуют на графике тренд в области лерцолитового парагенезиса, схожий с трендом для первой группы, но при этом они имеют более низкое отношение CaO/Cr₂O₃.

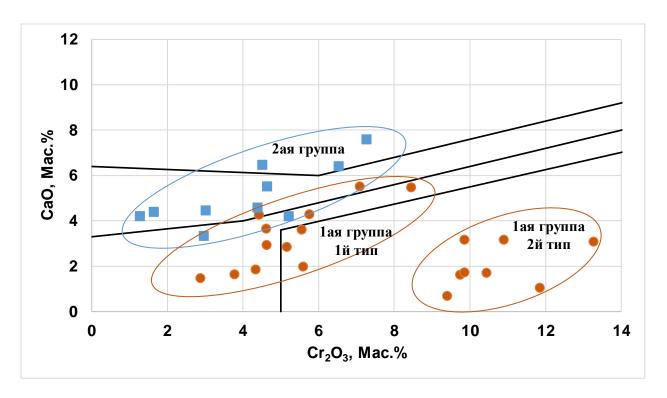


Рисунок 84. Диаграммы CaO-Cr₂O₃ с вынесенными составами гранатов из перидотитовых ксенолитов (поля по Соболев, 1973).

7.4. Корреляция составов оливинов из перидотитовых ксенолитов тр. Комсомольская-Магнитная и гранатов из тех же перидотитов.

При сопоставлении составов гранатов и оливинов из перидотитовых Комсомольская-Магнитная ксенолитов трубки выявлены некоторые закономерности (рис. 85). Гранаты лерцолитового парагенезиса (по результатам интерпретации составов CaO-Cr₂O₃) из 5-ти образцов относятся к перидотитам с оливинами 1-ой группы (по аналогии с составами оливинов трубки Удачная, отнесенные деформированным лерцолитам). Bce ЭТИ гранаты распределению редкоземельных элементов относятся к первой группе и отличаются пониженными содержаниями хрома относительно других гранатов лерцолитового паргенезиса. Перидотиты с гранатами гарцбургит-дунитового парагенезиса (по результатам интерпретации составов СаО-Сг₂О₃) по составу оливина относятся ко второй группе, причем по магнезиальности оливина один образец с $Mg\# \approx 92.5$ мол. %, 3 образца с $Mg\# \approx 93$ мол. % и 3 образца с Mg# > 93мол.%. Такая корреляция лишь отчасти соответствует накопленным знаниям о составах оливинов (Mg# 92.5-93 мол. % (Bernstein, 2007 [55])) и гранатов

(гарцбургит-дунитового парагненезиса по содержаниям CaO, Cr₂O₃ (Соболев, 1973)), характерных для включений в алмазах и являющихся индикаторными для алмазоносных кимберлитовых трубок. Остальные поиска гранаты лерцолитового парагенезиса, гранаты a также аномально низкими содержаниями Ст и Са, относятся ко второй группе перидотитов (по составам оливина).

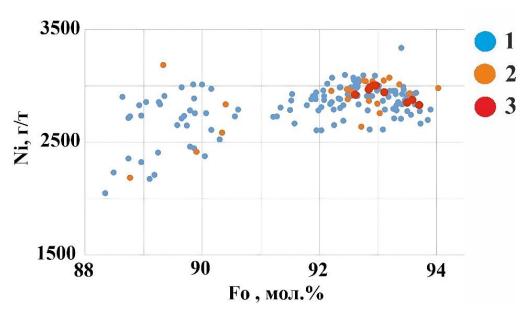


Рисунок 85. Диаграмма Fo-NiO с вынесенными составами оливинов из перидотитовых ксенолитов из киберлитов трубки Комсомольская-Магнитная. 1 — составы оливинов из перидотитовых ксенолитов, 2 — составы оливинов из перидотитовых ксенолитов, содержащих гранаты лерцолитового парагенезиса, 3 — составы оливинов из перидотитовых ксенолитов, содержащих гранаты гарцбургит-дунитового парагенезиса

7.4. Реконструкция палеогеотермы и разрезов мантийных колонн под трубками Комсосомльская-Магнитная и Деймос.

Для модельной реконструкции палеогеотермы под Верхнемунским кимберлитовым полем использовались данные по *P-T* оценкам (методом Nimis, Taylor, 2000) клинопироксена (n=314) из КТФ трубки Комсомольская-Магнитная.

В первую очередь проведен ряд проверок на соответствие клинопироксена всем критериям для корректной работы термобарометра Nimis, Taylor (2000), Ziberna et al., 2016 [64, 66]:

- 1. Сумма катионов на 6 кислородов должна находиться в интервале от 3,98 до 4,02;
- 2. Зерна клинопироксена должны быть без выраженной зональности, такие пироксены указывают на то, что система была равновесна;
- 3. Для проверки на то, что клинопироксен был в равновесии с гранатом, используют содержания хрома и алюминия. Если выполняются следующие условия $Cr_2O_3 > 0,5$ мас. % и $Al_2O_3 \le 4,0$ мас. % (если $Cr_2O_3 < 2,25$ мас. %) или $Al_2O_3 \le 5,0$ мас. % (если $Cr_2O_3 > 2,25$ мас. %) считается что клинопироксен находился в равновесии с гранатом;
- 4. Также существует уточнение по содержаниям магния и алюминия: клинопироксен подходит, если $Al_2O_3 \ge 0.7$ мас. % и $Al_2O_3 \ge 12,175 0.6375*MgO$ мас. %;
- 5. Хромистость должна находится в пределах 0,1 ≤ #Cr ≤ 0,65 при этом, рекомендуется быть внимательными для составов #Cr 0,5-0,65, так как их было мало при калибровке;
- 6. Если полученная температура ниже 700°C, скорее всего этот пироксен не был в равновесии с ортопироксеном и его нельзя использовать как термометр.

Определение параметров палеогеотермы производилась в программе FITPLOT

[98]. Наблюдается хорошая сходимость для основной массы точек. В расчете были использованы только те точки, для которых значение давления не превышало 5,5 ГПа, что связано с ограниченным набором данных в модели термобарометра. Значение теплового потока составило 34,6 мВ/м², а мощность литосферы ~ 220 км, что согласуется с данными по кимберлитовой трубке Новинка Верхнемунского кимберлитового поля (тепловой поток - 34,1 мВ/м², мощность литосферы 220 км) [66].

Для выяснения характера метасоматических процессов в литосферной мантии были изучены геохимические характеристики гранатов из ксенолитов перидотитов трубки Комсомольская-Магнитная (35 зерен) и перидотитовых гранатов (Cr₂O₃>2 мас. %) из шлиховых проб из трубок Комсомольская-Магнитная (278 зерен) и Деймос (138 зерен).

Для определения P-T условий образования гранатов использовались Ni-in-Gar геотермометр и Cr-in-Gar геотермобарометр (Griffin, 1995 [25]). По содержаниям CaO и Cr₂O₃ гранаты разделены на верлитовые, лерцолитовые, кальциевые гарцбургитовые и низкокальциевые гарцбургитовые (по Griffin, 1995 [25]). Термобарометр корректно работает только для гранатов, относящихся к низкокальциевым гарцбургитам (находящимся в равновесии с хромитом), для остальных гранатов фигуративные точки Р-Т условий проецировались на геотерму, рассчитанную по клинопироксенам, по значениям полученных температур для получения оценок Р. Для группы низкокальциевых гарцбургитовых гранатов характерны только синусоидальные спектры распределения REE. Предполагается, что образование таких гранатов связано с метасоматическим воздействием карбонатитовых расплавов/флюидов, обогащенных LREE и обедненных HFSE, MREE и HREE. Для гранатов с синусоидальными спектрами распределения REE наблюдаются различные пики обогащения LREE от Се до Sm, такое смещение происходит по мере увеличения отношения метасоматический агент/порода. Такие же синусоидальные спектры REE характерны для кальциевых гарцбургитовых гранатов, однако в этой группе наблюдается перекрытие (~3-5% спектров REE типичных для гранатов лерцолитового парагенезиса) с лерцолитовыми гранатами, имеющими спектры распределения редкоземельных элементов, типичные для гранатов из фертильной мантии, обедненные LREE и обогащенные MREE и HREE. Обогащение граната тяжелыми REE отражает метасоматическое воздействие силикатными расплавами - на этом этапе происходит смещение состава гранатов в область бедных Cr₂O₃ составов, характерных для гранатов лерцолитов на диаграмме Cr₂O₃-CaO. Примерно в той же степени присутствует наложение спектров с синусоидальным распределением REE для лерцолитовых гранатов.

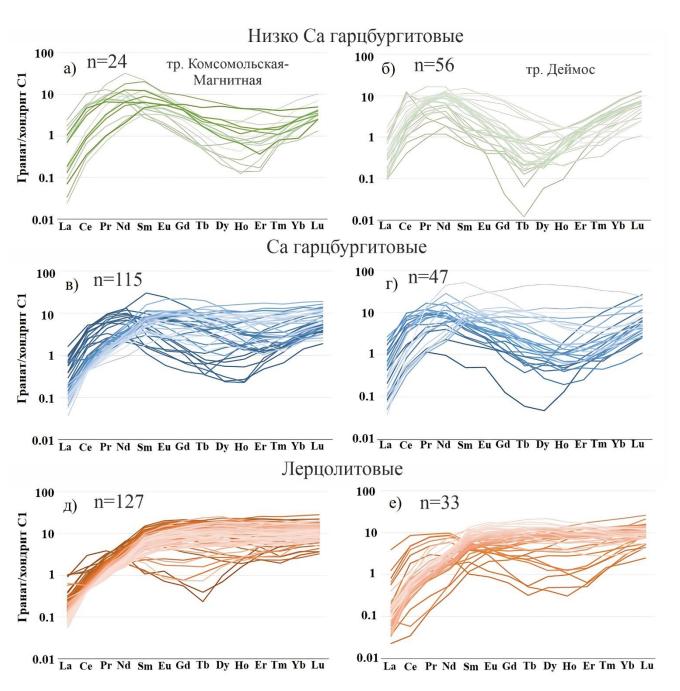


Рисунок 86. Геохимические особенности гранатов а,в,д — трубки Комсомольская-Магнитная; б,г,е — трубки Деймос. Представлены спектры распределения РЗЭ: а,б — низкокальциевых гарцбургитовых гранатов; в,г — кальциевых гарцбургитовых гранатов; д,е — лерцолитовых гранатов. По классификации Griffin, 1995 [25].

С использованием рассчитанных температур равновесия для гранатов и содержаний в них Y, были рассчитаны глубины основания деплетированной литосферы ("Y край"; [25]), глубже которой отсутствуют низкокальциевые гарцбургитовые гранаты с относительно деплетированными составами и начинают

резко преобладать лерцолитовые гранаты, обогащенные MREE, HREE, Ti. Для гранатов трубки Деймос "Y край" определен при T ~1180 °C, на глубине ~180 км, для гранатов трубки Комсомольская-Магнитная при T~1190 °C, на глубине~190 км (рис. 87).

Таким образом, область "алмазного окна" под Верхнемунским кимберлитовым полем распространялась с глубин 125 км (пересечение палеогеотермы с линией границы равновесия графит/алмаз) до 180-190 км (химическая граница деплетированной литосферы) и составляет около 55-65 км.

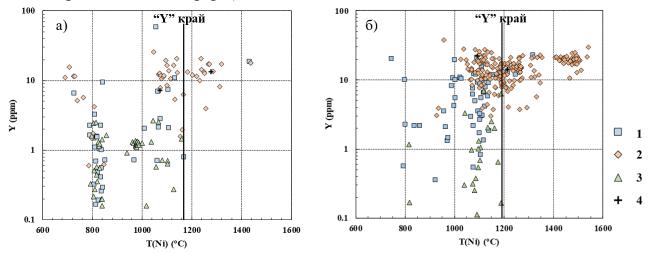


Рисунок 87. Распределение Y в гранатах, в зависимости от температуры образования. а) гранаты трубки Деймос. б) гранаты трубки Комсомольская-Магнитная. 1 – гранаты из кальциевых гарцбургитов, 2 – гранаты из лерцолитов, 3 – гранаты из низкокальциевых гарцбургитов, 4 – гранаты из верлитов (по Griffin, 1995).

Отмечаются различия составов гранатов из трубок Деймос и Комсомольская-Магнитная по распределениям Y, Zr и Ti (рис. 88). Так для трубки Деймос характерны деплетированные гранаты (~70% гранатов) с низкими содержаниями Y, Zr, Ti, к гранатам с признаками силикатного метасоматоза (высокие содержания Y, Zr, Ti) относится около 20% гранатов, также присутствует ~5% гранатов с признаками флогопитового метасоматоза (высокие содержания Zr, низкие содержания Y). Для трубки Комсомольская-Магнитная напротив характерны гранаты с признаками силикатного метасоматоза (~75% гранатов), деплетированных гранатов около 18%, гранатов с признаками флогопитового метасоматоза около 7%. Стоит отметить, наличие группы низкокальциевых и низкохромистых гранатов (в большей степени характерная для трубки Деймос); для таких гранатов характерны крайне низкие содержания Ті, и они не ложатся ни в одно из полей, выделенных в работе Griffin, 1995 [25]. Такие гранаты наиболее вероятно являются результатом частичного плавления примитивных мантийных гранатов.

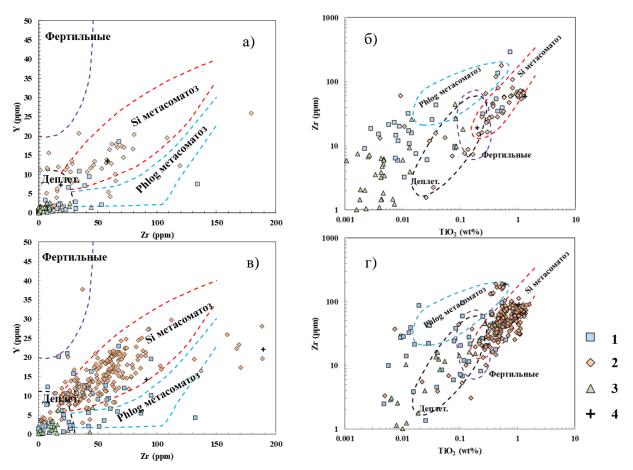


Рисунок 88. Распределения Y, Zr, TiO₂ в гранатах, отражающие различные метасоматические преобразования. а-б) гранаты трубки Деймос, в-г) гранаты трубки Комсомольская-Магнитная. 1 – гранаты из кальциевых гарцбургитов, 2 – гранаты из лерцолитов, 3 – гранаты из низкокальциевых гарцбургитов, 4 – гранаты из верлитов (по Griffin, 1995).

Также имеются различия по распределению содержаний Sc и Nd. Так для трубки Деймос замечена высокая пропорция гранатов (~65% гранатов) с Nd/Y>0,5 и Sc/Y>12, гранаты таких составов характерны для включений граната в алмазе

(Batumike, 2009). Для трубки Комсомольская-Магнитная гранатов с Nd/Y>0,5 и Sc/Y>12 около 10%. В рамках интерпретации модели разделения тектонических блоков на 3 типа – архон (>2,4 млрд. лет), протон (2,4-1,6 млрд. лет), тектон (1,6-0,8 млрд. лет) (Griffin, 1998), по распределению Y/Ga и Zr/Y составы гранатов трубок Деймос и Комсомольская-Магнитная в подавляющем большинстве попадают в область характерную для архонов, что указывает на архейский возраст формирования литосферной мантии и согласуется с расположением Верхнемунского поля в пределах Сибирского кратона.

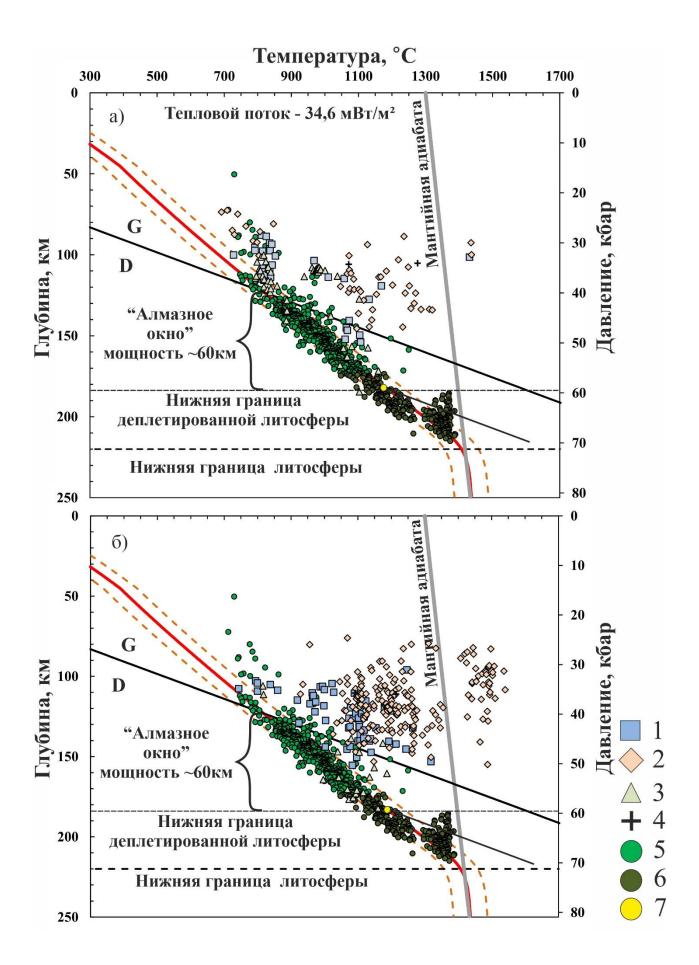


Рисунок 89. Модельная палеогеотерма, рассчитанная с использованием программы FITPLOT по клинопироксенам трубки Комсомольская-Магнитная. Мощность литосферы ~ 220 км. Красная линия – палеогеотерма и ее доверительные интервалы (оранжевые пунктирные линии). Пунктирная линия указывает на основание литосферной мантии. G и D — поля стабильности графита и алмаза [112]. а) Палеогеотерма с вынесенными фигуративными точками PT гранатов трубки Комсомольская-Магнитная, б) Палеогеотерма с вынесенными фигуративными точками PT гранатов трубки Деймос. 1 — гранаты из кальциевых гарцбургитов, 2 — гранаты из лерцолитов, 3 — гранаты из низкокальциевых гарцбургитов, 4 — гранаты из верлитов (по Griffin, 1995); 5 — фигуративные точки PT параметров клинопироксенов тр. Комсомольская-Магнитная, 6 — клинопироксены с P> 5,5 ГПа (не учитывающиеся при построении геотремы), 7 — точка перегиба ("kink" по Griffin, 1995 [25]).

С применением методологии реконструкции глубинных разрезов по перидотитовым гранатам были построены разрезы мантийной колонны под трубками Комсомольская-Магнитная и Деймос (Griffin et al., 1999; Malkovets et al., 2007). Для трубки Комсомольская-Магнитная наблюдается высокая концентрация гранатов из деплетированных пород (гарцбургитов (~20–30%) и низкокальциевых гарцбургитов) на глубинах 110–180 км (T=750–1050°C). С глубины 180 км начинает увеличиваться доля лерцолитовых гранатов, их высокие температуры равновесия $(T=1300-1600^{\circ}C)$ И микроэлементный состав указывают влияние метасоматических процессов, связанных с силикатными расплавами. Аналогичный разрез мантийной колонны наблюдается и для трубки Деймос, за исключением наличия значительной доли гранатов из сильно деплетированных низкокальциевых гарцбургитов на глубинах 120-180 км (от 40 до 90%). При разделении гранатов на группы по Grutter (2004) низкокальциевые гарцбургитовые гранаты соответствуют группе G10D (гарцбургитовые гранаты алмазной ассоциации), высококальциевые гарцбургитовые гранаты группе G10 (гарцбургитовые гранаты), а лерцолитовые гранаты нижней части мантийного разреза группам G9 (лерцолитовые гранаты),

G11 (высокотитанистые гранаты из деформированных перидотитов) и G1 (низкохромистые, высокотитанистые мегакристовые гранаты) (рис. 90).

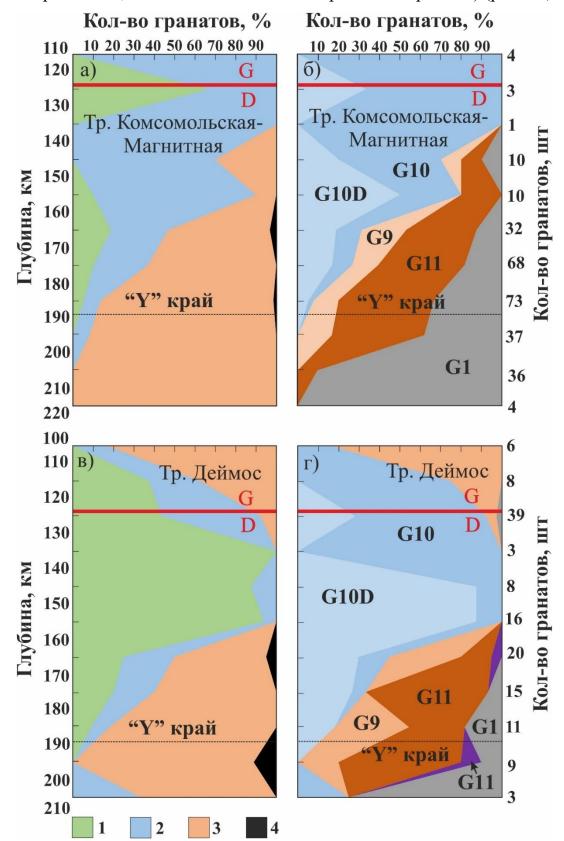


Рисунок 90. Реконструированные глубинные разрезы под трубками Комсомольская-Магнитная (а, б) и Деймос (в, г). а,в) разделение гранатов на генетические группы по Griffin (1995): 1 — низкокальциевые гарцбургитовые, 2 — гарцбургитовые, 3 — лерцолитовые, 4 — верлитовые. б,г) разделение гранатов на генетические группы (по Grutter, 2004, описание см. в тексте).

7.5. Гетерогенность составов минералов спутников алмаза кимберлитовых тел Верхнемунского кимберлитового поля.

В данной главе был проведен сравнительный анализ составов минералов спутников алмаза кимберлитовых тел Верхнемунского поля.

Гранаты. Составы гранатов и пропорции гранатов различных генетических типов могут значительно отличаться в пределах не только всего поля, но и каждой линейной цепочки кимберлитовых трубок. Отмечается гетерогенность составов гранатов между кимберлитовыми телами, в пределах каждой из двух линейных цепочек. Так гранаты трубок Деймос и Заполярная (трубки, расположенные на расстоянии около 400 м друг от друга) в значительной степени отличаются по содержаниям CaO и TiO₂. Для трубки Заполярная характерны высокотитанистые мегакристовые гранаты и гранаты из деформированных перидотитов, в то время как в трубке Деймос преобладают гранаты из зернистых перидотитов и эклогитов. Кроме того, для трубки Деймос характерны низкокальциевые, низкохромистые гранаты гарцбургит-дунитового парагенезиса, в трубке Заполярная такие гранаты не найдены. Подобные отличия наблюдаются и для кимберлитовых тел центральной линейной цепочки. В частности, для тр. Комсомольская-Магнитная, к.т. 3/15 и к.т. Вилюйская-2019, характерны составы гранатов как в тр. Заполярная. Распределение составов гранатов для тр. 325 лет Якутии, к.т. Жила-2 и тр. Интеркосмос схоже с распределением составов для тр. Деймос (рис. 91).

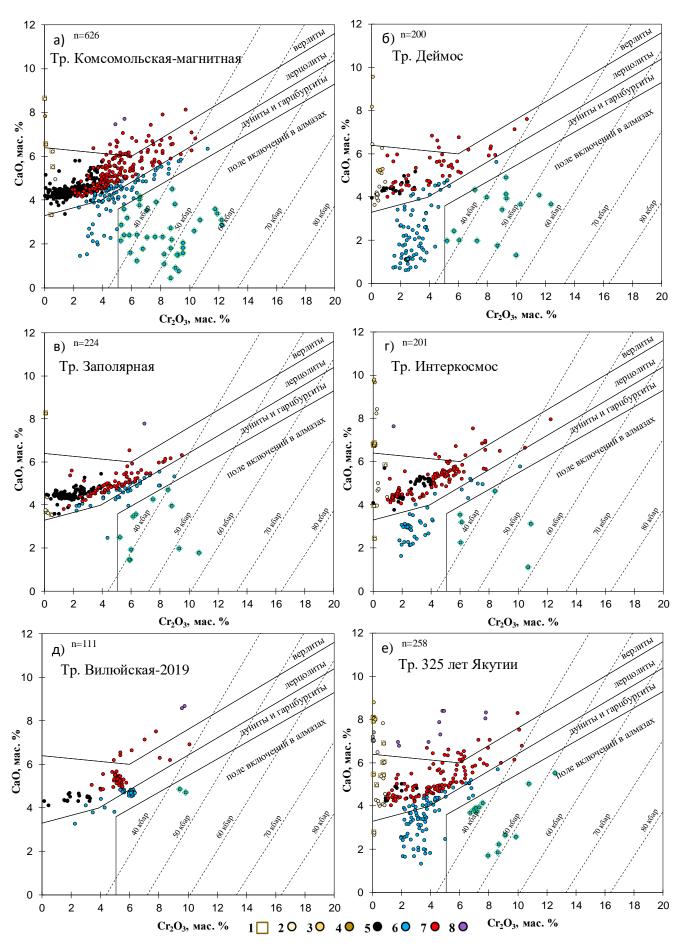


Рисунок 91. Классификация гранатов на диаграмме CaO-Cr₂O₃ по Соболев (1974),

изобары Сг-в-гранате рассчитаны для геотермального градиента 38 mW/m² (Grutter et al., 2006). а) гранаты трубки Комсомольская-Магнитная, б) гранаты трубки Деймос, в) гранаты трубки Заполярная, г) гранаты трубки Интеркосмос, д) гранаты кимберлитового тела Вилюйская 2019, е) гранаты трубки 325 лет Якутии. Цветами обозначена генетическая классификация гранатов (по Schulze, 2003): 1, 2, 3, 4 – эклогитовые гранаты, 1 – алмазной фации, 2 – группы A, 3 – группы Б, 4 – группы С, 5 – мегакристовые высоко Ті гранаты, 6 – гарцбургитовые, 7 – лерцолитовые, 8 – верлитовые.

Хромшпинелиды. Исследование химических составов хромшпинелидов показало, различные пределы вариаций составов для различных кимберлитовых тел. Так, процент составов хромшпинелидов (по Sobolev, 1974) попадающих в поле алмазной ассоциации для различных кимберлитовых тел Верхнемунского поля варьирует от <1% (для к.т. 3/15, к.т. Жила-2 и к.т. Вилюйская-2019) до 36% (для тр. Заполярная); наблюдается: 4-7% хромшпинелидов алмазной ассоциации для к.т. 1/15, к.т. 1/94, тр. Космос-2, тр. Деймос; 8-13% для тр. Интеркосмос, тр. 325 лет Якутии и тр. Комсомольская-Магнитная; повышенные содержания хромшпинелидов алмазной ассоциации (21%) наблюдаются для тр. М-2, относящейся к западной цепочке кимберлитовых тел.

Составы подавляющего большинства хромшпинелидов всех кимберлитовых тел Верхнемунского поля ложатся на перидотитовый тренд (по Sobolev, 1974). Наблюдается наличие трендов составов хромшпинелидов, параллельных перидотитовому тренду, для них характерны повышенные содержания TiO_2 и Fe^{3+} , что, вероятно, связано с метасоматическим воздействием силикатных расплавов. Также присутствует группа хромшпинелидов (3-4% от всех хромшпинелидов), которая относится к магматическому тренду и имеет аномально низкие содержания Al_2O_3 (<2 мас. %). В пределах Якутской алмазоносной провинции такие хромшпинелиды ранее были обнаружены в трубках Комсомольская и Юбилейная (Алмакит-Мархинское кимберлитовое поле), однако ИХ генетическая принадлежность до сих пор остается неизвестной.

Составы хромшпинелидов из трех линейных цепочек кимберлитовых тел (по аналогии с составами гранатов) в целом схожи, за исключением, гораздо более выраженной для центральной цепочки группы хромшпинелидов магматического тренда. Однако имеются различия составов хромшпинелидов для кимберлитовых тел внутри каждой цепочки. На примере кимберлитовых трубок восточной цепочки Заполярная) отчетливо (Tp. Деймос И тр. выражены отличия составов хромшпинелидов содержаниям Cr_2O_3 : ПО пропорция высокохромистых хромшпинелидов (алмазной ассоциации) для тр. Заполярная значительно выше (36%), чем для тр. Деймос (5%). Для центральной цепочки наблюдаются кимберлитовые тела в которых отсутствуют хромшпинелиды алмазной ассоциации: к.т. Жила-2, к.т. 3/15, Вилюйская-2019 (<1%)); кимберлитовые тела с умеренной пропорцией таких хромшпинелидов (4–8%): к.т. 1/15, к.т. 1/94, тр. Космос-2, тр. Интеркосмос; а также кимберлитовые тела с относительно высокой пропорцией хромшпинелидов алмазной ассоциации (12-13%): тр. Комсомольская-Магнитная, тр. 325 лет Якутии. Кроме того, для кимберлитовых тел Космос-2, Вилюйская-2019, Жила-2, 3/15, 1/15, 1/94 наблюдается практически полное отсутствие низкохромистых, богатых алюминием хромшпинелидов (Cr₂O₃<42 мас. %. $Al_2O_3 > 28$ мас. %; хромшпинелиды шпинель-пироповой пироксеновой фации по Харькив, 1989), тогда как для трубок Комсомольская-Магнитная, Деймос, Заполярная содержание таких хромшпинелидов доходит до 9%, для трубок 325 лет Якутии, Интеркосмос, М-2 до 3% (рис. 92).

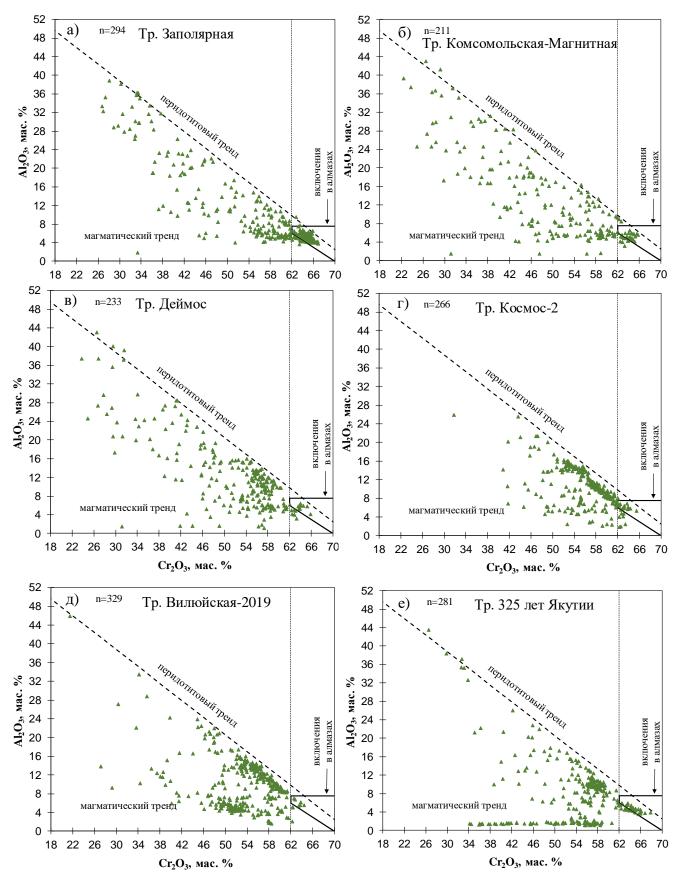


Рисунок 92. Особенности химического состава хромшпинелидов (по Соболев 1974). a) хромшпинелиды трубки Заполярная, б) хромшпинелиды трубки Комсомольская-Магнитная, в) хромшпинелиды трубки Деймос, г) хромшпинелиды

трубки Космос-2, д) хромшпинелиды трубки Вилюйская-2019, e) хромшпинелиды трубки 325 лет Якутии.

Оливины. Исследование химического состава оливинов из протолочных и шлиховых проб показало, что содержание Fo в оливинах из исследованных кимберлитовых тел Верхнемунского поля варьирует от 81,9 до 94,2 мол. %, при этом 16% оливинов из всех трубок имеют Fo>93 мол. %. Наибольшее количество высокомагнезиальных оливинов приходится на трубку Комсомольская-Магнитная (23% оливинов с Fo>93 мол. %). Как правило для кимберлитовых тел Верхнемунского поля преобладают оливины с Fo 92-93 мол. %, за исключением к.т. Вилюйская-2019 (преобладают оливины с Fo 90-91 мол. %) и трубок Интеркосмос, Космос-2 (может быть связано с не представительной выборкой) (рис. 93).

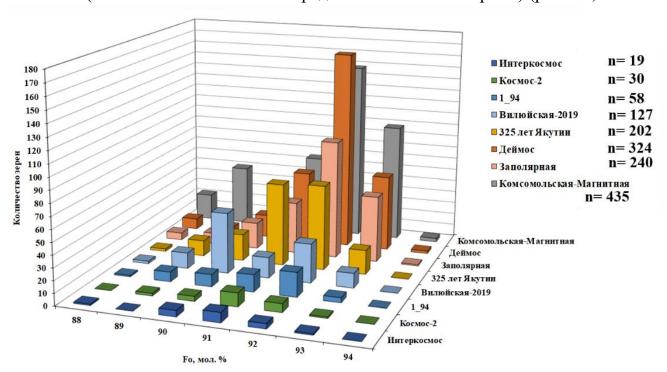


Рисунок 93. Содержание форстеритового минала (Fo) в оливинах из КТФ кимберлитовых тел Верхнемунского поля.

По распределению элементов примесей выделяется трубка Комсомольская-Магнитная, в которой присутствует кластер (~16% от оливинов из КТФ, ~9% от оливинов из перидотитовых ксенолитов) низкомагнезиальных оливинов (Fo от 88 до 91 мол. %) с высокими содержаниями Al₂O₃, CaO, TiO₂, для остальных кимберлитовых тел Верхнемунского поля такие оливины либо отсутствуют, либо встречаются единичные зерна. Содержания элементов примесей для таких оливинов варьируют в следующих пределах (в мас. %): Al_2O_3 0,01-0,05 (\overline{x} =0,03), CaO 0,05-0,09 (\overline{x} =0,06), TiO_2 0,01- 0,05 (\overline{x} =0,03), NiO 0,23-0,4 (\overline{x} =0,36).

ЗАКЛЮЧЕНИЕ

Результаты исследования составов минералов спутников алмаза из перидотитовых ксенолитов и КТФ свидетельствуют о наличии блока высокодеплетированных пород в литосферной мантии под Верхнемунским кимберлитовым полем.

По результатам исследования составов гранатов сделан вывод об умеренной степени переработки литосферной мантии карбонатитовыми расплавами/флюидами. Также, в низкой степени отмечается присутствие флогопитового метасоматоза. Начиная с глубин 180—190 км в разрезе мантийной колонны преобладают фертильные гранаты из деформированных лерцолитов, подвергшиеся высокой степени метасоматической переработки силикатными расплавами; такие метасоматические преобразования способствуют растворению алмазов в перидотитах литосферной мантии.

Мощность литосферы в районе Верхнемунского кимберлитового поля составляет ~220 км. Область распространения перидотитов (не подверженных в значительной степени силикатному метасоматозу) алмазной фации глубинности в литосферной мантии ("алмазное окно"), в районе Верхнемунского поля, во время кимберлитового магматизма распространялась с глубин 125 до 190 км (мощность около 55–65 км).

Для трубки Комсомольская-Магнитная наблюдается высокая концентрация гранатов из деплетированных пород (гарцбургитов (~20–30%) и низкокальциевых гарцбургитов) на глубинах 110–180 км. С глубины 180 км начинает увеличиваться доля лерцолитовых гранатов (в том числе с высоким содержанием Ті), их высокие температуры равновесия (T=1300–1600°C) и микроэлементный состав указывают на влияние метасоматических процессов, связанных с силикатными расплавами. Аналогичный разрез мантийной колонны наблюдается и для трубки Деймос, за исключением наличия значительной доли гранатов из сильно деплетированных низкокальциевых гарцбургитов на глубинах 120-180 км (от 40 до 90%).

В целом среди кимберлитовых тел Верхнемунского поля наблюдается гетерогенность по составам минералов спутников алмаза не только для кимберлитовых тел, принадлежащих разным рудоконтролирующим разломам, но и для тел каждой линейной цепочки.

Список Литературы

- 1) Соболев Н.В. Парагенезисы алмаза и проблема глубинного минералообразования // Зап. ВМО. 1983. Ч. СХІІ. Т.4. С. 389-397.
- 2) Соболев Н.В. Глубинные включения в кимберлитах и проблема состава верхней мантии. Новосибирск: Наука, 1974. 264 с.
- 3) Meyer H.O.A. Inclusions in diamond // Mantle xenoliths. New York: John Wiley&Sons, 1987. P. 501-533
- 4) Harris J. W. The geology of diamond: Time and depth profiles from inclusions //Diamond and Related Materials. 1993. T. 2. №. 2-4. C. 75-79.
- 5) Boyd F.R., Finnerty A.A. Conditions of Origin of Natural Diamonds of Peridotite Affinity // J. Geophys. Res. 1980. V. 85. P. 6911-6918.
- 6) Stachel T., Harris J. W. Syngenetic inclusions in diamond from the Birim field (Ghana) a deep peridotitic profile with a history of depletion and reenrichment // Contrib. Mineral. and Petrol. 1997 V.127. P.336-352.
- 7) Gurney J.J., Helmstaedt H. H., Richardson S. H., Shirey S. B. Diamond through Time // Soc. of Econ. Geolog., inc. Economic Geology. 2010. V.105. P.689-712.
- 8) Dawson J.B., Kimberlites and their xenoliths, 1980, Springer-Verlag, 252p.
- 9) Barrell J. The strength of the Earth's crust // Geology. 1914. Vol. 22. P. 425–433; 441–468; 655–683
- 10) Stachel T., Harris J. W. The origin of cratonic diamonds constraints from mineral inclusions // Ore Geology Reviews. 2008. V. 34. P. 5-32.
- Dewey J. F. Plate tectonics //Scientific American. 1972. T. 226. №. 5.
 C. 56-72.
- 12) Селиверстов Н. И. Введение в геологию океанов и морей. 2016.
- 13) Griffin W. L. et al. The origin and evolution of Archean lithospheric mantle //Precambrian Research. − 2003. − T. 127. − №. 1-3. − C. 19-41.
- 14) Eaton D. W. et al. The elusive lithosphere—asthenosphere boundary (LAB) beneath cratons //Lithos. $-2009. T. 109. N_{\odot}. 1-2. C. 1-22.$

- 15) Кожевников В. Н. Раннедокембрийские кратоны: глобальные корреляции, к перспективам алмазоносности Карельского региона //Геология и полезные ископаемые Карелии. 2008. №. 11. С. 5-17.
- Jordan T. H. The continental tectosphere //Reviews of Geophysics. 1975.
 T. 13. №. 3. C. 1-12.
- 17) Sipkin S. A., Jordan T. H. Lateral heterogeneity of the upper mantle determined from the travel times of ScS //Journal of Geophysical Research. 1975. T. 80. №. 11. C. 1474-1484.
- 18) Янсе А.Д. Новый подход к классификации кратонов //Геология и геофизика. 1992. №10. С. 12-32.; Изосов Л. А. и др. Перспективы алмазоносности Востока Азии и окраинных морей. 2000
- 19) Ваганов В.И. Алмазные месторождения России и мира. М.: Геоинформмарк, 2000
- 20) O'Reilly S. Y. et al. Are lithospheres forever? Tracking changes in subcontinental lithospheric mantle through time //GSA today. 2001. T. 11. №. 4. C. 4-10.
- 21) Pollack H. N., Chapman D. S. On the regional variation of heat flow, geotherms, and lithospheric thickness //Tectonophysics. 1977. T. 38. №. 3-4. C. 279-296.
- 22) Hasterok D., Chapman D. S. Heat production and geotherms for the continental lithosphere //Earth and Planetary Science Letters. 2011. T. 307. №. 1-2. C. 59-70.
- Ringwood A. E. The constitution of the mantle—II: further data on the olivine-spinel transition //Geochimica et Cosmochimica Acta. 1958. T. 15. №. 1-2. C. 18-29.
- 24) Рингвуд А. Е. Состав и петрология мантии Земли: Пер. с англ. Недра, 1981.
- 25) Griffin W. L., Ryan C. G. Trace elements in indicator minerals: area selection and target evaluation in diamond exploration //Journal of geochemical Exploration. − 1995. − T. 53. − №. 1-3. − C. 311-337.

- 26) Griffin W. L. et al. Secular variation in the composition of subcontinental lithospheric mantle: geophysical and geodynamic implications //Structure and evolution of the Australian continent. 1998. T. 26. C. 1-26.
- 27) Griffin W. L. et al. The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications //Journal of Petrology. – 2009. – T. 50. – №. 7. – C. 1185-1204.
- 28) Dawson J. B., Smith J. V. Chemistry and origin of phlogopite megacrysts in kimberlite //Nature. − 1975. − T. 253. − №. 5490. − C. 336-338.
- 29) Boyd F. R., Finnerty A. A. Conditions of origin of natural diamonds of peridotite affinity //Journal of Geophysical Research: Solid Earth. − 1980. − T. 85. − №. B12. − C. 6911-6918
- 30) Stachel T., Harris J. W. The origin of cratonic diamonds—constraints from mineral inclusions //Ore Geology Reviews. − 2008. − T. 34. − №. 1-2. − C. 5-32.
- 31) Гаранин В. К. Включения в алмазе и алмазоносные породы. Изд-во МГУ, 1991.
- 32) Griffin W.L., Shee S., Ryan C.G., Win T.T., Wyatt B.A. Harzburgite to lherzolite and back again: metasomatic processes in ultramafic xenoliths from the Wesselton kimberlite, Kimberley, South Africa. Contrib. Mineral. Petrol. 1999. V. 134. P. 232 250.
- 33) Simon N.S.C., Carlson R.W., Pearson D.G., Davies G.R. The origin and evolution of the Kaapvaal cratonic litho-spheric mantle // J. Petrology. 2007. V. 48. N 3. P. 589 625.
- 34) McCammon C. A. et al. Oxidation during metasomatism in ultramafic xenoliths from the Wesselton kimberlite, South Africa: implications for the survival of diamond //Contributions to Mineralogy and Petrology. − 2001. − T. 141. − №. 3. − C. 287.
- 35) Boyd F. R., Finnerty A. A. Conditions of origin of natural diamonds of peridotite affinity //Journal of Geophysical Research: Solid Earth. − 1980. − T. 85. − №. B12. − C. 6911-6918.

- 36) Liu Y. et al. Metasomatic origin of diamonds in the world's largest diamondiferous eclogite //Lithos. 2009. T. 112. C. 1014-1024.
- 37) Agashev, A.M.; Ionov, D.A.; Pokhilenko, N.P.; Golovin, A.V.; Cherepanova, Y.; Sharygin, I.S. Metasomatism in lithospheric mantle roots: Constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya.//Lithos. 2013. V. 160-161. P. 201–215.
- 38) Похиленко Н. П. и др. Взаимоотношения карбонатитового метасоматоза деплетированных перидотитов литосферной мантии с алмазообразованием и карбонатит-кимберлитовым магматизмом //Геология и геофизика. 2015. Т. 56. №. 1-2. С. 361-383.
- 39) Pearson D. G. et al. Re Os, Sm Nd, and Rb Sr isotope evidence for thick Archaean lithospheric mantle beneath the Siberian craton modified by multistage metasomatism // Geochimica et Cosmochimica Acta. − 1995. − T. 59. − №. 5. − C. 959-977.
- 40) Pearson D. G., Canil D., Shirey S. B. Mantle samples included in volcanic rocks: xenoliths and diamonds //Treatise on geochemistry. 2003. T. 2. C. 568.
- 41) Pearson D. G. et al. Stabilisation of Archaean lithospheric mantle: A ReOs isotope study of peridotite xenoliths from the Kaapvaal craton //Earth and Planetary Science Letters. − 1995. − T. 134. − №. 3-4. − C. 341-357.
- 42) Simon N. S. C. et al. The origin of garnet and clinopyroxene in "depleted" Kaapvaal peridotites //Lithos. 2003. T. 71. №. 2-4. C. 289-322.
- 43) Соболев Н. В., Похиленко Н. П., Ефимова Э. С. Ксенолиты алмазоносных перидотитов в кимберлитах и проблема происхождения алмазов //Геология и геофизика. 1984. Т. 12. С. 63-80.
- 44) Харькив А. Д., Похиленко Н. П., Соболев Н. В. Крупные ксенолиты катаклазированных лерцолитов из кимберлитовой трубки Удачная (Якутия) //Геология и геофизика. 1983. Т. 24. №. 1. С. 74-80.

- 45) Соболев Н. В., Похиленко Н. П. Ксенолиты катаклазированных перидотитов в кимберлитах Далдыно-Алакитского района Якутии //Глубинные ксенолиты и верхняя мантия. Новосибирск: Наука. Новосиб. отд-ние. 1975. С. 48-55.
- 46) Специус 3. В. Процессы метасоматоза и частичного плавления в ксенолитах из кимберлитовых трубок Якутии: приложение к генезису алмазов. 2004.
- 47) Erlank A. J. Evidence for mantle metasomatism in peridotite nodules from the Kimberley pipes, South Africa. In //Mantle metasomatism. 1987. C. 221-311.
- 48) Harte B. Mantle peridotites and processes—the kimberlite sample //UK volcanic studies group meeting. 1983. C. 46-91.
- 49) Carswell D. A. Garnet pyroxenite lens within Ugelvik layered garnet peridotite //Earth and Planetary Science Letters. 1973. T. 20. №. 3. C. 347-352.
- 50) O'Reilly S. Y., Griffin W. L. Mantle metasomatism //Metasomatism and the chemical transformation of rock. 2013. C. 471-533.
- 51) Griffin, W. L., S. R. Shee, C. G. Ryan, T. T. Win, and B. A. Wyatt, Harzburgite to lherzolite and back again: Metasomatic processes in ultramafic xenoliths from the Wesselton kimberlite, Kimberley, South Africa // Contrib. Mineral. Petrol. 1999. V.134. P. 232–250.
- 52) Zedgenizov D. A. et al. Composition of trapped fluids in cuboid fibrous diamonds from the Udachnaya kimberlite: LAM-ICPMS analysis //Chemical Geology. − 2007. − T. 240. − №. 1-2. − C. 151-162.
- 53) Зедгенизов Д. А. Состав и эволюция среды кристаллизации волокнистых алмазов литосферной мантии Сибирской платформы: дис. Новосибирск: Институт геологии и минералогии им. ВС Соболева Сибирского отделения Российской академии наук, 2011, 2011.

- 54) Klein-BenDavid O. et al. High-Mg carbonatitic microinclusions in some Yakutian diamonds—a new type of diamond-forming fluid //Lithos. 2009. T. 112. C. 648-659.
- 55) Bernstein S., Kelemen P. B., Hanghøj K. Consistent olivine Mg# in cratonic mantle reflects Archean mantle melting to the exhaustion of orthopyroxene //Geology. 2007. T. 35. №. 5. C. 459-462.
- Malkovets V. G. et al. Contents of trace elements in olivines from diamonds and peridotite xenoliths of the V. Grib kimberlite pipe (Arkhangel'sk diamondiferous province, Russia) //Doklady Earth Sciences. Springer, 2011. T. 436. №. 2. C. 219-224.
- 57) Sobolev N. V. et al. Petrogenetic significance of minor elements in olivines from diamonds and peridotite xenoliths from kimberlites of Yakutia //Lithos. 2009. T. 112. C. 701-713.
- 58) Sobolev N. V. et al. Olivine inclusions in Siberian diamonds: high-precision approach to minor elements //European Journal of Mineralogy. − 2008. − T. 20. − №. 3. − C. 305-315.
- 59) Stachel T., Harris J. W. The origin of cratonic diamonds—constraints from mineral inclusions //Ore Geology Reviews. 2008. T. 34. №. 1-2. C. 5-32.
- 60) Похиленко Н. П. и др. Кристаллические включения в алмазах из кимберлитов района Снэп-Лейк (кратон Слейв, Канада): новые свидетельства аномального строения литосферы //Доклады Академии наук. Федеральное государственное бюджетное учреждение" Российская академия наук", 2001. Т. 380. №. 3. С. 374-379.
- 61) De Hoog J. C. M., Gall L., Cornell D. H. Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry //Chemical Geology. 2010. T. 270. №. 1-4. C. 196-215.
- Malkovets V. G. et al. Diamond, subcalcic garnet, and mantle metasomatism:
 Kimberlite sampling patterns define the link //Geology. 2007. T. 35. №. 4.
 C. 339-342.

- 63) Тычков Н. С. и др. Мезозойская литосферная мантия северо-восточной части Сибирской платформы по данным включений из кимберлитов //Геология и геофизика. 2018. Т. 59. №. 10. С. 1564-1585.
- 64) Nimis P., Taylor W. R. Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer //Contributions to Mineralogy and Petrology. 2000. T. 139. C. 541-554.
- 65) Canil D. An experimental calibration of the "Nickel in Garnet" geothermometer with applications //Contributions to Mineralogy and Petrology. 1994. T. 117. C. 410-420.
- Ziberna L. et al. Error sources in single-clinopyroxene thermobarometry and
 a mantle geotherm for the Novinka kimberlite, Yakutia //American
 Mineralogist. 2016. T. 101. №. 10. C. 2222-2232.
- 67) Харькив А. Д. и др. Типоморфизм алмаза и его минералов-спутников из кимберлитов. Науково-виробниче підприємство" Видавництво" Наукова думка" НАН України", 1989.
- 68) Mitchell R. H. Kimberlites: mineralogy, geochemistry, and petrology. Springer Science & Business Media, 2013.
- 69) Гаранин В. К., Кудрявцева Г. П., Сошкина Л. Т. Ильменит из кимберлитов. 1984.
- 70) Robles-Cruz S. E. et al. Contrasting compositions and textures of ilmenite in the Catoca kimberlite, Angola, and implications in exploration for diamond //Lithos. 2009. T. 112. C. 966-975.
- 71) Boyd F. R., Nixon P. H. Origins of the ultramafic nodules from some kimberlites of northern Lesotho and the Monastery Mine, South Africa //Physics and Chemistry of the Earth. Pergamon, 1975. C. 431-454.
- 72) Алымова Н. В. СИ Костровицкий, Иванов АС и др. Пикроильменит из кимберлитов Далдынского поля (Якутия) //Докл. АН. 2004. Т. 395. №. 6. С. 799.

- 73) Костровицкий С. И. Геохимические особенности минералов кимберлитов: по данным изучения среднепалеозойских кимберлитов Якутии. Наука. Сиб. отд-ние, 1986.
- 74) Костровицкий С. И. и др. Минералогическая паспортизация разных таксонов кимберлитового вулканизма-методическая основа поисковых работ на алмазы //Руды и металлы. 2006. №. 4. С. 27-37.
- 75) Nowell G. M. et al. Hf isotope systematics of kimberlites and their megacrysts: new constraints on their source regions //Journal of Petrology. 2004. T. 45. № 8. C. 1583-1612.
- 76) Green D. H., Sobolev N. V. Coexisting garnets and ilmenites synthesized at high pressures from pyrolite and olivine basanite and their significance for kimberlitic assemblages //Contributions to Mineralogy and Petrology. – 1975. – T. 50. – C. 217-229.
- 77) Haggerty S. E. The chemistry and genesis of opaque minerals in kimberlites //Physics and Chemistry of the Earth. Pergamon, 1975. C. 295-307.
- 78) Костровицкий С. И. и др. Атлас коренных месторождений алмазов Якутской кимберлитовой провинции. 2015.
- 79) Брахфогель Ф. Ф., Шамшина Э. А., Зайцев А. И. Возраст кимберлитовых магматитов-основа прогнозирования алмазоносности территорий. 1997
- 80) Кривонос В.Ф. Относительный и абсолютный возраст кимберлитов // Отечественная геология. 1997. № 1.
- 81) Комаров А. Н., Илупин И. П. Геохронология кимберлитов Сибирской платформы по данным метода треков //Геохимия. 1990. №. 3. С. 365-372.
- 82) Дэвис Г. Л., Соболев Н. В., Харькив А. Д. Новые данные о возрасте кимберлитов Якутии, полученные уран-свинцовым методом по цирконам //Докл. АН СССР. 1980. Т. 254. №. 1. С. 175-179.
- 83) Левченков О. А. и др. U-Pb-возраст циркона из кимберлитовых трубок Мир и 325 лет Якутии //Доклады Академии наук. Федеральное

- государственное бюджетное учреждение" Российская академия наук", $2005. T. 400. N_{\odot}. 2. C. 233-235.$
- 84) Lepekhina E. et al. SHRIMP U-Pb zircon ages of Yakutian kimberlite pipes //International Kimberlite Conference: Extended Abstracts. 2008. T. 9.
- 85) Яковлев Д. А. Вещественный состав кимберлитов Верхнемунского поля (Якутия): дис. Ин-т геохимии им. АП Виноградова СО РАН, 2007.
- 86) Серов И. В. Минералогические и петролого-геохимические характеристики кимберлитовых и родственных им пород Якутской алмазоносной провинции (генетические и практические следствия): дис.
 Московский государственный университет им. МВ Ломоносова, 2003.
- 87) Розен О.М., Манаков А.В., Зинчук, Н.Н. Сибирский кратон: формирование, алмазоносность. // Науч. ред. С. И. Митюхин, Научный Мир, Москва, 2006, 212 с.
- 88) Shatsky V. S. et al. Multi-stage modification of Paleoarchean crust beneath the Anabar tectonic province (Siberian craton) //Precambrian Research. 2018. T. 305. C. 125-144.
- 89) Shatsky, V.S., Malkovets, V.G., Belousova, E.A., Tretiakova, I.G., Griffin, W.L., Ragozin, A.L., Gibsher, A.A., O'Reilly, S.Y., 2016. Tectonothermal evolution of the continental crust beneath the Yakutian diamondiferous province (Siberian craton): U-Pb and Hf isotopic evidence on zircons from crustal xenoliths of kimberlite pipes. // Precambr. Res. 282, 1–20.
- 90) Харькив А. Д., Зинчук Н. Н., Крючков А. И. Коренные месторождения алмазов мира. 1998.
- 91) Брахфогель Ф. Ф. Геологические аспекты кимберлитового магматизма северо-востока Сибирской платформы. АН СССР. Сиб. отд-ние. Якутский фил., 1984.
- 92) Ernst R. E., Buchan K. L. Giant radiating dyke swarms: their use in identifying pre-Mesozoic large igneous provinces and mantle plumes //Geophysical Monograph-American Geophysical Union. 1997. T. 100. C. 297-334.

- 93) Киселев А. И. и др. Среднепалеозойский базитовый магматизм северозападной части Вилюйского рифта: состав, источники, геодинамика //Петрология. – 2006. – Т. 14. – №. 6. – С. 626-648.
- 94) Соловьев А. В. Изучение тектонических процессов в областях конвергенции литосферных плит: методы трекового и структурного анализа. 2008.
- 35) Харькив, А. Д., Зуенко, В. В., Зинчук, Н. Н., Крючков, А. И., Уханов, А. В., & Богатых, М. М. (1991). Петрохимия кимберлитов. М. Недра.
- 96) Batanova V. G., Sobolev A. V., Magnin V. Trace element analysis by EPMA in geosciences: Detection limit, precision and accuracy //IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2018. T. 304. C. 012001.
- 97) Griffin W.L., Powell W.J., Pearson N.J., O'Reilly S.Y. (2008) GLITTER: data reduction software for laser ablation ICP-MS. In Sylvester P (eds) Laser Ablation–ICP–MS in the Earth Sciences. Mineralogical Association of Canada Short Course Series 40, pp 204–207.
- 98) Mather, K. A., Pearson, D. G., McKenzie, D., Kjarsgaard, B. A., & Priestley, K. (2011). Constraints on the depth and thermal history of cratonic lithosphere from peridotite xenoliths, xenocrysts and seismology. Lithos, 125(1-2), 729-742.
- 99) Schulze D. J. A classification scheme for mantle-derived garnets in kimberlite: a tool for investigating the mantle and exploring for diamonds //Lithos. − 2003. − T. 71. − №. 2-4. − C. 195-213.
- 100) GrÜTter H., Latti D., Menzies A. Cr-saturation arrays in concentrate garnet compositions from kimberlite and their use in mantle barometry //Journal of Petrology. 2006. T. 47. №. 4. C. 801-820.
- 101) Ramsay, Robert R. Geochemistry of diamond indicator minerals. Diss. University of Western Australia, 1992.

- 102) Grütter H. S. et al. An updated classification scheme for mantle-derived garnet, for use by diamond explorers //Lithos. − 2004. − T. 77. − №. 1-4. − C. 841-857.
- 103) Тычков Н. С. и др. Мезозойская литосферная мантия северо-восточной части Сибирской платформы по данным включений из кимберлитов //Геология и геофизика. 2018. Т. 59. №. 10. С. 1564-1585.
- 104) Coleman R. G. et al. Eclogites and eclogites: their differences and similarities //Geological Society of America Bulletin. − 1965. − T. 76. − №. 5. − C. 483-508.
- 105) Nowicki T. E. et al. Diamonds and associated heavy minerals in kimberlite: a review of key concepts and applications //Developments in Sedimentology. 2007. T. 58. C. 1235-1267.
- 106) Wyatt B. A. et al. Compositional classification of "kimberlitic" and "non-kimberlitic" ilmenite //Lithos. 2004. T. 77. №. 1-4. C. 819-840.
- 107) Шарыгин И. С. Акцессорные минералы ксенолитов деформированных перидотитов из кимберлитов трубки Удачная-Восточная (Якутия): происхождение и петрогенетическое значение. 2004.
- 108) Мальковец В. Г. и др. Содержание элементов-примесей в оливинах из алмазов и ксенолитов перидотитов кимберлитовой трубки им. В. Гриба (Архангельская алмазоносная провинция) //Доклады Академии наук. Федеральное государственное бюджетное учреждение" Российская академия наук", 2011. Т. 436. №. 4. С. 515-519.
- 109) Meyer H. O. A., Boyd F. R. Composition and origin of crystalline inclusions in natural diamonds //Geochimica et Cosmochimica Acta. – 1972. – T. 36. – №. 11. – C. 1255-1273.
- 110) Sobolev A. V. et al. The amount of recycled crust in sources of mantle-derived melts //science. − 2007. − T. 316. − №. 5823. − C. 412-417.
- 111) McDonough W. F., Sun S. S. The composition of the Earth //Chemical geology. 1995. T. 120. №. 3-4. C. 223-253.

112) Kennedy C. S., Kennedy G. C. The equilibrium boundary between graphite and diamond //Journal of Geophysical Research. − 1976. − T. 81. − №. 14. − C. 2467-2470.

Приложение A

Таблица A1. Химический состав оливинов из перидотитовых ксенолитов кимберлитовой трубки Комсомольская-

Магнитн	ая (EPN	Л А).													
Образец	Fo	SiO_2	TiO_2	Al_2O_3	FeO	MnO	MgO	CaO	NiO	Na ₂ O	P_2O_5	CoO	ZnO	Cr_2O_3	Сумма
KM1	92.2	41.9	нпо	0.01	7.62	0.09	50.6	0.01	0.39	0.03	0.01	0.02	нпо	0.03	100.6
KM2	93.0	41.6	нпо	0.01	6.87	0.10	51.2	0.02	0.38	0.03	нпо	0.02	нпо	0.05	100.4
KM3	93.0	41.2	0.03	0.01	6.92	0.09	51.5	0.02	0.38	0.04	0.01	0.02	нпо	0.04	100.3
KM4	92.1	41.3	нпо	0.01	7.72	0.09	50.7	0.02	0.38	0.07	0.01	0.02	нпо	0.02	100.3
KM5	93.2	41.5	нпо	0.01	6.72	0.09	52.0	0.01	0.38	0.04	0.01	0.02	нпо	0.04	100.8
KM6	89.3	40.9	0.02	0.05	10.30	0.11	48.1	0.06	0.36	0.04	0.01	0.02	0.01	0.02	100.0
KM7	88.7	40.7	0.04	0.01	10.94	0.12	48.3	0.03	0.30	0.04	0.01	0.02	0.01	0.01	100.6
KM10	92.9	41.7	нпо	0.01	7.05	0.09	51.4	0.01	0.38	0.03	0.01	0.02	нпо	нпо	100.7
KM12	92.6	41.4	0.04	0.01	7.30	0.10	51.6	0.03	0.37	0.04	0.01	0.02	нпо	0.04	100.9
KM15	91.9	41.2	0.04	0.01	7.99	0.10	50.5	0.03	0.37	0.04	0.01	0.02	нпо	0.03	100.3
KM19	89.2	41.0	0.03	0.01	10.55	0.12	48.8	0.03	0.28	0.03	0.01	0.02	0.01	0.01	100.9
KM21	93.0	41.8	нпо	0.01	6.87	0.09	51.2	0.02	0.38	0.03	0.00	0.02	нпо	0.05	100.5
KM22	92.7	41.4	нпо	0.01	7.09	0.09	50.8	0.01	0.39	0.02	0.01	0.02	нпо	нпо	99.9
KM23	89.0	40.6	0.03	0.03	10.57	0.11	48.2	0.05	0.36	0.05	0.01	0.02	0.01	0.03	100.0
KM25	93.4	41.9	0.01	0.02	6.48	0.09	51.5	0.03	0.37	0.03	0.01	0.01	нпо	0.04	100.5
KM26	92.4	41.3	0.01	0.01	7.48	0.10	50.7	0.02	0.38	0.03	0.01	0.02	нпо	0.04	100.1
KM28	92.6	41.5	нпо	0.01	7.23	0.10	51.1	0.01	0.38	0.03	0.00	0.02	нпо	0.04	100.4
KM29	91.9	41.2	нпо	0.01	7.91	0.10	50.4	0.02	0.37	0.03	0.01	0.01	нпо	0.03	100.2
KM30	92.5	40.1	НПО	0.01	7.32	0.09	50.5	0.01	0.37	0.04	0.01	0.02	0.01	0.02	98.5
KM32	92.5	41.4	нпо	0.00	7.32	0.09	50.8	0.01	0.38	0.02	0.00	0.02	нпо	нпо	100.1
KM33	92.6	41.2	нпо	0.01	7.23	0.08	51.0	0.01	0.37	0.04	0.01	0.02	0.01	0.03	100.1
KM34	93.7	39.7	нпо	0.01	6.21	0.09	51.8	0.00	0.35	0.03	нпо	0.01	нпо	0.03	98.2
KM37	90.6	41.1	0.04	0.01	9.15	0.10	49.5	0.02	0.36	0.03	0.01	0.02	0.01	нпо	100.4
KM38	92.8	41.9	нпо	0.01	7.07	0.09	51.3	0.00	0.37	0.01	нпо	0.02	нпо	0.03	100.9
KM39	88.7	40.6	0.02	0.02	10.84	0.11	47.9	0.05	0.35	0.02	0.01	0.02	0.01	0.02	99.9
KM41	93.5	41.6	нпо	0.01	6.45	0.08	51.9	0.01	0.37	0.01	0.00	0.02	нпо	0.04	100.5

KM43

92.1

41.3

0.01

7.76

0.09

50.6

0.01

0.37

0.01

0.00

0.02

нпо

0.02

100.2

KM44	92.6	41.4	нпо	0.01	7.27	0.08	50.9	0.02	0.39	0.01	0.01	0.02	0.01	0.02	100.1
KM46	92.0	40.9	0.02	0.01	7.78	0.10	50.3	0.02	0.33	0.03	нпо	0.02	0.01	0.03	99.5
KM47	92.4	41.3	0.04	0.01	7.42	0.10	50.6	0.03	0.36	0.01	0.01	0.02	0.01	0.03	100.0
KM48	91.3	41.0	0.04	0.01	8.52	0.11	49.9	0.03	0.35	0.02	0.01	0.02	0.01	0.02	100.1
KM49	87.9	40.5	0.03	0.02	11.62	0.11	47.4	0.05	0.27	0.02	0.01	0.02	0.01	0.01	100.1
KM50	92.0	41.2	0.04	0.01	7.86	0.11	50.6	0.03	0.35	0.02	0.01	0.02	0.01	0.03	100.3
KM51	93.6	39.8	нпо	0.00	6.30	0.09	51.9	0.01	0.36	0.04	нпо	0.02	нпо	0.04	98.6
KM52	93.4	40.9	0.04	0.01	6.49	0.09	51.6	0.03	0.36	0.03	0.01	0.02	нпо	0.04	99.6
KM53	89.9	39.6	0.04	0.06	9.71	0.12	48.4	0.08	0.31	0.07	0.01	0.02	нпо	0.08	98.5
KM54	91.6	40.5	0.04	0.01	8.21	0.11	50.0	0.03	0.34	0.05	0.01	0.02	0.01	0.02	99.3
KM55	93.3	40.1	нпо	0.01	6.69	0.09	51.9	0.03	0.35	0.04	нпо	0.02	нпо	0.04	99.3
KM56	93.9	40.8	0.04	0.01	6.07	0.10	52.3	0.02	0.36	0.04	0.01	0.02	нпо	0.05	99.8
KM57	93.3	40.3	0.02	0.01	6.65	0.08	52.0	0.02	0.35	0.04	0.01	0.02	нпо	0.04	99.6
KM58	93.0	41.0	нпо	0.01	6.90	0.09	51.6	0.01	0.35	0.04	0.01	0.02	нпо	0.02	100.0
KM59	93.1	40.4	нпо	0.01	6.82	0.09	51.5	0.01	0.33	0.02	0.01	0.02	нпо	0.02	99.2
KM60	89.0	40.4	0.03	0.02	10.67	0.11	48.2	0.05	0.30	0.06	0.01	0.02	0.01	0.01	99.8
KM61	89.6	39.8	0.02	0.03	10.13	0.10	48.8	0.06	0.34	0.04	0.01	0.02	0.01	0.02	99.4
KM62	93.8	41.2	0.03	0.01	6.11	0.10	52.2	0.03	0.34	0.05	0.01	0.01	нпо	0.04	100.2
KM64	89.9	39.7	0.03	0.03	9.81	0.11	48.8	0.05	0.35	0.05	0.02	0.02	0.01	0.02	99.0
KM65	89.6	41.3	0.03	0.02	9.95	0.11	48.3	0.05	0.38	0.02	0.01	0.02	0.01	0.02	100.2
KM66	93.5	41.9	0.03	0.01	6.40	0.10	51.8	0.03	0.37	0.02	0.01	0.02	нпо	0.05	100.7
KM68	93.1	41.5	нпо	0.00	6.79	0.09	51.3	0.01	0.39	0.01	0.01	0.02	нпо	0.03	100.2
KM69	92.2	41.3	0.03	0.01	7.60	0.10	50.7	0.02	0.34	0.02	0.01	0.02	0.01	0.03	100.2
KM70	88.8	40.0	0.04	0.01	10.69	0.12	47.4	0.04	0.28	0.01	0.01	0.02	0.01	нпо	98.6
KM71	94.0	41.7	0.03	0.01	5.94	0.09	52.3	0.03	0.38	0.02	0.01	0.02	нпо	0.04	100.6
KM73	89.8	40.8	0.03	0.01	9.88	0.11	49.0	0.05	0.38	0.02	0.01	0.02	0.01	0.02	100.3
KM74	93.4	41.3	нпо	0.00	6.47	0.09	51.0	0.01	0.38	0.01	нпо	0.02	нпо	0.02	99.4
KM76	89.3	40.7	0.03	0.01	10.32	0.13	48.5	0.02	0.41	0.01	0.01	0.02	0.01	0.01	100.2
KM77	93.2	41.5	0.02	0.01	6.76	0.09	51.7	0.03	0.37	0.02	0.01	0.02	нпо	0.05	100.6
KM79	92.8	41.2	0.01	0.00	6.97	0.09	50.6	0.01	0.36	0.01	0.01	0.02	нпо	0.02	99.4

KM80	93.1	41.5	нпо	0.01	6.85	0.10	51.8	0.01	0.37	нпо	нпо	0.02	нпо	0.05	100.8
KM84	92.2	41.5	0.02	0.01	7.68	0.10	50.9	0.02	0.36	0.02	0.01	0.02	нпо	0.03	100.7
KM88	88.9	40.8	0.03	0.02	10.72	0.12	48.2	0.05	0.36	0.03	0.01	0.02	0.01	0.01	100.7
KM91	88.5	40.7	0.04	0.02	11.25	0.12	48.4	0.03	0.28	0.03	0.01	0.02	0.01	нпо	100.4
KM92	93.3	41.2	0.04	0.02	6.58	0.12	51.5	0.04	0.26	0.02	нпо	0.02	нпо	0.05	99.8
KM96	92.8	41.6	нпо	0.01	7.10	0.10	51.2	0.03	0.39	0.02	нпо	0.02	нпо	0.03	100.5
KM97	90.4	41.0	0.02	0.01	9.37	0.03	49.4	0.06	0.36	0.01	0.01	0.02	0.01	0.02	100.5
KM100	89.9	40.9	0.02	0.04	9.94	0.11	49.4	0.06	0.37	0.02	0.01	0.02	0.01	0.03	100.9
KM100	92.9	40.9	0.02	0.03	7.02	0.11	51.2	0.00	0.37	0.02	0.01	0.02	нпо	0.02	99.6
KM101	93.5	41.4	0.02	0.01	6.42	0.10	51.4	0.02	0.37	0.01	нпо	0.03	нпо	0.03	99.8
KM102 KM103	91.9	41.4	0.03	0.01	7.96	0.10	50.8	0.03	0.37	0.01	0.01	0.02		0.04	100.6
KM103 KM104	93.5	41.4	0.03	0.01	6.38	0.11	51.6	0.03	0.37	0.02	0.01	0.02	нпо нпо	0.04	100.0
KM104 KM105	93.5	41.4		0.01	6.41	0.10	51.7	0.03	0.37	0.02		0.02		0.03	99.8
KM105	93.3		нпо	0.00		0.09	51.7	0.01	0.36	0.01	нпо	0.02	нпо	0.03	99.0
KM108	93.7	41.2 41.4	нпо	0.00	6.14 6.30	0.09	51.7	0.01	0.36	0.02	НПО	0.01	НПО	0.04	99.0
			нпо								НПО		НПО		
KM109	92.5	41.1	0.02	0.01	7.37	0.10	51.1	0.03	0.37	0.01	НПО	0.02	НПО	0.03	100.2
KM110	93.0	41.2	0.02	0.01	6.85	0.10	50.9	0.03	0.36	0.02	НПО	0.02	НПО	0.05	99.6
KM111	89.3	40.7	0.02	0.03	10.32	0.11	48.6	0.06	0.37	0.02	0.01	0.02	0.01	0.02	100.3
KM115	93.6	41.5	нпо	0.01	6.34	0.09	51.9	0.01	0.37	0.01	НПО	0.02	нпо	0.04	100.2
KM117	91.9	41.2	0.02	0.01	7.84	0.11	50.1	0.03	0.37	0.02	НПО	0.02	0.01	0.05	99.7
KM118	92.8	41.0	0.01	0.01	6.97	0.09	50.5	0.03	0.35	0.02	НПО	0.02	НПО	0.02	99.0
KM119	93.2	41.4	НПО	0.01	6.68	0.09	51.3	0.01	0.38	0.01	НПО	0.02	НПО	0.03	99.9
KM120	92.2	40.4	0.04	0.01	7.44	0.11	49.6	0.03	0.36	0.01	0.01	0.02	нпо	0.03	98.1
KM121	82.3	39.4	0.03	0.01	16.62	0.18	43.3	0.03	0.15	0.01	0.02	0.02	0.02	НПО	99.7
KM122	92.6	41.1	НПО	0.00	7.35	0.10	51.4	0.01	0.39	0.01	0.01	0.02	нпо	0.02	100.5
KM123	91.8	41.0	0.02	0.01	8.02	0.10	50.2	0.02	0.36	0.02	0.01	0.02	нпо	0.03	99.8
KM124	87.1	40.2	НПО	нпо	12.41	0.14	47.1	0.00	0.31	нпо	0.01	0.02	нпо	нпо	100.2
KM126	90.6	41.0	0.04	0.01	9.19	0.12	49.4	0.03	0.35	0.01	0.01	0.02	0.01	0.02	100.2
KM127	93.3	41.2	0.02	0.01	6.67	0.09	51.7	0.02	0.36	0.01	НПО	0.02	нпо	0.04	100.2
KM129	83.6	39.8	0.03	0.01	15.54	0.16	44.4	0.03	0.21	0.01	НПО	0.02	0.02	НПО	100.2

KM130	88.8	40.6	0.03	0.03	10.90	0.12	48.3	0.05	0.35	0.02	0.01	0.02	0.01	нпо	100.4
KM131	90.1	40.6	0.02	0.04	9.53	0.11	48.4	0.06	0.35	0.03	0.01	0.02	0.01	0.02	99.2
KM132	90.0	40.8	0.02	0.03	9.69	0.11	48.9	0.06	0.38	0.02	0.01	0.02	0.01	0.02	100.1
KM134	92.3	41.0	0.03	0.01	7.56	0.11	50.9	0.03	0.37	0.02	0.01	0.02	нпо	0.05	100.2
KM135	89.8	40.6	0.02	0.03	9.86	0.11	48.6	0.06	0.35	0.02	0.01	0.02	0.01	0.01	99.8
KM137	92.3	41.1	0.03	0.01	7.55	0.10	51.1	0.02	0.37	0.01	нпо	0.02	нпо	0.02	100.3
KM140	93.3	41.6	0.02	0.01	6.67	0.09	52.1	0.02	0.37	0.02	0.01	0.02	нпо	0.04	101.0
KM141	89.2	40.7	0.04	0.01	10.51	0.12	48.9	0.04	0.31	0.02	0.00	0.02	0.01	0.02	100.7
KM142	92.9	41.3	нпо	0.01	6.99	0.10	51.5	0.01	0.38	0.02	нпо	0.02	нпо	0.04	100.4
KM143	90.0	40.8	0.04	0.01	9.72	0.11	49.3	0.04	0.30	0.02	0.01	0.02	нпо	0.03	100.4
KM144	91.9	41.2	0.03	0.01	7.93	0.10	50.8	0.03	0.37	0.04	0.01	0.02	нпо	0.03	100.5
KM145	92.0	41.1	0.04	0.01	7.86	0.10	50.9	0.03	0.36	0.02	0.01	0.02	нпо	0.03	100.5
KM146	92.9	41.4	0.03	0.01	6.97	0.09	51.1	0.03	0.37	0.03	0.01	0.02	нпо	0.04	100.1
KM148	92.7	41.0	нпо	нпо	7.30	0.10	51.6	0.01	0.39	0.02	0.00	0.02	нпо	нпо	100.5
KM149	92.6	41.3	нпо	нпо	7.26	0.10	50.9	0.01	0.38	0.02	нпо	0.02	нпо	нпо	100.0
KM150	88.6	40.5	0.03	0.03	10.98	0.11	48.1	0.06	0.37	0.03	0.01	0.02	0.01	0.02	100.2
KM151	93.3	41.1	0.04	0.01	6.65	0.10	51.9	0.03	0.38	0.03	0.01	0.02	нпо	0.04	100.3
KM152	93.7	40.9	0.04	0.61	6.17	0.09	51.7	0.03	0.34	0.01	0.01	0.01	нпо	0.04	99.9
KM153	92.9	41.6	нпо	0.01	6.99	0.09	51.4	0.01	0.38	0.04	нпо	0.02	нпо	0.03	100.6
KM154	93.3	41.7	нпо	0.01	6.57	0.09	51.6	0.02	0.36	0.06	нпо	0.02	нпо	0.05	100.5
KM155	91.5	41.3	0.04	0.01	8.28	0.11	50.2	0.03	0.37	0.04	0.01	0.02	0.01	0.03	100.4
KM156	90.3	40.8	0.03	0.01	9.43	0.11	49.4	0.03	0.33	0.02	нпо	0.02	0.01	0.02	100.3
KM157	93.5	41.7	нпо	0.02	6.40	0.09	51.7	0.03	0.37	0.04	нпо	0.02	нпо	0.04	100.4
KM158	93.5	42.1	НПО	0.02	6.42	0.09	51.9	0.02	0.37	0.04	нпо	0.01	нпо	0.03	101.0
KM159	93.5	41.5	нпо	0.01	6.41	0.09	52.0	0.02	0.37	0.03	нпо	0.02	нпо	0.04	100.4
KM160	92.8	41.6	нпо	0.01	7.08	0.10	51.5	0.01	0.38	0.03	нпо	0.02	нпо	0.04	100.8
KM161	92.6	41.6	нпо	нпо	7.27	0.09	50.7	0.03	0.37	0.01	нпо	0.02	нпо	0.03	100.2
KM162	92.8	41.9	нпо	нпо	7.03	0.09	51.1	НПО	0.38	0.01	нпо	0.02	нпо	0.03	100.6
KM163	92.9	41.6	нпо	нпо	7.05	0.09	51.7	0.01	0.39	0.01	0.01	0.02	нпо	0.02	100.9
KM164	89.8	41.2	0.04	нпо	9.85	0.11	48.6	0.03	0.31	0.01	0.00	0.02	0.01	0.02	100.2

KM166 93.1 41.0 0.03 0.01 6.69 0.10 50.8 0.03 0.36 0.02 milo 0.01 milo 0.05 99.0 M16167 92.6 41.3 milo 0.01 7.30 0.09 51.5 0.01 0.38 0.02 milo 0.02 milo 0.04 100.7 M1668 92.6 41.3 milo 0.01 7.25 0.10 50.9 0.01 0.38 0.01 milo 0.02 milo 0.06 100.1 KM169 93.0 41.4 milo 0.01 7.01 0.09 51.9 0.01 0.38 0.01 milo 0.02 milo 0.04 100.9 KM170 92.5 41.4 milo 0.00 7.40 0.09 50.9 0.01 0.38 0.01 milo 0.02 milo 0.02 milo 0.04 100.9 KM171 92.2 41.2 milo milo 7.74 0.10 51.3 0.01 0.38 0.01 milo 0.02 milo 0.01 100.7 KM172 92.7 41.0 milo milo 7.15 0.11 51.0 0.01 0.34 0.01 milo 0.02 milo 0.01 100.7 KM173 89.6 41.2 0.04 0.01 10.04 0.12 48.8 0.04 0.35 0.02 0.01 0.02 0.01 0.02 100.6 KM174 93.5 41.7 milo 0.03 6.41 0.09 52.0 0.01 0.37 0.03 milo 0.02 0.01 0.02 100.7 KM175 92.5 41.7 milo milo 7.33 0.09 50.5 0.01 0.39 0.01 0.01 0.02 milo 0.05 100.7 KM176 92.8 41.3 0.01 0.01 7.03 0.09 50.5 0.01 0.39 0.01 0.01 0.02 milo 0.03 99.4 KM177 91.9 41.0 0.03 0.01 7.92 0.10 50.7 0.02 0.33 0.02 0.01 0.02 milo 0.03 99.4 KM178 90.2 40.9 0.03 0.02 9.53 0.11 48.9 0.04 0.38 0.02 0.01 0.02 milo 0.03 100.1 KM178 92.3 41.5 milo milo 7.53 0.11 51.0 0.01 0.34 0.01 milo 0.02 milo 0.03 100.1 KM180 92.4 41.2 milo milo 7.53 0.11 51.1 0.01 0.34 0.01 milo 0.02 milo milo 100.4 KM181 93.2 41.4 milo milo 6.67 0.08 51.1 0.00 0.34 0.01 milo 0.02 milo milo 100.5 KM303 89.1 40.8 0.04 0.02 10.59 0.12 48.5 0.03 0.28 0.01 0.01 0.02 milo 0.03 100.1 KM303 93.4 41.6 milo 0.01 6.49 0.09 51.4 0.02 0.35 0.02 0.01 0.02	TCN 41 C 5	00.0	41 1	0.04		0.00	0.11	10.1	0.02	0.21	0.01	0.01	0.00	0.01	0.00	100.7
KM167 92.6 41.3 min 0.01 7.30 0.09 51.5 0.01 0.38 0.02 min 0.02 min 0.04 100.7 KM168 92.6 41.3 min 0.01 7.25 0.10 50.9 0.01 0.37 0.01 min 0.02 min 0.06 100.1 KM169 93.0 41.4 min 0.01 7.01 0.09 51.9 0.01 0.38 0.01 min 0.02 min 0.02 100.2 KM170 92.5 41.4 min 0.00 7.40 0.09 50.9 0.01 0.38 0.01 min 0.02 min 0.02 100.2 KM171 92.2 41.2 min min 7.74 0.10 51.3 0.01 0.38 0.01 min 0.02 min 0.01 100.7 KM172 92.7 41.0 min min 7.15 0.11 51.0 0.01 0.34 0.01 min 0.02 min min 99.6 KM173 89.6 41.2 0.04 0.01 10.04 0.12 48.8 0.04 0.35 0.02 0.01 0.02 0.01 0.02 100.6 KM174 93.5 41.7 min min 7.35 0.10 51.0 min 0.37 0.03 min 0.02 min 0.05 100.7 KM175 92.5 41.7 min min 7.35 0.10 51.0 min 0.38 0.01 0.50 0.02 0.02 0.02 0.01 0.07 KM176 92.8 41.3 0.01 0.01 7.03 0.09 50.5 0.01 0.39 0.01 0.50 0.02 0.02 0.02 0.02 101.2 KM177 91.9 41.0 0.03 0.01 7.92 0.10 50.7 0.02 0.38 0.01 0.01 0.02 min 0.03 99.4 KM179 92.3 41.5 min min 7.53 0.11 51.0 0.01 0.36 0.01 min 0.02 min 0.03 100.1 KM180 92.4 41.2 min min 7.53 0.11 51.0 0.01 0.36 0.01 min 0.02 min min 100.5 KM181 93.2 41.4 min min 6.67 0.08 51.1 0.01 0.36 0.01 min 0.02 min min 100.5 KM303 89.1 40.8 0.04 0.02 10.59 0.12 48.5 0.03 0.28 0.01 min 0.02 min min 0.04 100.3 KM306 91.2 41.1 0.04 0.01 8.27 0.11 49.9 0.03 0.35 0.02 0.01 0.02 min 0.03 100.1 KM307 92.2 41.5 0.04 0.01 8.27 0.11 49.9 0.03 0.35 0.02 0.01 0.02 min 0.03 100.1 KM308 88.3 40.5 0.04 0.01 8.27 0.11 49.9 0.03 0.35 0.02 0.01 0.02 min 0.0	KM165	89.9	41.1	0.04	НПО	9.89	0.11	49.1	0.03	0.31	0.01	0.01	0.02	0.01	0.02	100.7
KM168 92.6 41.3 HID 0.01 7.25 0.10 50.9 0.01 0.37 0.01 HID 0.02 HID 0.06 100.1 KM169 93.0 41.4 HID 0.01 7.01 0.09 51.9 0.01 0.38 0.01 HID 0.02 HID 0.04 100.9 KM170 92.5 41.4 HID 0.00 7.40 0.09 50.9 0.01 0.38 0.01 HID 0.02 HID 0.02 100.2 KM171 92.2 41.2 HID HID 7.74 0.10 51.3 0.01 0.38 0.01 HID 0.02 HID 0.01 100.7 KM172 92.7 41.0 HID HID 7.75 0.11 51.0 0.01 0.34 0.01 HID 0.02 HID 0.01 100.7 KM173 89.6 41.2 0.04 0.01 10.04 0.12 48.8 0.04 0.35 0.02 0.01 0.02 0.01 0.02 100.6 KM174 93.5 41.7 HID 0.03 6.41 0.09 52.0 0.01 0.37 0.03 HID 0.02 HID 0.05 100.7 KM175 92.5 41.7 HID HID 7.35 0.10 51.0 HID 0.38 0.01 0.50 0.02 0.02 0.02 0.02 101.2 KM176 92.8 41.3 0.01 0.01 7.03 0.09 50.5 0.01 0.39 0.01 0.01 0.02 HID 0.03 99.4 KM177 91.9 41.0 0.03 0.01 7.92 0.10 50.7 0.02 0.33 0.02 0.01 0.02 HID 0.03 100.1 KM178 90.2 40.9 0.03 0.02 9.53 0.11 48.9 0.04 0.38 0.02 0.01 0.02 HID 0.03 100.1 KM180 92.4 41.2 HID HID 7.50 0.11 51.1 0.01 0.34 0.01 HID 0.02 HID HID 0.05 KM1818 93.2 41.4 HID HID 6.67 0.08 51.1 0.01 0.34 0.01 HID 0.02 HID HID 0.05 KM304 93.4 41.6 HID 0.01 6.49 0.09 51.4 0.02 0.42 0.01 HID 0.02 HID HID 0.05 KM305 93.4 41.5 0.01 0.01 6.49 0.09 51.4 0.02 0.34 0.01 HID 0.02 HID HID 0.05 KM306 91.2 41.1 0.04 0.01 8.57 0.11 49.9 0.03 0.35 0.02 0.01 0.02 HID 0.03 100.1 KM307 92.2 41.5 0.04 0.01 8.57 0.11 49.9 0.03 0.35 0.02 0.01 0.02 HID 0.03 100.1 KM308 91.5 41.1 0.04 0.01 8.57 0.11 49.9 0.03 0.35 0.02 0.01 0.02 HID 0.03 100.0														НПО		
KM169 93.0 41.4 HID 0.01 7.01 0.09 51.9 0.01 0.38 0.01 HID 0.02 HID 0.04 100.9 100.2 100.1				НПО								НПО		НПО		
KM170 92.5 41.4 HIIO 0.00 7.40 0.09 50.9 0.01 0.38 0.01 HIIO 0.02 HIIO 0.02 100.2 100.7 KM171 92.2 41.2 HIIO HIIO 7.74 0.10 51.3 0.01 0.38 0.01 HIIO 0.02 HIIO 0.01 100.7 KM172 92.7 41.0 IIIO IIIO HIIO 7.15 0.11 51.0 0.01 0.34 0.01 HIIO 0.02 HIIO 0.01 100.7 KM173 89.6 41.2 0.04 0.01 10.04 0.12 48.8 0.04 0.35 0.02 0.01 0.02 0.01 0.02 100.6 KM174 93.5 41.7 HIIO 0.03 6.41 0.09 52.0 0.01 0.37 0.03 HIIO 0.02 HIIO 0.05 100.7 KM175 92.5 41.7 HIIO HIIO 7.35 0.10 51.0 HIIO 0.38 0.01 0.50 0.02 0.02 0.02 0.02 101.2 KM176 92.8 41.3 0.01 0.01 7.03 0.09 50.5 0.01 0.39 0.01 0.01 0.02 HIIO 0.03 99.4 KM177 91.9 41.0 0.03 0.01 7.92 0.10 50.7 0.02 0.33 0.02 0.01 0.02 HIIO 0.03 100.1 KM178 90.2 40.9 0.03 0.02 9.53 0.11 48.9 0.04 0.38 0.02 0.01 0.02 0.01 0.03 100.1 KM180 92.4 41.2 HIIO HIIO 7.53 0.11 51.0 0.01 0.36 0.01 HIIO 0.02 HIIO HIIO 100.5 KM181 93.2 41.4 HIIO HIIO 7.50 0.11 51.1 0.01 0.34 0.01 HIIO 0.02 HIIO HIIO 100.4 KM181 93.2 41.4 HIIO HIIO 6.67 0.08 51.1 0.00 0.39 0.01 HIIO 0.02 HIIO HIIO 0.03 100.1 KM303 89.1 40.8 0.04 0.02 10.59 0.12 48.5 0.03 0.28 0.01 0.01 0.02 HIIO 0.03 100.1 KM304 93.4 41.5 0.01 0.01 6.49 0.08 51.4 0.02 0.34 0.02 0.01 0.02 HIIO 0.04 100.3 KM305 92.7 41.5 0.04 0.01 8.27 0.11 49.9 0.03 0.35 0.02 0.01 0.02 HIIO 0.03 100.0 KM308 91.5 41.1 0.04 0.01 8.27 0.11 49.9 0.03 0.35 0.02 0.01 0.02 HIIO 0.03 100.0 KM310 93.5 41.5 0.01 0.01 6.42 0.08 51.7 0.02 0.35 0.02 0.01 0.02 HIIO 0.05 100.3 KM312 89.0 40.6 0.04 0.01 8.27			41.3	НПО	0.01				0.01	0.37		НПО		НПО		
KM171 92.2 41.2 HIIIO HIIIO 7.74 0.10 51.3 0.01 0.38 0.01 HIIIO 0.02 HIIIO 0.01 100.7			41.4	НПО								НПО		НПО		
KM172 92.7 41.0 HIIO HIIO 7.15 0.11 51.0 0.01 0.34 0.01 HIIO 0.02 HIIO HIIO 99.6 MIIT 389.6 41.2 0.04 0.01 10.04 0.12 48.8 0.04 0.35 0.02 0.01 0.02 0.01 0.02 100.6 MIIT 35.5 41.7 HIIO 0.03 6.41 0.09 52.0 0.01 0.37 0.03 HIIO 0.02 HIIO 0.05 100.7 MIIT 59.5 41.7 HIIO HIIO 7.35 0.10 51.0 HIIO 0.38 0.01 0.50 0.02 0.02 0.02 0.02 0.02 0.02 MIIT MIIT 59.5 41.7 HIIO HIIO 7.35 0.10 50.7 0.02 0.38 0.01 0.01 0.02 HIIO 0.03 99.4 MIIT 91.9 41.0 0.03 0.01 7.92 0.10 50.7 0.02 0.33 0.02 0.01 0.02 HIIO 0.03 100.1 MIIT 91.9 41.0 0.03 0.02 9.53 0.11 48.9 0.04 0.38 0.02 0.01 0.02 0.01 0.04 100.0 MIIT 92.3 41.5 HIIO HIIO 7.53 0.11 51.0 0.01 0.36 0.01 HIIO 0.02 HIIO HIIO 100.5 MIIT 93.2 41.4 HIIO HIIO 6.67 0.08 51.1 0.01 0.34 0.01 HIIO 0.02 HIIO HIIO 100.4 MIIT 100.4 MIIT 100.4 100.5 MIIT 100.4 100.5 1	KM170	92.5	41.4	НПО	0.00	7.40	0.09	50.9	0.01	0.38	0.01	НПО	0.02	НПО	0.02	100.2
KM173 89.6 41.2 0.04 0.01 10.04 0.12 48.8 0.04 0.35 0.02 0.01 0.02 0.01 0.02 100.6 KM174 93.5 41.7 IIII0 0.03 6.41 0.09 52.0 0.01 0.37 0.03 IIII0 0.02 IIII0 0.05 100.7 KM175 92.5 41.7 IIII0 IIII0 7.35 0.10 51.0 IIII0 0.38 0.01 0.50 0.02 0.02 0.02 0.02 KM176 92.8 41.3 0.01 0.01 7.03 0.09 50.5 0.01 0.39 0.01 0.01 0.02 IIII0 0.03 99.4 KM177 91.9 41.0 0.03 0.01 7.92 0.10 50.7 0.02 0.33 0.02 0.01 0.02 IIII0 0.03 100.1 KM178 90.2 40.9 0.03 0.02 9.53 0.11 48.9 0.04 0.38 0.02 0.01 0.02 0.01 0.04 100.0 KM179 92.3 41.5 IIII0 IIII0 7.53 0.11 51.0 0.01 0.36 0.01 IIII0 0.02 IIII0 IIII0 100.5 KM180 92.4 41.2 IIII0 IIII0 7.50 0.11 51.1 0.01 0.34 0.01 IIII0 0.02 IIII0 IIII0 100.4 KM181 93.2 41.4 IIII0 IIII0 6.67 0.08 51.1 0.00 0.39 0.01 IIII0 0.02 IIII0 IIII0 100.4 KM302 93.4 41.6 IIII0 0.01 6.49 0.09 51.4 0.02 0.42 0.01 IIII0 0.02 IIII0 0.03 100.1 KM304 93.4 41.5 0.01 0.01 6.49 0.08 51.4 0.02 0.42 0.01 0.01 0.02 0.01 0.01 0.05 KM304 93.4 41.5 0.01 0.01 6.49 0.08 51.4 0.02 0.34 0.02 0.01 0.02 0.01 0.01 0.05 KM305 92.7 41.5 0.04 0.01 7.19 0.10 50.9 0.03 0.35 0.02 0.01 0.02 IIII0 0.04 100.3 KM306 91.2 41.1 0.04 0.01 8.57 0.11 49.9 0.03 0.35 0.02 0.01 0.02 IIII0 0.03 100.0 KM308 91.5 41.1 0.04 0.01 8.27 0.11 49.9 0.03 0.35 0.02 0.01 0.02 IIII0 0.03 100.0 KM309 88.3 40.5 0.04 0.01 7.41 0.09 51.1 49.9 0.03 0.35 0.02 0.01 0.02 IIII0 0.05 100.3 KM312 89.0 40.6 0.04 0.02 10.63 0.11 48.5 0.03 0.34 0.01 0.01 0.02 0.01 0.05 100.5 KM316 89.7 41.2 0.04 0.01 7	KM171	92.2	41.2	НПО	НПО	7.74	0.10	51.3	0.01	0.38	0.01	НПО	0.02	нпо	0.01	100.7
КМ174 93.5 41.7 нпо 0.03 6.41 0.09 52.0 0.01 0.37 0.03 нпо 0.02 нпо 0.05 100.7 КМ175 92.5 41.7 нпо нпо 7.35 0.10 51.0 нпо 0.38 0.01 0.50 0.02 0.02 0.02 101.2 КМ176 92.8 41.3 0.01 0.01 7.03 0.09 50.5 0.01 0.92 0.01 0.02 нпо 0.03 99.4 КМ177 91.9 41.0 0.03 0.01 7.92 0.10 50.7 0.02 0.33 0.02 0.01 0.02 нпо 0.03 100.1 80.0 0.01 0.02 нпо 0.03 100.1 100.0 0.36 0.01 нпо 0.02 нпо нпо 100.5 КМ180 92.4 41.2 нпо нпо 7.50 0.11 51.1 0.01 0.34 0.01 нпо 0.02	KM172	92.7	41.0	нпо	нпо	7.15	0.11	51.0	0.01	0.34	0.01	нпо	0.02	нпо	нпо	99.6
КМ175 92.5 41.7 нпо нпо 7.35 0.10 51.0 нпо 0.38 0.01 0.50 0.02 0.02 0.02 101.2 КМ176 92.8 41.3 0.01 0.01 7.03 0.09 50.5 0.01 0.39 0.01 0.02 нпо 0.03 99.4 КМ177 91.9 41.0 0.03 0.01 7.92 0.10 50.7 0.02 0.33 0.02 0.01 0.02 нпо 0.03 100.1 КМ178 90.2 40.9 0.03 0.02 9.53 0.11 48.9 0.04 0.38 0.02 0.01 0.02 0.01 0.04 100.0 КМ179 92.3 41.5 нпо нпо 7.50 0.11 51.0 0.01 0.36 0.01 нпо 0.02 нпо нпо 100.5 КМ180 92.4 41.2 нпо нпо 7.50 0.11 51.1 0.00	KM173	89.6	41.2	0.04	0.01	10.04	0.12	48.8	0.04	0.35	0.02	0.01	0.02	0.01	0.02	100.6
КМ176 92.8 41.3 0.01 0.01 7.03 0.09 50.5 0.01 0.39 0.01 0.01 0.02 нпо 0.03 99.4 КМ177 91.9 41.0 0.03 0.01 7.92 0.10 50.7 0.02 0.33 0.02 0.01 0.02 нпо 0.03 100.1 КМ178 90.2 40.9 0.03 0.02 9.53 0.11 48.9 0.04 0.38 0.02 0.01 0.02 0.01 0.04 100.0 КМ179 92.3 41.5 нпо нпо 7.53 0.11 51.0 0.01 0.36 0.01 нпо 0.02 нпо нпо 100.5 КМ180 92.4 41.2 нпо нпо 6.67 0.08 51.1 0.01 0.34 0.01 нпо 0.02 нпо нпо 100.4 КМ302 93.4 41.6 нпо 0.01 6.49 0.09 51.4	KM174	93.5	41.7	нпо	0.03	6.41	0.09	52.0	0.01	0.37	0.03	нпо	0.02	нпо	0.05	100.7
КМ177 91.9 41.0 0.03 0.01 7.92 0.10 50.7 0.02 0.33 0.02 0.01 0.02 нпо 0.03 100.1 КМ178 90.2 40.9 0.03 0.02 9.53 0.11 48.9 0.04 0.38 0.02 0.01 0.02 0.01 0.04 100.0 КМ179 92.3 41.5 нпо нпо 7.53 0.11 51.0 0.01 0.36 0.01 нпо 0.02 нпо нпо нпо 100.5 КМ180 92.4 41.2 нпо нпо 7.50 0.11 51.1 0.01 0.34 0.01 нпо 0.02 нпо 100.4 КМ181 93.2 41.4 нпо нпо 6.67 0.08 51.1 0.00 0.39 0.01 нпо 0.02 нпо 100.4 КМ302 93.4 41.6 нпо 0.01 6.49 0.09 51.4 0.02	KM175	92.5	41.7	нпо	нпо	7.35	0.10	51.0	нпо	0.38	0.01	0.50	0.02	0.02	0.02	101.2
КМ178 90.2 40.9 0.03 0.02 9.53 0.11 48.9 0.04 0.38 0.02 0.01 0.02 0.01 0.04 100.0 КМ179 92.3 41.5 нпо нпо 7.53 0.11 51.0 0.01 0.36 0.01 нпо 0.02 нпо нпо нпо 100.5 КМ180 92.4 41.2 нпо нпо 7.50 0.11 51.1 0.01 0.34 0.01 нпо 0.02 нпо нпо 100.4 КМ181 93.2 41.4 нпо нпо 6.67 0.08 51.1 0.00 0.39 0.01 нпо 0.02 нпо 99.7 КМ302 93.4 41.6 нпо 0.01 6.49 0.09 51.4 0.02 0.42 0.01 0.01 0.01 100.5 КМ304 93.4 41.5 0.01 0.01 6.49 0.08 51.4 0.02 0.34 <	KM176	92.8	41.3	0.01	0.01	7.03	0.09	50.5	0.01	0.39	0.01	0.01	0.02	нпо	0.03	99.4
КМ179 92.3 41.5 нпо нпо 7.53 0.11 51.0 0.01 0.36 0.01 нпо 0.02 нпо нпо 100.5 КМ180 92.4 41.2 нпо нпо 7.50 0.11 51.1 0.01 0.34 0.01 нпо 0.02 нпо нпо 100.4 КМ181 93.2 41.4 нпо нпо 6.67 0.08 51.1 0.00 0.39 0.01 нпо 0.02 нпо 99.7 КМ302 93.4 41.6 нпо 0.01 6.49 0.09 51.4 0.02 0.42 0.01 нпо 0.03 100.1 КМ303 89.1 40.8 0.04 0.02 10.29 0.03 0.28 0.01 0.01 0.02 110.5 КМ304 93.4 41.5 0.01 0.01 6.49 0.08 51.4 0.02 0.34 0.02 0.01 0.02 нпо 0.06 <	KM177	91.9	41.0	0.03	0.01	7.92	0.10	50.7	0.02	0.33	0.02	0.01	0.02	нпо	0.03	100.1
КМ180 92.4 41.2 нпо нпо 7.50 0.11 51.1 0.01 0.34 0.01 нпо 0.02 нпо нпо нпо 100.4 КМ181 93.2 41.4 нпо нпо 6.67 0.08 51.1 0.00 0.39 0.01 нпо 0.02 нпо нпо 99.7 КМ302 93.4 41.6 нпо 0.01 6.49 0.09 51.4 0.02 0.42 0.01 нпо 0.03 100.1 КМ303 89.1 40.8 0.04 0.02 10.59 0.12 48.5 0.03 0.28 0.01 0.01 0.01 100.5 КМ304 93.4 41.5 0.01 0.01 6.49 0.08 51.4 0.02 0.34 0.02 0.01 0.02 нпо 0.02 нпо 0.02 нпо 0.02 нпо 0.02 нпо 0.04 нпо 0.01 51.4 0.02 0.34 <t< td=""><td>KM178</td><td>90.2</td><td>40.9</td><td>0.03</td><td>0.02</td><td>9.53</td><td>0.11</td><td>48.9</td><td>0.04</td><td>0.38</td><td>0.02</td><td>0.01</td><td>0.02</td><td>0.01</td><td>0.04</td><td>100.0</td></t<>	KM178	90.2	40.9	0.03	0.02	9.53	0.11	48.9	0.04	0.38	0.02	0.01	0.02	0.01	0.04	100.0
КМ181 93.2 41.4 нпо нпо 6.67 0.08 51.1 0.00 0.39 0.01 нпо 0.02 нпо 99.7 КМ302 93.4 41.6 нпо 0.01 6.49 0.09 51.4 0.02 0.42 0.01 нпо 0.02 нпо 0.03 100.1 КМ303 89.1 40.8 0.04 0.02 10.59 0.12 48.5 0.03 0.28 0.01 0.01 0.02 0.01 100.5 КМ304 93.4 41.5 0.01 0.01 6.49 0.08 51.4 0.02 0.34 0.02 0.01 0.02 нпо 0.06 99.9 КМ305 92.7 41.5 0.04 0.01 7.19 0.10 50.9 0.03 0.36 0.02 0.01 0.02 нпо 0.04 100.3 КМ306 91.2 41.1 0.04 0.01 8.57 0.11 49.9 0.03 0.35	KM179	92.3	41.5	нпо	нпо	7.53	0.11	51.0	0.01	0.36	0.01	нпо	0.02	нпо	нпо	100.5
КМ302 93.4 41.6 нпо 0.01 6.49 0.09 51.4 0.02 0.42 0.01 нпо 0.03 100.1 КМ303 89.1 40.8 0.04 0.02 10.59 0.12 48.5 0.03 0.28 0.01 0.01 0.02 0.01 100.5 КМ304 93.4 41.5 0.01 0.01 6.49 0.08 51.4 0.02 0.34 0.02 0.01 0.02 нпо 0.06 99.9 КМ305 92.7 41.5 0.04 0.01 7.19 0.10 50.9 0.03 0.36 0.02 0.01 0.02 нпо 0.04 100.3 КМ306 91.2 41.1 0.04 0.01 8.57 0.11 49.9 0.03 0.35 0.02 0.01 0.02 нпо 0.02 100.1 КМ307 92.2 41.2 0.03 0.01 7.65 0.09 50.6 0.03 0.36 0.01 <td>KM180</td> <td>92.4</td> <td>41.2</td> <td>нпо</td> <td>нпо</td> <td>7.50</td> <td>0.11</td> <td>51.1</td> <td>0.01</td> <td>0.34</td> <td>0.01</td> <td>нпо</td> <td>0.02</td> <td>нпо</td> <td>нпо</td> <td>100.4</td>	KM180	92.4	41.2	нпо	нпо	7.50	0.11	51.1	0.01	0.34	0.01	нпо	0.02	нпо	нпо	100.4
КМ303 89.1 40.8 0.04 0.02 10.59 0.12 48.5 0.03 0.28 0.01 0.01 0.02 0.01 100.5 КМ304 93.4 41.5 0.01 0.01 6.49 0.08 51.4 0.02 0.34 0.02 0.01 0.02 нпо 0.06 99.9 КМ305 92.7 41.5 0.04 0.01 7.19 0.10 50.9 0.03 0.36 0.02 0.01 0.02 нпо 0.04 100.3 КМ306 91.2 41.1 0.04 0.01 8.57 0.11 49.9 0.03 0.35 0.02 0.01 0.02 нпо 0.02 100.1 КМ307 92.2 41.2 0.03 0.01 7.65 0.09 50.6 0.03 0.36 0.01 0.02 нпо 0.03 100.0 КМ308 91.5 41.1 0.04 0.01 8.27 0.11 49.9 0.03 0.35 </td <td>KM181</td> <td>93.2</td> <td>41.4</td> <td>нпо</td> <td>нпо</td> <td>6.67</td> <td>0.08</td> <td>51.1</td> <td>0.00</td> <td>0.39</td> <td>0.01</td> <td>нпо</td> <td>0.02</td> <td>нпо</td> <td>нпо</td> <td>99.7</td>	KM181	93.2	41.4	нпо	нпо	6.67	0.08	51.1	0.00	0.39	0.01	нпо	0.02	нпо	нпо	99.7
КМ304 93.4 41.5 0.01 0.01 6.49 0.08 51.4 0.02 0.34 0.02 0.01 0.02 нпо 0.06 99.9 КМ305 92.7 41.5 0.04 0.01 7.19 0.10 50.9 0.03 0.36 0.02 0.01 0.02 нпо 0.04 100.3 КМ306 91.2 41.1 0.04 0.01 8.57 0.11 49.9 0.03 0.35 0.02 0.01 0.02 нпо 0.02 100.1 КМ307 92.2 41.2 0.03 0.01 7.65 0.09 50.6 0.03 0.36 0.01 0.01 0.02 нпо 0.02 100.1 КМ308 91.5 41.1 0.04 0.01 8.27 0.11 49.9 0.03 0.35 0.02 0.01 0.02 нпо 0.03 99.9 КМ310 93.5 41.5 0.04 0.01 11.23 0.12 47.7 <td>KM302</td> <td>93.4</td> <td>41.6</td> <td>нпо</td> <td>0.01</td> <td>6.49</td> <td>0.09</td> <td>51.4</td> <td>0.02</td> <td>0.42</td> <td>0.01</td> <td>НПО</td> <td>0.02</td> <td>нпо</td> <td>0.03</td> <td>100.1</td>	KM302	93.4	41.6	нпо	0.01	6.49	0.09	51.4	0.02	0.42	0.01	НПО	0.02	нпо	0.03	100.1
КМ305 92.7 41.5 0.04 0.01 7.19 0.10 50.9 0.03 0.36 0.02 0.01 0.02 нпо 0.04 100.3 КМ306 91.2 41.1 0.04 0.01 8.57 0.11 49.9 0.03 0.35 0.02 0.01 0.02 нпо 0.02 100.1 КМ307 92.2 41.2 0.03 0.01 7.65 0.09 50.6 0.03 0.36 0.01 0.01 0.02 нпо 0.03 100.0 КМ308 91.5 41.1 0.04 0.01 8.27 0.11 49.9 0.03 0.35 0.02 0.01 0.02 нпо 0.03 99.9 КМ309 88.3 40.5 0.04 0.01 11.23 0.12 47.7 0.03 0.26 0.02 0.01 0.02 нпо 0.05 100.0 КМ310 93.5 41.5 0.01 0.01 6.42 0.08 51.7 <td>KM303</td> <td>89.1</td> <td>40.8</td> <td>0.04</td> <td>0.02</td> <td>10.59</td> <td>0.12</td> <td>48.5</td> <td>0.03</td> <td>0.28</td> <td>0.01</td> <td>0.01</td> <td>0.02</td> <td>0.01</td> <td>0.01</td> <td>100.5</td>	KM303	89.1	40.8	0.04	0.02	10.59	0.12	48.5	0.03	0.28	0.01	0.01	0.02	0.01	0.01	100.5
КМ306 91.2 41.1 0.04 0.01 8.57 0.11 49.9 0.03 0.35 0.02 0.01 0.02 нпо 0.02 100.1 КМ307 92.2 41.2 0.03 0.01 7.65 0.09 50.6 0.03 0.36 0.01 0.02 нпо 0.03 100.0 КМ308 91.5 41.1 0.04 0.01 8.27 0.11 49.9 0.03 0.35 0.02 0.01 0.02 нпо 0.03 99.9 КМ309 88.3 40.5 0.04 0.01 11.23 0.12 47.7 0.03 0.26 0.02 0.01 0.02 0.01 нпо 0.03 99.9 КМ310 93.5 41.5 0.01 0.01 6.42 0.08 51.7 0.02 0.35 0.02 нпо 0.02 нпо 0.05 100.3 КМ312 89.0 40.6 0.04 0.02 10.63 0.11 48.0 <td>KM304</td> <td>93.4</td> <td>41.5</td> <td>0.01</td> <td>0.01</td> <td>6.49</td> <td>0.08</td> <td>51.4</td> <td>0.02</td> <td>0.34</td> <td>0.02</td> <td>0.01</td> <td>0.02</td> <td>нпо</td> <td>0.06</td> <td>99.9</td>	KM304	93.4	41.5	0.01	0.01	6.49	0.08	51.4	0.02	0.34	0.02	0.01	0.02	нпо	0.06	99.9
КМ307 92.2 41.2 0.03 0.01 7.65 0.09 50.6 0.03 0.36 0.01 0.01 0.02 нпо 0.03 100.0 КМ308 91.5 41.1 0.04 0.01 8.27 0.11 49.9 0.03 0.35 0.02 0.01 0.02 нпо 0.03 99.9 КМ309 88.3 40.5 0.04 0.01 11.23 0.12 47.7 0.03 0.26 0.02 0.01 0.02 0.01 нпо 100.0 КМ310 93.5 41.5 0.01 0.01 6.42 0.08 51.7 0.02 0.35 0.02 нпо 0.02 нпо 0.05 100.3 КМ312 89.0 40.6 0.04 0.02 10.63 0.11 48.0 0.04 0.35 0.03 0.01 0.02 0.01 0.01 99.9 КМ315 92.5 41.5 0.01 0.01 7.41 0.09 51.1 0.02 0.37 0.02 0.01 0.02 0.01 0.02 100.6	KM305	92.7	41.5	0.04	0.01	7.19	0.10	50.9	0.03	0.36	0.02	0.01	0.02	нпо	0.04	100.3
КМ308 91.5 41.1 0.04 0.01 8.27 0.11 49.9 0.03 0.35 0.02 0.01 0.02 нпо 0.03 99.9 КМ309 88.3 40.5 0.04 0.01 11.23 0.12 47.7 0.03 0.26 0.02 0.01 0.02 0.01 нпо 100.0 КМ310 93.5 41.5 0.01 0.01 6.42 0.08 51.7 0.02 0.35 0.02 нпо 0.02 нпо 0.05 100.3 КМ312 89.0 40.6 0.04 0.02 10.63 0.11 48.0 0.04 0.35 0.03 0.01 0.02 0.01 99.9 КМ315 92.5 41.5 0.01 0.01 7.41 0.09 51.1 0.02 0.37 0.02 0.01 0.02 нпо 0.05 100.6 КМ316 89.7 41.2 0.04 0.01 9.90 0.11 48.5 0.03 <td>KM306</td> <td>91.2</td> <td>41.1</td> <td>0.04</td> <td>0.01</td> <td>8.57</td> <td>0.11</td> <td>49.9</td> <td>0.03</td> <td>0.35</td> <td>0.02</td> <td>0.01</td> <td>0.02</td> <td>нпо</td> <td>0.02</td> <td>100.1</td>	KM306	91.2	41.1	0.04	0.01	8.57	0.11	49.9	0.03	0.35	0.02	0.01	0.02	нпо	0.02	100.1
КМ309 88.3 40.5 0.04 0.01 11.23 0.12 47.7 0.03 0.26 0.02 0.01 0.02 0.01 нпо 100.0 КМ310 93.5 41.5 0.01 0.01 6.42 0.08 51.7 0.02 0.35 0.02 нпо 0.02 нпо 0.05 100.3 КМ312 89.0 40.6 0.04 0.02 10.63 0.11 48.0 0.04 0.35 0.03 0.01 0.02 0.01 0.01 99.9 КМ315 92.5 41.5 0.01 0.01 7.41 0.09 51.1 0.02 0.37 0.02 0.01 0.02 нпо 0.05 100.6 КМ316 89.7 41.2 0.04 0.01 9.90 0.11 48.5 0.03 0.34 0.01 0.01 0.02 0.01 0.02 100.2	KM307	92.2	41.2	0.03	0.01	7.65	0.09	50.6	0.03	0.36	0.01	0.01	0.02	нпо	0.03	100.0
КМ310 93.5 41.5 0.01 0.01 6.42 0.08 51.7 0.02 0.35 0.02 нпо 0.02 нпо 0.05 100.3 КМ312 89.0 40.6 0.04 0.02 10.63 0.11 48.0 0.04 0.35 0.03 0.01 0.02 0.01 0.01 99.9 КМ315 92.5 41.5 0.01 0.01 7.41 0.09 51.1 0.02 0.37 0.02 0.01 0.02 нпо 0.05 100.6 КМ316 89.7 41.2 0.04 0.01 9.90 0.11 48.5 0.03 0.34 0.01 0.02 0.01 0.02 100.2	KM308	91.5	41.1	0.04	0.01	8.27	0.11	49.9	0.03	0.35	0.02	0.01	0.02	нпо	0.03	99.9
KM312 89.0 40.6 0.04 0.02 10.63 0.11 48.0 0.04 0.35 0.03 0.01 0.02 0.01 0.01 99.9 KM315 92.5 41.5 0.01 0.01 7.41 0.09 51.1 0.02 0.37 0.02 0.01 0.02 нпо 0.05 100.6 KM316 89.7 41.2 0.04 0.01 9.90 0.11 48.5 0.03 0.34 0.01 0.01 0.02 0.01 0.02 100.2	KM309	88.3	40.5	0.04	0.01	11.23	0.12	47.7	0.03	0.26	0.02	0.01	0.02	0.01	нпо	100.0
КМ315 92.5 41.5 0.01 0.01 7.41 0.09 51.1 0.02 0.37 0.02 0.01 0.02 нпо 0.05 100.6 КМ316 89.7 41.2 0.04 0.01 9.90 0.11 48.5 0.03 0.34 0.01 0.01 0.02 0.01 0.02 100.2	KM310	93.5	41.5	0.01	0.01	6.42	0.08	51.7	0.02	0.35	0.02	нпо	0.02	нпо	0.05	100.3
KM316 89.7 41.2 0.04 0.01 9.90 0.11 48.5 0.03 0.34 0.01 0.01 0.02 0.01 0.02 100.2	KM312	89.0	40.6	0.04	0.02	10.63	0.11	48.0	0.04	0.35	0.03	0.01	0.02	0.01	0.01	99.9
KM316 89.7 41.2 0.04 0.01 9.90 0.11 48.5 0.03 0.34 0.01 0.01 0.02 0.01 0.02 100.2	KM315	92.5	41.5	0.01	0.01	7.41	0.09	51.1	0.02	0.37	0.02	0.01	0.02	нпо	0.05	100.6
	KM316	89.7	41.2	0.04	0.01	9.90	0.11	48.5	0.03	0.34	0.01	0.01	0.02	0.01	0.02	100.2
11.15 1/ 75.1 11.5 0.01 0.01 0.10 51.5 0.02 0.02 0.01 0.02 IIII0 0.01 100.2	KM317	93.1	41.5	0.01	0.01	6.81	0.10	51.3	0.02	0.36	0.02	0.01	0.02	нпо	0.04	100.2

KM318	90.3	41.2	нпо	0.01	9.49	0.11	49.5	0.02	0.32	0.02	0.00	0.02	0.01	0.02	100.8
KM319	92.1	41.2	0.04	0.01	7.75	0.11	50.5	0.03	0.37	0.02	0.01	0.02	нпо	0.04	100.1
KM320	92.1	41.6	0.01	0.01	7.71	0.10	50.1	0.02	0.38	0.03	0.00	0.02	нпо	0.04	100.0
KM321	92.7	41.4	нпо	0.01	7.22	0.09	51.1	0.01	0.39	0.01	0.00	0.02	нпо	0.03	100.3
KM322	92.8	41.4	нпо	0.01	7.08	0.10	51.2	0.01	0.37	нпо	нпо	0.02	нпо	0.02	100.2
KM323	92.8	41.4	нпо	0.01	7.02	0.10	51.1	0.02	0.38	0.02	нпо	0.02	нпо	0.05	100.2
KM324	93.6	41.7	нпо	0.01	6.25	0.09	51.6	0.02	0.37	0.02	0.01	0.02	нпо	0.05	100.1
KM326	93.0	41.5	0.01	0.01	6.97	0.09	51.7	0.03	0.38	0.01	0.00	0.02	нпо	0.05	100.7
KM327	90.1	41.0	0.01	0.01	9.61	0.12	49.3	0.02	0.33	0.01	нпо	0.02	0.01	0.03	100.5
KM328	92.5	41.4	0.04	0.01	7.31	0.11	50.9	0.03	0.37	0.02	0.01	0.02	нпо	0.03	100.3
KM329	92.3	41.4	нпо	0.01	7.54	0.10	51.0	0.01	0.38	0.01	0.00	0.02	0.01	0.02	100.5
KM331	91.3	41.2	0.04	0.01	8.53	0.11	50.4	0.03	0.36	0.02	0.01	0.02	0.01	0.02	100.8
KM332	93.6	41.5	нпо	0.01	6.41	0.09	52.2	0.02	0.35	0.02	0.01	0.01	нпо	0.05	100.6
KM333	92.6	41.7	нпо	0.01	7.19	0.09	50.6	0.01	0.38	0.01	0.01	0.02	нпо	0.03	100.1
KM334	91.9	41.2	0.04	0.01	7.88	0.10	50.0	0.03	0.37	0.02	0.01	0.02	нпо	0.04	99.8
KM335	92.9	41.5	нпо	0.01	6.96	0.09	51.4	0.01	0.39	нпо	0.00	0.02	нпо	нпо	100.4
KM336	92.4	41.7	нпо	0.01	7.40	0.10	50.6	0.01	0.39	0.01	0.01	0.02	нпо	0.02	100.3
KM337	93.4	41.8	нпо	0.01	6.49	0.09	51.7	0.01	0.38	0.01	0.00	0.02	нпо	0.04	100.5
KM338	89.7	40.9	0.04	0.01	9.92	0.12	48.4	0.04	0.35	0.01	0.01	0.02	0.01	0.02	99.8
KM339	89.3	41.3	0.02	0.03	10.30	0.11	48.0	0.06	0.36	0.02	0.01	0.02	0.01	0.02	100.2
KM340	92.5	41.6	0.04	0.01	7.35	0.10	50.8	0.03	0.37	0.02	0.01	0.02	нпо	0.04	100.4
KM341	91.5	41.5	0.04	0.01	8.26	0.11	50.0	0.03	0.37	0.02	0.00	0.02	0.01	0.03	100.4
KM342	92.9	41.7	нпо	0.01	6.98	0.09	51.2	0.01	0.38	0.01	нпо	0.02	нпо	0.03	100.4
KM343	93.4	41.7	нпо	0.02	6.45	0.09	51.4	0.02	0.38	0.01	0.01	0.02	НПО	0.03	100.1

Таблица А2. Химический состав гранатов из перидотитовых ксенолитов кимберлитовой трубки Комсомольская-Магнитная (EPMA).

Образец	Na ₂ O	SiO_2	TiO_2	MnO	MgO	Al_2O_3	CaO	Cr_2O_3	FeO	Сумма
KM30	0.03	42.7	нпо	0.40	21.0	20.3	3.65	4.62	7.32	100.0
KM53	0.05	42.1	0.79	0.34	20.8	19.2	4.58	4.39	7.80	100.1
KM58	нпо	42.9	нпо	0.44	22.4	20.8	1.84	4.34	7.25	99.9
KM67	0.14	42.0	1.06	0.35	19.9	20.1	4.62	1.98	9.79	100.0
KM68	0.04	41.8	нпо	0.42	21.5	19.0	3.87	6.10	7.01	99.8
KM70	0.07	41.8	0.86	0.40	18.9	19.9	5.84	2.67	9.60	100.0
KM71	0.06	41.7	0.58	0.33	20.4	17.9	6.39	6.53	5.76	99.6
KM72	0.08	42.1	0.56	0.32	20.0	19.5	6.47	4.52	6.31	99.9
KM74	0.04	41.8	0.06	0.42	21.2	19.3	4.28	5.76	7.04	99.9
KM76	0.09	41.5	0.34	0.46	19.2	19.3	5.51	4.65	8.99	100.1
КМ79	0.05	42.1	0.12	0.42	21.1	19.7	4.19	5.21	7.37	100.2
KM80	0.04	41.8	0.04	0.37	23.6	14.6	1.04	11.85	6.77	100.1
КМ96	нпо	42.0	нпо	0.43	21.6	19.4	3.61	5.56	7.29	99.9
КМ97	0.09	42.5	0.80	0.27	21.3	19.6	4.46	3.01	7.76	99.9
KM105	нпо	41.9	0.05	0.45	21.4	16.3	3.17	9.85	6.84	99.9
KM106	0.02	41.5	0.06	0.41	21.4	15.9	3.46	9.90	6.68	99.3
KM110	0.10	41.4	0.60	0.35	20.7	16.2	5.46	8.45	6.46	99.7
KM113	0.07	42.8	0.94	0.29	21.2	20.4	4.39	1.65	8.30	100.0
KM115	0.03	41.7	0.09	0.39	21.9	15.3	3.17	10.90	6.30	99.8
KM116	0.07	42.7	0.95	0.27	21.1	20.6	4.19	1.29	8.84	100.0
KM153	нпо	41.9	нпо	0.41	22.5	16.1	1.71	10.45	6.87	99.9
KM156	0.06	41.6	0.68	0.39	19.4	17.1	5.51	7.10	8.21	100.0
KM160	нпо	42.2	0.04	0.40	22.8	16.5	1.61	9.74	6.73	100.1
KM161	0.06	41.7	0.20	0.34	18.9	17.4	7.58	7.27	6.54	100.0
KM162	нпо	42.3	нпо	0.41	23.6	16.8	0.69	9.41	6.70	100.0
KM163	нпо	42.7	нпо	0.43	21.6	20.5	2.93	4.64	7.10	100.0

KM168	нпо	41.4	0.04	0.42	21.5	13.5	3.08	13.27	6.82	100.0
KM169	0.03	42.1	0.03	0.44	22.5	16.4	1.73	9.86	6.80	99.9
KM170	0.02	42.5	нпо	0.42	22.0	20.5	2.73	4.61	7.22	99.9
KM171	0.05	42.4	0.03	0.47	21.3	21.6	3.33	2.97	7.83	100.0
KM172	0.04	42.3	нпо	0.44	21.7	20.0	2.85	5.16	7.19	99.6
KM174	0.03	43.0	нпо	0.32	24.4	21.8	1.47	2.88	5.89	99.9
KM175	0.03	42.2	нпо	0.46	22.7	19.7	1.98	5.59	7.44	100.1
KM176	0.04	42.3	0.08	0.41	21.2	20.2	4.26	4.43	6.99	100.0
KM181	нпо	42.4	нпо	0.44	23.1	21.0	1.63	3.78	7.40	99.9

Таблица А3. Химический состав клинопироксенов из перидотитовых ксенолитов кимберлитовой трубки Комсомольская-Магнитная (EPMA).

Образец	Na ₂ O	MgO	Cr_2O_3	TiO_2	K_2O	CaO	SiO_2	Al_2O_3	FeO	MnO	Сумма
KM5	3.13	15.5	3.55	0.07	0.01	18.1	54.8	2.54	2.21	0.08	100.0
KM6	1.74	17.9	1.08	0.38	0.04	18.4	55.0	1.79	3.55	0.11	100.0
KM43	3.14	15.5	3.59	0.08	нпо	18.1	54.7	2.51	2.21	0.08	100.0
KM45	3.20	15.5	2.36	0.21	0.08	17.8	55.2	3.38	2.24	0.07	100.1
KM54	1.04	18.5	1.11	0.39	0.03	20.1	54.7	0.89	3.53	0.11	100.4
KM56	1.38	20.5	0.65	0.13	0.03	16.4	54.7	1.90	3.64	0.12	99.5
KM58	1.37	20.2	0.65	0.14	0.03	16.4	55.2	1.89	3.68	0.11	99.6
KM59	1.55	20.0	0.36	0.24	0.04	15.7	55.2	2.03	4.45	0.12	99.7
KM61	1.63	19.7	0.60	0.27	0.04	16.2	55.3	1.96	4.19	0.12	99.9
KM72	2.04	16.9	1.90	0.26	0.05	19.9	54.9	1.95	2.02	0.07	99.9
KM75	1.13	17.0	2.10	0.53	нпо	22.0	53.9	0.83	2.29	0.07	99.9
KM88	1.65	19.3	0.48	0.28	0.04	16.4	55.0	1.95	4.36	0.11	99.6
KM101	1.59	16.9	3.11	0.22	нпо	20.6	54.3	0.96	2.00	0.08	99.7
KM109	2.07	16.7	1.90	0.31	0.05	19.7	54.7	1.80	2.20	0.07	99.6
KM159	2.26	15.7	2.78	0.21	0.03	20.0	54.4	1.78	2.14	0.08	99.4
KM161	1.85	16.9	2.36	0.05	0.09	20.0	55.1	1.52	2.03	0.07	99.9

Таблица А3. Химический состав хромшпинелидов из перидотитовых ксенолитов кимберлитовой трубки Комсомольская-Магнитная (EPMA).

Образец	SiO_2	TiO_2	Al_2O_3	Cr_2O_3	FeO	MnO	MgO	CaO	NiO	ZnO	V_2O_3	Total
KM1	0.106	3.194	5.865	56.357	19.843	0.262	12.945	0.014	0.171	0.058	0.212	99.027
KM3	0.014	0.049	11.810	59.008	16.619	0.259	11.537	нпо	0.054	0.143	0.209	99.702
KM5	0.021	0.050	11.958	59.010	16.740	0.258	11.684	нпо	0.055	0.147	0.190	100.115
KM6	нпо	0.049	11.887	58.801	16.485	0.251	11.537	нпо	0.059	0.139	0.183	99.402
KM17	0.015	0.295	11.481	58.283	17.384	0.268	11.650	нпо	0.056	0.137	0.182	99.754
KM18	0.021	0.176	11.582	58.540	17.539	0.283	11.509	нпо	0.057	0.147	0.188	100.043
KM19	нпо	0.224	11.408	55.757	16.776	0.278	11.377	нпо	0.057	0.138	0.163	96.186
KM20	0.022	0.303	11.286	58.436	17.717	0.293	11.350	нпо	0.061	0.139	0.182	99.790
KM21	нпо	0.213	11.488	58.386	17.348	0.275	11.567	нпо	0.060	0.142	0.171	99.664
KM22	нпо	0.149	11.528	58.383	17.516	0.283	11.410	нпо	0.055	0.144	0.186	99.665
KM26	0.106	0.395	6.542	60.948	18.044	0.229	12.701	нпо	0.119	0.075	0.245	99.405
KM34	0.128	0.717	5.965	61.262	18.312	0.255	12.708	нпо	0.120	0.069	0.167	99.705
KM35	0.120	1.823	5.631	55.025	17.321	0.221	12.681	нпо	0.129	0.063	0.156	93.172
KM36	0.140	0.613	6.114	61.194	18.346	0.250	12.688	нпо	0.120	0.057	0.176	99.699
KM37	0.126	2.025	5.518	56.913	18.215	0.234	12.679	нпо	0.134	0.065	0.173	96.086
KM38	0.116	1.923	5.615	59.052	18.739	0.241	12.649	нпо	0.144	0.066	0.170	98.719
KM49	0.127	0.059	5.771	65.036	15.495	0.244	12.368	нпо	0.091	0.063	0.255	99.510
KM55	0.053	0.093	7.066	63.747	16.698	0.246	11.840	нпо	0.076	0.095	0.246	100.162
KM56	0.015	0.090	11.721	59.875	15.423	0.249	11.991	нпо	0.057	0.134	0.230	99.786
KM58	0.019	0.193	11.366	59.942	15.708	0.245	11.675	нпо	0.057	0.140	0.275	99.623

Таблица А4. Химический состав оливинов из перидотитовых ксенолитов кимберлитовой трубки Деймос (ЕРМА).

Образец	Fo	SiO_2	TiO_2	Al_2O_3	FeO	MnO	MgO	CaO	NiO	Na ₂ O	P_2O_5	CoO	ZnO	Cr_2O_3	Сумма
D1	93.0	41.2	нпо	нпо	6.79	0.10	50.8	0.00	0.39	нпо	0.004	0.016	нпо	нпо	99.2
D2	93.0	41.2	нпо	нпо	6.88	0.10	51.3	0.00	0.39	нпо	0.003	0.017	нпо	нпо	99.9
D3	93.2	41.2	нпо	0.05	6.69	0.17	51.4	0.01	0.35	нпо	нпо	0.015	нпо	нпо	99.8
D4	92.5	41.1	нпо	0.00	7.24	0.10	50.3	0.01	0.39	нпо	нпо	0.016	нпо	нпо	99.2
D5	93.8	40.6	нпо	0.00	6.10	0.09	51.7	0.01	0.37	НПО	0.004	0.016	нпо	нпо	98.9
D6	92.5	40.7	0.01	нпо	7.28	0.10	50.7	0.01	0.39	нпо	нпо	0.017	нпо	НПО	99.2
D7	92.9	40.8	нпо	нпо	6.98	0.09	51.3	0.01	0.39	НПО	нпо	0.017	нпо	нпо	99.6
D8	93.1	41.1	нпо	0.00	6.82	0.10	51.3	0.00	0.39	нпо	0.004	0.017	нпо	НПО	99.8
D9	93.0	41.1	нпо	нпо	6.83	0.10	51.0	0.00	0.39	нпо	нпо	0.015	нпо	НПО	99.4
D10	92.1	40.8	0.03	0.01	7.70	0.10	50.3	0.02	0.39	0.01	0.005	0.017	нпо	0.02	99.5
D11	92.9	40.6	нпо	0.00	6.94	0.08	51.1	0.00	0.39	0.01	0.004	0.016	нпо	НПО	99.2
D12	93.0	41.5	нпо	нпо	6.94	0.08	51.4	0.01	0.40	0.01	0.005	0.017	нпо	НПО	100.4
D13	92.6	41.0	нпо	0.00	7.28	0.10	51.0	0.01	0.39	нпо	нпо	0.014	нпо	НПО	99.8
D14	93.4	41.5	нпо	нпо	6.50	0.08	51.9	нпо	0.39	нпо	нпо	0.015	нпо	НПО	100.4
D15	92.6	41.1	нпо	нпо	7.25	0.10	51.0	нпо	0.40	нпо	нпо	0.016	нпо	НПО	99.9
D16	89.1	40.3	0.04	0.01	10.40	0.12	47.9	0.03	0.32	0.02	0.006	0.017	0.01	НПО	99.2
D18	92.3	41.1	нпо	0.00	7.51	0.10	50.8	0.01	0.37	нпо	нпо	0.016	нпо	НПО	99.9
D19	92.5	41.5	0.03	0.01	7.44	0.10	51.2	0.03	0.39	0.02	0.009	0.016	нпо	0.02	100.7
D20	91.9	40.9	0.01	0.01	7.93	0.10	50.3	0.02	0.38	0.03	0.006	0.017	нпо	0.04	99.7
D22	92.8	40.7	нпо	нпо	7.09	0.09	50.9	0.01	0.41	0.01	0.006	0.017	нпо	НПО	99.2
D23	92.9	41.2	нпо	нпо	6.98	0.09	51.4	0.00	0.39	нпо	нпо	0.016	нпо	НПО	100.0
D24	93.1	41.2	нпо	нпо	6.86	0.10	51.7	0.00	0.39	нпо	нпо	0.015	нпо	НПО	100.3
D25	93.0	41.1	нпо	нпо	6.90	0.10	51.0	0.00	0.39	нпо	нпо	0.016	нпо	НПО	99.6
D26	91.5	40.9	нпо	нпо	8.33	0.08	50.3	0.01	0.40	нпо	0.004	0.018	0.01	НПО	100.1
D27	92.8	41.0	нпо	0.00	7.11	0.09	51.2	0.01	0.40	0.01	0.004	0.016	нпо	НПО	99.8
D28	92.9	40.9	нпо	0.01	7.00	0.09	51.2	0.01	0.38	нпо	0.005	0.016	нпо	НПО	99.6
D29	92.9	40.8	нпо	0.01	7.08	0.09	51.6	0.01	0.40	0.01	0.010	0.017	нпо	НПО	100.1
D30	92.4	40.2	нпо	нпо	7.41	0.10	50.7	0.01	0.40	0.01	0.005	0.017	нпо	НПО	98.9

D31	92.6	41.3	нпо	0.01	7.41	0.10	51.7	0.01	0.38	0.01	0.005	0.016	нпо	нпо	101.0
D32	91.1	40.4	нпо	0.01	8.69	0.13	49.8	0.01	0.44	нпо	0.005	0.016	нпо	нпо	99.5
D33	92.3	40.8	0.04	0.01	7.59	0.10	50.9	0.03	0.36	0.02	0.010	0.017	0.01	нпо	99.9
D34	92.8	41.1	нпо	0.01	7.11	0.08	51.4	0.01	0.39	0.01	0.005	0.017	нпо	нпо	100.1
D35	92.8	40.9	нпо	0.01	7.07	0.09	51.5	0.01	0.40	нпо	0.004	0.017	нпо	нпо	100.0
D36	92.3	40.5	0.04	0.01	7.59	0.10	50.8	0.03	0.36	0.01	0.007	0.014	нпо	0.02	99.4

Таблица А5. Химический состав гранатов из перидотитовых ксенолитов кимберлитовой трубки Деймос (ЕРМА).

Образец	Na_2O	SiO_2	TiO_2	MnO	MgO	Al_2O_3	CaO	Cr_2O_3	FeO	Сумма
D4	нпо	42.8	нпо	0.39	22.8	22.6	2.74	1.86	6.83	100.1
D5	0.03	42.6	нпо	0.40	23.0	22.4	2.80	1.97	6.91	100.0
D6	0.03	42.8	нпо	0.36	22.9	22.6	2.74	1.83	6.79	100.0
D7	нпо	42.4	нпо	0.42	21.9	21.9	3.57	2.61	7.23	100.1
D11	0.05	42.5	нпо	0.39	22.8	22.1	2.61	2.30	7.13	99.8
D12	0.02	42.3	нпо	0.40	22.3	21.3	2.78	3.38	7.09	99.5
D13	0.05	42.3	нпо	0.42	22.0	20.6	3.00	4.18	7.30	99.9
D14	нпо	42.8	нпо	0.41	24.1	22.1	0.78	2.44	7.10	99.7
D17	0.02	42.1	нпо	0.36	21.7	20.5	3.99	4.08	6.96	99.8
D21	нпо	42.1	нпо	0.37	21.2	20.0	4.20	4.77	6.97	99.7
D27	0.02	42.6	НПО	0.41	23.5	22.6	1.50	1.83	7.39	99.8
D29	нпо	42.6	нпо	0.40	23.5	22.6	1.54	1.67	7.36	99.6
D30	нпо	42.2	нпо	0.39	22.9	20.4	2.17	4.63	6.97	99.7

Таблица А5. Химический состав клинопироксенов из перидотитовых ксенолитов кимберлитовой трубки Деймос (EPMA).

Образец	Na_2O	MgO	Cr_2O_3	TiO_2	K_2O	CaO	SiO_2	Al_2O_3	FeO	MnO	Сумма
D2	3.49	13.9	2.53	0.06	нпо	18.7	55	4.83	1.30	0.07	99.7
D9	3.76	13.7	2.57	0.05	нпо	18.4	55	4.97	1.35	0.06	100.2
D12	6.01	11.4	5.40	нпо	0.05	13.3	55	6.25	1.60	0.08	99.3
D18	2.20	15.4	2.03	0.14	0.02	20.0	54	3.02	2.11	0.08	99.2
D24	3.40	14.0	2.56	0.06	нпо	18.8	55	4.65	1.30	0.06	99.5
D25	3.58	13.8	2.52	0.06	нпо	18.6	55	4.79	1.34	0.06	99.6
D26	1.56	16.6	1.73	0.01	0.08	21.3	55	2.02	1.79	0.09	100.0
D35	2.23	15.5	1.81	0.25	нпо	20.8	54	3.01	1.83	0.05	100.0

Приложение Б

Таблица Б1. Редкозмельный и редкоэлементый состав гранатов из перидотитовых ксенолитов кимберлитовой трубки Комсомольская-Магнитная (ICP MS).

Образец	Ti	Y	Zr	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
KM53	4080	12.1	81.4	0.065	0.672	0.230	2.18	1.73	0.81	2.81	0.472	2.87	0.471	1.03	0.110	0.897	0.158
KM30	17.4	3.27	23.9	0.109	1.37	0.434	2.64	0.815	0.25	0.570	0.064	0.304	0.091	0.549	0.131	1.23	0.263
KM156	3322	1.92	22.2	0.036	0.330	0.146	1.48	0.379	0.13	0.447	0.061	0.282	0.060	0.245	0.045	0.567	0.132
KM153	51.4	0.57	1.00	0.727	5.27	0.815	3.08	0.295	0.07	0.193	0.010	0.065	0.030	0.106	0.026	0.225	0.084
KM58	6.59	0.55	26.0	0.097	1.54	0.573	4.77	1.65	0.47	1.04	0.069	0.241	0.023	0.038	0.018	0.234	0.057
KM161	1082	4.57	9.33	0.070	0.712	0.280	2.51	0.964	0.39	1.22	0.162	1.03	0.152	0.487	0.067	0.532	0.087
KM160	119	0.81	3.73	0.770	4.85	0.898	3.53	0.476	0.12	0.399	0.029	0.131	0.026	0.126	0.016	0.262	0.092
KM163	21.8	0.32	10.8	0.125	1.59	0.587	3.92	0.879	0.19	0.357	0.022	0.060	0.010	0.050	0.026	0.324	0.069
KM162	34.9	0.40	1.4	0.945	6.98	1.01	3.27	0.460	0.12	0.293	0.040	0.127	0.019	0.039	0.017	0.200	0.077
KM169	86.2	0.57	2.73	0.569	7.13	2.47	17.4	1.36	0.18	0.300	0.032	0.106	0.018	0.094	0.019	0.280	0.097
KM168	222	1.78	8.40	0.398	3.42	0.710	3.47	0.704	0.14	0.501	0.049	0.306	0.058	0.170	0.050	0.341	0.094

KM171	174	4.00	158.4	0.209	2.84	0.810	3.97	0.953	0.25	0.958	0.140	0.837	0.145	0.505	0.069	0.552	0.138
KM172	11.0	0.42	0.71	0.294	2.54	0.457	1.36	0.060	0.02	0.061	нпо	0.030	0.011	0.101	0.037	0.607	0.133
KM176	414	4.46	56.5	0.061	1.00	0.441	4.11	1.82	0.54	1.50	0.207	0.865	0.144	0.421	0.071	0.709	0.160
KM71	3180	16.3	116.4	0.035	0.384	0.153	1.52	1.36	0.67	2.53	0.564	3.64	0.628	1.62	0.191	1.09	0.195
KM76	1899	29.2	191.8	0.018	0.258	0.129	1.57	1.73	0.95	4.20	0.906	5.89	1.09	2.60	0.285	2.15	0.304
KM74	268	1.92	23.0	0.096	0.960	0.388	3.09	1.05	0.26	0.580	0.055	0.332	0.048	0.234	0.055	0.514	0.136
KM72	2991	16.1	59.3	0.023	0.324	0.134	1.33	1.20	0.58	2.40	0.449	2.98	0.570	1.66	0.229	1.56	0.231
KM96	18.1	0.45	7.37	0.068	1.04	0.351	2.38	0.525	0.09	0.187	0.009	0.060	0.015	0.061	0.025	0.306	0.110
KM80	137	1.21	32.3	0.081	1.35	0.527	4.15	1.16	0.23	0.749	0.075	0.254	0.043	0.088	0.010	0.223	0.075
KM79	494	6.66	77.4	0.042	0.653	0.268	2.66	1.66	0.62	1.89	0.285	1.38	0.219	0.748	0.138	1.19	0.236
KM110	2083	1.77	24.4	0.038	0.345	0.152	1.34	1.07	0.30	0.681	0.059	0.243	0.053	0.206	0.055	0.384	0.101
KM105	169	1.40	9.92	0.482	3.79	0.781	3.88	0.619	0.18	0.450	0.053	0.285	0.049	0.132	0.023	0.288	0.092
KM97	4676	18.6	53.0	0.049	0.471	0.144	1.45	1.09	0.44	2.06	0.444	3.08	0.755	2.09	0.330	2.14	0.309
KM116	5198	23.9	66.7	0.040	0.366	0.132	1.38	1.13	0.50	2.19	0.487	3.60	0.939	2.93	0.438	2.90	0.468
KM115	470	0.50	9.05	0.323	3.25	0.873	4.73	0.832	0.13	0.212	0.017	0.114	0.013	0.075	0.023	0.218	0.063
KM113	4727	19.7	59.1	0.035	0.410	0.122	1.28	1.02	0.53	2.11	0.452	3.32	0.761	2.31	0.342	2.22	0.352
KM175	9.6	0.23	4.44	0.085	1.10	0.348	2.09	0.463	0.07	0.121	0.005	0.028	0.007	0.037	0.024	0.312	0.109
KM174	44.3	0.75	1.24	нпо	0.143	0.062	0.374	0.129	0.03	0.094	0.016	0.122	0.025	0.121	0.056	0.824	0.194
KM181	13.9	0.91	4.67	0.025	0.471	0.149	1.14	0.317	0.08	0.244	0.012	0.093	0.030	0.226	0.062	0.817	0.194

Таблица Б2. Редкозмельный и редкоэлементый состав гранатов из шлиховых проб кимберлитовой трубки Комсомольская-Магнитная (ICP MS).

№ шашки	Образец	Ti	Y	Zr	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
572	1	5683	15.5	55.15	0.024	0.205	0.083	0.816	0.804	0.418	1.81	0.369	2.74	0.603	1.72	0.252	1.79	0.263
572	2	3670	7.79	57.10	0.023	0.249	0.109	1.06	0.983	0.486	1.84	0.308	1.74	0.292	0.816	0.128	0.959	0.155
572	3	7344	22.4	74.56	0.036	0.357	0.132	1.28	1.133	0.558	2.30	0.527	3.95	0.920	2.64	0.378	2.68	0.374
572	4	5237	19.3	58.08	0.052	0.437	0.146	1.37	0.965	0.469	2.15	0.425	3.15	0.730	2.36	0.334	2.44	0.367
572	5	5139	27.3	92.61	0.021	0.365	0.124	1.50	1.40	0.724	3.01	0.670	5.07	1.135	3.190	0.424	2.73	0.408
572	6	6338	24.3	69.68	0.063	0.633	0.200	1.68	1.44	0.639	2.70	0.573	4.26	0.980	2.920	0.416	2.72	0.435

572	8	1615	7.49	17.65	0.020	0.268	0.112	1.25	0.755	0.328	0.962	0.198	1.18	0.282	0.846	0.127	0.933	0.155
572	9	2160	8.26	64.43	0.050	0.546	0.238	2.20	1.38	0.568	1.95	0.301	1.80	0.327	0.783	0.115	0.907	0.148
572	10	4338	13.1	34.35	0.015	0.201	0.069	0.540	0.518	0.277	1.32	0.310	2.29	0.517	1.42	0.238	1.65	0.254
572	11	113	1.01	1.78	0.411	3.540	0.713	3.24	0.402	0.107	0.195	0.021	0.153	0.044	0.154	0.037	0.442	0.100
572	13	7422	22.6	82.63	0.036	0.388	0.148	1.41	1.05	0.582	2.35	0.489	3.91	0.895	2.86	0.424	2.78	0.430
572	14	5898	12.7	56.92	0.049	0.305	0.100	0.982	0.769	0.398	1.77	0.375	2.39	0.499	1.32	0.173	1.10	0.153
572	15	93.3	3.08	3.86	0.027	0.403	0.162	1.66	0.933	0.262	0.520	0.047	0.239	0.092	0.581	0.123	1.20	0.217
572	16	5726	8.0	32.92	0.027	0.256	0.072	0.904	0.469	0.248	0.976	0.194	1.37	0.316	1.03	0.154	1.08	0.169
572	17	78.9	10.4	32.13	0.034	0.486	0.182	1.73	0.741	0.321	0.949	0.151	1.16	0.342	1.37	0.233	1.82	0.341
572	18	3484	11.4	65.16	0.021	0.232	0.091	1.03	0.931	0.550	2.000	0.406	2.39	0.419	1.13	0.141	1.19	0.228
572	19	6176	12.1	67.75	0.020	0.329	0.107	0.974	0.717	0.351	1.451	0.291	2.17	0.491	1.50	0.233	1.63	0.227
572	20	6505	7.92	31.37	0.022	0.266	0.080	0.778	0.502	0.250	0.956	0.186	1.27	0.337	0.96	0.147	1.14	0.187
572	21	5549	20.3	84.02	0.036	0.453	0.184	1.65	1.452	0.816	3.030	0.644	4.09	0.842	2.32	0.303	2.11	0.310
572	22	1917	11.9	20.05	0.016	0.259	0.090	0.954	0.693	0.248	0.966	0.224	1.94	0.483	1.52	0.243	1.75	0.265
572	23	96.9	0.545	0.90	0.131	1.55	0.296	1.17	0.252	0.061	0.126	0.017	0.076	0.013	0.140	0.037	0.426	0.127
572	24	2964	14.0	30.92	0.136	0.450	0.095	0.767	0.749	0.355	1.37	0.304	2.24	0.528	1.58	0.261	1.82	0.278
572	25	8.48	1.32	0.11	0.959	7.89	1.05	2.34	0.087	0.006	0.021	0.006	0.046	0.035	0.316	0.084	1.00	0.238
572	26	2396	16.8	30.40	0.034	0.437	0.170	1.85	1.16	0.515	2.02	0.353	2.81	0.630	2.03	0.289	1.90	0.307
572	27	2616	23.3	169.16	0.018	0.312	0.123	1.36	1.28	0.632	2.85	0.621	4.38	0.938	2.36	0.308	1.81	0.274
572	28	3106	12.8	62.10	0.014	0.209	0.073	0.972	0.974	0.517	2.06	0.387	2.59	0.504	1.30	0.172	1.28	0.194
572	29	2416	8.45	32.23	0.023	0.259	0.095	1.14	0.798	0.348	1.38	0.253	1.51	0.326	0.921	0.137	1.016	0.158
572	30	1118	0.304	15.49	0.006	0.137	0.065	0.828	0.500	0.181	0.349	0.031	0.068	0.007	0.043	0.025	0.330	0.096
572	31	253	3.29	12.47	0.163	3.16	1.57	14.870	3.28	0.567	1.07	0.106	0.613	0.127	0.298	0.051	0.374	0.084
572	32	3555	14.9	59.87	0.010	0.148	0.069	0.681	0.708	0.384	1.70	0.364	2.81	0.563	1.69	0.234	1.69	0.268
572	33	1896	9.77	34.53	0.152	0.343	0.086	0.805	0.656	0.322	1.11	0.190	1.36	0.387	1.34	0.251	1.85	0.332
572	34	2872	12.2	34.46	0.011	0.157	0.059	0.629	0.590	0.301	1.10	0.257	1.89	0.460	1.50	0.217	1.85	0.279
572	35	2065	10.2	27.72	0.013	0.185	0.089	0.845	0.620	0.289	1.33	0.251	1.70	0.390	1.16	0.162	1.39	0.198
572	36	2676	13.7	46.28	0.013	0.169	0.070	0.899	0.795	0.331	1.36	0.300	2.29	0.524	1.61	0.267	1.84	0.326
572	37	70.5	1.46	13.77	0.172	2.43	0.798	4.50	0.872	0.161	0.291	0.028	0.166	0.045	0.218	0.068	0.757	0.165
572	38	2758	19.0	54.51	0.022	0.283	0.108	1.21	0.981	0.405	2.02	0.391	3.11	0.717	2.09	0.305	2.14	0.325

572	39	5890	16.6	68.09	0.020	0.288	0.116	1.24	0.896	0.499	2.20	0.413	2.96	0.671	2.00	0.275	1.80	0.252
572	40	5131	14.8	71.56	0.013	0.252	0.104	0.960	0.924	0.464	1.95	0.371	2.65	0.551	1.75	0.249	1.89	0.290
572	41	1881	7.71	26.49	0.012	0.228	0.075	0.792	0.695	0.304	1.14	0.196	1.36	0.296	0.786	0.121	0.899	0.137
572	42	83.5	10.0	38.97	0.015	0.337	0.191	2.49	2.33	1.19	4.33	0.721	3.09	0.336	0.513	0.070	0.657	0.143
572	43	181	2.08	42.33	0.049	0.937	0.385	3.03	1.23	0.448	1.23	0.127	0.478	0.075	0.225	0.047	0.590	0.127
572	44	2377	10.5	45.64	0.027	0.234	0.101	1.14	1.17	0.536	1.98	0.358	2.06	0.395	1.15	0.165	1.15	0.194
572	45	6.46	0.170	0.13	0.015	0.318	0.116	0.569	0.057	0.008	0.063	0.000	0.004	0.007	0.037	0.010	0.282	0.060
572	46	2051	5.51	42.68	0.042	0.600	0.224	1.80	0.978	0.356	1.27	0.224	1.13	0.198	0.542	0.086	0.825	0.163
572	47	3454	11.5	44.10	0.011	0.179	0.076	0.823	0.766	0.358	1.54	0.241	1.92	0.469	1.43	0.235	1.54	0.259
572	48	8321	14.6	74.39	0.035	0.438	0.160	1.53	1.35	0.620	2.40	0.467	2.86	0.575	1.66	0.231	1.54	0.266
572	49	3230	25.9	158.98	0.014	0.248	0.114	1.28	1.16	0.661	2.91	0.642	4.79	0.995	2.85	0.418	2.79	0.396
572	50	29.2	3.51	2.45	0.093	0.914	0.231	1.27	0.163	0.032	0.081	0.013	0.205	0.105	0.633	0.148	1.38	0.268
572	51	5684	17.3	62.89	0.015	0.198	0.080	0.873	0.806	0.421	1.75	0.417	3.03	0.694	2.00	0.273	1.97	0.256
572	52	2167	4.19	132.40	0.177	0.488	0.130	1.25	1.17	0.599	2.22	0.340	1.59	0.186	0.331	0.049	0.516	0.127
572	53	1380	12.2	8.00	0.018	0.268	0.060	0.437	0.268	0.160	0.80	0.204	1.70	0.499	1.62	0.244	1.85	0.284
572	54	3639	15.5	58.34	0.022	0.251	0.099	1.06	1.05	0.519	2.16	0.397	2.81	0.599	1.71	0.242	1.73	0.245
572	55	4365	14.4	43.91	0.018	0.200	0.067	0.767	0.655	0.318	1.52	0.325	2.39	0.583	1.74	0.273	1.99	0.293
572	56	237	0.824	4.50	0.236	2.44	0.861	5.93	0.453	0.070	0.231	0.024	0.133	0.030	0.115	0.040	0.496	0.094
572	57	2258	16.5	137.06	0.029	0.485	0.196	2.20	2.04	1.068	3.94	0.709	4.07	0.679	1.41	0.163	0.939	0.153
572	58	1340	10.5	25.24	0.014	0.137	0.049	0.585	0.538	0.235	0.912	0.188	1.42	0.412	1.39	0.256	1.92	0.316
572	59	1927	14.1	41.92	0.023	0.354	0.143	1.63	1.22	0.503	2.08	0.335	2.39	0.540	1.50	0.240	1.82	0.285
572	60	2811	13.8	58.38	0.017	0.246	0.108	1.15	1.21	0.580	2.29	0.388	2.49	0.554	1.62	0.238	1.83	0.306
572	61	661	2.91	6.76	0.158	1.10	0.197	0.924	0.237	0.076	0.249	0.040	0.371	0.100	0.368	0.066	0.648	0.133
572	62	2974	8.76	42.50	0.038	0.576	0.228	2.65	1.80	0.780	2.77	0.420	2.39	0.335	0.740	0.069	0.614	0.090
572	63	5586	25.1	87.21	0.023	0.272	0.112	1.16	1.18	0.583	2.84	0.571	4.43	1.04	3.07	0.447	3.22	0.483
572	64	2199	11.7	37.96	нпо	0.197	0.100	0.982	0.726	0.357	1.14	0.253	1.94	0.436	1.28	0.241	1.63	0.256
572	65	5087	15.7	58.86	0.024	0.227	0.079	0.744	0.767	0.396	1.75	0.386	2.63	0.608	1.84	0.270	1.89	0.282
572	66	916	4.96	21.54	0.142	1.71	0.643	3.97	1.10	0.328	1.15	0.172	1.03	0.177	0.455	0.065	0.520	0.086
572	67	98.3	0.563	21.35	0.217	2.24	0.527	3.10	0.647	0.115	0.196	0.012	0.059	0.015	0.076	0.016	0.229	0.046
572	68	1836	9.11	29.04	0.043	0.380	0.143	1.53	1.26	0.489	1.73	0.211	1.23	0.322	1.32	0.261	2.53	0.442

572	69	5402	19.6	60.36	0.074	0.482	0.162	1.47	1.08	0.495	2.17	0.423	3.35	0.739	2.37	0.337	2.23	0.392
572	70	3626	20.8	72.47	0.032	0.229	0.085	1.00	0.983	0.521	2.41	0.511	3.70	0.814	2.32	0.334	2.08	0.308
572	71	3663	22.0	189.47	0.035	0.365	0.157	1.68	1.68	0.964	3.58	0.713	4.74	0.875	2.15	0.286	1.71	0.259
572	72	5400	19.6	60.45	0.051	0.389	0.143	1.38	0.996	0.515	2.16	0.437	3.24	0.763	2.47	0.344	2.25	0.371
572	73	3380	15.3	57.07	0.020	0.217	0.073	0.868	0.852	0.451	1.95	0.386	2.74	0.625	1.77	0.263	1.77	0.307
572	74	4145	10.6	50.21	0.069	0.717	0.233	2.07	1.21	0.518	1.89	0.350	2.06	0.405	1.07	0.157	1.02	0.178
572	75	3508	18.0	74.95	0.061	0.425	0.156	1.70	1.26	0.738	2.84	0.541	3.49	0.753	1.91	0.255	1.73	0.257
572	76	4721	16.7	49.23	0.045	0.425	0.135	1.23	0.826	0.429	1.81	0.374	2.73	0.651	1.96	0.295	1.98	0.353
572	77	1756	6.15	20.37	0.021	0.281	0.120	1.12	0.560	0.170	0.366	0.057	0.712	0.225	1.00	0.179	1.51	0.278
572	78	3856	19.5	70.32	0.011	0.166	0.059	0.882	0.902	0.472	2.13	0.448	3.45	0.789	2.28	0.346	2.64	0.419
572	79	3087	18.8	52.72	0.018	0.189	0.085	0.876	0.922	0.448	1.70	0.415	3.07	0.695	2.13	0.322	2.300	0.382
572	80	464	2.19	5.83	0.009	0.255	0.111	1.28	0.569	0.148	0.450	0.044	0.395	0.082	0.298	0.060	0.716	0.140
572	81	7454	20.4	90.32	0.039	0.441	0.159	1.45	1.25	0.625	2.60	0.567	4.09	0.848	2.17	0.297	2.03	0.288
572	82	34.6	0.358	9.80	0.091	1.43	0.478	3.66	0.677	0.147	0.268	0.021	0.057	0.013	0.101	0.029	0.476	0.116
572	83	330	0.96	11.53	0.036	0.512	0.275	3.82	1.90	0.496	0.988	0.063	0.266	0.037	0.094	0.018	0.268	0.060
572	84	1113	8.20	19.51	0.026	0.331	0.141	1.39	0.630	0.242	0.767	0.124	1.07	0.284	1.16	0.202	1.76	0.319
572	85	1523	8.90	58.11	0.040	0.328	0.147	1.35	1.06	0.495	1.87	0.303	1.59	0.349	0.886	0.138	0.938	0.165
572	86	2838	8.36	63.26	0.011	0.177	0.059	0.804	0.832	0.457	1.71	0.352	2.01	0.344	0.743	0.098	0.624	0.132
572	87	3086	9.05	36.09	0.009	0.161	0.062	0.686	0.725	0.359	1.24	0.225	1.52	0.363	1.06	0.175	1.36	0.227
572	88	4425	15.9	81.96	0.076	0.460	0.140	1.52	1.57	0.742	2.82	0.543	3.27	0.608	1.58	0.200	1.25	0.186
572	89	2752	11.9	42.10	0.016	0.224	0.086	0.997	1.03	0.509	2.16	0.391	2.55	0.467	1.19	0.145	1.18	0.162
572	90	2601	12.4	38.77	0.014	0.159	0.072	0.757	0.777	0.427	1.64	0.302	2.04	0.459	1.57	0.230	1.68	0.295
572	91	2722	14.3	55.88	0.016	0.196	0.089	1.11	1.06	0.550	2.13	0.399	2.75	0.557	1.53	0.229	1.61	0.264
572	92	3789	13.1	42.90	0.019	0.313	0.102	0.940	0.844	0.388	1.64	0.304	2.26	0.511	1.38	0.195	1.26	0.220
572	93	2538	28.1	188.47	0.027	0.307	0.144	1.60	1.53	0.861	3.99	0.884	6.22	1.12	2.23	0.209	0.965	0.122
572	94	3047	3.53	55.64	0.019	0.271	0.118	1.11	1.10	0.528	1.80	0.244	1.12	0.145	0.274	0.030	0.351	0.055
572	95	2357	11.9	42.64	0.017	0.138	0.049	0.719	0.662	0.321	1.15	0.281	1.96	0.422	1.34	0.202	1.58	0.208
572	96	5369	7.67	25.38	0.023	0.208	0.065	0.599	0.366	0.195	0.718	0.164	1.22	0.293	0.984	0.154	1.27	0.217
572	97	3262	10.0	94.98	0.027	0.335	0.125	1.35	1.22	0.600	2.36	0.453	2.60	0.434	0.837	0.087	0.391	0.064
572	98	6141	20.2	61.82	0.042	0.514	0.154	1.40	1.07	0.554	2.200	0.487	3.37	0.765	2.32	0.333	2.46	0.389

572	99	582	1.31	14.17	0.331	3.26	0.678	3.16	0.653	0.200	0.542	0.064	0.257	0.049	0.102	0.027	0.241	0.079
572	100	6948	24.8	74.01	0.090	0.901	0.294	2.35	1.64	0.800	3.27	0.656	4.66	1.009	2.93	0.379	2.51	0.350
572	101	56.7	2.18	26.95	0.093	2.12	0.541	3.57	1.15	0.396	1.08	0.140	0.564	0.078	0.187	0.039	0.473	0.145
572	102	2009	19.5	131.51	0.028	0.348	0.145	1.53	1.53	0.829	3.25	0.656	4.29	0.787	1.80	0.204	1.32	0.172
572	103	3228	11.7	43.74	0.015	0.186	0.073	0.753	0.721	0.356	1.39	0.258	2.07	0.466	1.29	0.198	1.55	0.232
572	104	170	4.10	21.99	0.034	0.540	0.212	2.52	1.63	0.636	1.89	0.187	0.895	0.169	0.426	0.066	0.804	0.204
572	105	146	0.3	3.97	0.022	0.399	0.150	1.36	0.497	0.116	0.221	0.018	0.051	0.008	0.023	0.015	0.130	0.033
572	106	7562	17.2	61.44	0.028	0.305	0.115	1.16	0.935	0.513	2.11	0.419	3.04	0.676	2.01	0.293	2.02	0.317
572	107	864	3.24	11.30	0.027	0.292	0.131	1.57	1.04	0.350	0.910	0.108	0.563	0.115	0.381	0.063	0.616	0.121
572	108	6146	12.3	63.80	0.022	0.288	0.102	0.910	0.668	0.321	1.38	0.287	2.11	0.482	1.44	0.227	1.65	0.264
572	109	5718	14.5	49.46	0.028	0.306	0.112	1.08	0.838	0.390	1.68	0.342	2.47	0.556	1.75	0.270	1.84	0.287
572	110	4899	15.5	48.99	0.029	0.303	0.118	1.05	0.822	0.469	1.79	0.402	2.91	0.637	1.74	0.239	1.74	0.232
572	111	716	2.64	11.77	0.041	0.443	0.170	1.38	0.561	0.127	0.457	0.065	0.472	0.098	0.338	0.046	0.415	0.078
572	112	5494	18.5	61.85	0.046	0.478	0.172	1.44	1.04	0.625	2.23	0.462	3.25	0.714	2.24	0.304	2.18	0.366
572	113	6296	29.7	112.24	0.095	0.919	0.273	2.76	1.77	0.816	2.95	0.709	4.98	1.163	3.56	0.515	3.61	0.544
593	114	1416	10.4	20.74	0.012	0.186	0.082	0.860	0.619	0.305	1.08	0.163	1.403	0.387	1.34	0.212	1.77	0.336
593	115	3838	10.2	51.98	нпо	0.195	0.082	0.922	0.728	0.383	1.53	0.286	1.88	0.401	1.19	0.203	1.51	0.267
593	116	5793	17.2	64.69	0.065	0.502	0.164	1.56	1.19	0.598	2.43	0.513	3.31	0.660	1.84	0.251	1.60	0.222
593	117	6950	16.1	58.93	0.016	0.232	0.092	1.06	0.843	0.410	1.78	0.380	2.77	0.640	2.03	0.281	2.00	0.297
593	118	4888	17.2	51.15	0.046	0.436	0.126	1.43	1.09	0.442	1.90	0.364	2.92	0.650	2.01	0.274	2.31	0.390
594	119	4395	19.8	49.96	0.049	0.344	0.120	1.24	0.968	0.393	1.93	0.411	3.34	0.772	2.46	0.371	2.50	0.415
594	120	3886	12.0	72.40	0.019	0.216	0.100	1.11	1.16	0.556	2.11	0.420	2.64	0.479	1.27	0.164	1.18	0.154
594	121	3284	19.6	188.60	0.035	0.482	0.182	2.09	2.07	0.953	4.00	0.716	4.59	0.813	2.06	0.269	1.65	0.281
594	122	4763	18.4	57.06	0.051	0.407	0.150	1.44	1.11	0.490	1.93	0.428	3.28	0.721	2.18	0.342	2.10	0.352
594	123	5063	18.9	57.39	0.043	0.370	0.120	1.27	1.08	0.463	1.80	0.422	3.22	0.741	2.22	0.301	2.32	0.330
594	124	5382	21.3	63.66	0.041	0.374	0.109	1.25	0.929	0.493	1.99	0.490	3.66	0.776	2.59	0.382	2.61	0.406
594	125	2128	5.77	67.22	0.021	0.394	0.196	2.21	1.70	0.601	1.96	0.274	1.40	0.212	0.464	0.064	0.497	0.105
594	126	5761	20.8	65.29	0.044	0.369	0.131	1.34	1.02	0.506	2.17	0.480	3.50	0.793	2.55	0.360	2.59	0.361
594	127	5926	21.5	67.68	0.042	0.406	0.158	1.44	1.12	0.551	2.37	0.512	3.62	0.819	2.65	0.391	2.59	0.368
594	128	6011	20.6	66.36	0.043	0.383	0.134	1.37	1.10	0.521	2.12	0.479	3.64	0.813	2.48	0.335	2.28	0.361

594	129	1710	9.09	20.80	0.037	0.321	0.116	1.13	0.718	0.292	1.16	0.198	1.52	0.352	1.06	0.173	1.38	0.213
594	130	3043	15.7	40.52	0.168	0.492	0.113	1.03	1.00	0.472	1.69	0.331	2.63	0.603	1.84	0.270	2.22	0.316
594	131	7507	36.7	120.41	0.055	0.535	0.200	2.05	1.57	0.771	3.45	0.770	5.94	1.422	4.56	0.674	4.75	0.709
594	132	5787	21.9	64.36	0.040	0.329	0.112	1.19	0.892	0.477	2.13	0.485	3.65	0.833	2.65	0.394	2.73	0.457
594	133	47.5	0.316	1.14	0.582	6.330	1.171	4.49	0.526	0.094	0.179	0.019	0.084	0.012	0.028	0.018	0.244	0.086
594	134	5067	19.3	55.20	0.038	0.351	0.137	1.18	0.924	0.453	1.75	0.367	3.11	0.726	2.34	0.349	2.52	0.377
594	135	7719	18.0	63.44	0.024	0.286	0.110	0.998	0.989	0.458	1.87	0.424	3.12	0.736	2.07	0.329	2.26	0.332
594	136	2021	9.71	19.35	0.025	0.276	0.097	0.960	0.583	0.218	0.908	0.202	1.45	0.347	1.10	0.193	1.44	0.245
594	137	5755	21.5	64.62	0.024	0.353	0.114	1.16	1.05	0.488	1.98	0.463	3.47	0.833	2.48	0.404	2.50	0.391
594	138	6887	15.2	58.20	0.028	0.214	0.087	0.971	0.732	0.377	1.69	0.368	2.51	0.594	1.75	0.265	1.86	0.303
594	139	1743	10.0	27.83	0.029	0.400	0.181	2.08	1.358	0.469	1.52	0.212	1.46	0.360	1.36	0.219	1.67	0.272
594	140	2322	6.67	42.54	0.065	0.587	0.166	1.58	1.075	0.445	1.71	0.262	1.47	0.249	0.592	0.093	0.779	0.127
594	141	5567	33.5	91.98	0.048	0.438	0.144	1.50	1.382	0.642	2.77	0.673	5.07	1.291	3.88	0.630	4.60	0.708
594	142	3096	12.1	35.80	0.008	0.124	0.053	0.483	0.544	0.259	0.932	0.220	1.75	0.472	1.54	0.263	1.90	0.280
594	143	79.9	3.73	20.03	0.047	0.803	0.505	4.61	1.001	0.249	0.580	0.070	0.418	0.123	0.561	0.111	1.22	0.251
594	144	6124	17.7	66.50	0.246	0.711	0.143	1.26	0.898	0.487	1.97	0.432	3.14	0.713	2.01	0.329	2.36	0.333
594	145	5154	14.0	48.54	0.014	0.215	0.075	0.876	0.723	0.378	1.47	0.292	2.39	0.562	1.71	0.266	1.74	0.299
594	146	5703	23.8	66.70	0.031	0.354	0.122	1.12	0.925	0.494	2.15	0.463	3.87	0.897	2.99	0.455	3.04	0.494
594	147	5524	20.9	62.40	0.042	0.443	0.145	1.39	1.075	0.536	2.07	0.476	3.46	0.837	2.53	0.343	2.42	0.377
594	148	3710	10.3	53.44	0.020	0.222	0.088	1.08	0.892	0.429	1.72	0.285	1.90	0.393	1.19	0.175	1.30	0.216
594	149	3608	17.9	67.53	0.020	0.211	0.080	0.967	0.951	0.503	2.09	0.441	3.06	0.736	2.09	0.286	2.22	0.321
594	150	510	10.8	38.05	0.026	0.319	0.135	1.12	0.687	0.237	0.850	0.178	1.37	0.373	1.31	0.249	1.83	0.311
594	151	6303	35.2	118.08	0.130	0.870	0.240	2.27	1.715	0.764	3.21	0.721	5.67	1.367	4.18	0.635	4.47	0.713
594	152	573	3.85	43.47	0.028	0.335	0.148	1.97	1.331	0.467	1.16	0.170	0.827	0.125	0.451	0.071	0.922	0.221
594	153	6906	22.6	72.35	0.031	0.344	0.127	1.17	1.010	0.566	2.65	0.525	3.88	0.887	2.61	0.336	2.29	0.312
594	154	7886	28.2	88.91	0.053	0.359	0.121	1.29	1.201	0.576	2.56	0.607	4.64	1.095	3.55	0.483	3.62	0.535
594	155	3383	22.2	167.16	0.030	0.398	0.173	1.81	1.684	0.815	3.36	0.657	4.43	0.819	2.20	0.273	1.62	0.214
594	156	5400	20.3	61.24	0.041	0.482	0.141	1.29	0.971	0.520	2.06	0.461	3.34	0.798	2.44	0.379	2.60	0.363
594	157	4557	17.6	52.61	0.052	0.602	0.190	1.55	1.118	0.455	1.87	0.376	2.87	0.691	2.11	0.330	2.17	0.355
594	158	8632	21.7	88.27	0.047	0.492	0.169	1.82	1.426	0.687	3.09	0.658	4.52	0.843	2.26	0.237	1.47	0.191

594	159	2833	19.0	76.08	0.018	0.307	0.113	1.40	1.399	0.670	2.67	0.546	3.65	0.656	1.68	0.203	1.33	0.191
594	160	5790	30.4	100.28	0.076	0.522	0.175	1.89	1.670	0.920	3.43	0.753	5.83	1.266	3.65	0.537	3.30	0.476
594	161	6325	18.9	60.10	0.035	0.396	0.120	1.06	0.956	0.508	2.04	0.407	3.20	0.732	2.17	0.309	2.27	0.339
594	162	5539	21.3	60.50	0.039	0.395	0.120	1.29	1.027	0.462	2.02	0.435	3.31	0.814	2.60	0.411	2.85	0.448
594	163	5692	22.9	64.66	0.037	0.363	0.129	1.16	0.959	0.482	2.29	0.477	3.60	0.876	2.61	0.413	2.69	0.429
594	164	3228	11.0	26.46	0.033	0.420	0.158	1.23	0.755	0.294	1.08	0.213	1.71	0.429	1.30	0.209	1.50	0.246
594	165	5747	21.3	68.72	0.051	0.467	0.140	1.42	1.067	0.533	2.11	0.431	3.44	0.805	2.32	0.378	2.38	0.380
594	166	6996	33.7	143.18	0.233	1.257	0.318	2.70	1.809	0.809	3.50	0.735	5.50	1.301	4.03	0.557	4.04	0.620
594	167	8323	44.6	136.47	0.032	0.491	0.180	1.75	1.543	0.783	3.66	0.829	6.95	1.729	5.54	0.828	5.84	0.896
594	168	2030	13.8	27.25	0.018	0.232	0.096	0.978	0.772	0.312	1.38	0.263	2.20	0.553	1.74	0.255	1.93	0.315
594	169	2162	6.52	39.95	0.014	0.203	0.086	1.14	1.051	0.397	1.27	0.180	0.929	0.235	0.817	0.159	1.35	0.232
594	170	4946	20.4	86.59	0.027	0.322	0.129	1.34	1.071	0.570	2.36	0.482	3.65	0.805	2.56	0.372	2.68	0.410
594	171	5454	19.8	60.27	0.035	0.306	0.109	1.13	0.994	0.447	1.89	0.427	3.25	0.786	2.37	0.341	2.52	0.367
594	172	5416	20.5	61.41	0.037	0.303	0.083	1.22	0.892	0.425	2.10	0.433	3.46	0.776	2.52	0.402	2.94	0.450
594	173	2837	9.31	25.06	0.008	0.176	0.073	0.832	0.659	0.239	0.884	0.173	1.46	0.334	1.16	0.180	1.27	0.219
594	174	6113	20.9	64.95	0.045	0.310	0.110	1.17	0.989	0.464	2.240	0.465	3.64	0.830	2.55	0.409	2.57	0.414
594	175	37.3	0.7	2.88	0.272	4.300	1.417	8.25	0.639	0.100	0.311	0.027	0.173	0.030	0.070	0.008	0.202	0.078
594	176	5640	20.0	60.94	0.032	0.363	0.115	1.13	0.955	0.490	2.070	0.426	3.51	0.798	2.60	0.365	2.71	0.391
594	177	4885	22.2	73.26	0.016	0.277	0.108	1.18	1.099	0.573	2.560	0.531	3.97	0.882	2.66	0.365	2.47	0.359
594	178	6090	21.9	64.73	0.031	0.309	0.127	1.05	1.005	0.504	2.120	0.477	3.57	0.855	2.68	0.398	2.88	0.419
594	179	63.4	2.18	27.81	0.158	2.585	0.708	4.26	1.107	0.431	1.042	0.126	0.559	0.091	0.203	0.038	0.518	0.132
594	180	3079	12.7	39.16	0.009	0.159	0.064	0.790	0.722	0.421	1.858	0.350	2.41	0.508	1.43	0.174	1.48	0.255
594	181	20.9	2.36	2.99	0.135	1.639	0.484	2.83	0.335	0.068	0.108	0.005	0.175	0.064	0.406	0.100	1.21	0.230
594	182	293	7.81	8.33	0.018	0.204	0.092	0.868	0.280	0.085	0.225	0.058	0.756	0.275	1.20	0.216	1.69	0.302
594	183	6897	32.1	94.57	0.047	0.418	0.152	1.43	1.129	0.626	2.86	0.618	4.97	1.276	4.13	0.619	4.37	0.691
594	184	5621	13.5	54.40	0.019	0.242	0.086	0.928	0.803	0.424	1.83	0.371	2.54	0.530	1.54	0.216	1.60	0.264
594	185	5639	20.2	61.94	0.032	0.383	0.124	1.18	1.10	0.458	2.01	0.406	3.41	0.764	2.48	0.344	2.60	0.401
594	186	5820	20.0	60.89	0.040	0.439	0.136	1.29	1.09	0.534	2.01	0.453	3.38	0.767	2.35	0.357	2.55	0.365
594	187	6847	20.2	71.77	0.215	0.850	0.176	1.54	1.14	0.567	2.22	0.453	3.59	0.788	2.38	0.344	2.27	0.334
594	188	6822	28.9	88.50	0.060	0.562	0.183	1.71	1.21	0.633	2.97	0.640	4.77	1.135	3.43	0.510	3.75	0.563

504	189	3763	23.3	30.52	0.022	0.185	0.069	0.639	0.588	0.318	1.60	0.431	3.47	0.901	2.94	0.446	3.10	0.483
594	190	4155	13.7	45.63	0.022	0.183	0.009	1.23	0.566	0.318	1.61	0.431	2.36	0.511	1.55	0.440	1.73	0.483
594	190	6354	10.2	43.78	0.040	0.430	0.141	0.717	0.934	0.380	1.07	0.317	1.63	0.408	1.21	0.239	1.73	0.232
594																		
594	192	7709	15.2	67.84	0.025	0.273	0.098	0.940	0.924	0.430	1.85	0.473	2.78	0.609	1.67	0.222	1.54	0.217
594	193	5296	16.5	60.49	0.035	0.377	0.110	1.08	0.946	0.480	2.09	0.409	2.77	0.610	1.88	0.280	2.16	0.315
594	194	2582	20.2	25.00	0.028	0.256	0.090	1.07	0.839	0.408	1.63	0.392	2.87	0.744	2.53	0.407	2.99	0.512
594	195	6098	22.4	72.91	0.045	0.452	0.155	1.39	1.15	0.531	2.34	0.499	3.64	0.867	2.56	0.395	2.84	0.426
594	196	68.4	1.17	10.32	0.146	3.08	0.853	3.95	0.663	0.192	0.485	0.041	0.129	0.024	0.185	0.054	0.752	0.170
594	197	7727	34.9	118.76	0.063	0.513	0.186	1.77	1.45	0.754	3.25	0.737	5.71	1.303	4.35	0.646	4.60	0.664
594	198	6113	21.2	66.76	0.027	0.347	0.121	1.11	1.01	0.472	2.22	0.487	3.45	0.833	2.49	0.360	2.71	0.380
594	199	58.1	2.26	28.81	0.181	2.79	0.837	5.31	1.43	0.411	1.16	0.142	0.614	0.086	0.184	0.046	0.439	0.116
594	200	4570	27.4	93.21	0.043	0.493	0.175	1.99	1.72	0.780	3.46	0.682	4.98	1.11	3.21	0.473	2.93	0.445
594	201	5578	20.3	63.45	0.039	0.361	0.133	1.27	1.02	0.502	2.11	0.435	3.36	0.780	2.44	0.372	2.46	0.378
594	202	5848	21.0	63.80	0.030	0.371	0.120	1.30	1.05	0.540	2.11	0.462	3.41	0.816	2.42	0.367	2.43	0.378
594	203	4121	9.89	29.21	0.018	0.201	0.088	0.616	0.555	0.243	1.06	0.238	1.81	0.404	1.12	0.186	1.40	0.218
594	204	3748	11.2	57.45	0.024	0.243	0.106	1.03	0.953	0.531	2.10	0.343	2.24	0.430	1.29	0.193	1.37	0.239
594	205	130	3.03	5.51	0.217	1.812	0.347	1.31	0.160	0.071	0.123	0.014	0.169	0.090	0.502	0.120	1.22	0.293
594	206	6130	20.9	65.39	0.023	0.261	0.096	0.910	0.830	0.425	2.08	0.454	3.39	0.788	2.34	0.368	2.41	0.382
594	207	1295	6.13	22.26	0.018	0.242	0.087	0.833	0.671	0.293	1.11	0.170	1.04	0.247	0.741	0.146	1.00	0.168
594	208	5580	24.5	84.52	0.017	0.276	0.103	1.19	1.14	0.606	2.50	0.600	4.30	0.966	2.99	0.429	2.91	0.433
594	209	5982	20.9	63.26	0.032	0.388	0.123	1.21	0.859	0.477	2.08	0.470	3.64	0.873	2.74	0.381	2.66	0.391
594	210	7232	34.8	120.94	0.064	0.669	0.240	2.21	1.79	0.793	3.53	0.759	5.74	1.338	4.31	0.641	4.56	0.668
594	211	3271	6.79	40.43	0.016	0.201	0.082	0.968	0.752	0.353	1.28	0.251	1.33	0.271	0.728	0.128	0.885	0.159
594	212	5607	21.2	60.55	0.052	0.378	0.130	1.21	0.885	0.512	1.97	0.447	3.42	0.806	2.48	0.373	2.66	0.397
594	213	5309	20.2	59.19	0.040	0.344	0.114	1.14	0.953	0.474	1.94	0.436	3.13	0.761	2.42	0.361	2.53	0.381
594	214	3366	11.7	55.85	0.026	0.263	0.101	1.13	0.943	0.451	1.81	0.336	2.26	0.470	1.25	0.187	1.24	0.205
594	215	935	3.70	3.10	0.039	0.397	0.152	0.919	0.184	0.054	0.152	0.042	0.430	0.137	0.538	0.096	0.865	0.161
594	216	5591	19.5	59.45	0.027	0.364	0.128	1.16	0.979	0.458	1.91	0.416	3.33	0.750	2.40	0.356	2.34	0.370
594	217	9405	21.3	91.52	0.044	0.570	0.210	1.88	1.50	0.748	3.04	0.594	4.08	0.875	2.43	0.309	2.05	0.301
594	218	6410	20.8	68.24	0.030	0.327	0.112	1.12	0.931	0.503	2.08	0.480	3.61	0.852	2.67	0.367	2.56	0.397

594	219	2973	12.0	48.79	0.019	0.243	0.093	0.999	0.984	0.469	1.56	0.283	2.14	0.443	1.55	0.230	1.72	0.285
594	220	6742	9.60	38.27	0.030	0.303	0.095	0.857	0.615	0.304	1.06	0.236	1.69	0.389	1.20	0.169	1.24	0.215
594	222	4681	16.1	62.60	0.019	0.205	0.076	0.806	0.806	0.411	1.74	0.342	2.85	0.632	1.83	0.269	1.89	0.291
594	223	2315	10.3	24.58	0.015	0.231	0.113	1.23	0.755	0.296	1.19	0.233	1.76	0.374	1.26	0.197	1.59	0.223
594	224	9550	21.2	90.40	0.048	0.579	0.202	2.05	1.54	0.756	3.12	0.609	4.01	0.844	2.32	0.306	2.04	0.309
594	225	3945	8.79	44.41	0.018	0.213	0.076	0.809	0.676	0.300	1.15	0.214	1.49	0.343	1.11	0.170	1.44	0.208
594	226	5476	21.2	63.44	0.239	0.782	0.180	1.44	1.13	0.560	2.37	0.493	3.51	0.807	2.39	0.350	2.46	0.385
594	227	3012	13.0	33.61	0.025	0.254	0.085	1.04	0.731	0.328	1.18	0.295	2.15	0.490	1.38	0.207	1.43	0.238
594	228	6233	22.8	67.91	0.031	0.333	0.109	1.28	0.944	0.488	2.15	0.515	3.69	0.915	2.77	0.398	2.98	0.461
594	229	5396	19.0	59.13	0.046	0.424	0.147	1.43	1.03	0.512	2.03	0.422	3.27	0.729	2.33	0.330	2.23	0.357
594	230	5.01	0.068	1.04	0.076	0.756	0.205	1.08	0.102	0.016	0.031	нпо	0.021	нпо	0.011	0.013	0.231	0.089
594	231	4864	11.2	56.59	0.018	0.252	0.108	1.08	0.925	0.461	1.90	0.347	2.34	0.439	1.21	0.194	1.34	0.229
594	232	3087	16.9	100.38	0.053	0.602	0.258	2.80	2.32	0.952	3.64	0.601	3.55	0.664	1.63	0.202	1.58	0.240
594	233	5883	17.1	63.17	0.026	0.285	0.099	1.10	0.903	0.395	1.78	0.391	2.78	0.677	2.01	0.310	2.21	0.309
594	234	2637	10.9	37.10	0.037	0.374	0.163	1.48	0.801	0.284	0.963	0.199	1.63	0.421	1.24	0.193	1.52	0.256
594	235	1639	6.95	45.94	0.166	2.269	0.792	8.17	3.01	0.626	1.90	0.273	1.47	0.261	0.658	0.074	0.463	0.087
594	236	8167	16.1	65.52	0.035	0.343	0.116	1.23	1.07	0.480	2.04	0.406	3.03	0.598	1.90	0.279	2.05	0.328
594	237	6226	19.2	67.50	0.057	0.499	0.160	1.55	1.30	0.630	2.53	0.490	3.48	0.744	2.12	0.294	1.84	0.290
594	238	29.9	3.87	3.34	0.232	0.967	0.195	0.876	0.193	0.041	0.110	0.009	0.237	0.131	0.811	0.161	1.43	0.289
594	239	873	1.34	27.51	0.017	0.196	0.088	1.16	0.839	0.360	0.953	0.088	0.336	0.046	0.170	0.046	0.508	0.107
594	240	659	9.25	59.61	0.027	0.297	0.121	1.50	1.44	0.636	2.21	0.331	2.00	0.384	0.988	0.138	1.05	0.188
594	241	2161	11.4	26.57	0.009	0.160	0.057	0.683	0.713	0.286	1.09	0.226	1.81	0.422	1.34	0.230	1.56	0.250
594	242	3687	17.2	86.13	0.027	0.263	0.107	1.10	1.04	0.529	2.23	0.445	3.28	0.684	1.78	0.239	1.59	0.219
594	243	758	3.99	10.02	0.040	0.457	0.148	0.892	0.346	0.139	0.460	0.099	0.654	0.149	0.445	0.067	0.592	0.107
594	244	3068	10.7	51.37	0.031	0.263	0.097	1.11	0.952	0.438	1.69	0.301	2.12	0.433	1.17	0.164	1.34	0.219
594	245	245	4.36	3.93	0.038	0.302	0.135	1.13	0.293	0.047	0.148	0.027	0.389	0.149	0.575	0.136	1.19	0.223
594	246	4552	18.2	48.79	0.039	0.401	0.119	1.16	0.949	0.464	1.84	0.404	2.98	0.685	2.22	0.335	2.46	0.381
594	247	5409	19.0	60.69	0.036	0.369	0.122	1.15	1.02	0.501	1.94	0.439	3.05	0.723	2.30	0.327	2.51	0.343
594	248	2567	10.7	32.77	0.024	0.269	0.091	0.912	0.825	0.383	1.42	0.254	1.78	0.400	1.30	0.193	1.54	0.245
594	249	4746	9.6	39.20	0.013	0.203	0.070	0.801	0.593	0.330	1.25	0.255	1.65	0.399	1.12	0.182	1.25	0.183

594	250	3863	11.8	76.44	0.039	0.543	0.191	1.94	1.22	0.494	1.90	0.308	2.06	0.449	1.46	0.207	1.58	0.244
594	251	1527	10.7	13.40	0.025	0.203	0.058	0.675	0.306	0.168	0.732	0.183	1.55	0.400	1.63	0.241	1.89	0.308
594	252	4708	17.7	102.56	0.038	0.517	0.195	2.19	1.83	0.921	3.39	0.631	3.79	0.684	1.72	0.223	1.37	0.233
594	253	3069	14.2	33.03	0.019	0.188	0.090	1.12	0.774	0.434	1.50	0.324	2.32	0.552	1.62	0.238	1.84	0.288
594	254	228	1.99	13.55	0.168	1.895	0.646	5.87	1.83	0.447	0.905	0.095	0.423	0.063	0.233	0.035	0.431	0.099
594	255	155	1.71	1.35	0.386	3.150	0.530	2.48	0.228	0.055	0.132	0.023	0.198	0.055	0.247	0.045	0.475	0.092
594	256	1712	5.73	9.99	0.050	0.325	0.100	1.08	0.401	0.123	0.392	0.098	0.814	0.207	0.791	0.148	1.12	0.182
594	257	1474	3.02	26.24	0.033	0.480	0.166	1.77	0.986	0.463	1.67	0.217	0.974	0.123	0.191	0.036	0.430	0.110
594	258	49.0	0.381	2.58	0.200	3.030	0.868	5.48	0.899	0.199	0.289	0.020	0.075	0.015	0.070	0.014	0.268	0.079
594	259	2972	11.9	30.80	0.019	0.218	0.090	0.789	0.605	0.293	1.10	0.265	1.94	0.432	1.47	0.223	1.61	0.239
594	260	5424	18.4	57.32	0.049	0.435	0.133	1.45	1.01	0.520	2.18	0.416	3.170	0.728	2.04	0.286	2.17	0.314
594	261	6261	8.40	34.73	0.023	0.209	0.055	0.675	0.476	0.234	1.02	0.185	1.305	0.347	1.03	0.159	1.17	0.165
594	262	2898	9.10	50.60	0.023	0.224	0.105	1.02	0.997	0.483	1.72	0.312	1.871	0.346	0.854	0.141	0.883	0.171
594	263	3070	1.85	51.24	0.023	0.332	0.125	1.41	1.18	0.483	1.22	0.124	0.608	0.078	0.167	0.036	0.375	0.078
594	264	615	7.53	7.13	0.027	0.324	0.137	1.18	0.522	0.147	0.613	0.105	0.942	0.266	1.02	0.167	1.49	0.265
594	265	624	8.10	20.47	0.013	0.251	0.078	0.751	0.440	0.163	0.521	0.105	0.935	0.265	1.12	0.217	1.93	0.355
594	266	7795	14.8	70.98	0.027	0.319	0.118	1.20	0.862	0.519	2.00	0.427	2.80	0.606	1.61	0.230	1.54	0.268
594	267	2980	17.3	170.62	0.045	0.625	0.265	2.88	2.25	1.14	4.31	0.740	4.37	0.776	1.59	0.185	1.14	0.160
594	268	6462	7.88	31.58	0.025	0.256	0.087	0.817	0.437	0.243	0.886	0.174	1.27	0.295	1.05	0.170	1.18	0.170
594	269	3228	19.3	83.89	0.040	0.526	0.231	2.33	2.11	1.014	3.88	0.705	4.16	0.769	1.72	0.199	1.35	0.181
594	270	2589	15.7	29.81	0.014	0.197	0.092	0.949	0.719	0.375	1.49	0.353	2.44	0.600	1.93	0.278	1.90	0.332
594	271	6534	13.5	63.74	0.031	0.375	0.136	1.36	1.04	0.500	1.99	0.376	2.55	0.519	1.54	0.207	1.52	0.232
594	272	6560	18.0	79.34	0.030	0.306	0.125	1.08	1.11	0.528	2.14	0.447	3.21	0.692	2.05	0.285	1.89	0.288
594	273	665	19.5	95.29	0.029	0.371	0.170	1.87	1.23	0.528	2.09	0.374	2.87	0.601	2.10	0.312	2.35	0.402
594	274	2396	0.647	43.69	0.017	0.214	0.090	0.945	0.713	0.317	0.840	0.064	0.226	0.037	0.059	0.020	0.146	0.061
594	275	477	10.5	23.88	0.048	0.611	0.159	1.03	0.440	0.141	0.656	0.141	1.17	0.360	1.28	0.258	1.84	0.347
594	276	2519	10.7	14.73	0.014	0.218	0.089	0.838	0.506	0.213	1.00	0.220	1.79	0.415	1.27	0.195	1.40	0.224
594	277	2395	14.6	32.31	0.014	0.225	0.084	0.726	0.506	0.242	1.24	0.276	2.27	0.561	1.78	0.246	1.92	0.277
594	278	2528	20.1	17.69	0.010	0.138	0.059	0.593	0.748	0.410	2.05	0.433	3.41	0.771	2.38	0.351	2.54	0.363
594	279	6093	21.7	63.34	0.058	0.453	0.145	1.38	1.01	0.555	2.40	0.476	3.69	0.833	2.53	0.391	2.67	0.388

594	280	6414	14.3	91.21	0.068	0.378	0.119	1.23	0.980	0.508	1.92	0.379	2.48	0.575	1.74	0.254	2.20	0.358
594	281	4238	17.2	79.77	0.031	0.273	0.110	1.19	1.20	0.572	2.51	0.461	3.28	0.667	1.80	0.251	1.66	0.272
594	282	6748	17.5	47.20	0.034	0.308	0.092	0.972	0.615	0.293	1.31	0.323	2.72	0.714	2.34	0.333	2.34	0.336
594	283	1301	1.05	24.92	0.008	0.190	0.087	1.04	0.702	0.264	0.610	0.075	0.305	0.038	0.117	0.028	0.440	0.104
594	284	244	2.48	16.14	0.044	0.592	0.292	3.02	1.34	0.391	0.923	0.103	0.605	0.093	0.235	0.040	0.375	0.078
594	285	6718	7.64	31.13	0.022	0.235	0.069	0.703	0.427	0.231	0.877	0.184	1.30	0.296	0.868	0.146	1.08	0.172
594	286	5769	14.8	78.41	0.034	0.411	0.151	1.48	1.27	0.626	2.54	0.448	2.90	0.598	1.62	0.252	1.71	0.259
594	287	4010	12.7	42.18	0.040	0.419	0.142	1.18	0.948	0.382	1.54	0.328	2.23	0.516	1.63	0.260	1.55	0.262
594	288	2859	10.1	28.67	0.020	0.264	0.088	0.775	0.670	0.388	1.31	0.261	1.66	0.376	1.11	0.184	1.37	0.217
594	289	117	5.46	86.52	0.069	1.052	0.572	6.34	4.43	1.34	2.95	0.290	1.43	0.184	0.375	0.035	0.361	0.097
594	290	3085	19.5	68.80	0.021	0.249	0.081	1.12	1.01	0.649	2.47	0.541	3.87	0.775	2.07	0.300	1.98	0.308
594	291	2752	13.5	22.79	0.012	0.202	0.082	0.737	0.477	0.229	1.02	0.254	2.10	0.545	1.66	0.276	2.021	0.287
594	292	2677	13.6	50.85	0.011	0.174	0.078	0.856	1.01	0.448	1.80	0.366	2.68	0.554	1.60	0.220	1.59	0.248
594	294	650	4.06	5.34	0.030	0.373	0.142	1.24	0.357	0.098	0.332	0.058	0.552	0.153	0.585	0.093	0.926	0.158
594	295	3762	21.0	24.76	0.026	0.177	0.064	0.719	0.671	0.367	1.71	0.432	3.33	0.824	2.47	0.371	2.400	0.429
594	296	869	6.24	16.44	0.246	2.81	0.595	2.91	0.970	0.312	1.16	0.176	1.28	0.258	0.712	0.100	0.729	0.122
594	297	3477	16.2	44.70	0.014	0.157	0.068	0.595	0.765	0.421	1.87	0.387	2.86	0.634	1.90	0.278	1.99	0.321
594	298	5753	14.6	54.73	0.021	0.265	0.091	0.744	0.684	0.331	1.17	0.276	2.20	0.597	1.90	0.276	1.96	0.309
594	299	3865	12.8	41.52	0.016	0.246	0.082	0.874	0.663	0.314	1.42	0.297	2.26	0.500	1.48	0.208	1.58	0.217
594	300	2205	6.60	61.03	0.009	0.175	0.061	0.736	0.987	0.474	1.79	0.318	1.60	0.263	0.604	0.087	0.737	0.159
594	301	5482	18.4	55.94	0.042	0.443	0.146	1.308	0.946	0.466	1.88	0.414	3.13	0.710	2.24	0.307	2.28	0.335
594	302	7496	16.1	71.31	0.048	0.419	0.144	1.361	1.08	0.542	2.21	0.458	3.05	0.627	1.84	0.251	1.63	0.251
594	303	2547	11.6	32.30	0.014	0.262	0.092	1.118	0.852	0.399	1.65	0.289	1.93	0.454	1.31	0.187	1.47	0.230
594	304	7909	16.9	59.39	0.019	0.323	0.107	1.125	0.898	0.461	1.92	0.419	2.95	0.688	1.94	0.289	2.10	0.312
594	305	1700	3.76	19.43	0.045	0.497	0.183	1.796	0.843	0.321	0.954	0.143	0.774	0.155	0.375	0.056	0.430	0.080
594	306	265	2.03	8.57	0.031	0.522	0.233	2.450	0.939	0.321	0.819	0.082	0.462	0.084	0.196	0.027	0.276	0.062
594	307	4344	21.0	48.06	0.031	0.463	0.159	1.490	1.05	0.517	2.02	0.444	3.49	0.801	2.398	0.337	2.56	0.405
594	308	2714	12.7	34.47	0.067	0.297	0.083	0.847	0.776	0.329	1.42	0.262	1.95	0.482	1.57	0.247	1.82	0.251
594	309	978	2.97	37.16	0.059	0.640	0.257	3.020	1.40	0.268	0.710	0.109	0.533	0.107	0.374	0.048	0.500	0.090
594	310	2214	5.92	16.22	0.018	0.223	0.083	0.878	0.531	0.200	0.717	0.112	0.914	0.221	0.698	0.105	0.861	0.152

Таблица Б3. Редкозмельный и редкоэлементый состав гранатов из шлиховых проб кимберлитовой трубки Деймос (ICP MS).

№ шашки	Образец	Ti	Y	Zr	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
606	1	4417	58.5	290	0.065	0.855	0.345	3.59	3.30	1.68	6.81	1.57	11.5	2.44	6.34	0.799	4.96	0.589
606	2	7862	13.5	58.2	0.030	0.297	0.103	1.19	0.959	0.452	1.63	0.371	2.64	0.536	1.47	0.200	1.27	0.219
606	3	23.8	1.32	0.568	0.038	0.508	0.130	0.772	0.058	0.016	0.033	0.008	0.032	0.030	0.239	0.071	0.801	0.186
606	4	6838	11.6	53.2	0.014	0.216	0.088	0.812	0.686	0.342	1.42	0.296	2.06	0.423	1.30	0.162	1.23	0.189
606	5	19.3	1.41	0.021	0.799	3.100	0.194	0.287	0.007	0.004	0.054	нпо	0.050	0.037	0.289	0.076	1.03	0.235
606	6	25.6	1.37	1.46	0.066	0.912	0.320	1.94	0.198	0.051	0.060	0.006	0.057	0.044	0.235	0.073	0.827	0.182
606	7	85.8	1.32	0.152	0.024	0.125	0.005	нпо	нпо	нпо	нпо	нпо	0.017	0.053	0.379	0.120	1.66	0.418
606	8	36.4	0.51	0.024	нпо	0.043	нпо	нпо	нпо	0.014	0.028	0.004	0.025	0.019	0.105	0.041	0.606	0.139
606	9	85.6	1.64	26.3	0.031	0.765	0.303	2.73	1.25	0.416	1.21	0.114	0.477	0.046	0.153	0.035	0.469	0.137
606	10	92.5	0.71	0.79	0.477	4.22	0.835	3.05	0.202	0.019	0.039	нпо	0.061	0.022	0.190	0.053	0.599	0.170
606	11	2694	10.8	34.5	0.012	0.202	0.099	0.924	0.854	0.407	1.58	0.281	1.89	0.405	1.22	0.204	1.52	0.244
606	12	995	11.6	7.37	нпо	0.015	0.016	0.287	0.459	0.284	1.065	0.201	1.70	0.400	1.46	0.257	2.220	0.429
606	13	160	0.79	6.02	0.021	0.321	0.124	1.05	0.265	0.082	0.225	0.033	0.172	0.027	0.115	0.017	0.243	0.068
606	14	4199	13.3	47.5	0.014	0.171	0.070	0.783	0.650	0.328	1.43	0.296	2.14	0.475	1.66	0.251	1.80	0.296
606	15	23.9	1.32	1.09	0.044	0.652	0.195	1.40	0.201	0.023	0.079	0.008	0.058	0.039	0.271	0.063	0.776	0.174
606	16	7557	12.8	61.5	0.029	0.312	0.106	1.14	0.801	0.446	1.63	0.328	2.25	0.491	1.36	0.177	1.135	0.199
606	17	3221	6.93	39.1	0.024	0.361	0.159	1.73	1.34	0.628	2.036	0.300	1.62	0.256	0.593	0.073	0.595	0.112
606	18	3.30	0.56	0.01	0.351	4.71	0.732	1.63	0.048	0.012	0.033	нпо	0.020	нпо	0.115	0.042	0.593	0.131
606	19	5677	19.6	58.6	0.030	0.351	0.119	1.23	0.861	0.453	1.88	0.419	3.150	0.752	2.31	0.340	2.550	0.359
606	21	40.7	0.64	1.48	0.419	5.50	1.453	7.37	0.867	0.176	0.305	0.034	0.107	0.023	0.088	0.031	0.383	0.119
606	22	28.2	1.20	6.21	0.079	1.51	0.656	5.26	0.854	0.176	0.177	0.010	0.050	0.030	0.252	0.071	0.778	0.156
606	23	704	11.4	7.62	0.019	0.035	0.013	0.268	0.458	0.240	0.930	0.203	1.63	0.412	1.38	0.258	2.170	0.395

606	24	7157	14.4	71.8	0.020	0.278	0.092	1.16	1.05	0.497	2.16	0.421	2.87	0.586	1.53	0.214	1.434	0.201
606	25	76.3	2.03	17.1	0.628	4.260	1.03	3.72	0.924	0.328	1.19	0.165	0.580	0.075	0.199	0.047	0.495	0.112
606	26	10.0	0.16	7.42	0.434	5.220	1.39	8.17	1.31	0.179	0.203	нпо	0.023	нпо	0.025	ГПО	0.211	0.074
606	27	206.0	1.58	2.24	0.031	0.355	0.104	0.766	0.295	0.067	0.181	0.019	0.218	0.055	0.224	0.055	0.624	0.108
606	28	1904	10.7	27.2	0.040	0.534	0.190	1.54	0.969	0.377	1.42	0.263	1.90	0.398	1.16	0.208	1.50	0.262
606	29	2453	12.3	119	0.023	0.337	0.149	1.61	1.46	0.718	2.41	0.432	2.66	0.510	1.40	0.197	1.33	0.208
606	30	51.6	0.55	0.19	0.040	0.953	0.236	0.877	0.052	0.014	0.043	0.007	0.049	нпо	0.091	0.026	0.390	0.101
606	31	225	5.68	15.9	0.029	0.500	0.340	3.60	1.79	0.512	1.01	0.144	0.892	0.219	0.708	0.120	1.14	0.244
606	32	28.6	1.28	6.00	0.093	1.47	0.669	5.56	0.913	0.150	0.186	0.006	0.085	0.036	0.249	0.075	0.708	0.175
606	33	25.2	1.21	3.22	0.077	1.27	0.506	3.53	0.562	0.092	0.072	нпо	0.068	0.036	0.287	0.065	0.768	0.158
606	34	5931	17.9	61.7	0.028	0.337	0.123	1.21	0.922	0.439	1.82	0.421	2.94	0.661	2.01	0.317	2.16	0.333
606	35	20.3	0.91	3.53	0.090	1.18	0.370	2.42	0.442	0.089	0.102	0.006	0.048	0.024	0.206	0.051	0.628	0.143
606	36	60.5	0.33	6.04	0.300	4.23	0.841	3.84	0.809	0.172	0.406	0.025	0.055	0.012	0.048	0.008	0.130	0.027
606	37	28.7	1.25	3.45	0.090	1.66	0.609	4.56	0.604	0.067	0.133	0.009	0.078	0.043	0.240	0.072	0.813	0.196
606	38	3.09	0.16	0.336	0.024	0.210	0.046	0.284	0.119	0.011	0.042	0.007	0.039	0.007	0.060	0.019	0.429	0.097
606	39	79.7	0.27	3.95	0.025	0.601	0.275	2.82	0.760	0.145	0.269	0.018	0.071	0.011	0.049	0.021	0.296	0.097
606	40	50.2	0.32	12.0	0.298	3.92	0.839	3.82	0.613	0.147	0.259	0.026	0.067	0.011	0.041	0.019	0.212	0.065
606	41	1489	2.83	31.0	0.019	0.269	0.110	1.36	1.09	0.431	1.06	0.131	0.637	0.100	0.288	0.051	0.370	0.096
607	42	45.4	1.03	6.42	0.125	2.50	0.841	5.14	1.30	0.307	0.805	0.075	0.208	0.035	0.117	0.036	0.481	0.116
607	43	4.67	0.27	0.063	0.008	0.057	0.019	0.125	0.066	0.013	0.040	нпо	0.029	0.005	0.107	0.039	0.651	0.165
607	44	1.96	0.19	0.052	0.573	6.76	1.25	5.76	0.541	0.116	0.162	нпо	0.026	0.010	0.040	0.032	0.487	0.141
607	45	4098	86.4	506	0.046	0.539	0.213	2.55	2.72	1.53	6.760	1.67	14.3	3.66	11.9	1.76	12.6	1.90
607	46	24.2	1.20	0.358	0.032	0.310	0.084	0.54	0.083	0.009	0.049	0.002	0.035	0.037	0.330	0.063	0.845	0.158
607	47	1.57	0.03	0.061	0.148	1.61	0.433	2.07	0.073	0.064	0.005	нпо	нпо	нпо	0.014	0.004	0.169	0.075
607	48	1.75	0.03	0.036	0.005	0.054	0.007	0.025	0.021	0.011	0.042	нпо	0.019	0.007	0.035	0.007	0.221	0.085
607	49	10.8	1.60	1.45	0.259	2.93	0.322	1.15	0.238	0.059	0.065	нпо	0.029	0.043	0.434	0.159	2.11	0.530
607	50	55.0	4.24	60.3	0.155	2.38	0.564	3.40	1.07	0.285	0.881	0.137	0.858	0.189	0.634	0.154	2.29	0.513
607	51	23.8	1.22	0.75	0.047	0.539	0.160	1.04	0.178	0.016	0.084	0.008	0.067	0.031	0.220	0.073	0.719	0.142
607	52	5.29	0.26	0.02	0.008	0.050	0.010	0.034	нпо	0.013	0.016	нпо	0.015	0.007	0.078	0.027	0.380	0.087
607	53	22.8	1.15	0.71	0.040	0.539	0.157	1.05	0.091	0.015	0.041	нпо	0.049	0.036	0.245	0.061	0.744	0.155

607	54	24.8	1.30	1.00	0.060	0.684	0.245	1.37	0.252	0.018	0.037	нпо	0.051	0.036	0.237	0.072	0.728	0.176
607	55	43.0	0.71	1.22	0.023	0.247	0.083	0.845	0.184	0.043	0.109	0.010	0.043	0.031	0.184	0.058	0.672	0.181
607	56	1.85	0.03	0.03	0.036	0.269	0.046	0.075	0.032	0.010	0.053	нпо	0.014	0.008	0.015	0.009	0.179	0.068
607	57	329.0	1.95	13.3	0.924	5.18	0.819	4.39	0.858	0.230	0.555	0.082	0.398	0.070	0.260	0.078	0.891	0.196
607	58	2719	16.6	79.7	0.040	0.386	0.171	1.71	1.652	0.764	2.80	0.497	3.260	0.653	1.66	0.247	1.50	0.238
607	59	43.0	0.69	23.1	0.517	4.95	0.797	3.29	0.819	0.204	0.521	0.033	0.202	0.024	0.078	0.011	0.106	0.027
607	60	155	11.1	1.57	0.005	0.021	0.013	0.160	0.176	0.116	0.437	0.115	1.11	0.391	1.48	0.244	1.99	0.343
607	61	2194	11.7	44.1	0.016	0.234	0.108	1.08	0.885	0.377	1.57	0.269	1.86	0.440	1.36	0.213	1.64	0.260
607	62	2692	7.41	134	0.013	0.284	0.117	1.32	1.287	0.699	2.63	0.393	2.04	0.291	0.786	0.106	0.794	0.136
607	63	482	1.44	44.4	0.112	2.10	0.696	5.96	2.260	0.565	1.42	0.128	0.457	0.059	0.114	0.019	0.218	0.059
607	64	24.1	0.61	13.1	0.192	2.95	0.701	3.87	0.698	0.163	0.223	0.018	0.100	0.017	0.098	0.031	0.499	0.127
607	65	4833	19.5	108	0.045	0.628	0.230	2.39	1.991	0.988	3.24	0.576	3.83	0.735	2.22	0.302	2.05	0.308
607	66	85.3	1.01	15.8	0.038	0.723	0.394	7.04	2.680	0.506	0.653	0.059	0.232	0.034	0.114	0.032	0.415	0.124
607	67	12.6	0.44	0.62	0.026	0.520	0.142	0.703	0.211	0.019	0.052	нпо	0.025	0.012	0.093	0.029	0.457	0.121
607	68	2163	12.4	46.1	0.008	0.230	0.081	1.10	1.101	0.435	1.82	0.332	2.25	0.465	1.37	0.213	1.50	0.243
607	69	25.6	1.15	3.84	0.078	1.39	0.572	4.51	0.701	0.105	0.095	0.008	0.075	0.037	0.220	0.074	0.687	0.183
607	70	11.1	1.24	2.05	0.204	7.47	0.261	0.86	0.112	0.028	0.088	0.005	0.054	0.045	0.221	0.076	0.841	0.155
607	71	6.34	0.57	5.91	0.038	1.77	0.740	3.96	0.544	0.132	0.292	0.020	0.094	0.024	0.146	0.037	0.561	0.184
607	72	1405	6.31	15.9	0.023	0.239	0.067	0.601	0.574	0.217	0.716	0.140	1.02	0.224	0.802	0.137	1.09	0.211
607	73	25.3	1.28	1.43	0.065	0.989	0.302	2.15	0.257	0.032	0.033	0.008	0.027	0.038	0.290	0.060	0.749	0.151
607	74	52.7	0.71	20.2	0.234	2.70	0.764	4.50	0.720	0.139	0.258	0.024	0.135	0.031	0.112	0.029	0.421	0.141
607	75	26.6	1.34	4.79	0.114	1.50	0.604	5.30	0.900	0.117	0.163	0.010	0.061	0.039	0.285	0.086	0.810	0.168
607	76	13.2	1.14	2.01	0.313	9.07	0.329	0.864	0.115	0.030	0.107	нпо	0.035	0.036	0.227	0.071	0.707	0.138
607	77	2.37	0.20	1.28	0.047	0.684	0.241	1.47	0.268	0.057	0.135	0.010	0.028	0.009	0.066	0.046	0.655	0.197
607	78	3472	13.0	57.0	0.019	0.258	0.108	1.14	0.987	0.552	2.13	0.417	2.71	0.540	1.43	0.205	1.27	0.224
607	79	2092	12.8	28.3	0.019	0.228	0.092	0.755	0.617	0.302	1.15	0.257	2.05	0.520	1.56	0.246	1.94	0.300
607	80	64.9	0.48	3.24	0.029	0.673	0.178	0.867	0.197	0.052	0.069	нпо	0.066	0.019	0.059	нпо	0.190	0.043
607	81	9.55	0.05	1.01	0.072	1.48	0.427	1.76	0.310	0.094	0.144	нпо	0.027	нпо	0.027	нпо	0.088	0.039
607	82	495	2.53	26.8	0.338	3.35	0.768	4.67	1.667	0.648	1.52	0.168	0.691	0.096	0.226	0.031	0.236	0.061
607	83	2220	10.6	41.1	0.011	0.256	0.106	1.19	1.233	0.515	1.85	0.289	1.86	0.407	1.19	0.188	1.42	0.236

607	84	1769	12.0	16.5	0.012	0.259	0.080	0.771	0.352	0.224	0.846	0.215	1.85	0.459	1.51	0.236	1.88	0.264
607	85	23.3	1.58	15.1	0.417	3.11	0.469	2.60	1.076	0.198	0.232	0.042	0.231	0.057	0.263	0.064	0.625	0.142
607	86	45.6	1.54	14.6	0.101	2.02	0.637	4.45	0.752	0.182	0.506	0.088	0.386	0.057	0.122	0.021	0.207	0.062
607	87	22.0	1.19	0.555	0.024	0.350	0.101	0.587	0.066	0.009	0.004	0.004	0.031	0.028	0.221	0.062	0.765	0.165
607	88	3102	25.9	179	0.027	0.374	0.149	1.69	1.721	0.895	3.56	0.756	5.22	1.01	2.63	0.322	2.08	0.285
607	89	34.7	1.47	21.4	0.404	5.96	1.061	4.36	0.802	0.209	0.636	0.080	0.336	0.058	0.151	0.024	0.481	0.124
607	90	76.7	0.62	0.588	0.047	1.11	0.267	1.25	0.150	0.049	0.125	0.012	0.118	0.028	0.082	0.032	0.417	0.110
607	91	6039	18.5	68.1	0.028	0.319	0.114	1.09	0.853	0.463	2.14	0.400	3.13	0.679	2.15	0.305	2.23	0.353
607	92	23.5	1.18	0.60	0.027	0.347	0.086	0.590	0.061	0.014	0.038	0.007	0.061	0.033	0.217	0.070	0.765	0.154
607	93	65.1	1.50	20.0	0.135	1.75	0.433	2.67	0.561	0.185	0.555	0.101	0.419	0.059	0.102	0.036	0.306	0.060
607	94	27.4	1.28	1.83	0.085	1.25	0.441	2.76	0.355	0.049	0.066	0.002	0.060	0.023	0.285	0.068	0.838	0.164
607	95	25.4	1.27	6.32	0.082	1.25	0.609	5.48	1.009	0.147	0.190	0.008	0.045	0.030	0.231	0.066	0.753	0.156
607	96	7461	17.1	66.6	0.030	0.306	0.113	1.19	0.965	0.485	2.09	0.416	3.01	0.673	1.93	0.262	1.62	0.248
607	97	4363	5.40	58.9	0.041	0.420	0.162	1.72	1.402	0.686	2.37	0.321	1.46	0.210	0.463	0.067	0.519	0.106
607	98	16.9	2.27	18.3	0.142	2.43	1.07	7.95	1.557	0.353	0.755	0.075	0.276	0.079	0.480	0.141	1.98	0.530
607	99	7242	17.3	70.1	0.036	0.355	0.132	1.25	1.170	0.544	2.16	0.455	3.14	0.710	1.99	0.276	2.11	0.296
608	100	6054	13.2	57.9	0.019	0.244	0.086	0.90	0.721	0.291	1.39	0.277	2.16	0.509	1.59	0.223	1.71	0.291
608	101	13.4	2.25	8.96	0.129	2.55	0.690	3.75	0.741	0.248	0.595	0.071	0.391	0.056	0.212	0.050	0.624	0.102
608	102	488	0.70	9.73	0.025	0.515	0.278	2.85	0.850	0.180	0.358	0.020	0.155	0.022	0.088	0.027	0.326	0.094
608	103	4.25	0.41	0.02	нпо	0.031	0.007	0.039	0.054	0.011	0.037	0.011	0.024	0.017	0.147	0.065	0.921	0.276
608	104	2.37	0.17	0.02	нпо	нпо	нпо	нпо	0.015	0.012	нпо	нпо	0.035	нпо	0.026	0.014	0.276	0.061
608	105	195	6.52	25.6	0.009	0.603	1.25	20.07	7.620	1.839	4.46	0.402	1.67	0.238	0.491	0.088	0.770	0.212
608	106	436	5.12	6.86	нпо	0.024	0.019	0.37	0.262	0.081	0.377	0.090	0.685	0.173	0.635	0.121	1.10	0.204
608	107	661	0.58	17.9	0.074	1.46	0.576	4.81	1.161	0.231	0.388	0.033	0.123	0.025	0.097	0.016	0.244	0.060
608	108	74.8	1.09	31.9	0.255	4.75	1.49	6.64	0.866	0.221	0.547	0.050	0.248	0.039	0.112	0.023	0.307	0.082
608	109	1642	8.24	65.2	0.095	0.738	0.428	2.65	1.299	0.515	1.28	0.207	1.35	0.328	1.02	0.160	1.05	0.179
608	110	5549	19.4	57.9	0.032	0.334	0.119	1.08	0.859	0.484	1.83	0.380	3.10	0.769	2.39	0.335	2.52	0.404
608	111	79.2	1.30	9.28	0.166	6.68	0.587	1.53	0.249	0.071	0.170	0.026	0.154	0.049	0.276	0.081	1.01	0.238
608	112	79.0	1.63	10.8	0.050	0.952	0.398	2.30	0.396	0.105	0.414	0.050	0.271	0.062	0.276	0.085	1.05	0.280
608	113	3.00	0.20	0.488	0.025	0.272	0.074	0.459	0.125	0.036	0.037	нпо	0.016	нпо	0.058	0.032	0.620	0.174

608	114	491	2.13	9.17	0.068	0.882	0.314	2.50	1.708	0.445	0.911	0.079	0.436	0.096	0.228	0.033	0.333	0.064
608	115	3235	8.44	32.7	0.029	0.330	0.115	1.43	0.949	0.383	1.31	0.220	1.55	0.315	1.00	0.133	1.04	0.191
608	116	2635	13.5	27.9	0.055	0.493	0.127	0.86	0.623	0.373	1.41	0.305	2.25	0.530	1.55	0.206	1.61	0.275
608	117	2525	2.08	53.6	0.024	0.241	0.109	1.11	1.131	0.532	1.52	0.198	0.734	0.097	0.187	0.032	0.293	0.077
608	118	1185	7.20	18.9	0.028	0.495	0.224	2.08	0.977	0.407	1.24	0.198	1.27	0.295	0.723	0.124	0.929	0.170
608	119	1240	3.94	15.1	0.043	0.451	0.159	1.44	0.576	0.194	0.489	0.086	0.695	0.155	0.485	0.089	0.740	0.135
608	120	5.47	0.29	0.45	0.025	0.304	0.104	0.44	0.073	0.029	0.025	нпо	0.012	нпо	0.092	0.025	0.507	0.155
608	121	1794	11.8	24.0	0.018	0.199	0.079	0.831	0.759	0.316	1.21	0.260	1.96	0.451	1.38	0.207	1.63	0.261
608	122	24.0	1.10	0.019	0.006	0.007	0.001	нпо	нпо	нпо	нпо	нпо	0.053	0.029	0.231	0.066	0.730	0.157
608	123	4609	16.4	60.0	0.010	0.200	0.076	0.852	0.845	0.415	1.68	0.355	2.76	0.651	2.13	0.321	2.20	0.314
608	124	6585	17.1	72.1	0.041	0.410	0.147	1.43	1.137	0.554	2.28	0.500	3.25	0.657	2.00	0.265	1.77	0.264
608	125	103	0.72	7.54	0.105	1.06	0.312	1.84	0.372	0.094	0.227	0.022	0.101	0.025	0.140	0.042	0.642	0.182
608	126	5536	10.1	64.6	0.035	0.437	0.153	1.52	1.279	0.598	2.29	0.373	2.37	0.404	1.02	0.122	0.869	0.131
608	127	1681	11.3	22.9	0.039	0.472	0.132	0.961	0.573	0.284	0.989	0.225	1.77	0.445	1.38	0.214	1.56	0.258
608	128	230	9.35	42.9	0.074	1.81	1.14	12.88	2.190	0.455	1.10	0.194	1.55	0.334	0.795	0.108	0.809	0.166
608	129	3479	13.9	57.6	0.010	0.242	0.080	1.04	0.908	0.474	2.08	0.419	2.66	0.561	1.49	0.229	1.60	0.285
608	130	3386	20.7	34.3	0.015	0.152	0.074	0.665	0.608	0.299	1.32	0.309	2.65	0.791	2.76	0.479	3.65	0.630
608	131	1411	7.84	28.0	0.033	0.390	0.156	1.79	1.322	0.514	1.55	0.255	1.56	0.316	0.941	0.124	1.00	0.179
608	132	27.9	1.29	5.18	0.084	1.42	0.540	4.86	0.804	0.104	0.192	0.015	0.100	0.053	0.285	0.069	0.734	0.176
608	133	15.9	2.49	7.17	0.027	1.07	0.673	2.98	0.285	0.063	0.196	0.030	0.331	0.089	0.403	0.110	1.38	0.309
608	134	15.2	2.45	6.80	0.022	0.958	0.693	3.00	0.205	0.083	0.214	0.027	0.308	0.089	0.373	0.103	1.29	0.321
608	135	14.0	0.22	1.04	0.039	0.439	0.150	0.844	0.155	0.038	0.023	нпо	0.027	нпо	0.037	0.012	0.221	0.068
608	136	49.2	3.26	5.90	0.166	3.13	0.868	3.70	0.573	0.137	0.147	0.014	0.143	0.113	0.852	0.244	2.75	0.645
608	137	4841	20.4	80.6	0.034	0.396	0.152	1.67	1.557	0.819	3.12	0.651	4.17	0.787	1.87	0.227	1.32	0.179
608	138	174.6	1.75	11.9	0.298	2.85	0.712	3.96	0.806	0.240	0.485	0.071	0.306	0.073	0.228	0.057	0.749	0.222
608	139	10.0	0.35	0.424	0.034	0.447	0.107	0.537	0.097	0.026	0.008	нпо	0.014	нпо	0.070	0.037	0.376	0.072
608	140	510	2.68	9.70	0.174	2.51	0.828	5.48	1.244	0.288	0.730	0.100	0.563	0.096	0.270	0.048	0.377	0.072
608	141	6118	17.8	65.8	0.037	0.310	0.120	1.24	0.935	0.518	1.95	0.434	3.11	0.701	2.13	0.322	2.26	0.348
608	142	804	15.5	8.72	0.009	0.088	0.028	0.247	0.250	0.199	0.868	0.273	2.34	0.581	1.98	0.323	2.39	0.368