ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ГЕОЛОГИИ И МИНЕРАЛОГИИ ИМ. В.С. СОБОЛЕВА СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК

На правах рукописи

Веснин Владислав Сергеевич

ОЦЕНКА ПЕРСПЕКТИВНОСТИ ГРАНИТОИДОВ НА ПОРФИРОВОЕ Си-Мо-Аи ОРУДЕНЕНИЕ ПО КОМПЛЕКСУ МИНЕРАЛОГО-ГЕОХИМИЧЕСКИХ ПРИЗНАКОВ (НА ПРИМЕРЕ ШАХТАМИНСКОГО КОМПЛЕКСА, ЗАБАЙКАЛЬСКИЙ КРАЙ)

1.6.10 – геология, поиски и разведка твердых полезных ископаемых,
минерагения

Диссертация на соискание ученой степени кандидата геолого-минералогических наук

> Научный руководитель: кандидат геолого-минералогических наук Неволько П.А.

Новосибирск 2025

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	
ГЛАВА 1. СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОБЛЕМЫ И ОБОСНОВАНИЕ ВЫБОРА МИНЕРАЛО	B-
ИНДИКАТОРОВ	11
ГЛАВА 2. МЕТОДЫ ИССЛЕДОВАНИЯ	14
ГЛАВА 3. ГЕОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА РЕГИОНА И ОБЪЕКТОВ ИССЛЕДОВАНИЯ	19
3.1. Быстринское месторождение	21
3.2. ШАХТАМИНСКОЕ МЕСТОРОЖДЕНИЕ	25
ГЛАВА 4. ОСОБЕННОСТИ СОСТАВА И ВОЗРАСТ МАГМАТИЧЕСКИХ ПОРОД ШАХТАМИНСКО)ГО И
БЫСТРИНСКОГО МЕСТОРОЖДЕНИЙ	30
4.1. ПЕТРОГРАФИЧЕСКАЯ ХАРАКТЕРИСТИКА ПОРОД	30
4.2. ПЕТРОХИМИЧЕСКАЯ ХАРАКТЕРИСТИКА ПОРОД	37
4.3. Возраст магматических пород	47
4.4. ГЕОХИМИЯ ПОРОД В ЦЕЛОМ КАК ПРИЗНАК РУДОНОСНОСТИ МАГМ	50
ГЛАВА 5. СОСТАВ МИНЕРАЛОВ-ИНДИКАТОРОВ	64
5.1. Особенности состава циркона	67
5.1.1. Геохимия циркона	68
5.1.2. Рассеянные элементы в цирконе как индикатор дифференциации магмы	75
5.1.3. Оценка окислительно-восстановительных условий	81
5.2. Особенности состава апатита	92
5.2.1. Макро- и микропримеси в апатите	92
5.2.2. Содержание летучих компонентов	100
5.2.3. Оценка окислительно-восстановительных условий	102
5.2.4. Оценка содержания S и Cl в расплаве	103
5.2.5. Состав апатита как критерий рудоносности	106
5.3. Особенности состава биотита	111
5.3.1. Макрокомпонентный состав биотита	111
5.3.2. Оценка окислительно-восстановительных условий	115
5.3.3. Оценка температуры	118
5.3.4. Галогены	120
5.3.5. Авторская дискриминационная диаграмма	124
ЗАКЛЮЧЕНИЕ	130
СПИСОК ЛИТЕРАТУРЫ	132
ПРИЛОЖЕНИЯ	149

введение

Актуальность. Медно-порфировые месторождения и связанные с ними эпитермальные и скарновые месторождения обеспечивают около 75% мирового производства меди, 50% молибдена и 20% мирового производства золота [Sillitoe, 2010; Cooke et al., 2015]. При этом в России наблюдается сильная диспропорция добычи меди относительно мировых трендов. Так, в начале тысячелетия доля порфировых месторождений в добыче меди составляла около 1%. Однако наличие попутного золота и рост мировых цен на медь сделали возможным начать в 2012 году отработку уральских медно-порфировых месторождений (Михеевское, Томинское) [Якубчук, 2022]. К началу 2023 года в России доля балансовых запасов медно-порфирового типа достигла 24,3% [Тетенькин и Петров, 2023]. Увеличение доли порфировых месторождений связана с постепенной выработкой ресурсной базы разведанных ещё в СССР месторождений. В то время вопрос наличия меди решался за счёт большого количества месторождений колчеданного типа и норильских медно-никелевых руд. Возросший вклад добычи меди из объектов порфирового семейства месторождений инициировал значительный интерес исследователей к данной тематике. За последние несколько лет в свет вышло большое количество работ, посвященных изучению различных аспектов вещественного состава руд и генезиса порфировых месторождений России [Звездов и др., 2021, 2023; Лобанов и др., 2023; Макаров и др., 2024; Мигачёв и др., 2022; Плотинская, 2020, 2023; Шадчин др., 2024; Шведов и др., 2021; Plotinskaya et al., 2023^{a,6}].

Месторождения медно-порфирового семейства связаны с порфировыми магматическими породами среднего и кислого состава. Большинство порфировых месторождений связывают с центральными частями известково-щелочных порфировых магматических систем, сформированных в зонах субдукции [Richards, 2003, 2011]. Известково-щелочные образования широко распространены по всему миру, но крупные порфировые месторождения встречаются редко [Williamson et al., 2016]. При этом, возникает проблема увязки оруденения с конкретными

геологическими телами: многофазность интрузивного магматизма, схожесть валового химического состава пород и их близкий возраст существенно затрудняет вычленение рудоносного штока из большого разнообразия интрузивов в пределах порфирово-продуцирующих плутонов. Избирательная способность к генерации рудной минерализации отдельных магматических тел в пределах каждого из месторождений далеко не всегда ясны и очевидны. Не секрет, что выявление новых порфировых месторождений требует слаженной и длительной работы различных специалистов. На фоне этого выделение фертильных (потенциально продуктивных порфировое оруденение) магматических комплексов на ИЛИ отдельных интрузивных тел, которые с наибольшей вероятностью могут формировать порфировую минерализацию, среди безрудных нерудоносных комплексов имеет важное значение на всех стадиях геологического изучения недр от региональных исследований до стадии поисково-оценочных работ.

Одним из активно развивающихся в течении последних десятилетий методов порфировых месторождений является поиска использование комплекса минералов-индикаторов в совокупности с валовым составом пород. Подобного рода работы базируются на большом объеме информации, касающейся как валового состава, так и геохимических характеристик отдельных минералов. Так особенности элементного состава (типохимизма) обширного круга минералов могут быть использованы регистраторы вариаций условий как минералообразования, как маркеры потенциальной продуктивности, или же как прямые индикаторы потенциальной продуктивности [Cooke et al., 2017]. Исследования, направленные на разработку минералого-геохимических признаков фертильности и их верификацию на известных порфировых месторождениях и перспективных площадях в России проводятся начиная с 2020 года [Аленичева и др., 2024; Веснин и др., 2024; Звездов и Чурилова, 2024; Петров и др., 2020; Светлицкая и др., 2023; Светлицкая и Неволько, 2023; Шатов и др., 2024; Berzin et al., 2024; Nevolko et al., 2021; Petrov et al., 2021; Svetlitskaya and Nevolko, 2022]. Для обоснованного подхода к выявлению минералогических признаков рудоносности

необходимо иметь отчетливое представление о петрографии, петрохимии, геохимии и возрасте формирования магматических образований.

Магматические породы шахтаминского комплекса, являющиеся объектом исследования, широко распространены в Восточном Забайкалье, но не все интрузии сопровождаются промышленным оруденением. Обычно в пределах площадей месторождений выделяют несколько магматических тел с близкоодновременным возрастом, иногда довольно контрастных по составу. Тем не менее, минерализация, в свою очередь, связана только с некоторыми из них. Выделение фертильных («fertile» - потенциально рудоносных) магматических комплексов или интрузивных тел, которые с наибольшей вероятностью могут формировать порфировую минерализацию, от безрудных («barren») на ранних стадиях поисковых и/или региональных работ имеет важное практическое значение. Таким образом, выявление минералогических и петрогенетических индикаторов потенциальной рудоносности магматических пород на порфировое является чрезвычайно актуальной тематикой оруденение современных исследований.

Объектами исследования являются магматические породы Шахтаминского Мо-порфирового и Быстринского Cu-Fe-Au скарново-порфирового месторождений, расположенные в Газимурозаводском районе Забайкальского края.

Цели и задачи исследования.

Целью исследования является выявление и верификация валовых геохимических и минералого-геохимических индикаторов рудоносности на порфировое оруденение магматических пород шахтаминского комплекса, распространенных в пределах Быстринского Cu-Fe-Au скарново-порфирового и Шахтаминского Мо-порфирового месторождений.

Задачи, поставленные в рамках работы:

1. Охарактеризовать особенности геологического строения объектов исследования, ознакомиться с опубликованной литературой по порфировым месторождениям и минералам-индикаторам.

2. Дать петрографическую, петрохимическую и геохимическую характеристику магматических пород.

3. Определить состав основных компонентов апатита и биотита.

4. Установить редкоэлементный состава апатита.

6. Обработать и интерпретировать полученные результаты, верифицировать существующие критерии дифференциации рудоносных магматических пород от безрудных.

Фактический материал и личный вклад автора.

Фактическим материалом послужили образцы и шлифы магматических пород, отобранных с различных массивов и мелких штоков в районе Шахтаминского и Быстринского месторождений, большая часть которых была предоставлена научным руководителем. Часть штуфных проб была отобрана лично автором во время полевого сезона в составе коллектива лаборатории рудообразующих систем (№214) ИГМ СО РАН в 2021 году. При выполнении работы для всех образцов было произведено петрографическое описание. Для решения поставленных задач были использованы различные аналитические методы, в том числе: рентгено-флуоресцентный и масс-спектрометрия (60 проб), масс-спектрометрия с индуктивно-связанной плазмой и лазерной абляцией (261 анализ циркона и 105 анализов апатита), U-Pb датирование по цирконам (251 точечный анализ), рентгеноспектральный микроанализ (267 анализов апатита и 420 анализов биотита). Аналитические работы выполнялись в ЦКП Многоэлементных и изотопных исследований СО РАН и лаборатории SGS. Все полученные данные обработаны и представлены в виде диаграмм и таблиц. Дана интерпретация типоморфных характеристик минералов-индикаторов.

Защищаемые положения.

• Рудопродуцирующие магматические породы на Быстринском и Шахтаминском месторождениях представлены гранодиорит-порфирами и гранит-порфирами, сформированными в позднеюрское время (160-162 млн лет) на заключительном этапе формирования многофазных массивов шахтаминского комплекса. Расплавы, из которых образовались рудопродуцирующие гранитоиды,

6

характеризовались высокой степенью водонасыщенности и окисленности, о чем свидетельствует геохимические характеристики их цирконов (рассчитанные аномалии Eu/Eu*>0,4, и отношение Yb/Dy>4).

• В составе апатита рудоносных магматических пород Быстринского Си-Au-Fe скарново-порфирового месторождения установлены повышенные содержания хлора (>0,8 мас.%,) и SO₃ (>0,1 мас.%) относительно гранитоидов безрудных штоков. При этом апатиты рудоносных магматических пород Шахтаминского Мо-порфирового месторождения содержат в повышенном количестве только SO₃ (ср. знач. 0,20 мас.%). Геохимические особенности апатита (Eu/Eu*>0,4) указывают на водоносыщенность и окисленность расплавов рудоносных штоков обоих месторождений.

• Специфика состава биотита позволяет выделять гранитоиды потенциально перспективные на порфировое оруденение. На основе содержаний F, TiO₂, MgO, FeO, Al₂O₃, SiO₂, Cl в биотите магматических пород Быстринского Cu-Au-Fe скарново-порфирового и Шахтаминского Мо-порфирового месторождений возможно разделение гранитоидов, продуктивных на Cu-порфировую и Мо-порфировую минерализацию.

Научная новизна.

Диссертационная работа содержит новые актуальные данные о составе гранитоидов, распространенных в пределах Быстринского и Шахтаминского месторождений. Впервые показаны различия в валовом геохимическом составе пород рудопродуцирующих фаз, с которыми генетически связана промышленная минерализация.

С использованием современного высокоточного методами датирования цирконов (LA-ICP-MS) прослежена хронология развития магматизма Быстринском и Шахтаминском месторождениях. Показано, что формирование рудоносных и безрудных магматических пород происходило близко-одновременно в узком интервале времени (160-162 млн лет).

Полученные впервые оригинальные данные о геохимических характеристиках цирконов и апатитов из рудоносных и безрудных гранитоидов

шахтаминского комплекса. Впервые проведена верификация существующих критериев фертильности магматических пород шахтаминского комплекса, а также предложены авторские критерии дискриминации.

Практическая значимость.

Комплексный индикаторов рудоносности гранитоидов, анализ базирующийся на геохимических характеристиках пород и содержащихся в них акцессорных (циркон, апатит) и породообразующих (биотит) минералах, отражает ключевые характеристики продуктивных порфировых магм высокую окисленность и высокие содержания воды, Cl и S. Минералы-индикаторы (PIMs porphyry indicator minerals) позволяют оценить рудный потенциал гранитоидной интрузии к формированию Cu-Mo-порфирового оруденения и являются важным элементом прогноза порфировых месторождений. Определение порфировых минералов-индикаторов критически важно для совершенствования генетической модели продуктивных порфировых систем и разработки принципиально новых критериев поиска месторождений порфирового семейства.

Представленная в диссертации методика по определению минералогогеохимических критериев рудоносности магматических пород на порфировое оруденение может применяться на всех стадиях ГРР от прогнозных и рекогносцировочных до проектных поисково-оценочных. Применение методики на каждом из этапов позволяет не только получить практически исчерпывающую информацию о природе и специфики магматизма на участке, но и может нести внушительный положительный экономический эффект.

Структура и объём работы.

Работа состоит из введения, 5 глав, заключения, списка литературы и приложений. Глава 1 содержит информацию о современном состоянии проблемы месторождений медно-порфирового семейства поисковых критериев И обоснование выбора минералов-индикаторов для исследования. В главе 2 изложена методика исследования. Глава 3 посвящена геологической характеристике Шахтаминского месторождений. Глава 4 Быстринского И посвяшена петрографическому изучению, петрохимической характеристике и установлению

8

возраста пород объектов исследования. В главе 5 представлены результаты изучения особенностей состава минералов-индикаторов и верификация существующих поисковых критериев по их составу. Объём работы составляет 218 страниц, включая 46 рисунков, 2 таблицы и 9 приложений. Список литературы состоит из 210 наименований.

Апробация работы и публикации.

По теме диссертации опубликовано 3 статьи в рецензируемых журналах по перечню ВАК и 7 тезисов в материалах конференций. Основные положения работы были публично представлены на российских и международных конференциях: Международной научной студенческой конференции (Новосибирск, 2021, 2022); на XXIX молодежной научной школе «Металлогения древних и современных океанов-2023. Минералогия и геохимия рудных месторождений: от теории к практике» и XXX юбилейной молодежной научной школе «Металлогения древних и современных и современных океанов-2024. РУДОГЕНЕЗ» (Миасс, 2023, 2024); международной научно-практической конференции «Металлогения золота центрально-азиатского орогенного пояса и его обрамления», посвященная 300-летию Российской академии наук (Кызыл, 2024).

Благодарности.

Автор выражает особую благодарность научному руководителю, кандидату геолого-минералогических наук Петру Александровичу Неволько, за чуткое руководство над выполняемой работой, помощь в организации и проведении исследований.

За ценные советы и практическую помощь в работе над фактическим материалом благодарность выражается сотрудникам лаборатории рудообразующих систем: д.г.-м.н. И.В. Гаськову, к.г.-м.н. Т.В. Светлицкой, к.г.-м.н. П.А. Фоминых, к.г.-м.н. В.В. Колпакову. Автор глубоко признателен за конструктивную критику и рекомендации по улучшению содержательной части работы сотрудникам ИГМ СО РАН: д.г.-м.н. А.Э. Изоху, д.г.-м.н. Ю.А. Калинину, д.г.-м.н. Н.Д. Толстых, д.г.-м.н. О.М. Туркиной, д.г.-м.н. Н.Н. Круку, к.г.-м.н. М.Л. Куйбиде, к.г.-м.н. Р.А. Шелепаеву, к.г.-м.н. М.О. Шаповаловой, к.г.-м.н. И.С.

Кириченко. Отдельная благодарность аналитикам ЦКП Многоэлементных и изотопных исследований СО РАН за помощь при проведении аналитических работ.

Работа выполнена в рамках государственного задания ИГМ СО РАН (№ 122041400237-8).

Глава 1. Современное состояние проблемы и обоснование выбора минералов-индикаторов

Гидротермальные рудообразующие флюиды В порфировых рудномагматических системах связаны со средними и кислыми породами известковощелочной, высококалиевые-известково-щелочной вплоть до шошонитовой серии [Richards, 2003; Sillitoe, 2010]. Соотношения Sr/Y являются наиболее часто используемым геохимическим признаком для различения рудных и безрудных магматических пород. Это соотношение объединяет меру фракционирования плагиоклаза (Sr) и меру фракционирования HREE (Y). Для различных порфировых месторождений это соотношение обычно не ниже 20 [Richards, 2011], хотя чаще встречаются значения >40 [Chiaradia et al., 2012; Richards et al., 2012]. Изучая породы Лхасского массива на Юге Тибета, исследователями была выявлена закономерности, что значение 10000*(Eu/Eu*)/Y>500 для магматических пород является характерным признаком Си-порфировых систем [Lu et al., 2017].

При формировании порфировых месторождений окисленное состояние наиболее фактором. Считается, любой является важным магмы что кристаллизующийся интрузив может выделять гидротермальные флюиды, однако высокая степень окисления фракционирующей магмы может притормозить раннюю кристаллизацию сульфидов [Richards, 2003; Loucks, 2014; Tang et al, 2019], что способствует переносу металлов и более позднему рудоотложению в гидротермальных системах. По результатам геохимического изучения интрузивнх пород можно оценить состояние окисления магмы, используя соотношение Fe³⁺/Fe²⁺, которое легко может быть изменено наложенными процессами выветривания или гидротермального изменения. Данную проблему можно решить, изучая породообразующие и акцессорные минералы.

Началом активной разработки по определению порфировых индикаторных минералов (PIMs), по-видимому, следует считать серию международных проектов AMIRA начатых в 2004 году на базе Университета Тасмании и продолженных в Лондонском музее естественной истории [Cooke et al., 2015]. В настоящее время

развиваются два направления: 1) проверка уже полученных индикаторов и 2) поиск новых индикаторных минералов или трендов химического состава. Наиболее популярными минералами, которым посвящено наибольшее количество работ, являются циркон, апатит и биотит.

Циркон обладает высокой температурой закрытия, широко распространён в породах И устойчив процессам выветривания магматических К ИЛИ гидротермального изменения, то есть может использован для оценки состояния окисленности магмы. Цирконы, которые кристаллизовались из окисленных магм должны быть обогащены Ce⁴⁺ и Eu³⁺, то есть иметь положительные Ce и незначительные отрицательные Eu аномалий, вплоть до ее отсутствия [Ballard et al., 2002; Burnham and Berry, 2012; Trail et al., 2012; Smythe and Brenan, 2016]. При этом, важной проблемой традиционного подхода расчёта Се/Се* является чрезвычайно низкое содержание La и/или Pr; в большинстве случаев оно ниже или незначительно выше пределов обнаружения LA-ICP-MS [Zhong et al., 2019].

Апатит является широко распространенным акцессорным минералом во всех природных системах, многие элементы, в том числе S, F, Cl, Fe, Mn, Sr и редкоземельные элементы (REE) способны входить в его кристаллическую решётку в качестве примесных и видообразующих элементов [Rakovan and Hughes, 2002; Pasero et al., 2010]. Апатиты природного происхождения устойчивы к позднему гидротермальному изменению и метаморфическим процессам, и способны сохранять информацию об исходной магме [Ayers and Watson, 1991; Bouzari et al., 2016]. Вхождение летучих (OH, Cl, F) и микроэлементов (например, Mn, S, Eu, Ce) в апатит очень чувствительно к окислительно-восстановительным условиям и содержанию H_2O в родоначальных магмах [Tepper and Kuehner, 1999; Piccoli and Candela, 2002; Cao et al., 2012; Miles et al., 2014; Chen and Zhang, 2018; Du et al., 2019; Tang et al., 2020; Du et al., 2021]. Это делает анализ апатита надежным средством оценки этих факторов. В последние годы апатит активно используется для оценки фертильности магм, на основании содержания галогенов и серы [Peng et al., 1997; Parat et al., 2011; Zhu et al., 2018; Zhong et al., 2018; Xing et al., 2020; Li et al., 2023].

Биотит, в свою очередь, является широко распространённым минералом в породах среднего и кислого состава и гидротермальных системах, а также устойчив в широком диапазоне давлений и температур [Jacobs et al., 1979Yavuz, 2003], а его состав зависит от валового состава родительского расплава [Nash and Crecraft, 1985]. Химический состав биотита может использоваться для определения окислительно-восстановительных условий температуры, давления И магматических и гидротермальных систем [Wones et al., 1965; Munoz, 1984; Speer, 1987]. Использование магматического и гидротермального биотита для определения физико-химических условий и выяснения эволюции магматогидротермальных флюидов в порфировых системах набирает популярность в последние десятилетия [Boomeri et al., 2009; Ayati et al., 2008; Afshooni et al., 2013; Tang et al., 2017; Jin et al., 2018]. В результате, некоторые исследователи пытались использовать химический состав биотита, чтобы отличить потенциально рудоносные гранитоиды от тех, которые, скорее всего, являются безрудными (например: [Rasmussen and Mortensen 2013; Azadbakht et al., 2020]).

Стоит отметить, что значительно меньше работ посвящено типоморфным характеристикам таких минералов как амфибол, плагиоклаз и титанит [Richards et al., 2001; Williamson et al., 2016; Xu et al., 2015].

Таким образом, в качестве минералов-индикаторов для исследования были использованы три минерала: циркон, апатит и биотит. Эти минералы выбраны на основании наибольшей проработанности исследований, посвящённых особенностям их состава в рамках изучения месторождений медно-порфирового наработанная семейства. Существующая статистика составов минераловиндикаторов порфировых месторождений (PIMs) позволяет объективно оценивать качество дискриминации по существующим критериям.

Глава 2. Методы исследования

В работе задействовано порядка 60 образцов, собранных в окрестностях Шахтаминского и Быстринского месторождений, а также из керна скважин, с разных фаз внедрения. Большая часть образцов предоставлена научным руководителем, часть отобрана лично (вмещающие породы ундинского комплекса и породы ранней фазы шахтаминского комплекса Шахтаминского месторождения). Из штуфных образцов изготовлено порядка 60 полированных петрографических шлифов. Текстурно-структурные особенности и минеральные отношения изготовленных шлифов изучались под оптическим микроскопом в проходящем свете при 20 кратном увеличении. Петрографическое изучение производилось с помощью поляризационного микроскопа Carl Zeiss Axiolab 40A Pol.

Образцы дробились в несколько этапов на щековых дробилках и расситовывались на классы >0,5, 0,5 - 0,1 и <0,1 мм. Из фракции 0,5 – 0,1 мм была произведена магнитная сепарация неодимовым магнитом. Материал, оставшийся после магнитного сепарирования, промывался. Из полученного концентрата под бинокуляром вручную отбирались зерна циркона, апатита и биотита. Отобранные зёрна минералов монтировались в эпоксидные шашки диаметром 25 мм и полировались до вскрытия минерала.

Измельчение образцов до состояния пудры для определение валового состава происходило в несколько этапов: сначала на щековой дробилке Pulverisette 1 classic line (Fritsch, Германия), затем на виброистирателе ВИ-4х350 (АкмеТехнология, Россия). Полученный порошок был сдан в Аналитический центр многоэлементных и изотопных исследований СО РАН в Новосибирске. Был произведён рентгенофлуоресцентный анализ на приборе Thermo Scientific ARL 9900 для анализа основных элементов: SiO₂, TiO₂, Al₂O₃, Fe₂O₃ (всего), MnO, MgO, CaO, Na₂O, K₂O и P₂O₅. Использованы государственные образцы-стандарты состава горных пород для контроля качества анализов: MU-1, MU-3, MU-4, SA-1, SCHT-1, SCHT-2, SDO-1, SDU-1, SG-1A, SG -2, SG-3, SGD-1, SGD-2, SGX-1, SGX-5, SGXM- 2, SGXM-3, SI-1, SI-2, SNS-1, SNS-2, SOP-1, ST-1. Точность анализа составляет \pm 2% для всех оксидов.

Анализ рассеянных элементов в породах проводился методом комбинированной атомно-эмиссионной спектрометрии с индуктивно связанной плазмой (ICP-AES) и масс-спектрометрии с индуктивно связанной плазмой (ICP-MS) с использованием сплавления с перекисью натрия в лаборатории SGS, Россия. Предел обнаружения составляет 0,05 г/т для U, Pr, Eu, Gd, Tb, Dy, Ho, Er, Tm и Lu; 0,1 г/т для La, Ce, Nd, Sm, Sr, Th и Yb; 0,2 г/т для Rb; 0,5 г/т для Ba, Ta и Y; 1 г/т для Nb и Hf; 0,01% для P и Ti.

Циркон

Циркон был изучен из 32 проб магматических пород, в т.ч. 15 образцов с района Быстринского месторождения и 17 образцов с района Шахтаминского месторождения. Всего было сделано 251 точечных анализа для определения U-Pb возраста и 261 для установления их редкоэлементного состава методом LA-ICP-MS.

Монтированные в шашки зерна циркона были изучены на электронном микроскопе в режиме катодолюминесценции. Затем произведено датирование зёрен циркона U-Pb методом в Центре многоэлементных и изотопных исследований СО РАН с использованием масс-спектрометра с индуктивно-Element XR (Thermo Scientific). связанной плазмой соединенного ультрафиолетовой Nd:YAG лазерной системой New Wave Research UP 213. Настройки прибора были оптимизированы с использованием синтетического стекла NIST SRM612. Диаметр лазерного луча составлял 30 мкм. Частота импульсов составляла 5 Гц. Плотность энергии лазера составляла 3,0-3,5 Дж/см³. Данные LA-ICP-MS обрабатывались с помощью программного обеспечения "Glitter" [GEMOC, Griffin et al., 2008]. U-Pb отношения были нормализованы с использованием природных цирконовых стандартов GJ-1 [Jackson et al., 2004] и Plesovice [Slama et al., 2008]. В качестве внешнего стандарта использовался циркониевый стандарт 91500, анализ которого производился после 10 анализов зёрен циркона. U-Pb изотопные соотношения, использованные для 91500, взяты из [Wiedenbeck et al. 1995]. Ошибки изотопных соотношений и возрастов представлены на уровне 1 σ . Измеренные соотношения ²⁰⁷Pb/²⁰⁶Pb, ²⁰⁶Pb/²³⁸U, ²⁰⁷Pb/²³⁵U и ²⁰⁸Pb/²³²Th использовались для расчета U-Pb возрастов по диаграмме конкордии ²⁰⁶Pb/²³⁸U-²⁰⁷Pb/²³⁵U. Построение графиков с конкордией проводилось с использованием программы IsoplotR [Vermeesch, 2018]. Затем было произведено определение редкоэлементного состава (РЗЭ, Hf, Ti) на этом же приборе, и калибровка производилась по стандарту NIST SRM610. Процедура и условия анализа те же, что и при U/Pb методе.

Anamum

Апатит был изучен из 29 проб магматических пород, в т.ч. 14 образцов с района Быстринского месторождения и 15 образцов с района Шахтаминского месторождения. Всего было сделано 267 точечных ЕРМА и 105 LA-ICP-MS анализов.

Содержание основных элементов в апатите определялось на микрозонде JEOL JXA-8230 (Центр коллективного пользования многоэлементных и изотопных исследований СО РАН, г. Новосибирск) при ускоряющем напряжении 15 кВ и токе пучка 20 нА. Время счета пика и фона составляло 20 с и 10 с проведении микрозондовых соответственно. При анализов выбирались однородные, без видимой зональности в режиме BSE и внешних кайм, зерна. Анализ проводился в центральных частях зерен. В качестве стандартов использовались природные минералы и синтетические соединения с известным составом. В апатитах определялось содержание элементов: Si, Fe, Ca, Na, Mn, Mg, U, P, F, Cl и S. При определении состава апатита были использованы следующие стандарты: F-апатит (для F, Ca и P), Cl-апатит (для Cl), SrSO₄ (для S и Sr), альбит (для Na), O-145 (для Si, Mg и Fe), природный монацит (для Ce), NdPO₄ (для Nd), UO_2 (для U), IGEM_3 (для Mn). Предел обнаружения для Si, Fe, Ca и Na – 0,03 мас.%, Mn – 0,02 мас.%, Mg – 0,09 мас.%, U – 0,04 мас.%, P – 0,08 мас.%, F – 0,1 мас.%, Cl – 0,01 мас.%, S – 0,06 мас.%.

Измерения состава примесных элементов в апатите проводилось методом LA-ICP-MS с использованием квадрупольного ICP-MS спектрометра iCAP Qc

(Thermo Scientific) и устройства лазерного пробоотбора NWR 213 (ESI) в ЦКП СО РАН. Аналитические сигналы регистрировали с использованием программного обеспечения Qtegra. Данные LA-ICP-MS обрабатывались С помощью программного обеспечения "Glitter" (GEMOC, Griffin et al., 2008). Анализ проводили при следующих рабочих параметрах: длина волны лазерного излучения 213 нм, диаметр лазерного пучка 25 или 40 мкм (в зависимости от размера анализируемого образца), частота лазерных импульсов 20 Гц, длительность лазерных импульсов 4 нс, плотность энергии 4,5 Дж/см². Продолжительность накопления сигнала для одного измерения составляла 0,05 с на каждый аналитический изотоп. Градуировку проводили по стандартным образцам NIST 610 и 612. В качестве внутреннего стандарта использовали железо. При анализе гомогенных образцов стандартное отклонение параллельных измерений обычно составляло 10-20 отн.% и не превышало 30 отн.%.

Для оценки содержания серы в расплаве в данной работе использовалась формула $S_{ap}(wt\%) = 0,0629 \times \ln S_{melt}(wt\%) + 0,4513$ [Parat et al., 2011], где S_{melt} искомое значение. Для оценки содержания Cl в расплаве использовалась формула $Cl_{melt}(wt\%) = \frac{X_{Cl}^{ap}}{X_{OH}^{ap}} \frac{1}{\kappa d_{Cl-OH}^{ap-melt}} \times 10,79$ [Li and Hermann, 2017], где X_{Cl}^{ap} и X_{OH}^{ap} являются мольными долями хлорапатита и гидроксил апатита, соответственно, а $Kd_{CL-OH}^{ap-melt} = e^{(25,81+(X_{Cl}^{ap}-X_{OH}^{ap})\times 17,33)\times \frac{10^3}{8.314\times 7}}$, где T - температура насыщения апатита (AST), рассчитанная для каждой пробы.

Биотит

Для исследования были отобраны зёрна биотита из 36 магматических пород в т.ч. 17 образцов с района Быстринского месторождения и 19 образцов с района Шахтаминского месторождения. Все зёрна биотита анализировались по схеме край-центр-край на микрозонде (420 точечных анализа). Зёрна биотита перед рентгеноспектральным микроанализом предварительно изучались на сканирующем микроскопе на предмет вторичных изменений.

Определение производилось химического состава методом рентгеноспектрального микроанализа в ЦКП Многоэлементных и изотопных исследований СО РАН (Новосибирск) на микрозонде JEOL JXA 8230 (Jeol, Токио, Япония). Анализ проводили при ускоряющем напряжении 20 кВ и токе пучка 40-70 нА, диаметре пучка электронного зонда 2 мкм, времени считывания 20 с для пиков и 10 с для фона. Определялось содержание Al₂O₃, K₂O, Na₂O, FeO, SiO₂, MgO, CaO, TiO₂, Cr₂O₃, MnO, F и Cl. При определении состава биотита были использованы следующие стандарты: альбит (для Si и Na), пироп O-145 (для Al, Fe и Mg), ортоклаз 359-1 (для K), хромит УВ-126 (для Cr), ильменит ГФ-55 (для Ti), F-флогопит (для F), Cl-апатит (для Cl), IGEM 3 (для Mn), голубой диопсид (для Са). Всего было сделано 420 точечных ЕРМА анализов биотита из наименее изменённых гранитоидов шахтаминского и ундинского комплексов. Химическая формула биотита была пересчитана на основе 22 атомов кислорода, а содержание ОН группы рассчитано по формуле $OH = 4 - (F^- + Cl^-)$ [Yang and Lentz 2005]. Поскольку микрозондовым анализом определяется общее содержание железа в биотите, без возможности разделения на трёхвалентное и двухвалентное железо, для их оценки использовался метод, предложенный [Li et al., 2020]. Значения Х_{Мg} и X_{Fe} определены из долей катионов и рассчитывались как Mg/(Fe + Mg) и (Fe + Al^{VI})/ (Fe + Mg + Al^{VI}), соответственно [Zhu and Sverjensky, 1992]. Х_F, Х_{CI} и Х_{OH} это мольные доли F, Cl и OH в гидроксильном участке.

Глава 3. Геологическая характеристика региона и объектов исследования

Исследуемый район расположен в восточной части Забайкальского края на расстоянии около 470 км к востоку-юго-востоку от города Чита. Шахтаминское Мо-порфировое и Быстринское Си-Аи-Fe-порфирово-скарновое месторождение приурочены к Газимуровской региональной тектонической зоне, которая находится на территории Ага-Борзинской структурно-формационной зоны, в пределах Монголо-Охотского орогенного пояса (рис. 3.1.) [Зорин и др., 1998; Zorin et al., 2001]. Газимуровская тектоническая зона представляет собой систему глубинных разломов, осложненных многочисленными разломами более мелкого порядка (преимущественно сбросами И взбросо-надвигами), которая сформировалась на поздне- и постколлизионом этапе развития Монголо-Охотского складчатого пояса (поздняя юра – ранний мел) [Спиридонов и др., 2006]. В качестве Монголо-Охотского пояса выделяют узкую полосу складчатых структур, сформированных в триасе и юре, протягивающуюся вдоль юго-восточного края Сибирской платформы с востока на запад от Удского залива и Охотского моря через Верхнее Приамурье и Восточное Забайкалье до Хентэйского и Хангайского нагорий Северо-Восточной и Центральной Монголии. Морфология Монголо-Охотского пояса изменчива по простиранию: ширина на востоке вблизи Охотского моря 300 км, уменьшается до 100 км в районе хр. Джагды, и почти полностью выклинивается в Верхнем Приамурье между 125 и 118 в.д., где пояс представлен зоной Монголо-Охотского разлома. Затем на запад резко расширяется до 300 км в районе Восточного Забайкалья и прослеживается в виде полосы одинаковой ширины вплоть до выклинивания в Хангайском нагорье. Соответствующий пояс можно разделить на три сегмента: восточный, центральный и западный. Для Монголо-Охотского пояса важно выделить три особенности: распространённые повсеместно зеленосланцевые толщи, пояс габбро-тоналитовых интрузий и гранитогнейсовые купола. Все эти особенности является типоморфными для зон столкновения континентов [Зоненшайн и др., 1990].

Рис. 3.1. (А) Положение Монголо-Охотского орогенного пояса на упрощенной тектонической схеме Азии (по [Jahn et al., 2009; Zhang et al., 2019]). (Б) Распространение пермо-триасовых, юрских и меловых гранитоидных интрузий на упрощенной тектонической схеме Восточного Забайкалья [Nevolko et al., 2021]: 1 – Аргунский террейн: AR-I - Борщовочный, AR-II - Газимуровский, AR-III - Урулюнгуйский, AR-IV - Калга-Орочинский блоки; 2 – Буреинский террейн (часть объединённого Амурского и Северо-Китайского блока); 3 – Селенга-становой террейн (часть Сибирского кратона): SS-I - Пришилкинский, SS-II - Витим-Урюмский, SS-III - Уда-Витимский (Гусино-Удинский) блоки; 4 – Баргузино-Витимский блок Байкало-Витимского террейна (часть Сибирского кратона); 5 – сборная зона Агинского террейна: AG-I - Даурский и AG-II - Ононский (Агинский) террейны; 6 – пермо-триассовые интрузивные породы; 7 – юрские интрузивные породы; 8 – меловые интрузивные породы; 9 – (а) перидотиты (офиолиты), (б) меланжи; 10 – (а) Монголо-Охотская сутура (MOS), Восточно-Агинская система разломов (EA), (б) системы разломов, ограничивающие блоки в пределах крупных структур; 11 – (а) государственная граница Российской Федерации, (б) граница Забайкальского края.

Для характерен палеозойский И мезозойский региона магматизм. Доминируют палеозойские гранитоиды, сформированные в связи с субдукцией литосферной плиты Монголо-Охотского океана под Монголо-Китайский континент [Зорин и др., 1998]. Становление мезозойского магматизма (с которым связаны рудная минерализация) на юго-востоке Восточного Забайкалья происходило в сложной геодинамической обстановке, которая сочетала в себе коллизию и воздействие горячей точки на литосферу [Зоненшайн и др., 1990]. Закрытие Монголо-Охотского океана относится к рубежу ранней и средней юры. Главные деформации произошли в средней юре в связи с коллизией Сибирского и Монголо-Китайских континентов [Зорин и др., 1998]. В этот период внедрялись многочисленные гранитоидные интрузии. Гранитоидные массивы юрского Восточного Забайкалья. возраста, расположенные на юге относятся К коллизионным образованиям, трассирующим тектонические структуры северовосточного простирания. Шахтаминский интрузивный комплекс впервые был выделен на Шахтаминском месторождении Ю.А. Билибиным в 1953 г. [Вартанова и др., 1972].

3.1. Быстринское месторождение

Быстринское Cu-Au-Fe-порфирово-скарновое месторождение расположено в 15 км к восток-юго-востоку от пос. Газимурский Завод. История изучения Быстринского рудного поля прослеживается с открытия в 1830 году полиметаллического рудопроявления г. Святой мыс. В 1933 году А.А. Дёминым открыто рудопроявление Малый Медный Чайник. Затем, с 1950 по 1956 года Газимурской экспедицией проведены поисковые работы на медь, вольфрам, золото, железо и бор и разведаны рудопроявления Верхне-Ильдиканское, Малый Медный Чайник и Восточное. Родственной партией в период 1988-1991 гг. выполнена первоначальная оценка при поисковых работах и установлено промышленное оруденение золото-медно-скарновой формации. В период 2005-2006 гг. ООО «ГРК «Быстринское» выполнило большой комплекс поисковых и оценочных работ, по результатам которых суммарные запасы категорий В, С1 и С2 оценивались 2,1 млн. т. меди, 235 т. золота, 1320 т. серебра. В 2017 году в результате доразведки запасы меди увеличились — до 2,3 млн. т., а золота — до 270 т. (О компании – ГРК Быстринское [Электронный ресурс]). По данным Шевчук и др., 2010 запасы железа составляют 75 млн. т. В 2017 г. на Быстринском ГОК была запущена первая линия в режиме пусконаладочных работ, а в 2020 г. получены все необходимые документы для ввода объектов в эксплуатацию. Сведения о геологии, магматизме, метасоматических изменениях Быстринского месторождения были достаточно подробно освещены в работах Коваленкера В.А., Киселёвой Г.Д., Таусона Л.В., Харитонова Ю.Ф., Шевчука Г.А., Фёдоровой А.А. и их соавторов.

Площадь Быстринского Cu-Au-Fe-порфирово-скарнового месторождение сложена терригенно-карбонатными отложениями (известняки, песчаники, алевролиты, аргиллиты, конгломераты) раннекембрийского, среднедевонского и среднемезозойского возраста. Осадочные породы прорываются магматическими образованиями (диоритами, диорит-гранодиоритами, гранитами и их порфирами, андезитами и дацитами), образующими в центре структуры Быстринский массив, который имеет сложное строение и характеризуется наличием многочисленных апофиз [Фёдорова, Чернышева, 2009]. Плутонические породы этого штока принадлежат ранней фазе шахтаминского интрузивного комплекса (ВЕР -Bystrinsky Early Porphyries) и представлены монцонитами и диоритами (J2-3). Следующая, поздняя фаза, с которой связывается формирование гидротермальноизмененных пород и рудной минерализации (BLP - Bystrinsky Late Porphyries), представлена на месторождении штокообразными телами и дайками диоритовых порфиритов, монцодиорит-порфиров, кварц-монцонит-порфиров до гранодиоритпорфиров и гранит-порфиров (рис. 3.2.). По петрохимическим и геохимическим порфировые характеристикам породы В целом близки к адакитам И адакитоподобным образованиям [Коваленкер и др., 2016].

Рис. 3.2. Геологическая карта Быстринского месторождения [Коваленкер и др., 2019] и положение изученных образцов: 1 – позднеюрские базальты, андезиты, лампрофировые дайки (нерчинскозаводской комплекс); 2 – позднеюрские гранодиорит-порфиры, гранит-порфиры поздней фазы (шахтаминский комплекс); 3 – позднеюрские диориты, монцониты, монцонит-порфиры поздней фазы (шахтаминский комплекс); 4 – средне-поздне юрские андезиты, базальты и его туфы, субвулканические андезиты (шадоронский комплекс); 5 – раннеюрские песчаники, алевролиты, аргиллиты (государевская свита); 6 – средний девон: (а) песчаники, (б) алевролиты, (в) известняки (ильдиканская свита); 7 – ранний кембрий: (а) известняки, (б) доломиты (быстринская свита); 8 – скарны; 9 – разломы: (а) доказанные, (б) предполагаемые; 10 – положение изученных штоков гранитоидов; 11 – участки месторождения: (I) Верхне-Ильдиканский, (II) Малый Медный Чайник, (III) Южно-Родственный, (IV) Быстринский-2; 12 – точки отбора образцов.

В истории формирования Быстринского месторождения выделено три основные стадии: (I) магматическая стадия – формирование магнезиальных интрузией порфиритов; скарнов, совпадающее с диоритовых (II)постмагматическая стадия – ретроградное изменение магнезиальных скарнов, формирование известковых скарнов, образование синхронно со скарнами кварцполевошпатовых метасоматитов (в магматических породах); (III) И гидротермальная (рудная) стадия – ретроградное изменение известковых скарнов, синхронное c ЭТИМ формирование кварц-шеелит-молибденитовой, кварцсульфидной, полиметаллической, золоторудной, редкометальной И редкоземельной, а также кварц-карбонатной минерализаций, которые накладывались на скарны и магматические породы и сопровождались зонально распределенными кварц-полевошпатовыми кварц-серицитовыми И метасоматитами, аргиллизитами и пропилитами [Коваленкер и др., 2015].

Основные разведанные запасы руд месторождения сосредоточены в зоне гранат-пироксеновых и магнетитовых скарнов мощностью до 300–400 м, развитых вдоль контакта магматических и терригенно-карбонатных осадочных пород [Шевчук и др., 2010]. В настоящий момент разрабатываются открытым способом Быстринский-2 Верхне-Ильдиканский И участки, с промышленными комплексными сульфидно-магнетитовыми Си-Аи рудами в скарнах, в то время как Малый Медный Чайник и Южно-Родственный будут введены в эксплуатацию в 2032 и 2033 годах, соответственно [О компании – ГРК Быстринское [Электронный ресурс]; Быстринское..., 2002]. Приуроченная к верхней части субвулканических штоков и даек кварц-сульфидная жильно-прожилковая минерализация, отнесенная к порфировому типу, характеризуется относительно низкими концентрациями металлов (0,2–0,33 мас.% Cu, 0,4–0,7 г/т Au; [Шевчук и др., 2010]) и пока не играет заметной роли в балансе запасов. Наложение сульфидов на скарны, а также формирование руд порфирового типа связывается с внедрением субвулканических порфировых штоков и даек второй фазы шахтаминского интрузивного комплекса, с которым ассоциировали и формирование руд, и развитие апоскарновых

тремолит-хлорит-кварц-эпидотовых и кварц-кальцит-хлоритовых изменений [Коваленкер и др., 2019].

3.2. Шахтаминское месторождение

Шахтаминское Мо-порфировое месторождение расположено в 50 км к югозападу от Быстринского месторождения и приурочено к многофазному массиву шахтаминского комплекса. История изучения непосредственно месторождения начинается с его открытия и разведки в 1936 г. под руководством В.Е. Кошмана. На месторождении были установлены кварц-турмалиновые, кварц-сульфидношеелитовые и кварц-пиритовые жилы с молибденитом. Месторождение разрабатывалось с 1941 по 1993 года двумя шахтами до глубины 400 м и двумя штольнями [Быбин, 2006]. Изучению геологического строения, рудных тел, минералогии и генетическим особенностям месторождения посвящены труды В.В. Сидоренко, Ю.А. Билибина, В.Т. Покалового, В.И. Сотникова, А.П. Берзиной, Г.А. Юргенсона и их соавторов.

Многофазный Шахтаминский массив, которому приурочено К Шахтаминское месторождение, вскрыт эрозионным срезом на площади 135 км² [Рудные месторождения...,1978], а его становление связано с коллизией Сибирского и Монголо-Китайского континентов. Вмещающими породами для массива выступают батолит пермских гранодиоритов ундинского комплекса (SHP – Shakhtama Host Porphyries) P-T₁ возраста, сформировавшийся в связи с субдукцией литосферной плиты Монголо-Охотского океана под Монголо-Китайский континент [Zorin, 1999], и терригенные отложения нижней юры. Ранняя фаза шахтаминского комплекса (SEP - Shakhtama Early Porphyries) представлена монцонитами, кварцевыми монцонитами, гранодиоритами и их порфирами и слагают большую часть Шахтаминского массива. Поздняя фаза представлена телами штокв (SLP - Shakhtama Late Porphyries) сложенными кварцевыми монцонитами, гранодиоритами и гранитами; так же к поздней фазе относят дайки комплекса Нерчинский Завод (рис. 3.3.) [Берзина и др., 2013; Сотников и др., 1998].

Некоторые исследователи проявленную минерализацию на месторождении связывают с дайками и рудными телами, которые локализованы в длительно развивавшихся трещинах, которые многократно приоткрывались в периоды дайкообразования и рудоотложения [Рудные месторождения..., 1978]. Другие же исследователи говорят о том, что молибденовое оруденение связано не только с дайками, но и со штоками «порфирового» комплекса [Берзина и др., 2013; Сотников и Берзина, 1993]. Становление рудоносного порфирового комплекса произошло на постколлизионном (рифтогенном) этапе развития региона [Берзина и др., 1996]. Дайки порфиров, прослеживающиеся на десятки километров [Сидоренко, 1961], локализованы в структурах растяжения северо-западного простирания в отличие от Cu-Mo-порфировых месторождений андийского (тихоокеанского) типа, характерных для континентальных окраин, внедрение рудоносных порфировых интрузий происходило В условиях растяжения (рифтогенеза) или в переходный период от коллизии к рифтогенезу [Берзина и др., 2013].

Молибденовое оруденение представлено серией кварцевых ЖИЛ субширотного простирания, между которыми находится штокверковое оруденение. Молибден-кварцевая минерализация проявилась двукратно. Ранняя характеризуется светлым кварцем, содержащим редкую вкрапленность крупночешуйчатого молибденита и ещё более редкую вкрапленность шеелита, пирита и халькопирита. Поздняя наложенная минерализация представлена мелкозернистым кварцем с мелкочешуйчатым молибденитом и незначительным количеством пирита и халькопирита, что стало причиной промышленной ценности жил и их полосчатое строение. В зальбандах этих жил встречается наложенный кварц и пирит в ассоциации с флюоритом и реже арсенопиритом. Для более крупных жил весьма характерна свинцово-цинковая минерализация с карбонатами, развитая на контакте жил с вмещающими породами. Местами встречаются обломки кварца с молибденитом сцементированные свинцово-цинковой рудой [Рудные месторождения...,1978].

Рис. 3.3. Геологическая карта Шахтаминского месторождения [ГГК-200 М-50-Х, М-50-IV] и положение изученных образцов: 1 – позднеюрские дайковые тела: (а) – граниты, гранодиорит порфиры; (б) – базальты, лампрофиры (нерчинскозаводской комплекс); 2 – позднеюрские гранодиорит-порфиры, гранит-порфиры поздней фазы (шахтаминский комплекс); 3 – позднеюрские граниты, гранодиорит-порфиры ранней фазы (шахтаминский комплекс); 4 – позднеюрские монцониты, монцонит-порфиры ранней фазы (шахтаминский комплекс); 5 – раннеюрские песчаники, гравелиты (кавыкучинская свита); 6 – раннеюрские песчаники, алевролиты, аргиллиты (таменгинская свита); 7 – пермские граниты, гранодиориты (ундинский комплекс); 8 – разломы: (а) установленные, (б) предполагаемые; 9 – участок Шахтаминского месторождения; 10 – положение изученных штоков гранитоидов; 11 – точки отбора образцов.

Более подробные современные минералогические исследования предлагают схему минералообразования, включающую пять стадий. К дорудной I стадии отнесены продукты высокотемпературных преобразований вмещающих пород, вызванных внедрением порфировых интрузий и большей части даек, к последовательному формированию калишпатовых метасоматитов, кварцевых и кварц-турмалиновых прожилков. Следующая II продуктивная рудная кварцмолибденитовая стадия выделена на основании наблюдавшихся пересечений кварц-молибденитовыми высокотемпературных жилами продуктов преобразований вмещающих дорудной Ранняя пород стадии. кварцмолибденитовая ассоциация включает также шеелит, который, судя по взаимоотношениям с молибденитом-I, образовался в начале данной стадии. Затем отлагались пирит с редким халькопиритом и следом, во вновь образовавшихся трещинах в виде многослойных агрегатов с кварцем – молибденит-II (с малым количеством шеелита), образующий просечки в пирите. Рудная карбонат(±кварц)полиметаллическая (III) стадия выделена на основании того, что карбонатполиметаллические жилы, сопровождающиеся серицитизацией и карбонатизацией, отчетливо пересекают, внедряясь в них по трещинам, кварц-молибденитовые жилы. Пострудная халцедон-карбонатная (IV) стадия обусловлена пересечением совмещенной кварц-молибденит-карбонат-полиметаллической жил с минерализацией халцедоновыми, халцедон карбонатными и карбонатными жилами и прожилками. Пострудная (V) стадия аргиллизации завершает эндогенное минералообразование. Аргиллизация развивается, главным образом, ВДОЛЬ контактов кварц-молибденитовых и карбонат-полиметаллических жил, а также вдоль поздних тектонических нарушений [Юргенсон и др., 2023].

Всего в рудном поле выявлено 140 субпараллельных молибденит-кварцевых и сульфидно-карбонат-кварцевых жил мощностью до 1,8 м (средняя мощность 0,32 м) и протяженностью 80-800 м, прослеженных по падению на 100-500 м. На балансе стояло сорок семь жил, а эксплуатировалось тридцать две. Запасы Мо по категориям А + В + С1 при содержании Мо 0,51 мас. % составляли 4,046 тыс. т.. Наряду с жильным, разведано штокверковое оруденение, располагающееся в центральной части рудного поля на площади около 1,5 км². Штокверки пространственно совмещаются с зонами распространения жил, нередко располагаясь между ними. Зона штокверков прослежена в широтном и северозападных направлениях на 2 км при ширине 0,7–0,8 км, на глубину до 300–400 м. Штокверки не отрабатывались. Неотработанные запасы руды составляют 430.56 тыс. т. и содержат 2413,72 т Мо [Ершов, 2006].

Последние исследования показывают, что Шахтаминское месторождение характеризуется небольшим эрозионным срезом и вскрытая его часть обладает признаками отложения в малоглубинных условиях с перспективами развития оруденения на глубину [Юргенсон и др., 2023]. Важнейшим признаком развития оруденения на глубину является склонение рудных жил в юго-западном направлении, где буровыми работами вскрыто полиметаллическое оруденения, а также обнаружение на северо-восточном фланге Шахтаминского рудного поля золотосеребряного оруденения [Юргенсон, 2020].

Глава 4. Особенности состава и возраст магматических пород Шахтаминского и Быстринского месторождений

4.1. Петрографическая характеристика пород

Петрографическая характеристика пород Быстринского и Шахтаминского месторождений проиллюстрирована на рис. 4.1 – 4.4. Сводная таблица по номеру образца и соответствующей ему породы приведена в Приложении 1. Обработка результатов РФА (ИГМ СО РАН) позволила построить TAS-диаграмму, K₂O – SiO₂ и A/CNK диаграммы (рис. 4.5 и 4.8). Исходные данные представлены в Приложении 2. С использованием данных ICP-MS (SGS, г. Чита) анализу была построена Sr/Y-Y диаграмма (рис. 4.5г и 4.8г) и редкоземельные спектры (рис. 4.6 и 4.9); исходные данные приведены в Приложении 3.

Быстринское месторождение

Ранняя фаза шахтаминского комплекса (ВЕР), слагающая большую часть Быстринского интрузива, представлена пироксен-биотитовыми монцонитами (рис. 4.1а) и амфибол-биотитовыми монцодиоритами. Монцодиориты среднезернистые, сложены амфиболом (10–15%), биотитом (5–10%), плагиоклазом (55–60%) (андезин–лабрадор; An_{30–55}), калиевым полевым шпатом (15%) и кварцем (5–10%) и часто содержат реликты клинопироксена. Монцониты, состоят из ортопироксена (0–10%), клинопироксена (5–15%), биотита (5–7%), амфибола (~3%), плагиоклаза (50–55%) (андезин; An_{40–50}), калиевого полевого шпата (15–20%) и кварца (7–10%). Среди акцессорных минералов присутствуют апатит и циркон, встречается акцессорная сульфидная вкрапленность. Плагиоклаз в образцах частично соссюритизирован, калиевый палевой шпат пелитизирован.

Амфибол-биотитовые гранит-порфиры поздней фазы (рис. 4.16) шахтаминского комплекса (BLP1), сложены амфиболом (3–5%), биотитом (5–10%), плагиоклазом (35–40%) (олигоклаз; An₁₀₋₂₀), калиевым полевым шпатом (35–30%) и кварцем (25–30%). Акцессорные минералы представлены титанитом, апатитом и цирконом. Гранодиорит-порфиры поздней фазы шахтаминского

комплекса (BLP2–5) содержат меньше кварца (15–20%) и калиевого полевого шпата (20–25%) при большем количестве плагиоклаза (40–45%) (олигоклаз; An_{20–30}) и сопоставимом количестве темноцветных минералов (5–10% амфибола и 5–7% биотита). Акцессорные минералы представлены апатитом и цирконом. В образцах плагиоклаз частично соссюритизирован, калиевый полевой шпат пелитизирован, а амфибол частично замещён хлорит-карбонатным агрегатом.

Шахтаминское месторождение

Вмещающие Шахтаминский многофазный плутон амфибол-биотитовые гранодиориты ундинского комплекса (SHP) среднезернистые, порфировидные, состоят из амфибола (3-5%), биотита (7-10%), кварца (15-20%), калиевого полевого шпата (15–20%) и плагиоклаза (45–55%) (олигоклаз; An_{20–30}) (рис. 4.3а). Породы ранней фазы, слагающие большую часть Шахтаминского интрузива, представлены амфибол-биотитовыми монцонитами и биотит-амфиболовыми Амфибол-биотитовые монцониты (SRP) гранодиоритами. характеризуются порфировидной структурой, средне-крупнозернистые, состоят из амфибола (5-10%), биотита (10-15%), кварца (3-5%), калиевого полевого шпата (25-35%) и плагиоклаза (35-45%) (андезин; An₄₀₋₅₀), с редкими вкрапленниками магнетита 2% Породы биотит-амфиболовых гранодиоритов (рис. 4.36). (SEP) среднекрупнозернистые, порфировидные, состоят из биотита (5–7%), амфибола (5–10%), кварца (20-25%), калиевого полевого шпата (20-25%) и плагиоклаза 30-50% (олигоклаз-андезин; An₁₅₋₃₅) (рис. 4.3в). Акцессорные минералы представлены апатитом и цирконом. В всех образцах плагиоклаз титанитом, слабо соссюритизирован, а калиевый полевой шпат пелитизирован.

Рис. 4.1. Фотографии пород Быстринского месторождения. Все фотографии сделаны при скрещенных николях. Где Q-кварц, Pl-плагиоклаз, Kfsp-калиевый полевой шпат, Amf-амфибол, Bt-биотит.

Рис. 4.2. Фотографии пород Быстринского месторождения. Все фотографии сделаны при 20х увеличении в скрещенных николях. Где Q-кварц, Pl-плагиоклаз, Kfsp-калиевый полевой шпат, Amf-амфибол, Bt-биотит.

Рис. 4.3. Фотографии пород Шахтаминского месторождения. Все фотографии сделаны при 20х увеличении, в скрещенных николях, кроме образца SRP. Где Q-кварц, Pl-плагиоклаз, Kfsp-калиевый полевой шпат, Amf-амфибол, Bt-биотит.

Породы поздней фазы (SLP), слагающие штоки шахтаминского комплекса Шахтаминского месторождения, представлены лейкогранитами (SLP1-2), гранодиорит-порфирами (SLP3 SLP5), гранит-порфирами (SLP4). И И Лейкограниты (SLP1-2) мелко-среднезернистые, сложены из плагиоклаза (30-35%) (альбит-олигоклаз; An₂₋₂₀), калиевого полевого шпата (35-40%) и кварца (30-40%); в небольшом количестве присутствует биотита (до 3-5%), спорадически встречается амфибол (0-2%), Среди акцессорных минералов устанавливаются титанит, апатит и циркон. (рис. 4.3г и рис. 4.4а соответственно).

Гранодиорит-порфиры (SLP3 и SLP5) состоят из амфибола (4–6%), биотита (5–8%), плагиоклаза (40–45%) (олигоклаз; An_{25–30}), калиевого полевого шпата (25– 35%) и кварца (15–20%) (рис. 4.4б-г). Акцессорные минералы представлены апатитом и цирконом. Гранит-порфиры (SLP4) сложены амфиболом (5–10%), биотитом (5–10%), плагиоклазом (30–40%) (олигоклаз; An_{10–20}), калиевым полевым шпатом (20–30%) и кварцем (25–30%). Главными акцессорными минералами являются титанит, апатит и циркон рис. 4.4в.

Рис. 4.4. Фотографии пород Шахтаминского месторождения. Все фотографии сделаны при 20х увеличении в скрещенных николях. Где Q-кварц, Pl-плагиоклаз, Kfsp-калиевый полевой шпат, Amf-амфибол, Bt-биотит.
4.2. Петрохимическая характеристика пород

Данные по основным и примесным элементам приведены в Приложении 2 – 3, а также проиллюстрированы на рисунках с 4.5 по 4.10. Изученные образцы демонстрируют переменный LOI (потери при прокаливании), поэтому данные были нормализованы к безводным составам и эти данные были использованы в работе.

Быстринское месторождение

Породы Быстринского массива ранней фазы шахтаминского комплекса (ВЕР) характеризуются содержанием SiO₂ (53,86-60,19 мас.%), Al₂O₃ (13,81-16,26 мас.%), K₂O (2,57-3,87 мас.%), Na₂O (3,03-4,25 мас.%), высоким содержанием MgO (4,62-7,87 мас.%), TFeO (5,43-7,04 мас.%) и Sr (570-690 г/т); и низкие содержания Y (10,65-15,65 г/т), что указывает на то, что породы попадают в монцонитовое поле на K₂O – SiO₂ диаграмме (рис. 4.5а) и принадлежат к высоко-К известковощелочной серии (рис. 4.5б), относятся к металюминиевым (рис. 4.5в) и демонстрируют адакитоподобные признаки (рис. 4.5г). Значение A/NK изменяется от 1,46 до 1,83, а A/CNK варьирует от 0,71 до 0,82. Содержание Sr и Y (570-690 и 10,65-15,65 г/т соответственно), и как следствие высокие отношения Sr/Y (44,09-56,34). Все образцы ранней фазы демонстрируют аналогичные нормированные по хондриту REE спектры, для которых характерно сильное фракционирование LREE и HREE без Eu аномалии (рис. 4.6а). Кроме того, на графиках с нормированиваем к примитивной мантии, образцы обогащены крупноионными литофильными элементами (LILE) и обеднены высокозарядными элементами (HFSE) (рис. 4.6б).

Образцы поздней фазы шахтаминского комплекса BLP2 - BLP5 имеют высокое содержание SiO₂ (60,3-69,7 мас.%) при содержаниях Al₂O₃ (13,7-15,6 мас.%), K₂O (2,5-4,1 мас. %) и Na₂O (3,2-4,2 мас. %), MgO (2,4-4,9 мас. %) и FeO (2,2-4,7 мас. %), а образцы BLP1 более богаты SiO₂ и K₂O (68,4-69,8 мас. % и 4,0-4. 7 мас. %, соответственно) и содержат меньшее количество MgO (1,4-2,9 мас. %) и FeO (1,9-2,6 мас. %). На TAS-диаграмме попадают породы поздней фазы соответствуют кварцевым монцонитам и гранодиоритам (рис. 4.5а).

Рис. 4.5. Петрохимическая характеристика пород Быстринского месторождения: (a) (Na₂O + K₂O) к SiO₂ [Middlemost, 1994]; (б) SiO₂ к K₂O [Peccerillo and Taylor, 1976]; (в) A/NK к A/CNK [Maniar and Piccoli, 1989]; (г) Sr/Y к Y (поля дуговых и адакитоподобных пород взяты из [Richards and Kerrich, 2007]). Где: BEP – монцониты и монцодиориты ранней фазы шахтаминского комплекса, BLP – поздняя фаза шахтаминского комплекса (BLP1 – гранит-порфиры, BLP2-5 – гранодиорит-порфиры).

Все породы на $K_2O - SiO_2$ диаграмме попадают в высококалиевую известково-щелочную область, за исключение часть образцов первой фазы и первого штока третьей фазы шахтаминского комплекса (рис. 4.5б). Значения А/СNК варьирует от 0,74 до 1,09, что характеризует эти породы как металюминиевые (рис. 4.5в). Высокое содержание Sr (340–900 г/т) и низкое содержание Y (6,9–11,45 г/т) и, следовательно, высокие значения Sr/Y (45,51–111,11) является характеристикой потенциально рудоносных на порфировое оруденение пород (рис. 4.5г). Нормализованные по хондриту спектры REE

38

показывают обогащение LREE, обеднение HREE и отсутствие Eu аномалии (рис. 4.6а). На диаграмме спектров, нормированных к примитивной мантии, образцы поздней фазы показывают аналогичные паттернам ранней фазы с обогащением LILE (Rb, U, K, Ba) и обеднением HFSE (Nb, Ta, P, Ti) (рис. 4.6б).

Шахтаминское месторождение

Вмещающие породы ундинского комплекса (SHP) характеризуются высокими содержаниями SiO₂ (63,98-65,70 мас.%), Al₂O₃ (15,48-15,57 мас.%), K₂O (3,62-3,84 мас.%), Na₂O (3,92-4,04 мас.%), TFeO (4,1-5,41 мас.%), и содержанием MgO (1,48-1,53 масс. %), что указывает на то, что эта порода принадлежит к высоко-калиевой известково-щелочной серии (рис. 4.86), и относится к металюминиевым породам, где A/CNK=0,96 и A/NK=1,43 (рис. 4.8в). Содержания Sr от 420 до 545 г/т и Y 21,29-29,55 г/т; и соответсвенно, низкие значения Sr/Y отношения (14,21-25,6) (рис. 4.8г). Ундинский комплекс характеризуется сильным фракционированием между LREE и HREE со слабыми аномалиями Eu (рис. 4.9а) и обогащением LILE (например, Rb, Th, U и K) и обеднением HFSE (например, Ta, Nb, P и Ti) (рис. 4.96).

Породы ранней фазы шахтаминского комплекса (SRP) характеризуются высоким содержанием SiO₂ (59,52 мас.%), Al₂O₃ (14,65 мас.%), K₂O (2,93 мас.%), Na₂O (3,43 мас.%), TFeO (6,08 мас.%), и содержанием MgO (5,89 масс. %). Образец имеет высокое общее содержание щелочей: 7,54 масс. %, и попадает в поле кварцевых монцонитов (рис. 4.8a) на TAS диаграмме и высококалиевое известковощелочное поле на диаграмме K₂O – SiO₂(рис. 4.8б). Монцониты (SRP) имеют значение A/NK=1,66 и A/CNK=0,79, что соответствует металюминевым породам (рис 4.8в). Изученные образцы попадают в поле дуговых магм, где Sr и Y (470 и 14,94 г/т, соответственно) и как следствие значение Sr/Y отношения (31,45) (рис. 4.8г). На диаграмме редкоземельных элементов (РЗЭ), нормированных на хондрит (рис. 4.9а), образец демонстрирует обогащение легкими РЗЭ относительно тяжелых РЗЭ, с незначительной отрицательной европиевой аномалией. Относительно примитивной мантии породы показывают обогащение LILE элементами (Rb, Th, U) относительно HFSE (Nb, Ta, Ti) (рис. 4.9б).

40

Рис. 4.6. Нормированные редкоземельные элементы по хондриту (а) и по примитивной мантии (б) пород Быстринского месторождения. Значения для нормирования взяты из [Sun and McDonough, 1989]. Где: BEP – монцониты и монцодиориты ранней фазы шахтаминского комплекса, BLP – поздняя фаза шахтаминского комплекса (BLP1 – гранит-порфиры, BLP2-5 – гранодиорит-порфиры).

Рис. 4.7. Диаграмма Харкера для пород Быстринского месторождения. Тренды, отражающие эволюцию магмы вследствие кристаллизационного фракционирования взяты из [Kevrekidis et al., 2015]. Где: BEP – монцониты и монцодиориты ранней фазы шахтаминского комплекса, BLP – поздняя фаза шахтаминского комплекса (BLP1 представлена гранит-порфирами, а BLP2-5 – гранодиорит-порфирами).

Породы ранней фазы шахтаминского комплекса (SRP) характеризуются высоким содержанием SiO₂ (59,52 мас.%), Al₂O₃ (14,65 мас.%), K₂O (2,93 мас.%), Na₂O (3,43 мас.%), TFeO (6,08 мас.%), и содержанием MgO (5,89 масс. %). Образец имеет высокое общее содержание щелочей: 7,54 масс. %, и попадает в поле кварцевых монцонитов (рис. 4.8a) на TAS диаграмме и высококалиевое известковощелочное поле на диаграмме $K_2O - SiO_2($ рис. 4.86). Образец SRP имеет значение A/NK=1,66 и A/CNK=0,79, что соответствует металюминевым породам (рис 4.8в). Изученные образцы попадают в поле дуговых магм, где Sr и Y (470 и 14,94 г/т, соответственно) и как следствие значение Sr/Y отношения (31,45) (рис. 4.8г). На диаграмме редкоземельных элементов (РЗЭ), нормированных на хондрит (рис. 4.9а), образец демонстрирует обогащение легкими РЗЭ относительно тяжелых РЗЭ, незначительной отрицательной европиевой аномалией. Относительно с примитивной мантии породы показывают обогащение LILE элементами (Rb, Th, U) относительно HFSE (Nb, Ta, Ti) (рис. 4.96).

Образцы ранних порфиров второй фазы шахтаминского комплекса (SEP) характеризуются содержаниям SiO₂ (66,42-67,81 мас.%), CaO (2,21-2,99 мас.%), K₂O (4,15-5,02 мас.%) и Na₂O (3,22-4,03 мас.%), TFeO (2,85-3,66 мас.%) и MgO (1.09-2,66 мас.%). Образцы имеют высокое общее содержание щелочей (Na₂O + K₂O) от 7,61 до 8,29 мас. % и попадают в поле кварцевого монцонита, представленных на диаграмме TAS (рис. 4.8а). Высокое содержание K₂O определило эти образцы в высоко-К известково-щелочную и шошонитовую серии (рис. 4.8б). Образцы SEP имеют A/CNK=0,89-1,03, что характеризует их как металюминиевые (рис. 4.8в). Изученные образцы относятся к адакитоподобным породам, которые характеризуются несколько высоким содержанием Sr (330-490 г/т), низким Y (12,35-21,95 г/т) и Sr/Y (21,32-30,12) (рис. 4.8г). На диаграмме редкоземельных элементов (РЗЭ), нормированных на хондрит (рис. 4.9а), породы слегка обогащены легкими РЗЭ относительно HREE, с незначительными отрицательными аномалиями Eu. Относительно примитивной мантии прослеживается легкое обогащение LILE элементами относительно HFSE (рис. 4.9б).

Рис. 4.8. Петрохимическая характеристика пород Шахтаминского месторождения: (a) (Na₂O + K₂O) к SiO₂ [Middlemost, 1994]; (б) SiO₂ к K₂O [Peccerillo and Taylor, 1976]; (в) A/NK к A/CNK [Maniar and Piccoli, 1989]; (г) Sr/Y к Y (поля дуговых и адакитоподобных пород взяты из [Richards and Kerrich, 2007]). Где: SHP – вмещающие гранодиориты ундинского комплекса, SRP – монцониты и SEP – гранодиориты ранней фазы шахтаминского комплекса, SLP – поздняя фаза шахтаминского комплекса (SLP1,2 представлены лейкогранитами, SLP3,5 – гранодиорит-порфирами, а SLP4 – гранит-порфирами).

Породы поздних порфиров поздней фазы шахтаминского комплекса (SLP) обладают широким диапазоном содержаний содержания SiO₂, от 63,19 мас. % до 74,73 мас. %. Штоки SLP(1-2) и SLP(3-5) характеризуются различным содержанием CaO (0,69-1,82 и 1,68-3,48 мас.%), MgO (0,31-1,15 и 1,25-2,98 мас.%) и TFeO (1,19-2. 6 и 1,68-4,45 мас. %) соответственно, и Na₂O (2,76-3,63 и 3,24-4,96 мас. %) и K₂O (4,32-5,34 и 3,12-4,82 мас. %). На диаграмме TAS (рис. 4.8а) эти образцы находятся в субщелочном поле, соответствуют гранитам (SLP1-2) и кварцевым монцонитам

43

(SLP3-5) и находятся в высококалиевом известково-щелочном или шошонитовом поле в $K_2O - SiO_2$ диаграмме (рис. 4.86). Отношения А / CNK для штоков SLP (1-2) и SLP (3-5) варьируются от 0,99 до 1,20 и от 0,84 до 1,02, что указывает на то, что эти граниты являются пералюминиевыми и металюминиевыми, соответственно (рис. 4.8в).

Образцы SLP (3-5) попадают в поле адакитоподобных пород (высокое содержание Sr (330–850 г/т) и низкое содержание Y (6–18,1 г/т) с отношением Sr/Y от 23,66 до 136,67), что является характеристикой потенциально рудоносных на порфировое оруденение пород. Образцы SLP (1-2), соответствуют полю дуговых магм (низкое Sr (100–230), высокое Y (17,15–28,55) с отношением Sr/Y от 3,93 до 12,99) (рис. 4.8г). Для пород штоков SLP (1-3) характерна отрицательная Eu аномалия (рис. 4.9а), тогда как она практически отсутствует на спектрах РЗЭ для пород штоков SLP (4-5) (рис. 4.9в). По сравнению с примитивной мантией, образцы обогащены LILE элементами и обеднены HFSE элементами (рис. 4.9г).

Рис. 4.9. Нормированные по хондриту редкоземельные элементы (а, в) и по примитивной мантии (б, г) породы Шахтаминского месторождения. Значения для нормирования взяты из [Sun and McDonough, 1989]. Гже: SHP – вмещающие гранодиориты ундинского комплекса, SRP – монцониты и SEP – гранодиориты ранней фазы шахтаминского комплекса, SLP – поздняя фаза шахтаминского комплекса (SLP1,2 представлены лейкогранитами, SLP3,5 – гранодиорит-порфирами, а SLP4 – гранит-порфирами).

Рис. 4.10. Диаграмма Харкера для пород Шахтаминского месторождения. Тренды, отражающие эволюцию магмы вследствие кристаллизационного фракционирования взяты из [Kevrekidis et al., 2015]. Где: SHP – вмещающие гранодиориты ундинского комплекса, SRP – монцониты и SEP – гранодиориты ранней фазы шахтаминского комплекса, SLP – поздняя фаза шахтаминского комплекса (SLP1,2 – лейкогранитаы, SLP3,5 – гранодиорит-порфиры, а SLP4 – гранит-порфиры).

4.3. Возраст магматических пород

Результаты U-Pb датирования образцов пород разных фаз внедрения Шахтаминского и Быстринского месторождений приведены в Приложении 5 и визуализированы в виде диаграмм на рисунках 4.11 и 4.12. Изученные цирконы короткопризматические, бесцветные с чёткой осциляторной зональностью на изображениях, полученных методом катодолюминесценции (Приложение 4), а отношение Th/U варьирует от 0,13 до 1.33, что указывает на магматическое происхождение [Belousova et al., 2002].

Возраст пород шахтаминского комплекса ранней фазы (ВЕР), которыми сложен Быстринский массив, по 27 точкам составляет 163,3±0,5 млн. лет и СКВО=0,6 (рис 4.11а). Конкордатный возраст пород шахтаминского комплекса поздней фазы для гранит-порфиров (BLP1) составляет 159,4±0,7 млн. лет и определён по 13 точкам и СКВО=0,73 (рис. 4.11б). По 27 результатам анализов второго штока (BLP2) определён конкордантный возраст 160,8±0,5 млн. лет (СКВО=0,58) (рис. 4.11в). Для гранодиорит-порфиров третьего штока (BLP3) по результатам 27 анализов возраст составил 161.6±0,5 млн. лет и СКВО=0,49 (рис. 4.11г). Возраст гранодиорит-порфиров четвёртого штока составил 160,3±0,6 млн. лет по 19 точкам (СКВО=0,44) (рис. 4.11д), а для пятого штока определён возраст 162,2±0,4 млн. лет по 32 результатам анализов (СКВО=0,48) (рис. 4.11е). Средний квадрат взвешенных отклонений (СКВО) не превышает единицы.

Определение U-Pb возраста по цирконам методом LA-ICP-MS показало, что возраст гранодиоритов ранней фазы шахтаминского комплекса Шахтаминского месторождения (SEP) по 9 точкам составил $163,9 \pm 0,9$ млн. лет и CKBO = 0,6 (рис. 4.126). По 19 результатам анализов для пород лейкогранит-порфиров поздней фазы шахтаминского комплекса (SLP2) возраст составил $162,9 \pm 0,6$ млн. лет и CKBO = 0,4 (рис. 4.12в). Возраст грандиорит-порфиров третьего штока (SLP3) определён по двадцати девяти цирконам как $162,2 \pm 0,5$ млн. лет и CKBO = 0,48 (рис. 4.12г). По семнадцати зёрнам цирконов из гранит-порфиров (SLP4) определён возраст 161,5 $\pm 0,6$ млн. лет (CKBO = 0,29) (рис. 4.12д). Возраст образцов гранодиорит-порфиров

пятого штока (SLP5) составил 161,8 \pm 0,5 млн. лет и СКВО = 0,48 и установлен он по двадцати двум анализам. Возраст вмещающих пород ундинского комплекса (SHP) установлен по 10 анализам и составил 252,2 \pm 1,2 млн. лет (СКВО=0,27) (рис. 4.12а).

Рис. 4.11. Диаграммы U-Pb конкордантного возраста по цирконам Быстринского месторождения. Возраст был рассчитан с использованием IsoplotR [Vermeesch, 2018].

Рис. 4.12. Диаграммы U-Pb конкордантного возраста по цирконам Шахтаминского месторождения. Возраст был рассчитан с использованием IsoplotR [Vermeesch, 2018].

Единственные опубликованные данные о возрасте интрузивных пород Быстринского месторождения, полученные K-Ar методом по флогопиту из

49

магнезиальных скарнов (163 ± 3 млн лет; [Коваленкер и др., 2016]), соответствуют полученным данным возраста с учетом аналитической ошибки. Для пород, с которыми не связана минерализация, ВЕР и ВLР1 возраст составляет 163,3 ± 0,5 и 159,4 ± 0,7 млн лет соответственно (рис. 4.11а,6). Для пород, с которыми связана минерализация (BLP2-5), возраст составил 160,8 ± 0,5, 161,6 ± 0,5, 160,3 ± 0,6 и 162,2 ± 0,4 млн лет соответственно (рис. 4.11в-е). Участки промышленной минерализации Быстринский-2, Южно-Родственный, Малый Медный Чайник и Верхне-Ильдиканский относятся к штокам со 2 по 5 (BLP2-5) (рис. 3.2).

Предыдущие данные о возрасте интрузивных пород Шахтаминского месторождения варьируют от 163 до 153 млн лет (U-Pb датирование; [Берзина и др., 2013]) и от 169 до 156 млн лет (Ar-Ar датирование; [Сотников и др., 1998]). По полученным данным удалось сузить возрастной интервал формирования от ранних к поздним фазам шахтаминского комплекса от 164 до 161 млн. лет (рис 4.126-е). Согласно полевым наблюдениям и опубликованным данным, промышленно значимая минерализация связана с 4 штоком (SLP4) [Сидоренко, 1961; Берзина и др., 2013] возраст которого 161,5 \pm 0,6 (рис. 4.12д). Этот возраст соответствует возрасту молибденита определённый методом Re-Os датирования [160-153 млн лет; Berzina et al., 2003].

4.4. Геохимия пород в целом как признак рудоносности магм

Гидротермальные рудообразующие флюиды в порфировых рудномагматических системах связаны со средне-кислыми породами известковощелочной, высоко-К-известково-щелочной вплоть до шошонитовой серии [Richards, 2003; Sillitoe, 2010]. То есть, все изученные породы разных фаз Быстринского и Шахтаминского месторождений теоретически могут являться рудоносными (рис. 4.5а,б и 4.8а,б). В то же время стоит отметить, что рудоносными являются только часть из них, а именно 4 шток поздней фазы шахтаминского комплекса (SLP4) Шахтаминского месторождения и штоки со 2 по 5 поздней фазы (BLP2-5) Быстринского месторождения. Так же для отделения рудных от безрудных магматических пород используются так называемые "адакитоподобные" характеристики, которые отражают соотношения Sr/Y ≥ 20 (рис. 4.5г и 4.8г) и La/Yb ≥ 20, где "адакитоподобный" означает главный геохимический признак адакитов и используется как геологический термин-жаргонизм. Предлагается несколько путей формирования магм с высоким содержанием Sr/Y и La/Yb:

1) гибридизация частичных расплавов из субдуцирующей океанической коры с мантийным перидотитом

2) частичное плавление нижней коры

3) взаимодействие между астеносферными расплавами и нижней корой

4) фракционная кристаллизация базальтовых магм, полученных из метасоматизированного мантийного клина [по Richards and Kerrich, 2007; Castillo, 2012].

Таким образом, высокие содержания Sr в породе достигаются за счет плагиоклаз-содержащего плавления источника последующим С фракционированием амфибола (и/или титанита), при этом фракционирование плагиоклаза подавляется высоким содержанием воды в магмах [Sisson et al., 2005, Richards et al., 2012, Nandedkar et al., 2014]. Низкие содержания Y и соответствующие высокие отношения Sr/Y указывают на наличие граната, амфибола и/или клинопироксена в источнике или раннее фракционирование этих фаз из магмы, поскольку У преимущественно распределяется по схеме: гранат > амфибол > клинопироксен [Green and Pearson, 1985, Adam and Green, 2006, Richards et al., 2012]. Низкие содержания Yb и высокие значения La/Yb в основном являются результатом отделения гранатового рестита или фракционирования граната, однако амфибол также преимущественно включает в себя HREE в отличие от LREE в условиях, когда гранат отсутствует [Richards et al., 2012, Qian and Hermann, 2013, Bissig et al., 2017].

Присутствие граната не препятствует генерации рудоносных расплавов, в то время как ранняя кристаллизация амфибола является важным признаком рудоносности, поскольку отражает высокое (>3 мас. %) содержание воды в магмах

51

[Richards and Kerrich, 2007, Richards et al., 2012]. Для формирования гидротермальных флюидов в магматических комплексах, связанных с порфировыми месторождениями, требуется высокое содержание воды в расплавах. Наличие фенокристаллов амфибола позволяет в полевых условиях судить о высокой водонасыщенности исходной магмы и в свою очередь является благоприятным признаком на порфировое оруденение [Cooke et al., 2017]. В свою очередь, доминирующее значение фракционирования амфибола при подавлении ранней кристаллизации плагиоклаза в водонасыщенных расплавах приводит к увеличению Sr/Y и La/Yb отношений, что в свою очередь является косвенным признаком водонасыщенности исходных магм.

Используя графики с соотношениями LREE/MREE и MREE/HREE, то есть легких редких земель к средним и средних к тяжёлым соответственно, можно оценить эффект фракционирования граната и амфибола [Kelemen et al., 2003, Richards and Kerrich, 2007, Bissig et al., 2017]. Тяжёлые редкие земли (HREE) легче входят в структуру граната, по сравнению с MREE; в таком случае фракционирование граната приведёт к увеличению (La/Sm)_{CN} (то есть LREE/MREE) и (Dy/Yb)_{CN} (MREE/HREE), где "CN" означает нормирование на хондрит. Фракционирование амфибола в свою очередь должно приводить к увеличению отношения (La/Sm)_{CN}, и к уменьшению (Dy/Yb)_{CN} ≤1 [Richards and Kerrich, 2007].

Соотношения Sr/Nd и Dy/Yb отражает вклад фракционирования амфибола и плагиоклаза. Так как Sr более совместим относительно Nd в плагиоклазе, то фракционирование плагиоклаза приводит к уменьшению значений отношения Sr/Nd [Kelemen et al., 2003].

Быстринское месторождение

На Быстринском месторождении безрудные породы ранней фазы, порфиры монцонитов и монцодиоритов (ВЕР), прорываются рудоносными породами гранодиорит-порфиров (ВLР2-5) и безрудными гранит-порфирами (BLP1) поздней фазы. Все породы относятся к высококалиевой известково-щелочной и шошонитовой серии, и относятся к гранитам I типа (рис 4.56,в). Все породы

обогащены лёгкими редкими землями относительно тяжёлых ((La/Yb)n = 9,3-23,8) и прослеживается обеднение Nb, Ta и Ti (рис. 4.6). Соотношение Sr/Y>20 (44-111) при содержании Sr от 440 до 900 г/т и Y от 7-16 г/т (рис. 4.5г). Отношение La/Yb изменяется от 13 до 33, достигая La/Yb \geq 20, но не всегда. Схожие редкоземельные и мультиэлементные спектры пород Быстринского и Шахтаминского месторождений, а также пород ундинского комплекса, дают возможность предположить, что составы первичных магм находятся под контролем единого регионального источника.

В породах повсеместно наблюдаются такие минералы как амфибол, биотит и апатит, которые свидетельствуют о том, что как рудоносные, так и безрудные породы Быстринского месторождения произошли из водонасыщенных расплавов, в которых происходило фракционирование амфибола. На графике (Dy/Yb)_{CN} к SiO₂ (рис. 4.13а) наблюдается отрицательный тренд, с уменьшением (Dy/Yb)_{CN} при увеличении кремнезёмистости. Среднее отношение (Dy/Yb)_{CN} =1,3 для пород ранней фазы, а для пород поздней фазы 1,1, что указывает на то, что эволюция магматической системы контролируется преимущественно фракционированием амфибола, а не граната. Это предположение находит подтверждение на диаграмме (La/Sm)_{CN} к (Dy/Yb)_{CN} (рис. 4.13б). Эти геохимические признаки, вероятно, не исключают участия гранат-содержащей нижней коры или фракционирования граната на глубине [Bissig et al., 2017]. Не выраженность геохимических признаков граната может быть связана как с низким содержанием граната в нижнекоровом источнике, с которым происходит взаимодействие магмы, так и с ограниченным взаимодействием магмы с нижней корой. Обобщая выше сказанное, можно предположить, что высокие значения (Dy/Yb)_{CN} и более низкие значения Sr/Y пород ранней фазы (ВЕР) отражают относительную глубину эволюции магмы или же ограниченное взаимодействие магмы ВЕР с гранат-содержащей нижней корой.

По графикам Sr/Nd к (Dy/Yb)_{CN} можно предположить, что плагиоклаз и амфибол принимали переменное участие в процессах фракционирования (рис. 4.13в). Повышенные отношения La/Yb при высоких значениях Sr/Y могут быть интерпретированы как показатель неглубокого залегания магматических камер на

глубинах, достаточных для кристаллизации амфибола с небольшим количеством или отсутствием граната и водосодержащих магм (глубины ≤ 40 км по [Richards et al., 2006; Qian and Hermann, 2013]).

Изменение состава пород от ранних к поздним фазам показывает тренд фракционирования (рис. 4.7), который характеризуется увеличением содержания Na₂O и K₂O и уменьшением концентраций MgO, FeO, CaO, Al₂O₃, TiO₂ и P₂O₅ с увеличением содержания SiO₂, что соответствует фракционированию полевого шпата, Fe-Mg силикатов, Ti-содержащих фаз (Fe-Ti оксидов, и/или титанита, и/или Ti-содержащих силикатов) и апатита.

Отношение Sm/Yb плавно уменьшается с увеличением содержания SiO₂ от ранней к поздней фазе, хотя при нормальном фракционировании ожидается положительная корреляция между Sm/Yb и SiO₂ (рис. 4.13г). На основе этих данных можно предположить, что процессы ассимиляции коры/перемешивания магмы и фракционная кристаллизация (AFC), а не только фракционная кристаллизация (FC), имеют важное значение в эволюции магмы. Близкие отношения Sm/Yb во всех породах отражают близкую глубину эволюции магмы. Единично более высокие значения (Dy/Yb)_{CN} для пород ранней фазы отражают ограниченное взаимодействие магмы ВЕР с гранат-содержащей нижней корой, а не относительную глубину эволюции их магмы. На диаграмме La/Yb к La видно, что эволюция ранней фазы связана как с фракционной кристаллизацией, так и с частичным плавлением, в то время как породы поздней фазы (BLP2-5) соответствуют в основном трендам частичного плавления (рис. 4.13д). Таким образом, эволюция магм, с которыми связаны рудоносные породы, контролируется процессами источника (состав источника, частичное плавление, ассимиляция и смешение магм), в то время как эволюция магм, с которыми связаны безрудные большей контролируются процессами фракционной породы, В степени кристаллизации в магматических камерах.

Рис. 4.13. Геохимические характеристики пород Быстринского месторождения: (a) (Dy/Yb)_{CN} к SiO₂ по [Richards and Kerrich, 2007; Davidson et al., 2007]; (б) (La/Sm)_{CN} к (Dy/Yb)_{CN} и (в) Sr/Nd к (Dy/Yb)_{CN} [Kelemen et al., 2003]; (г) Sm/Yb к SiO₂ [Richards et al., 2006]; (д) La/Yb к La для оценки влияния фракционной кристаллизации (FC) и частичного плавления (PM) [Thirlwall et al., 1994]; (е) Rb к Y+Nb [Pearce, 1996]. Значения нормирования взяты из [Sun and McDonough, 1989]. Где: BEP – монцониты и монцодиориты ранней фазы шахтаминского комплекса, BLP – поздняя фаза шахтаминского комплекса (BLP1 – гранит-порфираы, а BLP2-5 – гранодиорит-порфиры).

Шахтаминское месторождение

На Шахтаминском месторождении породы ранней фазы шахтаминского комплекса, порфировидные гранодиориты (SEP), прорываются безрудными лейкогранит-порфирами (SLP1-2), гранодиорит-порфирами SLP3 и SLP5, и рудоносными гранит-порфирами (SLP4). Как и на Быстринском месторождении все породы относятся к высококалиевой известково-щелочной и шошонитовой серии, и относятся к гранитам I типа. (рис 4.86,в). Все породы обогащены лёгкими редкими землями относительно тяжёлых ((La/Yb)_{CN} = 6,0-34,2) и обеднены Nb, Ta и Ti (рис. 4.9). Соотношение Sr/Y варьирует от 4 до 137, при этом Sr/Y \geq 20 характерны для штоков поздней фазы (SLP3-5) (рис. 4.8г). Отношение La/Yb изменяется от 9 до 48, при этом, максимальные отношения La/Yb характерны для SLP4, варьирующие от 26 до 48 (Приложение 3, рис. 4.14д).

Во всех изученных породах наблюдаются вкрапленники амфибола, апатита, и биотита в породах поздней фазы, что свидетельствует о том, что породы возникли из водонасыщенных расплавов, в которых происходило фракционирование амфибола. Это подтверждается уменьшением (Dy/Yb)_{CN} с увеличением глинозёмистости (рис. 4.14а), и уменьшением (Dy/Yb)_{CN} при увеличении (La/Sm)_{CN} (рис. 4.14б).

На диаграмме Sr/Nd к (Dy/Yb)_{CN} породы ранней фазы (SEP) и породы поздней фазы (SLP1-3) характеризуются низкими значениями отношения Sr/Nd (от 4 до 18), и прослеживается положительная корреляция Sr/Nd к (Dy/Yb)_{CN}. То есть, в эволюции магм, связанных с безрудными породами, ключевую роль играет фракционирование плагиоклаза, то время как для рудоносных пород (SLP4) и безрудных (SLP5) отношения Sr/Nd изменяются от 20 до 48 и характеризуется отрицательной корреляцией Sr/Nd к (Dy/Yb)_{CN}. Это указывает на то, что фракционирование плагиоклаза имеет менее важную роль в эволюции магм. Рудоносные гранит-порфиры (SLP4) отличаются от безрудных пород (SEP, SRP, SLP1-3 и SLP5) более высокими отношениями (Dy/Yb)_{CN} (рис. 4.14а-в), а так же La/Yb (рис. 4.14д) и Sm/Yb (рис. 4.14г). Эти геохимические признаками означают, что было взаимодействие расплава SLP4 с гранат-содержащей нижней корой.

Безрудные порфиры (SLP5) подобно рудоносным порфирам (SLP4), характеризуются высоким Sr/Y отношением (≥20). Отсутствие рудопроявления, связанного с 5 штоком гранодиорит-порфиров (SLP5), объясняется особенностями состава магмы SLP5 и/или её флюидной эволюции.

На графике Sm/Yb к кремнезёму прослеживается тренд, связанный с процессами ассимиляции коры/перемешивания магмы и фракционной кристаллизации (AFC) (рис. 4.14г). Магмы SEP, SRP, SLP3 и SLP5 сходны по составу и, скорее всего, связаны смешением магмы в одной магматической камере. На диаграмме La/Yb к La (рис. 4.14д) точки состава этих пород образуют единый эволюционный тренд, отражающий важную роль фракционной кристаллизации и частичного плавления в эволюции их магм. Лейкогранит-порфиры поздней фазы (SLP1-2), скорее всего связаны с магмами SEP, SRP, SLP3 и SLP5 процессами контаминации и фракционной кристаллизации.

Магматические источники и тектонические обстановки Шахтаминского и Быстринского гранитоидов

Быстринского Породы И Шахтаминского месторождений имеют петрографические и петрологические характеристики гранитов I типа, что позволяет предположить, что в образовании их магм участвовал магматический источник. Все гранитоиды демонстрируют обогащенные щелочами и LILE, с сильным обеднением Ta, Nb и Ti, что согласуется с происхождением из одного (или представленного сходного по составу) источника, метасоматизированной субдукционно-модифицированной мантией или нижней континентальной корой, образованным или источником, В результате метасоматизированного субдукционно-модифицированного взаимодействия мантии и нижней коры, как предполагается в данной работе и ранними иследованиями Быстринского и Шахтаминского месторождений [Коваленкер и др, 2016, Berzina et. al., 2014].

Рис. 4.14. Геохимические характеристики пород Шахтаминского месторождения: (a) $(Dy/Yb)_{CN} \kappa SiO_2$ [по Richards and Kerrich, 2007, Davidson et al., 2007]; (б) $(La/Sm)_{CN} \kappa (Dy/Yb)_{CN} \mu$ (в) Sr/Nd $\kappa (Dy/Yb)_{CN}$ [по Kelemen et al., 2003]; (г) Sm/Yb κSiO_2 [Richards et al., 2006]; (д) La/Yb κ La [по Thirlwall et al., 1994] для оценки влияния фракционной кристаллизации (FC) и частичного плавления (PM); (e) Rb κ Y+Nb [Pearce, 1996]. Значения нормирования по [Sun and McDonough, 1989]. Где: SHP – гранодиориты ундинскго комплекса, SRP – монцониты и SEP – гранодиориты ранней фазы шахтаминского комплекса, SLP – поздняя фаза шахтаминского комплекса (SLP1,2 – лейкогранитаы, SLP3,5 – гранодиорит-порфиры, a SLP4 – гранит-порфиры).

Общепринятой является точка зрения, согласно которой гранитоиды шахтаминского комплекса, включая расположенные в районе Быстринского и Шахтаминского сформировались постсубдукционных месторождений, В тектонических обстановках, хотя время субдукции все еще обсуждается [Berzina et. al., 2014]. В более детальных реконструкциях мнения разнятся, и Быстринские и Шахтаминские гранитоиды относят к постколлизионной стадии [Коваленкер и др., 2016] или к синколлизионной стадии [Zorin et. al., 2001]. Согласно модели предложенной А.М. Спиридоновым и Л.Д. Зориной: «мезозойский магматизм является результатом функционирования верхнемантийного базальтоидного магматизма, а именно, его калиевой ветви шошонит-латитовой магмы, которая инициировала плавление континентальной коры с образованием в промежуточных камерах известково-щелочной и высококалиевой известково-щелочной магм, чем и объясняется наблюдаемая во всех рудно-магма перемежаемость во времени и пространстве производных этих трех видов магм. Источником шошонитлатитовых магм стал астеносферный выступ, образовавшийся в процессе сжатия во время коллизии континентов. Воздействие его горячего вещества на кору привело к выплавлению промежуточных (в том числе и кислых) магм с повышенной щелочностью. Эти магмы функционировали на коллизионном и рифтогенном региона» [Спиридонов Зорина, 2006]. Гранитоиды этапах развития И шахтаминского комплекса в свою очередь являются продуктами кристаллизации наиболее контаминированных магм [Китаев и др., 2018].

Магматические системы Быстринского и Шахтаминского месторождений близко расположены и схожи по возрасту, формируют единое поле на диаграмме тектонической дискриминации (рис. 4.13е и 4.14е), В разной степени фракционной кристаллизации подвергшимися процессам ИЛИ частичного плавления (рис. 4.13д и 4.14д). На графике Y+Nb к Rb все породы Шахтаминского и Быстринского месторождений простираются от поля гранитов вулканических дуг до поля постколлизионных гранитов, с частичным попаданием лейкогранитов SLP1 и SLP2 в поле синколлизионных гранитов.

Влияние вторичных изменений на гранитоиды Шахтаминского и Быстринского месторождений

В ходе полевых исследований с Шахтаминского и Быстринского месторождений отбирались наименее изменённые породы, что не отрицает незначительного ИХ изменения В результате процессов выветривания. Петрографическое изучение шлифов (рис. 4.1-4.4) не показывает существенных изменений пород. На графиках зависимости K₂O к SiO₂ (рис. 4.7a,4.10a) и Na₂O от SiO₂ (рис. 4.76, 4.106) изменение K₂O и Na₂O незначительны в пределах каждой группы пород и в целом коррелируют с содержанием SiO₂, что указывает на отсутствие значительных потерь К или Na во всей породе. Крупноионные литофильные элементы (LILE; K, Ba, Sr и Cs) подвижны в процессе гидротермального изменения, то есть их концентрации могли сильно измениться в сравнении с исходным содержанием, в то время как высокозарядные элементы (HFSE; Nb, Ta, Y, Zr и Hf) а также РЗЭ считаются неподвижными в процессе гидротермального изменения [Pearce, 1982]. Вариации содержаний подвижных элементов (например, Ba, Sr) от неподвижных элементов (Yb) незначительны в пределах каждой группы пород (Приложение 3). Таким образом, породы с Шахтаминского и Быстринского месторождений не подвержены значительному влиянию процессов вторичного изменения.

Проверка существующих критериев фертильности по валовому составу породы.

Соотношения Sr/Y являются наиболее часто используемым геохимическим признаком по результатам валового состава для различения рудных и безрудных магматических пород. Это соотношение объединяет меру фракционирования плагиоклаза (Sr) и меру фракционирования HREE (Y). Для различных порфировых месторождений это соотношение обычно не ниже 20 [Richards, 2011], при этом в более поздних исследованиях чаще встречаются значения >40 (например, [Chiaradia et al., 2012; Richards et al., 2012]). На рис. 4.15А можно заметить сильное перекрытие для рудоносных и не рудоносных пород Быстринского месторождения. Таким образом, первоначально использовавшееся значение Sr/Y > 20 может быть

рассматривается как необходимый, но не исчерпывающий признак фертильности, и его следует корректировать в соответствии со спецификой региона. Для изучаемого региона предлагается Sr/Y > 65 как более надёжный признак рудоносности.

Группой исследователей [Lu et al., 2017] выявлена закономерность, что значение 10000*(Eu/Eu*)/Y>500 для магматических пород является характерным признаком Си-порфировых систем. В свою очередь, рудоносные гранитоиды Быстринского и Шахтаминского месторождений отделены от безрудных величиной 850. Это значение может рассматриваться как локальная особенность (рис. 4.15Б).

Рис. 4.15. Отношения Sr/Y и 10000(Eu/Eu*)/Y магматических пород Шахтаминского и Быстринского месторождений как показатель рудоносности магмы. Где: BEP – монцониты и монцодиориты ранней фазы шахтаминского комплекса, BLP – поздняя фаза шахтаминского комплекса (BLP1 – гранит-порфиры, а BLP2-5 – гранодиорит-порфиры); SHP – гранодиориты ундинского комплекса, SEP – гранодиориты ранней фазы шахтаминского комплекса (SLP1, – поздняя фаза шахтаминского комплекса (SLP1, – лейкограниты, SLP3, 5 – гранодиорит-порфиры, а SLP4 – гранит-порфиры).

Выводы по главе:

На Быстринском месторождении безрудные породы ранней фазы, порфиры монцонитов и монцодиоритов (ВЕР), прорываются рудоносными породами гранодиорит-порфиров (ВLР2-5) и безрудными гранит-порфирами (BLP1) поздней фазы. На Шахтаминском месторождении породы ранней фазы шахтаминского комплекса, порфировидные гранодиориты (SEP), прорываются безрудными гранодиорит-порфирами SLP3 и SLP5 и лейкогранитами (SLP1-2), и рудоносными гранит-порфирами (SLP4). Все изученные породы обоих месторождений относятся к высококалиевой известково-щелочной и шошонитовой серии, и относятся к гранитам I типа. Схожие редкоземельные и мультиэлементные спектры пород Быстринского и Шахтаминского месторождений, а также пород ундинского комплекса, дают возможность предположить, что составы первичных магм находятся под контролем единого регионального источника.

Возраст пород Быстринского и Шахтаминского месторождений согласуются как с ранее опубликованными данными, так и между собой (163-159 и 164-161 млн лет, соответственно). Подобное согласование возрастов, а также пространственное размещение, даёт основание предположить, что Быстринское и Шахтаминское месторождения образовались в ходе одного регионального магматического события и магматические породы образовались в результате единого процесса. При этом, с точки зрения магматической рудоносности важно, что нет серьёзных различий в составах потенциальных источников и тектонических обстановок, то есть можно рассматривать оба месторождения в рамках единого магматического комплекса.

Установлено, что относительно высокое соотношение Sr/Y можно рассматривать как обязательный, но недостаточный показатель рудоносности, в то время как соотношение 10000*(Eu/Eu*)/Y>850 может служить более точной характеристикой рудоносности порфиров.

Таким образом, формирование магматических пород в рамках единого регионального магматического события и отсутствие значительного влияния вторичных изменений позволяет использовать особенности составов минераловиндикаторов в дополнение к критериям фертильности по валовому составу пород.

Глава 5. Состав минералов-индикаторов

Порфировые месторождения, как уже было отмечено, являются важнейшими источниками Cu, Mo и Au. На основании преобладания того или иного металла нередко всю совокупность порфировых рудно-магматических систем разделяют на группы: Cu–порфировые, Mo–порфировые, Au–порфировые [Sillitoe, 2010]. Одним из ключевых факторов, ответственных за доминированием какого-либо из металлов, считается исходный состав расплава, «набор» и содержание летучих компонентов. При этом, состав летучих компонентов в магматическом расплаве играет решающую роль при формировании порфировой минерализации, поскольку именно они ответственны за комплексы, которые способны к переносу Cu, Au, Mo и других металлов [Piccoli and Candela, 2002; Yardley, 2005; Zhong et al., 2018]. Особо важное потенциальное металлогеническое значение играет фугитивность кислорода, которая определяет форму нахождения и степень окисления серы [Jugo, 2009]. Изучение минералов-индикаторов порфировых месторождений (PIMs) может помочь в исследовании данных факторов. Всего в работе было задействовано три минерала-индикатора: циркон, апатит и биотит.

Так как изученные образцы отбирались в пределах рудных месторождений, в них вероятно наличие гидротермальных и/или гидротермально измененных цирконов, апатитов и биотитов. Согласно ряду исследований, магматический апатит И биотит, без следов поздних гидротермально-метасоматических изменений, могут нести исходную информацию о составе родоначальной магмы [Xing et al., 2020; Pan et al., 2021; Xing et al., 2021; Jacobs et al., 1979; Nash and Crecraft, 1985]. Поэтому возникает проблема доказательства магматического происхождения этих минералов-индикаторов. При этом циркон, благодаря особенностям кристаллической структуры, более устойчив к вторичнымп процессам и доказательством его первично-магматического происхождения служит осциляторная зональность, Th/U отношение, а также содержание лёгких редкоземельных элементов и Ti [Claiborne et al., 2010, Lu et al., 2016; Duan et al., 2019]. При первичности осуществлялся этом, контроль пород как

петрографическими наблюдениями, так и с помощью анализа петрохимических данных. Результаты изучения распределения породообразующих окислов и редких и рассеянных элементов в гранитоидах Быстринского и Шахтаминского массивов указывают на низкую степень вторичных изменений изученных образцов пород.

Во всех изученных породах биотит, как минерал наиболее чувствительный к вторичным изменения, неизменен, вторичная хлоритизация не проявляется (рис. 5.1). В породах Быстринского месторождения магматический биотит гипидиоморфный, реже идиоморфный. В изученных образцах как ранней, так и поздней фазы, в биотите встречаются идиоморфные включения кристаллов апатита. По плоскостям спайности в биотите ранней фазы (ВЕР) встречается аллотриоморфный пирит (рис. 5.1а), а в биотите поздней фазы (BLP1-5) — титанит (рис. 5.1в). Биотит в породах Шахтаминского месторождения, как и в образцах Быстринского месторождения, представлен идиоморфными и гипидиоморфными зернами. Видимой зональности в окраске биотита внутри отдельно взятых зерен не отмечается. В биотите всех пород Шахтаминского массива встречаются включения апатита, а в ранней фазе шахтаминского комплекса (SEP) помимо апатита встречаются включения магнетита (рис. 5.1ж). При этом, апатит встречается в виде включений не только в биотите, но и амфиболе (рис. 5.1ж-и), за исключением апатитов из вмещающих пород ундинского комплекса (SHP), где обнаружены зерна апатита в магнетите и/или в срастании с ним (рис. 5.1д). Реже, в апатите встречаются включения амфибола (рис 5.16). Размер кристаллов апатита обычно <50 мкм в поперечном сечении, и достигает 150 мкм в продольном сечении.

Рис. 5.1. Положение кристаллов апатита и биотита в изученных магматических породах Быстринского (а-г) и Шахтаминского (д-и) месторождений в проходящем свете. Сокращения минералов даны по [Warr, 2021], где Qz – кварц, Pl – плагиоклаз, Kfs – К-полевой шпат, Bt – биотит, Amp – амфибол, Mag – магнетит, Py – пирит, Zrn – циркон, Ttn – титанит, Ap – апатит. Где: BEP – монцониты ранней фазы шахтаминского комплекса, BLP – поздняя фаза шахтаминского комплекса (BLP2-5 – гранодиорит-порфиры); SHP – вмещающие гранодиориты ундинского комплекса, SEP – гранодиориты ранней фазы шахтаминского комплекса, SLP – поздняя фаза шахтаминского комплекса (SLP2 представлены лейкогранитами, а SLP4 – гранит-порфирами).

Положение апатита как включений удлиненно-призматических кристаллов в зернах биотита, амфибола, так и равномерной вкрапленности кристаллов в основной массе порфиров (рис. 5.1), с учетом петрохимических данных, свидетельствует о его первично-магматической природе без признаков вторичных изменений.

Таким образом, полученные составы циркона, апатита и биотита в полной мере соответствуют их первично-магматическим составам, следовательно, полученные в ходе исследования характеристики несут информацию о специфике родоначального расплава.

5.1. Особенности состава циркона

Результаты анализов примесного состава цирконов приведены в Приложении 6 и проиллюстриванны на рисунках с 5.2 по 5.5. Используемые при построении диаграмм, Th/U отношения взяты из Приложения 5, остальные отношения отражены в Приложении 6. Зёрна циркона короткопризматические с хорошо проявленной осциляторной зональностью, на изображениях, полученных методом катодолюминисценции (Приложение 4). Чтобы избежать загрязнения от минеральных и расплавных/флюидных включений, данные с обогащением LREE, Ti>50 г/т [Lu et al., 2016] и Pr_n>10 [Cavosie et al., 2006], полученные в анализах были отброшены, потому что эти анализы либо затронуты вторичным изменением, либо LREE. крошечными минеральными включениями богатыми либо это гидротермальные цирконы [Rayner et al., 2005; Claiborne et al., 2010; Duan et al., 2019]. Европиевая аномалия рассчитывается по формуле: Eu/Eu*=Eu_n/(Sm_n*Gd_n)^{0,5}, ""n" значения, нормированные на хондрит. Оценка температура где производилась по Ті термометру, основанному на содержании Ті в цирконах, по формуле: T(°C)=5080/(6,01-log(x))-273, где "x" – содержание Ті в цирконе [Watson et al., 2006].

Как было показано, уже исследуемые цирконы магматического происхождения, как следствие использовать И ИХ можно В качестве петрогенетических индикаторов. Согласно опубликованным работам [Miles et al., 2013; Bruand et al., 2014; Zirner et al., 2015], элементный состав цирконов может отражать процесс дифференциации магмы, в то время как геохимия породы в целом, отражает конечный состав расплава во время внедрения [Duan et al., 2019].

5.1.1. Геохимия циркона

Быстринское месторождение

Цирконы из всех образцов Быстринского месторождения имеют схожие хондрит-нормированные редкоземельные спектры, характеризующиеся обогащением HREE и обеднением LREE, со значительными положительными Се аномалиями и от слабых до умеренных отрицательных Еи аномалий (рис. 5.2 и 5.3), что является типичным для магматических цирконов. Для цирконов из пород поздней фазы (BLP2-5) европиевая аномалия менее выражена (рис. 5.3), по сравнению с цирконами ранней фазы (BEP) и первого штока гранит-порфиров поздней фазы (BLP1) (рис. 5.2).

Для цирконов образцов монцонит и монцодиоритов ранней фазы шахтаминского комплекса Быстринского месторождения (ВЕР) общее содержание редкоземельных элементов варьирует от 516 до 1206 г/т (ср.зн. 764 г/т). Зерна циркона из ВЕР имеют самые высокие содержания Ті (5,9-18,5 г/т, ср.зн. 11,7 г/т), что соответствует оцененным температурам кристаллизации магматических пород в диапазоне 697-798 °C (ср.зн. 753 °C). Изученные зерна циркона имеют умеренные содержания Нf (7645-10282 г/т, ср.зн. 9086 г/т) и относительно низкие Eu/Eu*, которые варьируют от 0,19 до 0,25 (ср.зн. 0,22).

Цирконы гранит-порфиров (BLP1) также имеют низкие отношения Eu/Eu* (0,06-0,23, ср.зн. 0,14; n = 11) и умеренные содержания Hf (8200-11530 г/т, ср.зн. 9773 г/т) и общее содержание REE (268-1665 г/т, ср.зн. 555 г/т). Содержание Ti в зернах циркона и оценённые температуры кристаллизации составляют 245-12,37 г/т (ср.зн. 5,95 г/т) и 631-760 °C (ср.зн. 688 °C).

Суммарное содержание редкоземельных элементов в цирконах из образцов гранодиорит-порфиров Быстринского месторождения (BLP2-5; n=99) варьирует

между 215 и 1355 г/т (ср.зн. 560 г/т). Анализируемые зерна циркона характеризуют отрицательные Eu аномалии с отношениями Eu/Eu* в диапазоне 0.28-0.93 (ср.зн. 0.55) и имеют умеренное содержание Hf (7727-12160 г/т, ср.зн. 9418 г/т). Цирконы характеризуются значительно более низкими концентрациями Ti (1,22-11,48 г/т, ср.зн. 2,69 г/т; за исключением двух анализов с содержанием Ti в 18 и 23 г/т соответственно). Полученные с помощью Ti-в-цирконового термометра температуры кристаллизации магматических пород находятся в диапазоне 585-753 °C (ср.зн. 629 °C), что значительно ниже, чем для BEP и BLP1.

Шахтаминское месторождение

Цирконы из всех образцов Шахтаминского месторождения имеют схожие хондрит-нормированные редкоземельные спектры, характеризующиеся обогащением HREE и обеднением LREE, с положительными Се аномалиями и от слабых до умеренных отрицательных Eu аномалий, что является типичным для магматических цирконов (Hoskin and Schaltegger, 2003). Для цирконов из гранит-порфиров поздней фазы (SLP4) европиевая аномалия менее выражена, по сравнению с Eu аномалией из других пород Шахтаминского месторождения (рис. 5.4 и 5.5).

Содержание суммы редкоземельных элементов (REE) и Hf в зернах циркона из вмещающих гранодиоритов ундинского комплекса (SHP) варьирует между 506 и 1044 г/т (ср.зн. 809 г/т) и 8281-10290 г/т (ср.зн. 9584 г/т), соответственно. Эти цирконы показывают отрицательные Eu аномалии с отношениями Eu/Eu* в диапазоне 0,16-0,4 (ср.зн. 0,24) и низкое содержание Ti (2,96-6,41 г/т, ср.зн. 3,9 г/т). Температура кристаллизации находится в диапазоне 644-703 °C (ср.зн. 662 °C).

Рис. 5.2. Хондрит-нормированные редкоземельные спектры цирконов из магматических пород Быстринского месторождения (ВЕР – монцониты и монцодиориты ранней фазы шахтаминского комплекса, BLP1 представлена гранит-порфирами). Значения для нормирования взяты из [Sun and McDonough, 1989].

Для зёрен циркона из монцонитов ранней фазы (SRP) содержание суммы редких земель изменяется от 324 до 699 г/т (ср.зн. 430 г/т) и содержание Hf 9606-11292 г/т (ср.зн. 10408 г/т). Зёрна циркона показывают отрицательную европиевую аномалию, со значением Eu/Eu* в диапазоне от 0,15 до 0,20 (ср.зн. 0,18) и высокими содержаниями Ti от 9,20 до 24 г/т (среднее = 18,1 г/т). По Ti термометру оценённые температуры кристаллизации составляют от 734 °C до 824 °C (ср.зн. 794 °C).

Зерна циркона гранодиориотов ранней фазы Шахтаминского месторождения (образцы SEP; n=15) характеризуются низким содержанием суммы редких земель (302-686 г/т, ср.зн. 452 г/т) и содержанием Hf 7867-9859 г/т (ср.зн. 8555 г/т), и демонстрируют относительно низкие значения Eu/Eu*, которые варьируют от 0,17 до 0,33 (ср.зн. 0,26), и высокие содержания Ti (4,6-20 г/т, ср.зн. 11,6 г/т). Оцененные по Ti термометру температуры кристаллизации составляют от 677 °C до 806 °C (ср.зн. 750 °C).

Схожие с цирконами гранодиоритов ранней фазы (SEP) характеристики получены при анализе цирконов из поздней фазы Шахтаминского месторождения (SLP1-3 и SLP5; n=77). Изученные образцы имеют относительно низкое содержание суммы редкоземельных элементов (293-1312 г/т, ср.зн. 519 г/т) и умеренное содержание Hf (7738-10216 г/т, ср.зн. 8914 г/т), а также низкое отношение Eu/Eu* (0,15-0,4, ср.зн. 0,27). Содержание Ti в цирконах (1,5-20,87 г/т, ср.зн. 9,5 г/т) по которым рассчитанные температуры кристаллизации соответствуют диапазону от 598 °C до 810 °C (ср.зн. 726 °C).

Рис. 5.4. Хондрит-нормированные редкоземельные спектры цирконов из магматических пород Шахтаминского месторождения (SHP – вмещающие гранодиориты ундинского комплекса, SRP – монцониты и SEP – гранодиориты ранней фазы шахтаминского комплекса, SLP – поздняя фаза шахтаминского комплекса (SLP1,2 – лейкограниты, SLP3 – гранодиорит-порфиры). Значения для нормирования взяты из [Sun and McDonough, 1989].

Рис. 5.5. Хондрит-нормированные редкоземельные спектры цирконов из магматических пород Шахтаминского месторождения (SLP5 – гранодиорит-порфиры, а SLP4 – гранит-порфиры поздней фазы шахтаминского комплекса). Значения для нормирования взяты из [Sun and McDonough, 1989].

Зерна циркона гранит-порфиров Шахтаминского месторождения (SLP4) имеют высокие отношения Eu/Eu* (0,26-0,76, ср.зн. 0,59; n=15) и низкие содержания Ti (1,5-12 г/т, ср.зн. 3,31 г/т) и более низкие расчетные температуры кристаллизации по Ti термометру (598 °C - 757 °C, ср.зн. 642 °C). Содержание ΣREE и Hf в зернах циркона из SLP4 варьирует от 237 до 815 г/т (ср.зн. 524 г/т) и от 7611 до 10739 г/т (ср.зн. 8890 г/т), соответственно.

5.1.2. Рассеянные элементы в цирконе как индикатор дифференциации магмы

Содержание Ті в цирконе уменьшается с увеличением содержания кремнезема в породах и может использоваться в качестве индикатора температуры [Watson et al., 2006; Ferry and Watson 2007; Fu et al. 2008]. В данной работе температура кристаллизации циркона оценивалась по содержанию титана с помощью уравнения, предложенного Watson et al., 2006. Содержания элементов и их соотношения показывают изменение с температурой из-за фракционной кристаллизации. При фракционной кристаллизации образуются остаточные расплавы с относительно высоким содержанием U и Th в цирконе, и как следствие низкого Th/U отношения; кроме того, Hf увеличивается в цирконе с остыванием магмы [Miller and Wooden, 2004; Harrison et al., 2007; Deering et al., 2016; Lee et al., 2017].

Сходные Th/U отношения в цирконах из Шахтаминского и Быстринского месторождений, закономерно уменьшаются с понижением температуры (рис. 5.6а и рис. 5.7а), что указывает на то, что породы данных месторождений имеют сходные истории кристаллизации магмы [Miller and Wooden 2004], как минимум в отношении Th и U. На рисунках 5.6б и 5.7б показаны изменения температуры кристаллизации в зависимости от концентрации Hf. Для цирконов из безрудных пород (BEP, BLP1, SEP, SHP) заметна обратная корреляция между температурой и содержанием Hf, то есть увеличение содержания Hf с понижением температуры. Такая закономерность справедлива для образцов с расчетной температурой кристаллизации выше 675 °C. Для цирконов из пород, с которыми связано

оруденение (BLP2-5, SLP4), расчетная температура кристаллизации варьирует от 585 °C до 675 °C и соответствует кристаллизации циркона в почти эвтектических условиях [Fu et al., 2008]; также наблюдаются значительные вариации в содержании гафния (8000-11000 г/т) независимо от изменения температуры. Описанная тенденция увеличения содержания Hf в цирконах после достижения минимальной температуры может указывать на продолжающееся отделение циркона от оставшегося расплава [Wooden et al., 2006]. Для крупнейших порфировых месторождений Чили, таких как Чукикамата, Эсперанса и Мирадор [Pizarro et al., 2020], описаны тенденции к увеличению содержания гафния в узком интервале температур (вблизи к эвтектике). На основе вышесказанного можно предположить данную закономерность как индикатор фертильности магмы.

Для цирконов из гранодиорит-порфиров и гранит-порфиров (BLP2-5, SLP4), с которыми связано оруденение Шахтаминского и Быстринского месторождений, наблюдается уменьшение Th/U отношения и увеличения Ce/Sm и Yb/Gd отношений с понижением температуры (рис. 5.8 и 5.9). Увеличение Ce/Sm и Yb/Gd является результатом преимущественного удаления MREE (Sm, Gd) из расплава по сравнению с LREE (Ce) и HREE (Yb), что может быть связано с кристаллизацией апатита, титанита и роговой обманки [Klein et al., 1997; Prowatke and Klemme, 2006; Lee et al., 2017].

Для цирконов монцонитов и монцодиоритов ранней фазы Быстринского месторождения (BEP) характерны отношения Ce/Sm и Yb/Gd связанные с фракционированием апатита, а для первого штока поздней фазы (BLP1) с фракционированием апатита и титанита. Для пород поздней фазы, связанных с минерализацией (BLP2-5), скорее всего характерна фракционная кристаллизация роговой обманки, титанита и апатита (рис 5.8а).

Для цирконов из гранодиоритов Шахтаминского месторождения ранней фазы (SEP) и для поздней фазы штоков 1-3 (SLP1-3) характерны отношения Ce/Sm и Yb/Gd связанные с фракционированием титанита и апатита, в то время как для цирконов гранит-порфиров и гранодиорит-порфиров (SLP4-5) отчётлива более

сложная связь с фракционированием титанита, апатита и роговой обманки (рис 5.9а).

Рис. 5.6. Графики, показывающие взаимосвязь между Th/U и содержанием Hf в цирконах относительно рассчитанных температур кристаллизации циркона для Быстринского месторождения. Где: BEP – монцониты и монцодиориты ранней фазы шахтаминского комплекса, BLP – поздняя фаза шахтаминского комплекса (BLP1 – гранит-порфиры, а BLP2-5 – гранодиорит-порфиры).

Рис. 5.7. Графики, показывающие взаимосвязь между Th/U и содержанием Hf в цирконах относительно рассчитанных температур кристаллизации циркона для Шахтаминского месторождения. Где: SHP — вмещающие гранодиориты ундинского комплекса, SRP — монцониты и SEP — гранодиориты ранней фазы шахтаминского комплекса, SLP — поздняя фаза шахтаминского комплекса (SLP1,2 представлены лейкогранитами, SLP3,5 — гранодиорит-порфиры, а SLP4 — гранит-порфиры).

На графике отношений Th/U к Yb/Gd показана кривая линия, отражающая путь фракционирования кристаллов (рис. 5.86 и 5.96). Большинство анализов, для

цирконов из пород (BLP2-5, SLP4), с которыми связано оруденение, наблюдается уменьшение Th/U отношения. Анализы цирконов из безрудных интрузий (BEP, BLP1, SEP, SLP1-3, SLP5), формируют линейные тренды смешения.

Рис. 5.8. Графики, показывающие взаимосвязь между Ce/Sm и Th/U отношениями к Yb/Gd в цирконах для Быстринского месторождения. Тренды смешения и фракционной кристаллизации взяты из [Lee et al., 2017].

Рис. 5.9. Графики, показывающие взаимосвязь между Ce/Sm и Th/U отношениями к Yb/Gd в цирконах для Шахтаминского месторождения. Тренды смешения и фракционной кристаллизации взяты из [Lee et al., 2017].

Данные результаты по Шахтаминскому и Быстринскому месторождению подтверждают предположение о том, что эволюция исходной магмы в более

кислую за счёт фракционной кристаллизации является более благоприятной для образования рудоносных порфиров, в то время порфиры, с признаками коровой контаминации не формируют промышленную минерализацию [Lee et al., 2017].

5.1.3. Оценка окислительно-восстановительных условий

Циркон обладает высокой температурой закрытия, широко распространён в магматических породах и устойчив к процессам выветривания или гидротермального изменения, то есть может использован для оценки состояния окисленности магмы. Цирконы, которые кристаллизовались из окисленных магм должны быть обогащены Ce^{4+} и Eu^{3+} , то есть иметь положительную Ce и незначительную отрицательную Eu аномалию, вплоть до её отсутствия [Ballard et al., 2002; Burnham and Berry, 2012; Trail et al., 2012; Smythe and Brenan, 2016].

Цирконы из поздних фаз шахтаминского комплекса Быстринского месторождения (рис. 5.10) и Шахтаминского месторождения (рис. 5.11) с которыми связано оруденение (SLP4, BLP2-5) имеют Eu/Eu* > 0,4 (Eu/Eu*= Eu_n/(Sm_n*Gd_n)^{0,5}, это традиционный метод расчёта европиевой аномалии). Цирконы из ранних фаз (BEP, SEP, SHP) и поздних фаз (BLP1, SLP1-3, SLP5) характеризуются значительно меньшими значениями Eu/Eu*. Подобные закономерности прослеживаются на многочисленных порфировых месторождениях мира [Ballard et al., 2002; Dilles et al., 2015; Lu et al., 2016; 2017; Pizzaro et al., 2020].

Следует отметить, что на величину Eu аномалии может влиять фракционная кристаллизация плагиоклаза [Richards, 2011; Wang et al., 2014; Deering et al., 2016; Lu et al., 2016]. Если фракционирование плагиоклаза происходило в ходе эволюции магматического расплава, то можно наблюдать линейный тренд уменьшения Eu/Eu* со временем и/или понижением температуры. Отношение Th/U закономерно уменьшается с понижением температуры (рис. 5.86 и 5.96), что даёт право рассматривать его как функцию времени.

Рис. 5.10. Графики зависимости Eu/Eu* к Th/U и Eu/Eu* к Yb/Dy по анализам зерен циркона из пород Быстринского месторождения. Вектор увеличения содержания воды взят из [Wen et al., 2020], а тренд фракционирования плагиоклаза взят из [Zhang et al., 2020]. Где: BEP – монцониты и монцодиориты ранней фазы шахтаминского комплекса, BLP – поздняя фаза шахтаминского комплекса (BLP1 – гранит-порфиры, а BLP2-5 – гранодиорит-порфиры).

Рис. 5.11. Графики зависимости Eu/Eu* к Th/U и Eu/Eu* к Yb/Dy по анализам зерен циркона из пород Шахтаминского месторождения. Вектор увеличения содержания воды взят из [Wen et al., 2020], а тренд фракционирования плагиоклаза взят из [Zhang et al., 2020]. Где: SHP – вмещающие гранодиориты ундинского комплекса, SRP – монцониты и SEP – гранодиориты ранней фазы шахтаминского комплекса, SLP – поздняя фаза шахтаминского комплекса (SLP1,2 – лейкограниты, SLP3,5 – гранодиорит-порфиры, а SLP4 – гранит-порфиры).

Для цирконов из рудоносных пород (SLP4, BLP2-5) не обнаруживается связи между Еu аномалией и Th/U отношением (рис. 5.10а и 5.11а), в то время как для безрудных пород (SEP, SLP1-3, SLP5, BEP, BLP1) прослеживается слабый линейный тренд уменьшения Eu/Eu*. Исходя из этого была предположена значительная роль фракционной кристаллизации плагиоклаза в ходе эволюции магматического расплава для безрудных пород. Тем временем, считается, что высокое содержание воды в магме (≥4 мас. % H₂O), подавляет раннее фракционирование плагиоклаза на глубоких уровнях коры (при высокой температуре и давлении) [Alonso-Pérez et al., 2009; Richards, 2011; Bissig et al., 2017; Rottier et al, 2020], что в свою очередь даёт значения Eu/Eu* близких к единице в эволюционировавших водосодержащих расплавах [Richards and Kerrich, 2007; Richards et al., 2012; Chiaradia et al., 2012; Loucks, 2014]. В этом случае амфибол приобретает доминирующую роль во фракционной кристаллизации [Tiepolo and Tribuzio, 2008; Chiaradia et al., 2011, 2012; Richards et al., 2012]. Следует отметить, что амфибол преимущественно содержит MREE по сравнению с HREE, что приводит к увеличению отношения Yb/Dy в остаточном расплаве [Davidson et al., 2007]. Таким образом, можно предположить, что увеличение отношения Yb/Dy вместе с Eu аномалией является свидетельством фракционной кристаллизации амфибола при подавленной кристаллизации плагиоклаза, а также высокого содержания магматической воды. На рисунках 5.10 и 5.11 можно выделить дискретные поля (Yb/Dy > 4 и Eu/Eu* > 0,4), отделяющие рудоносные породы от безрудных. Увеличение Eu/Eu* и Yb/Dy отношений может свидетельствовать об увеличении содержания воды в рудоформирующих магмах. Данные результаты согласуются с высокими значениями Sr/Y отношения для рудоносных пород (рис. 4.5г и 4.8г), поскольку это отношение увеличивается при фракционировании амфибола из водосодержащего расплава и уменьшается при кристаллизации расплава [Richards, 2011].

Магматические цирконы обычно обогащены Се относительно соседних REE, поэтому соотношения Се/Се* в цирконе служат альтернативным показателем

магматической степени окисления [Zhong et al., 2019]. Высокая степень окисленности магмы приведет к преобладанию Ce4+ в исходных расплавах и позволит большему количеству церия встроиться в кристаллическую структуру циркона [Ballard et al., 2002; Zhong et al., 2019]. Традиционный метод расчета Се аномалии, как и Еи аномалии, основан на содержании двух соседних элементов $(Ce/Ce^* = Ce_n/(La_n^*Pr_n)^{0.5})$. Однако этот подход имеет много ограничений. Наиболее важной проблемой традиционного подхода является чрезвычайно низкое содержание La и/или Pr; в большинстве случаев оно ниже или незначительно выше пределов обнаружения LA-ICP-MS [Zhong et al., 2019]. Высокие содержания La и Pr цирконах часто интерпретируются как свидетельство в наличия микровключений минералов/флюидов/расплавов, содержащих обогащенные LREE минеральные фазы [Zhong et al., 2018, 2019; Zou et al., 2019]. Было предложено несколько альтернативных вариантов расчета Се аномалии, разбор которых приведён в ряде исследований [Zhong et al., 2019, Zou et al., 2019, Lee et al., 2021], среди них наиболее распространенными являются "Nd-Sm" метод (Ce/Ce*= Ce_n/(Nd_n²/Sm_n) [Loader et al., 2017]. Каждый метод имеет свои положительные и отрицательные стороны, в связи с этим научным руководителем был предложен свой метод количественной оценки Се аномалии.

В отличие от подхода, который предполагает использование логарифмической функции нормированных по хондриту РЗЭ [Zhong et al., 2019], в данной работе используется функция степенной зависимости ($y = a*x^b$, где "x" - индексный номер REE, "y" - нормированный по хондриту REE). При этом почти все расчетные кривые характеризуются высоким достоверным коэффициентом детерминации R2 >0,95 [Nevolko et al., 2021].

Полученные данным методом значения позволили использовать всю базу данных для построения графиков Eu/Eu* к Ce/Ce* (рис. 5.126 и 5.136; n=243), тогда как рассчитанные традиционным методом - только треть значений (рис. 5.12а и 5.13а; n=83). Цирконы из пород SLP4 и BLP2-5, Шахтаминского и Быстринского месторождений соответственно, попадают в поле рудоносных пород, что полностью соответствует приведенным выше диаграммам. Таким образом, данный

метод расчета Се аномалии является работоспособным и может быть использован для оценки рудоносности магмы по составу цирконов.

Рис. 5.12. Графики зависимости Eu/Eu* к Ce/Ce* по анализам зерен циркона из пород Быстринского месторождения. На рисунке (а) отношения оценены традиционным методом, а на рисунке (б) методом степенной зависимости [Nevolko et al., 2021].

Рис. 5.13. Графики зависимости Eu/Eu* к Ce/Ce* по анализам зерен циркона из пород Шахтаминского месторождения. На рисунке (а) отношения оценены традиционным методом, а на рисунке (б) методом степенной зависимости [Nevolko et al., 2021].

Многие предыдущие исследования показали, что отношения Eu/Eu* также Се/Се* в цирконах, эффективны для отличия фертильных порфиров от безрудных по составу цирконов [Ballard et al., 2002; Lu et al., 2016; Zhong et al., 2019]. Однако, для Се/Се* наблюдается сильное перекрытие рассчитанных значений и качество разделения довольно низкое (рис. 5.12 и 5.13). Более надёжным методом, чем цериевая аномалия, является численный метод определения степени окисленности магматического расплава, основанный на концентрациях Ce, Ti и U в цирконах [Loucks et al., 2020]. При этом, содержание Се зависит не только от фугивности кислорода, но и от других факторов [Loader et al., 2022]. Рассчитанные значения фугитивности кислорода (lgfO₂) относительно фаялит-магнетит-кварцевого буфера (FMQ) представлены в табл. 1. В целом, рассчитанные ΔFMQ как рудоносных порфиров, так и безрудных, сильно перекрываются (рис. 5.14А). Медианные значения ∆FMQ>1 прослеживаются в трёх из пяти штоков рудоносных порфиров (BLP2, BLP4 и SLP4). Примечательно, что интерквартильный размах (IQR) оценённых ΔFMQ максимальный для образцов штока гранодиорит-порфиров (BLP3) и вполтора раза выше, чем в остальных оценках, и является одной из минимальных оценок на Быстринком месторождении, при медианном значении $\Delta FMQ = +0.81$.

Среди соотношений рассеянных элементов циркона и рассчитанных параметров предполагается два наиболее эффективных для определения рудоносных порфиров. Первый основан на графике европиевой аномалии к фугитивности кислорода относительно фаялит-магнетит-кварцевого буфера с использованием рассчитанных значений (Eu/Eu* к Δ FMQ) (рис. 5.14A). Второй подход основан на использовании графика европиевой аномалии Eu/Eu* к Yb/Dy отношению, которые позволяют отличать рудоносные породы от безрудных по степени окисления и фракционированию амфибола (рис. 5.14Б). Описательные статистики для Δ FMQ, Eu/Eu*, Yb/Dy представлены в табл. 1.

Рис. 5.14. Графики зависимости (A) Eu/Eu* к Δ FMQ и (Б) Yb/Dy к Eu/Eu* по анализам зерен циркона из пород Быстринского и Шахтаминского месторождения. На графике (A) Eu/Eu* и Δ FMQ представлены в виде медианных значений (точки) и межквартильного интервала (минимальные и максимальные границы планок погрешности соответствуют 1-му и 3-му квартилю). Δ FMQ рассчитано по [Loucks et al., 2020].

Таблица 1. Описательные статистики для Δ FMQ, Eu/Eu*, Yb/Dy цирконов Быстринского и Шахтаминского месторождений. Где Q1 и Q3 это первый и третий квартили, соответственно, а IQR – интерквартильный размах. Обычным шрифтом напечатаны безрудные порфиры, а жирным выделены рудоносные порфиры,

				ΔFMQ						Eu/Eu*						Yb/Dy					
Месторождение	Место отбора	Порода	Колличество анализов	Медиана	QI	Q3	Минимум	Максимум	IQR	Медиана	Q1	Q3	Минимум	Максимум	IQR	Медиана	Q1	Q3	Минимум	Максимум	IQR
Быстринское	BEP	монцониты и монцодиориты	18	0,06	-0,24	0,34	-0,65	1,29	0,58	0,21	0,20	0,23	0,19	0,25	0,03	2,60	2,49	3,03	2,33	3,69	0,54
	BLP1	гранит-порфиры	11	0,70	0,18	0,94	-2,57	1,15	0,76	0,16	0,09	0,19	0,06	0,23	0,10	3,92	3,53	5,38	2,88	7,80	1,85
	BLP2	гранодиорит-порфиры	39	1,67	1,34	1,95	-0,09	2,64	0,62	0,58	0,54	0,62	0,33	0,70	0,09	5,38	5 <i>,</i> 06	5,93	3,93	6,11	0,87
	BLP3	гранодиорит-порфиры	7	0,81	0,05	1,62	-0,17	1,67	1,58	0,50	0,28	0,56	0,28	0,64	0,28	5,67	3,39	6,90	2,74	6,96	3,52
	BLP4	гранодиорит-порфиры	37	1,37	1,12	1,64	0,66	2,07	0,52	0,58	0,53	0,65	0,38	0,93	0,12	5,91	5,32	6,19	4,63	6,42	0,87
	BLP5	гранодиорит-порфиры	16	0,73	0,50	1,36	0,12	1,93	0,86	0,47	0,35	0,54	0,31	0,67	0,18	5,33	4,98	5,99	3,84	7,49	1,00
Шахтаминское	SHP	гранодиориты	17	1,93	1,24	2,31	0,54	2,88	1,07	0,25	0,20	0,30	0,16	0,44	0,10	5 <i>,</i> 03	4,59	5,24	3,37	5,47	0,65
	SRP	монцониты	9	0,56	0,32	0,83	0,11	1,16	0,51	0,19	0,17	0,19	0,15	0,23	0,03	2,86	2,31	3,04	2,24	3,92	0,73
	SEP	гранодиориты	15	0,47	0,32	0,67	0,08	1,76	0,35	0,26	0,23	0,30	0,17	0,33	0,07	3,73	3,30	3,86	2,79	4,44	0,56
	SLP1	лейкограниты	5	1,04	0,85	1,58	0,77	1,59	0,74	0,18	0,18	0,26	0,18	0,26	0,08	3,70	3,25	4,54	2,88	4,90	1,29
	SLP2	лейкограниты	14	1,26	0,65	1,62	0,17	2,94	0,98	0,27	0,26	0,31	0,19	0,38	0,05	3,81	3,15	4,14	2,70	5,47	0,99
	SLP3	гранодиорит-порфиры	37	0,74	0,57	0,86	0,13	1,89	0,29	0,25	0,22	0,27	0,15	0,40	0,05	3,60	3,11	3,79	2,67	4,27	0,69
	SLP4	гранит-порфиры	15	1,85	1,02	2,10	0,30	2,29	1,08	0,63	0,45	0,72	0,26	0,76	0,27	5,32	4,87	5,93	3,93	8,38	1,07
	SLP5	гранодиорит-порфиры	21	1,50	1,06	2,03	0,37	2,66	0,97	0,29	0,26	0,31	0,22	0,40	0,05	4,46	3,76	4,96	3,20	5,42	1,19

Приведённые выше данные позволяют сформулировать первое защищаемое положение:

Рудопродуцирующие магматические породы на Быстринском и Шахтаминском месторождениях представлены гранодиорит-порфирами и гранитпорфирами, сформированными в позднеюрское время (160-162 млн лет) на заключительном этапе формирования многофазных массивов шахтаминского комплекса. Расплавы, из которых образовались рудопродуцирующие гранитоиды, характеризовались высокой степенью водонасыщенности и окисленности, о чем свидетельствует геохимические характеристики их цирконов (рассчитанные аномалии Eu/Eu*>0,4, и отношение Yb/Dy>4).

5.2. Особенности состава апатита

Магматический апатит обычно формируется на ранних стадиях эволюции расплава как ликвидусная фаза; более поздняя гидротермальная генерация минерала образуется во время отделения гидротермального флюида [Bouzari et al., 2016]. Большинство проанализированных зерен апатита во всех изученных магматических породах находятся в виде включений в темноцветных минералах или в виде кристаллов в основной массе порфиров, что может свидетельствовать об их магматическом генезисе (рис. 5.1). Результаты анализа состава основных компонентов и рассеянных элементов апатита приведены в Приложении 7 и Приложении 8, соответственно.

5.2.1. Макро- и микропримеси в апатите

Макрокомпоненты и летучие

Содержание главных компонентов в апатите близки и варьируют в пределах 1-4 мас.% оксида элемента: так на Быстринском месторождении содержание CaO в апатите изменяется от 52,95 до 55,20 мас.%, а P_2O_5 от 40,15 до 42,04 мас.%, в апатите Шахтаминского месторождения содержание CaO изменяется от 51,85 до 55,15 мас.%, P_2O_5 – от 40,09 до 42,42 мас.%. Во всех случаях отмечаются примеси Mn, Fe, Na, Si, Sr, Ce и Nd, суммарное содержание оксидов элементов достигает 1,10 мас.%. Все проанализированные апатиты содержат в своем составе F и Cl, содержания которых варьируют, но при пересчете на формульные количества фтора всегда больше, чем хлора в общей кристаллохимической позиции (рис. 5.15), что типично для апатита магматических пород [Piccoli and Candela, 2002]. На диаграмме SiO₂–MnO большинство точек состава апатита попадают в поле магматического минерала (рис. 5.15в-г), что дополнительно указывает на его первично-магматическое происхождение.

Для всех зерен апатита наблюдается сильная отрицательная корреляция (r = -0,87) между F и Cl (рис. 5.16в). На Быстринском месторождении для апатита из гранодиорит-порфиров рудоносных штоков (BLP2–5) и пород ранней фазы (BEP) характерно умеренное содержание F (от 1,07 до 2,45 мас.%, ср. зн. 1,54 и 1,3-1,75

мас.%, ср.зн. 1,49, соответственно). Тогда как для апатита из гранит-порфира поздней фазы (BLP1), напротив, установлено более высокое содержание F (1,89-3,25 мас.%, ср. зн. 2,36) (рис. 5.16а). Апатит магматических пород Шахтаминского месторождения характеризуется высоким содержанием F (ср. зн. 2,47 мас.%) по сравнению с апатитом гранитоидов Быстринского месторождения (ср. зн. 1,78 мас.%) (рис. 5.16а,б).

Содержание Cl в апатите максимально для минерала из монцонитов ранней фазы (BEP, 0.94-1.93 мас.%, ср.зн. 1,44 мас.%), а так же гранит-порфиров и гранодиорит-порфиров поздней фазы (BLP2–5, 0,97–1,36 мас.%, ср. зн. 1,17 мас.%) Быстринского месторождения. Минимальные содержание Cl установлено в апатите из гранит–порфиров первого штока поздней фазы (BLP1, 0,19-0,72 мас.%, ср.зн. 0,36) (рис. 5.16а,г). На Шахтаминском месторождении повышенное содержание Cl установлено в апатите гранодиорит–порфиров и гранит-порфиров поздней фазы (SLP3- SLP5, от 0,06 до 0,71 мас.%, ср.зн. 0,34, 0,35 и 0,52 мас.%, ср. зн. 0,39). Минимальное содержание Cl типично для апатита вмещающих гранодиоритов ундинского комплекса (SHP, 0,11-0,24 мас.%, ср.зн. 0,17 мас.%) и лейкогранитов поздней фазы (SLP1 и SLP2; 0,03-0,29 мас.%, ср. зн. 0,15 и 0,6 мас. %, соответственно) (рис. 5.166,д). При этом, содержание Cl в изученных апатитах ниже (до 2 мас.%), чем в типичных гидротермальных апатитах (более 3%; [Palma et al., 2019]).

Формульные количества ОН-группы в апатитах рассчитаны по стехиометрии, основанной на 13 анионах и предполагающей, что место галогена полностью занято: $X_{F-ap} + X_{Cl-ap} + X_{OH-ap} = 1$, где X – мольные доли F, Cl и OH [Piccoli and Candela, 2002]. Содержание OH в апатите рудоносных магматических пород Быстринского месторождения (BLP2–5) варьирует от 0,23 до 0,53 ф.е. (ср. зн. 0,42), тогда как для апатита из безрудных монцонит–порфиров BLP1 характерно более низкое значение (0,10–0,46 ф.е., ср. зн. 0,34 ф.е.) (рис. 5.15а). Для пород Шахтаминского месторождения содержание OH (0,06–0,51 ф.е., ср. зн. 0,30 ф.е.) в апатите установлены в породах поздних фаз SLP3–5; в то же время, для апатитов

Рис. 5.15. Диаграммы состава апатита в координатах Cl–OH–F (формульные единицы) и SiO₂-MnO (мас.%): (а,в) – апатиты из гранитоидов Быстринского месторождения; (б,г) -Шахтаминского месторождения. Границы апатиты ИЗ гранитоидов полей гидротермального и магматического апатита на графиках (а-в) согласно [Chen et al., 2017]. Где: BEP – монцониты и монцодиориты ранней фазы шахтаминского комплекса, BLP – поздняя фаза шахтаминского комплекса (BLP1 представлена гранит-порфирами, а BLP2-5 – гранодиорит-порфирами); SHP – вмещающие гранодиориты ундинского комплекса, SEP – гранодиориты ранней фазы шахтаминского комплекса, SLP – поздняя фаза шахтаминского комплекса (SLP1,2 представлены лейкогранитами, SLP3,5 - гранодиоритпорфирами, а SLP4 – гранит-порфирами).

лейкогранитов (SLP1–2) рассчитанные параметры ниже (0,02–0,26 ф.е., ср. зн. 0,19 ф.е.) (рис. 5.15б).

Рис. 5.16. Диаграммы состава апатита из магматических пород в координатах F–Cl и Cl–SO₃ (мас.%): (а, г) – апатиты из гранитоидов Быстринского месторождения; (в, е) - вся выборка с разделением на апатиты из рудоносных и безрудных пород.

Установлено повышенное содержание серы в апатите из магматических пород поздней фазы Быстринского месторождения, как рудоносных гранодиоритпорфиров (BLP2-5), так и безрудных гранит-порфиров (BLP1) – ср. зн. 0,17 и 0,13 мас.% SO₃, соответственно. При этом содержание серы в апатите из монцонитов ранней фазы (BEP) не превышает 0,04 мас.% SO₃, за исключением одного анализа с содержанием 0,32 мас.% SO₃ (рис. 5.16г). Для апатита лейкогранитов поздней фазы (SLP1-2) Шахтаминского месторождения характерно относительно повышенное содержание серы (0,14 мас.% SO₃), минимальные значения выявлены для апатита вмещающих пород ундинского комплекса (SHP) и гранодиоритов ранней фазы шахтаминского комплекса (SEP) – 0,05 и 0,11 мас.% SO₃, Наибольшее содержание серы установлено в порфирах, соответственно. слагающих штоки с третьего по пятый (SLP3-5, ср. зн.: 0,14, 0,20, 0,19 мас.% SO₃, соответственно) (рис. 5.16д).

Микропримеси в апатите

Содержание Мп в апатите гранитоидов Быстринского месторождения варьирует от 240 до 3300 г/т. В апатите из гранит-порфиров четвертого (рудоносного) штока Шахтаминского месторождения (SLP4) содержание Мп варьирует от 340 до 570 г/т (ср. зн. 401), в то время как в апатите из пород безрудных штоков наблюдаются более значительные концентрации (230–4200 г/т, ср. зн. 1050).

Содержание Sr в апатите гранитоидов Шахтаминского месторождения для порфиров четвертого и пятого штоков (SLP4–5) соответствует диапазону от 200 до 1200 г/т (ср. зн. 811), при этом, для апатита безрудных штоков значения варьируют от 110 до 1000 г/т (ср. зн. 375). На Быстринском месторождении в апатите из монцонитов ранней фазы (BEP) и гранодиорит-порфиров пятого штока (BLP5) содержание Sr повышено (600–940 г/т, ср. зн. 802 и 890–1100 г/т, ср. зн. 993, соответственно) относительно апатита штоков с первого по четвертый (BLP1–BLP4) (110–1300 г/т, ср. зн. 350).

Содержание Th и U в апатите гранитоидов из штоков BLP1–2 Быстринского месторождения повышено (18–130 и 8–80 г/т, соответственно), относительно

апатита из гранитоидов штоков BLP4–5 (10–90 и 8–45 г/т, соответственно). Для апатита из монцонитов ранней фазы (BEP) характерны аналогичные невысокие значения Th (30–50 г/т) и U (26–50 г/т). На Шахтаминском месторождении более низкое содержание Th (19–50 г/т) и U (13–27 г/т) присуще апатиту из гранитпорфиров 4 рудоносного штока (SLP4), для апатита из остальных безрудных пород вариации Th и U более широкие (19–220 и 6–70 г/т, соответственно).

Спектры распределения REE в апатитах из всех магматических ассоциаций характеризуются пологой конфигурацией с незначительным обогащением LREE относительно HREE и отчетливо выраженной европиевой аномалией (рис. 5.17а-г). Апатит из рудоносных гранит-порфиров Шахтаминского месторождения (SLP4) характеризуется наименьшим суммарным содержанием редкоземельных элементов, которое варьирует от 5306 до 7366 г/т (ср. зн. 6650). Апатит из безрудных гранитоидов Шахтаминского месторождения характеризуется суммарным содержанием редкоземельных элементов в интервале от 2752 до 16299 г/т (ср. зн. 10884 г/т) (рис. 5.17а,в). Для апатита магматических пород Быстринского месторождения прослеживается тенденция уменьшения общего содержания REE от штока BLP2 к BLP5 (BLP2: 5798–9674 г/т, ср. зн. 8223; BLP4: 6169–8846 г/т, ср. зн. 7182; для BLP5: 5240-8596 г/т, ср. зн. 6537), с которыми связано порфировое оруденение (рис. 5.17б,г).

Установлено, что для апатита из гранит-порфиров рудоносного штока Шахтаминского месторождения (SLP4) значение Eu/Eu* варьирует от 0,33 до 0,66 (ср. зн. 0,54). На Быстринском месторождении в апатите рудоносных порфиров (BLP2–5) значение Eu/Eu* составило от 0,36 до 0,62 (ср. зн. 0,47). При этом для апатитов из пород рудоносных штоков, европиевая аномалия менее выраженная (рис. 5.17в, г), а апатит из пород безрудных штоков характеризуется более выраженной европиевой аномалией, численное значение которой варьируют от 0,05 до 0,49 (ср. зн. 0,26).

Рис. 5.17. Нормированные на хондрит [Sun, McDonough, 1989] спектры редкоземельных элементов в апатите из магматических пород Шахтаминского (а, в) и Быстринского месторождений (б, г). Где: ВЕР – монцониты и монцодиориты ранней фазы шахтаминского комплекса, BLP – поздняя фаза шахтаминского комплекса (BLP1 представлена гранит-порфирами, а BLP2-5 – гранодиорит-порфирами); SHP – вмещающие гранодиориты ундинского комплекса, SEP – гранодиориты ранней фазы шахтаминского комплекса, SLP – поздняя фаза шахтаминского комплекса (SLP1,2 представлены лейкогранитами, SLP3,5 – гранодиорит-порфирами, а SLP4 – гранит-порфирами).

Схемы изоморфизма в апатитах

Апатит имеет общую кристаллохимическую формулу [Ca₅(PO₄)₃(F, OH, Cl)] и кристаллическую структуру, состоящую из тетраэдров PO₄, Ca1 в девятерной координации, и Ca2, связанного с шестью атомами кислорода и одним анионом (Cl, F, OH). Структура апатита очень устойчива к структурным искажениям и химическим замещениям, и поэтому объединяет группу минералов с широким спектром составов [Pan and Fleet, 2002]. Изоморфные замещения характерны для всех позиций: Ca²⁺ \leftrightarrow Sr²⁺, Mn²⁺, Fe²⁺, Na⁺, REE, Y³⁺; P⁵⁺ \leftrightarrow Si⁴⁺, S⁶⁺, As⁵⁺ и C⁴⁺; F⁻ \leftrightarrow Cl⁻ и OH⁻; а также [Rakovan and Hughes, 2002, Parra-Avila et. al., 2022]:

- 1) $Ca^{2+} + P^{5+} \leftrightarrow S^{6+} + Na^+$
- 2) $2P^{5+} \leftrightarrow S^{6+} + Si^{4+}$
- 3) Si⁴⁺ +2Na⁺ +2S⁶⁺+4REE³⁺ \leftrightarrow 4P⁵⁺ + 5Ca²⁺
- 4) $Si^{4+} + Na^+ + S^{6+} + (REE^{3+} + Y^{3+}) \leftrightarrow 2P^{5+} + 2Ca^{2+}$

Изменение состава апатита проходит согласно этим реакциям замещения, которые могут выполнятся и в нашем случае, что подтверждается корреляциями между соответствующими элементами. Согласно (1) и (2) схемам замещений можно ожидать зависимость между содержанием S и Na, а также S и Si. C увеличением содержания S должно увеличиваться содержание Na и/или Si. Oднако, зависимости между этими компонентами в нашем случае не было обнаружено (рис. 5.18а-е). Таким образом, наиболее вероятными схемами замещениями в изученных апатитах являются схемы (3) и (4) (рис. 5.18ж-и).

Рис. 5.18. Корреляционные диаграммы основных и примесных компонентов в апатите из гранитоидов, согласно наиболее распространённым схемам замещения: (а, г, ж) – апатиты из гранитоидов Быстринского месторождения; (б, д, з) - апатиты из гранитоидов Шахтаминского месторождения; (в, е, и) - вся выборка с разделением на апатиты из рудоносных и безрудных пород.

5.2.2. Содержание летучих компонентов

Как уже было отмечено, состав летучих компонентов в магматическом расплаве крайне важен для формирования порфировой минерализации. Так, основные формы переноса металлов в соленом водном флюиде ($200^{\circ}-600^{\circ}$ С, плотность >0,3–0,4 г/см³) в условиях порфировых месторождений: для Cu - CuCl₂⁻ (±CuCl₃²⁻, Cu(HS)₂⁻); для Мо - H₂MoO₄, HMoO⁴⁻, MoO₂⁴⁻, NaHMoO₄, KHMoO. Помимо Cu, хлоридные комплексы также важны для переноса таких металлов как

Pb, Zn, Fe ([Kuzmanov and Pokrovsky, 2012] и ссылки в нём). Обычно считается, что высокое содержание Cl в апатите (более 0,5 мас.% для апатита гранитоидов) указывает либо на существование гиперсолевых рассолов во время кристаллизации фенокристовых фаз, либо на последующую реакцию Cl-обмена между исходным апатитом с низким содержанием Cl и гиперсолевым рассолом [Imai, 2004]. Однако, согласно ряду недавних исследований [Pan et al., 2021; Zhu et al., 2022], зерна апатита, расположенные в качестве включений в первичных минералах магматических пород, могут сохранять исходное содержание летучих родоначальный компонентов, которое характеризует расплав. Поскольку значительная часть проанализированных зерен соответствует этому признаку, состав летучих в изученном апатите отражает исходное их содержание в магме.

В месторождения, рудоносных штоков Быстринского апатите ИЗ характеризующегося значительно большими запасами меди, чем Шахтаминское месторождение, установлено более высокое содержание Cl (>0,8 мас.% для образцов из штоков BLP2-5). Халькофильные элементы (в первую очередь медь), а также золото, более чувствительны к концентрации Cl, чем к F. Растворимость этих металлов значительно возрастает с увеличением содержания Cl, поскольку он необходим образования переносимых гидротермальными для флюидами комплексов. Для апатита Мо-порфирового Шахтаминского месторождения характерны более низкие содержания Cl (менее 0,7 мас.%) и более высокие фтора, что согласуется с более ранними данными по составу апатита этого месторождения [Сотников и Берзина, 1993]. Вероятно, это является следствием незначительного содержания хлора в родоначальном расплаве, что, по всей видимости, и стало причиной незначительных запасов меди на месторождении.

Содержание хлора в апатите из безрудного штока (BLP1) на Быстринском месторождении существенно ниже, чем в апатите из рудоносных штоков (BLP2–5) (рис. 5.16а, г). При этом данная закономерность не прослеживается в магматических породах Шахтаминского месторождения, где апатит из рудоносного штока (SLP4) не может быть выделен на основании относительно повышенного содержания хлора (рис. 5.166, д). Все это доказывает важнейшую

роль хлора в магматической системе, как транспортирующего медь и золото агента, а также позволяет проводить первичную дискриминацию пород на потенциально рудоносные и безрудные (в контексте Cu-порфировых систем) по составу летучих компонентов в апатите. Одновременно с этим можно сделать вывод, что в Мо– порфировых месторождениях содержание хлора в магматической системе, вероятно, не играет решающей роли. Поскольку молибден в гидротермальных системах переносится в виде сложных кислородных комплексов [Kouzmanov, Pokrovski, 2012], решающее значение для формирования молибденовой минерализации, отводится степени окисленности флюида и содержание воды в родоначальном расплаве.

5.2.3. Оценка окислительно-восстановительных условий

В теории, любой кристаллизующийся интрузив способен генерировать флюиды. В восстановительных обстановках гидротермальные В таких гидротермальных флюидах сера доминирует в виде HS⁻, что позволяет ей экстрагировать металлы из расплава с образованием сульфидов и/или сульфидного высокая степень окисления фракционирующей магмы, расплава. Однако формирование порфировых месторождений, приводит к ответственной за доминированию сульфатной формы серы, которая с одной стороны подавляет раннюю сульфидную сегрегацию, с другой стороны позволяет накапливаться в газовой фазе расплава [Richards, 2003, Loucks, 2014]. Это подтверждается в том числе и экспериментальными данными, в которых концентрация S в апатите увеличивается с ростом фугитивности кислорода [Peng et al., 1997]. Таким образом, содержание серы в магматическом апатите может выступать в качестве монитора степени окисленности расплава. Кроме того, сера необходима для формирования сульфидной минерализации на гидротермальной стадии развития порфировой системы.

Апатит из монцонитов ранней фазы Быстринского массива (ВЕР) и рудоносных порфировых штоков (BLP2–5) характеризуется близким уровнем содержания хлора, при этом существенно различается по содержанию серы. В

апатите монцонитов Быстринского месторождения, согласно проведенным анализам, содержание серы обычно не превышает 0,04 мас.% SO₃, что может быть связано с более восстановительной обстановкой и доминированием серы в расплаве в форме HS⁻, в результат чего имела место ранняя кристаллизация сульфидных фаз. Данное предположение подтверждается наличием рассеянной первично магматической вкрапленности сульфидов (пирит, пирротин, халькопирит), установленной при петрографических исследованиях. Авторами ранних работ указываются различные минимальные уровни концентрации серы в апатите из интрузивных пород, с которыми генетически связана Си-порфировая минерализация: 0,25 мас.% [Frei, 1996]; от 0,1 до 0,6 мас.% SO₃ [Imai, 2002; Грабежев и Воронина, 2012; Холоднов и др., 2016; Zhu et al., 2018]; до 0,79 мас.% [Сао, 2021]. В изученных объектах наибольшее значение концентрации серы в апатите выявлено для рудоносных гранодиорит-порфиров Быстринского месторождения (BLP2-5) (ср. зн. 0,17 мас.% SO₃) и гранит-порфиров и гранодиорит-порфиров Шахтаминского комплекса (SLP4-5) (ср. зн. 0,2 мас.% SO₃). Таким образом, повышенное содержание серы в апатите является возможным критерием их потенциальной рудоносности и может рассматриваться как показатель окислительных обстановок родоначальных расплавов.

5.2.4. Оценка содержания S и Cl в расплаве

Оценка содержания S в исходном расплаве основана на измеренном содержании в апатите и расчёте коэффициента распределения между апатитом и расплавом. Для оценки S_{pacnn} используют две различные методики из исследований Peng et al. (1997) и Parat et al. (2011). Как показывает сравнение двух подходов в различных работах, полученные содержания отличаются незначительно: в методе Peng et al. (1997) значения обычно в несколько раз выше, чем в методе Parat et al. (2011) [Li et al., 2023]. Согласно формуле Parat (2011), средние значения S_{pacnn} в породах рудоносных штоков Быстринского месторождения BLP2–5 (ср. зн. 158,18 г/т, n=66) выше, чем в образцах из безрудных пород BLP1 и BEP (ср. зн. 147,07 г/т, n=37 и ср. зн. 84,77 г/т, n=17, соответственно). Оценённые S_{pacnn} для образцов

Шахтаминского месторождения наибольшие для гранитоидов штоков SLP4–5 (ср. зн. 314,29 г/т, n=59). Для оценки содержания Cl в расплаве использовалась формула Li and Hermann (2017). Оценённые Cl_{распл} в безрудных породах ранней фазы (BEP) и рудоносных породах поздних штоков (BLP2-5) значительно больше (ср. зн. 0,42 мас.%, n=83), чем в безрудных образцах BLP1 (ср. зн. 0,18 мас.%, n=37). В магматических породах, распространенных на площади Шахтаминского месторождения, значения Cl_{распл} для 4 рудоносного штока (SLP4) и потенциально рудного 5 штока (SLP5) близки (ср. зн. 0,22 мас.%, n=28 и ср. зн. 0,27 мас.%, n=31, соответственно). В то же время гранитоиды с которыми не связано оруденение (SHP, SEP, SLP1-3), хоть и имеют перекрытие с рудоносными, характеризуются меньшими оценёнными содержаниями Cl_{распл} (ср. зн. 0,15 мас.%, n=88).

Комбинируя оценённые параметры S_{распл} и Cl_{распл} в исходном расплаве, была предложена дискриминационная диаграмма, на которой вынесены поля с характерными значениями для рудоносных и безрудных пород (рис. 5.19). Образцы магматических пород рудоносных штоков Быстринского месторождения (BLP2–5) характеризуются S_{распл} >10 г/т и Cl_{распл} >0,3 мас.%. С учетом важнейшей роли хлора для транспортировки Си и Аи в гидротермальных системах, полагаем, что диаграмма более применима для дискриминации магматических пород, с которыми генетически связано Си–Аи–Fe–порфирово–скарновая минерализация от интрузивов безрудных и продуцирующих Мо–порфировое оруденение.

Рис. 5.19. Рассчитанные величины концентрации серы и хлора в родоначальном расплаве, из которого кристаллизовался апатит: (а) – Быстринское месторождение; (б) – Шахтаминское месторождение; (в) – вся выборка с разделением на апатиты из рудоносных и безрудных пород. Где: ВЕР – монцониты и монцодиориты, BLP – поздняя фаза (BLP1 – гранит-порфиры, а BLP2-5 – гранодиорит-порфиры); SHP – вмещающие гранодиориты ундинского комплекса, SEP – гранодиориты ранней фазы, SLP – поздняя фаза (SLP1,2 – лейкограниты, SLP3,5 – гранодиорит-порфиры).

5.2.5. Состав апатита как критерий рудоносности

Как показали результаты проведенных нами исследований, критически важным летучим компонентом порфировых систем является сера, выступающая как монитор окислительно-восстановительных условий, так и необходимая для экстракции металлов и формирования сульфидной минерализации. Тогда как хлор является критически важным компонентом только для Cu-(Au)-порфировых систем. При этом, особая роль галогенов (особенно хлора) в формировании рудных месторождений, в том числе медно-порфировых, установлена достаточно давно [Бушляков, 1978; Холоднов и др., 1978; Chivas, 1981; Сотников и др., 1977, 1982; Сотников и Берзина, 1993]. Исходя из этого предлагается дискриминационная диаграмма в координатах Cl-F-10*SO₃ (рис. 5.20а), позволяющая с определенной Си–Аи–порфировую степенью надежности выделять продуктивные на минерализацию магматические образования. Диаграмма отражает: 1) содержание летучих апатите (в первую очередь Cl, который необходим для формирования хлоридных комплексов); 2) содержание S в апатите, которое отражает окислительно-восстановительную обстановку (высокие значения шестивалентной серы показывают высокую степень окисленности исходной магмы). В центральную область графика попадают точки состава апатита, отобранного из магматических пород Быстринского месторождения. рудоносных Однако дискриминировать рудоносных штоков Шахтаминского Moапатит ИЗ порфирового месторождения от апатита безрудных пород с использованием данной диаграммы не представляется возможным.

С целью верификации предложенной диаграммы дискриминации рудоносных магматических пород от безрудных на основании состава летучих компонентов в апатите нами были использованы опубликованные данные по ряду порфировых месторождений с различной металлогенической специализацией и собственные неопубликованные данные (рис. 5.20б). Положение точек состава апатита из рудоносных интрузий месторождений Ред Крис [Zhu et al., 2018] и Кармен де Андаколло [Richards et al., 2017], с которыми генетически связана порфировая минерализация медного профиля, практически полностью отвечают предложенной области состава апатита рудоносных интрузий изученных месторождений Восточного Забайкалья. Состав апатита из рудоносной интрузии месторождения Малмыж (неопубликованные авторские данные) смещен в область СІ-обогащенного апатита, только часть точек отвечает области рудоносных интрузий.

Рис. 5.20. Трёхкомпонентные диаграммы дискриминации апатита из рудоносных и безрудных магматических пород в координатах Cl–F–10*SO₃ (мас.% нормированные на 100%): (а) по результатам текущего исследования; (б) 1-7: состав апатита из рудоносных магматических пород по литературным данным (Cu-Au порфировые месторождения: 1 – Ред Крис [Zhu et al., 2018], 2 – Кармен де Андаколло [Richards et al., 2017], 3 – Малмыж (неопубликованные данные); Cu-Mo порфировые месторождения: 4 – Цулун [Xu et al., 2021], 5 – Чжунуо [Xu et al., 2021]; Мо порфировые месторождения: 6 – Хуоцзихэ [Xing et al., 2020], 7 – Дахэйшань [Xing et al., 2021]; 8 – состав апатита из гранитоидов шахтаминского комплекса, с которыми не ассоциировано оруденение (неопубликованные данные).

Апатит из рудоносных интрузий Си-Мо месторождений Цулун и Чжунуо [Хи et al., 2021] близок по составу апатиту из рудоносной интрузии Шахтаминского месторождения. Апатит из рудоносных интрузий монометалльных Moпорфировых месторождений Хуоцзихэ [Xing et al., 2020] и Дахэйшань [Xing et al., 2021] практически не содержит хлора, однако характеризуется устойчивой примесью серы. Примечательно, что апатит из гранитоидов шахтаминского комплекса, с которыми не обнаруживается связь порфировой минерализации, характеризуется существенно фтористым составом летучих компонентов с незначительной примесью хлора и практически полным отсутствием серы. Проведенный анализ опубликованных данных по составу апатита из рудоносных интрузий порфировых месторождений с различной металлогенической специализацией подтверждает правомерность выделенных нами областей состава.

Для дискриминации апатита рудоносных штоков от минерала из безрудных пород возможно использование их редкоземельного состава. Так, более крутой наклон редкоземельных спектров в апатитах характерен для пород рудоносных штоков как Быстринского, так и Шахтаминского месторождений (рис. 5.17в-г). Тогда как в апатите из пород безрудных штоков спектры распределения редкоземельных элементов менее фракционированы.

Дополнительным параметром, указывающим на окислительные обстановки расплава может являться европиевая аномалия (Eu/Eu*=Eu_n/(Sm_n*Gd_n)^{0,5}) в апатите. Eu³⁺ имеет близкий ионный радиус с Ca²⁺ и легче замещает его в структуре апатита (в сравнении с Eu²⁺). Соответственно численное выражение Eu/Eu* отношения в апатите будет возрастать с увеличением степени окисленности расплава, из которого он формируется [Piccoli and Candela, 2002]. Кроме того, на величину Eu аномалии, как уже отмечалось, может влиять фракционная кристаллизация плагиоклаза [Richards, 2011; Lu et al., 2016]. Однако, согласно ряду исследований, высокое содержание воды в магме (\geq 4 мас.% H₂O) подавляет раннее фракционирование плагиоклаза в магматической камере (при высокой температуре и давлении) [Alonso–Pérez et al., 2009; Richards, 2011; Rottier et al, 2020], что приводит к значениям Eu/Eu* близким к единице в эволюционировавших
водосодержащих расплавах [Richards and Kerrich, 2007; Richards et al., 2012; Chiaradia et al., 2012; Loucks, 2014].

Рис. 5.21. Диаграмма отношения (La/Lu)п к Eu/Eu* в апатите: (а) – Быстринское месторождение; (б) – Шахтаминское месторождение; (в) – вся выборка с разделением на апатиты из рудоносных и безрудных пород. Где: ВЕР – монцониты и монцодиориты ранней фазы шахтаминского комплекса, BLP – поздняя фаза (BLP1 – гранит-порфиры, а BLP2-5 – гранодиорит-порфиры); SHP – вмещающие гранодиориты ундинского комплекса, SEP – гранодиориты ранней фазы шахтаминского комплекса, SLP – поздняя фаза (SLP1,2 – лейкограниты, SLP3,5 – гранодиорит-порфиры, а SLP4 – гранит-порфиры).

Рассчитанные значения европиевой аномалии для апатита из гранитоидов рудоносных штоков Быстринского и Шахтаминского месторождений выше >0,4. Более высокие значения Eu/Eu* в апатите пород рудоносных штоков вероятно свидетельстуют о высокой водонасыщенности и степени окисленности расплава. Полученные параметры в полной мере согласуются с результатами проведённых исследований валового состава пород и геохимии цирконов, позволяющими предполагать аналогичные параметры родоначальных расплавов для рудоносных интрузий.

Комбинируя отношения (La/Lu)n и Eu/Eu* представляется возможным дискриминировать апатит из пород рудоносных штоков от апатита из безрудных пород (рис. 5.21в). При этом для апатита из гранит-порфиров рудоносного штока Шахтаминского Мо-порфирового месторождения отношение (La/Lu)n заметно выше, чем для апатита из рудоносных гранитоидов Быстринского месторождения. Вероятно, это может быть объяснено тем, что в Мо–порфировых системах содержание воды и степень окисленности расплава имеют большее значение [Du et. al., 2019], нежели в Си–порфировых.

Приведённые данные позволяют сформулировать **второе защищаемое** положение:

В составе апатита рудоносных магматических пород Быстринского Cu-Au-Fe скарново-порфирового месторождения установлены повышенные содержания хлора (>0,8 мас.%,) и SO₃ (>0,1 мас.%) относительно гранитоидов безрудных штоков. При этом апатиты рудоносных магматических пород Шахтаминского Мо-порфирового месторождения содержат в повышенном количестве только SO₃ (ср. знач. 0,20 мас.%). Геохимические особенности апатита (Eu/Eu*>0,4) указывают на водоносыщенность и окисленность расплавов рудоносных штоков обоих месторождений.

5.3. Особенности состава биотита

Содержания основных элементов в биотите Быстринского и Шахтаминского месторождений показано на графике "ящик с усами" (рис. 5.22). Результаты точечного микрозондового анализа биотита представлены в Приложении 9. Значимые вариации составов биотита по t-критерию Стьюдента в центральной и краевой частях зерен не отмечаются, поэтому в дальнейшем обсуждаются составы как центральных, так и краевых частей зёрен совместно.

5.3.1. Макрокомпонентный состав биотита

Несмотря на значительные перекрытия в измеренных содержаниях по большинству компонентов в биотитах, можно выделить некоторые особенности. Так для Шахтаминского месторождения наибольшие содержания MgO зафиксированы в биотите рудоносного штока гранит-порфиров поздней фазы SLP4 (14,9 – 18,05 мас.%, ср. зн. 15,99 мас.%). При этом биотит из безрудных пород характеризуется более низкими средними содержаниям MgO со значительным перекрытием (9,48 – 16,38 мас.%; рис. 5.22г). Минимальное содержание MgO зарегистрировано в биотите из вмещающих амфибол-биотитовых гранодиоритов ундинского комплекса (SHP; 10,74–12,43 мас.%, ср.зн. 11,63 мас.%). Для лейкогранитов SLP1-2 отмечаются наибольшие содержания F и MnO среди всех изученных пород.

В биотите содержания MgO выше для рудоносных штоков Быстринского месторождения (BLP2-5; 14,16 – 17,52, ср. зн. 16,2 мас%), чем в биотите безрудного штока BLP1 (от 13,78 до 16,67, ср. зн. 14,85 мас%; рис. 5.22г). Для биотита монцонитов и монцодиоритов ранней фазы (BEP) характерны наибольшие содержания TiO_2 (4,1 – 5,86, ср. зн. 5,44 мас.%; рис. 5.22д) и наименьшие содержания F (0,17 – 0,5, ср. зн. 0,33 мас.%), при схожих с биотитом рудоносных штоков (BLP2–5) содержаниях MgO. Так же в биотите ранней фазы (BEP) средние содержания Cl (0,13 – 0,49, ср.зн. 0,28 мас.%) в среднем превышают содержания хлора в биотите поздней фазы (BLP1-5), за исключением биотита гранодиоритпорфиров BLP3 (0,28 – 0,43, ср. зн. 0,32 мас.%; рис. 5.223). Содержание F

наибольшее в биотите порфировидных гранитов (BLP1) и гранодиорит-порфиров (BLP5) (ср. зн. 0,89 мас.% и 1,32 мас.%, соответственно).

Рис. 5.22. Графики "ящик с усами" содержания некоторых основных элементов магматического биотита Шахтаминского (SEP, SHP, SLP1-5) и Быстринского (BEP, BLP1-5) месторождений: (a) SiO₂, (б) Al₂O₃, (в) FeO^T, (г) MgO, (д) TiO₂, (е) MnO, (ж) F, (з) Cl. Оранжевым цветом показаны биотиты рудоносных образцов, а серым цветом - безрудных. Граница прямоугольника: нижняя граница – первый квартиль, верхняя граница – третий квартиль. В поле прямоугольника попадает медиана (черная линия), среднее значение (диагональный крест). Края линии на графике ограничивают минимальное и максимальное значение для каждого изученного образца. Выбросы показаны звездой.

Для биотитов из рудоносного штока гранит-порфиров поздней фазы SLP4 Шахтаминского месторождения характерны наибольшие значения X_{Mg} (от 0,61 до 0,69, ср. зн. 0,65). При этом биотит из безрудных пород характеризуется более низкими средними значениями X_{Mg} со значительным пересечением (ср. зн. 0,59, 0,54, 0,57, 0,6, 0,62 для SEP, SLP1, SLP2, SLP3 и SLP5, соответственно). Минимальное X_{Mg} фиксируется в биотите из вмещающих амфибол-биотитовых гранодиоритов ундинского комплекса (SHP; 0,49 – 0,54, ср. зн. 0,51). При этом в биотите рудоносных штоков Быстринского месторождения (BLP2-5) значения X_{Mg} выше (0,63 – 0,7, при равных ср. зн. 0,67), чем в биотите безрудного штока BLP1 (0,6 – 0,68, ср.зн. 0,63). Для биотита монцонит-порфиров ранней фазы значения X_{Mg} (BEP; 0,58 – 0,7, ср. зн. 0,66±0,03) близки к этой величине в рудоносных штоках поздней фазы (BLP2-5).

Классификация биотита

Магматические биотиты порфировых месторождений характеризуются высоким содержанием И содержанием титана низким алюминия, a гидротермальный биотит богат магнием и фтором. Так, Fu (1981) на основании данных по составу биотита из китайских Си-порфировых месторождений, пришел к выводу, что магматические биотиты имеют высокое содержание титана (TiO₂ >3 мас.%) и низкое содержание алюминия (Al₂O₃ <15 мас.%), тогда как для гидротермального биотита характерно низкое содержание титана (TiO₂ < 3 мас.%; в основном, < 2 мас.%). Ранее, Jacobs и Parry (1976, 1979) изучили порфировые месторождения Санта-Рита и Бингем и пришли к выводу, что гидротермальный биотит богат магнием и фтором, и имеет более низкие содержания титана, относительно магматического биотита. Согласно приведённым выше критериям, все исследованные нами биотиты являются магматическими. Высокие содержания F биотитов SLP1 и SLP2 объясняются тем, что данные образцы кристаллизовались из наиболее фракционированного расплава.

Согласно классификации Международной минералогической ассоциации (IMA) [Rieder et al. 1998], исследованные слюды являются промежуточными членами серии аннит-сидерофиллит-истонит-флогопит (рис. 5.23). При этом,

увеличение содержания алюминия интерпретируется как отражение возрастающей степени фракционной кристаллизации соответствующих магм, из которых кристаллизовался биотит [Clarke, 1981]. Несмотря на наличие перекрытия, отношения $Fe^{2+}/(Fe^{2+} + Mg^{2+})$ и $\sum Al(\phi.e.)$ в биотите постепенно увеличивается в ряду SLP4 - SLP5 - SLP3 - SLP1, за исключением биотита SLP2, в котором наблюдается более широкий разброс значений (рис. 5.236).

Рис. 5.23. Классификация биотита из гранитоидов Быстринского (а) и Шахтаминского (б) месторождений на диаграмме $Fe^{2+}/(Fe^{2+} + Mg^{2+}) - \Sigma Al$ (ф.е.) по [Rieder et al., 1998]. Ann – аннит, Sid – сидерофиллит, Phl – флогопит, Eas – истонит.

Отсюда следует, что среди образцов поздней фазы Шахтаминского Мопорфирового месторождения наименее фракционированными являются образцы рудоносного штока гранит-порфиров (SLP4). Для Быстринского Cu-Au-Fe скарново-порфирового месторождения подобных тенденций не прослеживается (рис. 5.23а). Данное наблюдение не согласуется с выводами работы Azadbakht et al., (2020) о том, что биотит из образцов, связанных с Мо-порфировой минерализацией, характеризуется наибольшими отношениями $Fe^{2+}/(Fe^{2+} + Mg^{2+})$ и $\sum Al(\phi.e.)$ в отличие от биотита из безрудных пород и пород, связанных с Cu-порфировой минерализацией. Вероятно, это связано с тем, что значения отношений в работе Azadbakht et al., (2020) сильно перекрываются, и выделенный тренд не совсем корректный. Согласно проведённому петрографическому исследованию, во всех изученных породах биотит неизменен, вторичная хлоритизация не проявляется. Так же, точки составов изучаемых биотитов были вынесены на тройную диаграмму TiO₂ – FeO + MnO – MgO [Nachit et al., 2005]. Этот метод использует температурную зависимость содержания Ti в биотите для классификации зерен на магматические, переуравновешенные и новообразованные биотиты (рис. 5.24).

Рис. 5.24. Положение точек составов биотита Быстринского и Шахтаминского месторождений на тройной диаграмме 10TiO₂ – FeO + MnO – MgO [Nachit et al., 2005].

На тройной диаграмме точки составов биотитов из рудоносных и безрудных гранитоидов группируются на границе, разделяющей первично-магматические и переуравновешенные (магматические биотиты, которые пришли в равновесие с гидротермальным флюидом) биотиты (рис. 5.24). Такое расположение отражает низкую степень вторичных изменений изученных биотитов и согласуется с результатами петрографических исследований.

5.3.2. Оценка окислительно-восстановительных условий

Порфировые месторождения генетически связаны с гранитоидами, образованными в результате эволюции окисленных магматических расплавов

[Sillitoe, 2010]. Из-за высокой степени окисленности, сера в магме находится, главным образом, в сульфатной форме, что препятствует ранней сульфидной сегрегации (раннему удалению серы из магмы в виде сульфида) и обеспечивает накопление серы в ходе фракционирования магматического расплава [Richards, 2003; Loucks, 2014]. Было установлено, что магнезиальность биотита X_{Mg} (X_{Mg} =Mg/(Mg + Fe)) увеличивается с повышением фугитивности кислорода и/или серы в магме и флюидах [Wones and Eugster, 1965]. Это связано с увеличением отношения Fe³⁺/Fe²⁺ в расплаве при высокой фугитивности кислорода, и как следствие, уменьшением содержания Fe²⁺ способного изоморфно замещать Mg²⁺ в Fe-Mg силикатных минералах. Наиболее высокими значениями X_{Mg} отличаются биотиты рудоносных штоков Быстринского месторождения (BLP2-5), что может указывать на их кристаллизацию из окисленных магм.

Типичная фугитивность кислорода гранитоидных магм, генерирующих порфировые месторождения, находится в диапазоне между никель-никелевым (NNO) и гематит-магнетитовым (HM) буферами. Для оценки фугитивности кислорода используются, в том числе, и составы биотита. Например, составы магматического биотита из гранитоидов медно-порфирового месторождения Даррех-Зар [Parsapoor et al., 2015] и медно-молибден порфировых месторождений Лаканж и Кулонг [Tang et al., 2019^a] сопоставимы с их кристаллизацией из окисленных магм в условиях высокой фугитивности кислорода между никельоксид никелевым (NNO) и гематит-магнетитовым (HM) буферами. На тройную диаграмму Fe^{2+} - Fe^{3+} - Mg^{2+} , предложенную Wones and Eugster (1965), были вынесены точки составов биотитов из гранитоидов Шахтаминского и Быстринского месторождений (рис. 5.25).

Выше линии никель-оксид никелевого (NNO) буфера попадают практически все биотиты из гранодиорит-порфиров поздней фазы Быстринского месторождения (BLP2-BLP5), часть биотитов поздней фазы (SLP3, SLP5) и все биотиты гранит-порфиров Шахтаминского месторождения (SLP4).

Рис. 5.25. Тройная диаграмма состава биотита в координатах Fe²⁺–Mg²⁺–Fe³⁺ для: а – Быстринского месторождения; б – Шахтаминского месторождения (границы буферов даны по [Wones et al., 1965]). Где: BEP – монцониты и монцодиориты, BLP – поздняя фаза (BLP1 – гранит-порфиры, а BLP2-5 – гранодиорит-порфиры); SHP – вмещающие гранодиориты ундинского комплекса, SEP – гранодиориты ранней фазы, SLP – поздняя фаза (SLP1,2 – лейкограниты, SLP3,5 – гранодиорит-порфиры, а SLP4 – гранит-порфиры).

Ниже линии никель-оксид никелевого (NNO) буфера расположены биотиты монцонитов и монцодиоритов ранней фазы (BEP) Быстринского месторождения, биотиты ранней фазы (SEP) и поздней фазы (SLP1-2) Шахтаминского месторождения. Таким образом, большая часть рудоносных штоков изучаемых

117

месторождений находятся ближе к гематит-магнетитовому (HM) буферу, что указывает на высокую окисленность магм, из которых кристаллизовались данные породы.

5.3.3. Оценка температуры

Для оценки температуры был использован биотитовый геотермометр, основанный на содержании Ті и Х_{мg}:

T (°C) =
$$\left(\frac{\ln(Ti) + 2.3594 + 1.7283 \times (X_{Mg})^3}{4.6482 \times 10^{-9}}\right)^{0.333}$$

Точность геотермометра оценивается в диапазоне от ± 12 °C до ± 24 °C при более высоких и более низких температурах, соответственно. Уравнение биотитового геотермометра строго справедливо только для $X_{Mg} = 0,275-1$, Ti = 0,04–0,60 ф.е. и T = 480–800 °C [Henry et al., 2005]. Практически все проанализированные биотиты в данной работе удовлетворяют вышеуказанным условиям, за исключением биотитов из монцонитов ранней фазы BEP, где около половины значений Ti превышают пограничное значение 0,6 ф.е.

Максимальные температуры на Быстринском месторождении характерны для ранней фазы (BEP, 791±14 °C). Для поздней фазы оценённые температуры ниже. При этом, оценённые температуры кристаллизации безрудного штока ранней фазы шахтаминского комплекса BLP1(720±12 °C) сильно перекрываются с температурой штоков с которыми связана порфировая минерализация BLP2-4 (714±7, 719±8, 720±7 °C, соответственно). При этом для BLP5 температура оказалась выше: 743±4 °C. На Шахтаминском месторождении наибольшие температуры с перекрытием значений характерны для биотитов штоков поздней фазы SLP3-5 (729±14, 734±8, 729±4 °С, соответственно) и ранней фазы шахтаминского комплекса (SEP, 735±6 °C). Оценённые температуры вмещающего ундинского комплекса (SHP, 698±22 °C) близки SLP1-2 (677±22, 696±20 °C, соответственно). Рассчитанные температуры кристаллизации магматического биотита Шахтаминского и Быстринского месторождений согласуются с данными других порфировых месторождений. Например, оценённая температура

магматических биотитов из месторождений Лаканж и Кулонг, находится в диапазоне от 706°C до 746°C (ср. зн. 727°C) и от 709°C до 779°C (ср. зн. 748°C), соответственно [Tang et al., 2019^a].

В разделе 5.1.1. были оценены температуры по циркону из тех же пород, что и биотиты данной работы. На графике видно, что температуры кристаллизации биотита и циркона из рудоносных штоков Шахтаминского и Быстринского месторождений отличаются на 50-100 °C по всем образцам (рис. 5.26а). При этом, оценённые температуры для зёрен из безрудных штоков имеют сильное перекрытие (рис. 5.26б). Если предположить, что биотитовый геотермометр завышает температуры кристаллизации биотита из порфировых месторождений (как показано в работе [Rezaei and Zarasvandi, 2020]), то остаётся дискуссионным вопрос, почему это наблюдается только для пород, с которыми связана порфировая минерализация.

Рис. 5.26. Температуры, оценённые по биотиту и циркону для рудоносных (а) и безрудных образцов (б). Биотитовый термометр [Henry et al., 2005] и цирконовый термометр [Watson et al., 2006].

5.3.4. Галогены

Халькофильные элементы (Cu, Au) более чувствительны к концентрации Cl, чем к F. C увеличением содержания Cl растворимость этих металлов возрастает, поскольку он необходим для образования переносимых гидротермальными флюидами комплексов. При этом биотиты, связанные с медно-порфировыми месторождениями, обычно не демонстрируют явного обогащения Cl [Boomeri et al., 2009; Ayati et al., 2008; Afshooni et al, 2013; Parsapoor et al., 2015], это объясняется тем, что ионный радиус Cl⁻ (1,81Å) значительно больше, чем F⁻ (1,31 Å) или OH⁻ (1.38 Å), так что обмен Cl=OH меньше, чем обмен F=OH [Munoz, 1984]. Так на Быстринском месторождении, для которого характерны более значительные запасы меди, в отличие от Шахтаминского месторождения, содержания хлора наибольшие в биотите третьего рудоносного штока BLP3 (ср.зн. 0,32 мас.%). При этом, в биотите остальных трёх рудоносных штоков (BLP2, BLP4-5) содержания хлора почти в два раза ниже и близко к содержаниям в биотите поздней фазы Шахтаминского месторождения (SLP1-5). Содержание F в среднем больше в биотитах Шахтаминского месторождения, чем в биотитах Быстринского месторождения (рис. 5.22), что, вероятно, показывает значимую роль F в формировании Мо-порфировых систем.

Повышенное содержание хлора в биотите монцонит-порфиров ранней фазы (BEP; 0,28 мас.% Cl) в совокупности с низкой фугитивностью кислорода (рис. 5.25а) может объяснять рассеянную первично магматическую сульфидную установленную вкрапленность (пирита, пирротина, халькопирита) при петрографическом изучении образцов (рис. 5.1а). В восстановительных обстановках сера доминирует в виде HS⁻, что позволяет ей экстрагировать металлы из расплава с образованием магматических сульфидов. Металлы, растворяясь в богатом хлором флюиде, практически не мигрируют в восстановленных обстановках и формируют редкую сульфидную вкрапленность в породах ранней фазы Быстринского месторождения.

Для оценки степени активности галогенов могут быть использованы независимые от температуры и давления коэффициенты захвата фтора (IV(F)),

хлора (IV(Cl)) и их отношения (IV(F/Cl)) в слюдах разного состава. Коэффициенты захвата IV(F), IV(Cl) и IV(F/Cl) для биотита были рассчитаны по уравнениям, приведенным в работе Munoz (1984):

$$IV(F) = 1.52X_{Mg} + 0.42X_{An} + 0.20X_{Sid} - \log\left(\frac{X_F}{X_{OH}}\right)$$
$$IV(Cl) = -5.01 - 1.93X_{Mg} - \log\left(\frac{X_{Cl}}{X_{OH}}\right)$$
$$IV\left(\frac{F}{Cl}\right) = IV(F) - IV(Cl)$$
$$X_{Sid} = \left[\left(3 - \frac{Si}{Al}\right)/1.75\right] \times (1 - X_{Mg})$$
$$X_{An} = 1 - (X_{Mg} + X_{Sid}).$$

Мипоz (1984) оценил содержание IV(F), IV(Cl) и IV(F/Cl) в биотитах из Сипорфировых месторождений, Sn-W-Be и Мо-порфировых месторождений и сделал вывод, что Cu-порфировые месторождения связаны с магматической системой богатой Cl, а Мо-порфировые месторождения с магматической системой богатой F. Более низкие коэффициенты захвата IV(F) биотитов коррелируют с более высоким обогащением фтором во флюиде, а более низкие коэффициенты захвата IV(Cl) биотитов соответствуют более высокому обогащению хлором во флюиде. При этом, значение IV(F/Cl) не зависит от температуры, и оно напрямую связано с f(HCl)/f(HF) флюида, уравновешивающего биотит, поэтому оно дает более точные результаты, чем значения IV(F) и IV(Cl) [Munoz, 1984; Yavuz, 2003].

Биотиты рудоносных штоков Быстринского и Шахтаминского месторождений показывают значения IV(F) и IV(F/Cl), сопоставимые с таковыми для медно-порфировых месторождений в мире: Сарчешмех, Далли, Даррех-Зар, Каханг и Кулонг ([Boomeri et al., 2010; Ayati et al., 2008; Parsapoor et al., 2015; Afshooni et al., 2013; Tang et al., 2019^a], соответственно). Однако в этих работах не рассматриваются биотиты магматических пород, не связанных с минерализацией. На дискриминационной диаграмме IV(F)–IV(F/Cl) точки состава биотита Шахтаминского и Быстринского месторождений из образцов как рудоносных штоков, так и безрудных пород, попадают в поле Cu и Cu-Au порфиров (фиг. 5.27a).

T 7

Рис. 5.27. Положение точек состава биотита Шахтаминского и Быстринского месторождений на дискриминационных диаграммах: а – в координатах IV(F) – IV(F/Cl), где поля Cu-порфировых, Мо-порфировых и Sn-W-Be месторождений показаны по [Munoz, 1984], а поле Cu-Au по [Liu et al., 2023]; б – петрогенетические типы гранитоидов в координатах $log(X_{Mg}/X_{Fe}) - log(X_F/X_{OH})$, где I-SC - сильно контаминированный I-тип, I-MC - умеренно контаминированный I-тип, I-WC - слабо контаминированный I-тип, I-SCR - сильно контаминированный и восстановленный I-тип по [Ague and Brimhall, 1988]. Поля, относящиеся к Мо-, Сu- и W- месторождениям, показаны по [Brimhall and Crerar, 1987].

При этом, точки состава биотита Шахтаминского месторождения, который характеризуется молибденовым профилем минерализации, располагаются в поле

122

Си-порфирового оруденения. Часть точек образцов, не связанных с оруденением, попадают в поле Sn-W-Be. Биотиты рудных штоков характеризуются низкими значениями IV(F) и IV(F/Cl), что говорит об обогащении фтором и хлором флюидной фазы.

Одной из популярных попыток исследователей выявить связь между составом магматического биотита и типом минерализации гранитоидов, является диаграмма в координатах $log(X_{Mg}/X_{Fe}) - log(X_F/X_{OH})$ предложенная Brimhall and Crerar (1987). На этой диаграмме, поля для порфировых месторождений выделены по составам биотитов медно-порфировых месторождений Чино (так же известного как Санта-Рита) и Батте, а также молибден-порфирового месторождения Хендерсон [Brimhall and Crerar, 1987]. На данную диаграмму были вынесены точки составов биотитов из рудоносных и безрудных гранитоидов Быстринского и Шахтаминского месторождений (рис. 5.276). На графике, все проанализированные биотиты располагаются в поле «окисленных» гранитоидов І-типа. В поле меднопорфировых месторождений попала только часть составов биотитов из рудоносных штоков Быстринского месторождения и единичные составы биотита из безрудных гранитоидов. В поле молибден-порфировых месторождений также попали только единичные составы биотита из безрудных гранитоидов. Аналогичная ситуация прослеживается и в других опубликованных работах [Zhang et al., 2016; Tang et al., 2019⁶; Azadbakht et al., 2020]. График наглядно демонстрирует, что предложенные дискриминационные параметры не могут эффективно разделить биотиты из гранитоидов, генетически связанных с Си- и Мопорфировыми минерализациями между собой, а также в целом отделить рудоносные интрузии от безрудных.

Таким образом, низкое содержание хлора и значительное перекрытие его содержаний в биотите поздних интрузивных фаз обоих месторождений связано с низкой способностью вхождения Cl в структуру биотита, и не означает, что исходные магмы были обеднены хлором. Наиболее показательным является содержание хлора в апатите. Так более высокое содержание Cl характерно для апатита из рудоносных штоков Быстринского месторождения (>0,8 мас.% для

образцов из штоков BLP2–5). Фтора в среднем больше в биотите поздних фаз Шахтаминского месторождения, чем в биотите Быстринского месторождения, что связано с высокой способностью вхождения F в структуру биотита и характеризует исходные магматические расплавы повышенным содержанием F. Однако по содержаниям фтора составы биотита сильно перекрываются и не позволяют разграничить рудоносные и безрудные интрузивные комплексы. Поэтому необходимы дополнительные исследования минералов-индикаторов и валового состава пород для уточнения условий формирования каждого из интрузивных тел. Диаграммы (рис. 5.27) можно считать малопригодными для дискриминации Мопорфирового и Cu-Au порфирового оруденения Шахтаминского и Быстринского месторождений из-за сильного перекрытия полей состава биотита.

5.3.5. Авторская дискриминационная диаграмма

В связи с несогласованностью полученного фактического материала данной работы с уже имеющимися дискриминационными диаграммами (рис. 5.27) был проведён линейный дискриминантный анализ. Основная проблема заключалась в том, что в опубликованных источниках мало данных по составу биотитов из нерудоносных интрузий порфировых месторождений. Малый объем выборки нежелателен при проведении дискриминантного анализа. Поэтому в качестве обучающей выборки выступили данные по составу биотита Быстринского Cu-Au-Fe-порфирово-скарнового и Шахтаминского Мо-порфирового месторождений. В тестовую выборку были включены неиспользуемые в обучающей выборке составы биотита Шахтаминского и Быстринского месторождений (по три анализа с каждого штока) с привлечением данных о составе биотитов медно-порфировых месторождений Maxep-Абад [Siahcheshm et al., 2012], Даралоу [Zarasvandi et al., 2019], Бату-Хиджау [Idrus, 2018], Даррех-Зар [Parsapoor et al., 2015], и молибденместорождений Донгоу [Jin 2018] порфировых et al., И Жирекен (неопубликованные данные).

Статистическая обработка данных была произведена с помощью программного обеспечения STATISTICA 10. Результатом линейного дискриминантного анализа являются две дискриминантные функции:

$$Df_{Cu} = -2,8867 \times F - 2,231 \times TiO_2 - 1,184 \times MgO - 0,9905 \times FeO + 1,1355$$
$$\times Al_2O_3 + 1,0941 \times SiO_2 + 9,0487 \times Cl - 15,6189$$

 $Df_{Mo} = 1,52658 \times F - 0,06641 \times TiO_2 + 1,25849 \times MgO + 0,16343 \times FeO$

 $-0,66214 \times Al_2O_3 - 0,79398 \times SiO_2 + 1,16421 \times Cl + 16,83976$

где содержания компонентов даны в мас.%. Функция Df_{Cu} позволяет различить биотиты из порфировых разностей гранитоидов, ассоциирующих с медной минерализацией, от биотитов из порфировых гранитоидов, связанных с молибденовой минерализацией и безрудных гранитоидов. Функция Df_{Mo} дискриминирует биотиты из гранитоидов, продуктивных на молибден-порфировую минерализацию, от биотитов безрудных пород и гранитоидов, связанных с вязанных с медно-порфировой минерализацией (рис. 5.28). Наибольший вклад в различение групп вносят переменные F, MgO, TiO₂ и FeO.

По полученным классификационным уравнениям по анализам из тестовой выборки была построена кросс-таблица с результатами классификации (табл. 2). Из неё следует, что биотиты из магматических пород, связанных с молибден-порфировой минерализацией, классификатор ошибочно относит к безрудным. Это сказывается на низкой точности классификации биотитов из безрудных образцов и полноте классификации биотитов из продуктивных гранитоидов молибден-порфировых месторождений. Для биотитов из продуктивных гранитоидов медно-порфировых месторождений фиксируется высокая степень полноты и точности классификации.

Биотиты рудоносных штоков поздней фазы Быстринского месторождения (BLP2-4) формируют поле Cu-порфировой минерализации (рис. 5.28а). При этом, больше половины биотитов рудоносного штока BLP5 классифицируются как биотиты гранитоидов, продуктивных на Мо-порфировую минерализацию. Это отражает специфику присутствующего типа минерализации: с породами гранодиорит-порфиров штока BLP5 связано молибденовое скарновое оруденение [Kovalenker et al., 2018]. Биотиты из гранит-порфиров рудоносного штока SLP4 Шахтаминского месторождения формируют поле Мо-порфировой минерализации. Так же, в это поле попали составы биотита из неминерализованного штока SLP2 (рис. 5.28а). Как было показано в более ранних разделах работы, лейкограниты этого штока сформировались из магмы, испытавшей интенсивную фракционную кристаллизацию. Вероятно, именно процессы фракционной кристаллизации привели к схожим содержаниям компонентов, по которым производится дискриминация биотитов безрудных образцов (SLP2) и рудоносных (SLP4). Использование биотита кристаллизовавшихся ИЗ пород, ИЗ высокодифференцированных дискриминации предложенной магм, для ПО диаграмме, вероятно, стоит избегать.

Таблица 2. Кросс-таблица по результатам классификации тестовой выборки.

	Прогноз			
Кросс-таблица	Безрудные	Cu	Мо	Полнота
Безрудные	57	0	4	93,44 %
Cu	4	87	0	95,6 %
Мо	17	0	49	74,24 %
Точность	73,08 %	100 %	92,45 %	

Для верификации предложенной дискриминационной диаграммы на неё были вынесены точки составов биотита различных порфировых месторождений мира (рис. 5.28б). Поле биотита магматических пород Си и Си-Аи порфировых месторождений имеет минимальное перекрытие с полем безрудных. Это, наряду с данными кросс-таблицы (табл. 2), показывает высокую степень надёжности используемых дискриминационных функций для медно-порфировых месторождений. При этом, область фигуративных точек биотитов Мо-порфировых месторождений имеет сильное перекрытие с полем биотитов из безрудных гранитоидов. Так же на диаграмму были вынесены составы биотитов из

месторождений с преобладающей Мо-W минерализацией, которые формируют отдельное поле, что отражает специфику состава биотита данных месторождений.

Рис. 5.28. Дискриминационная диаграмма биотитов в координатах Df_{Mo} - Df_{Cu} для (а) Шахтаминского и Быстринского месторождений и (б) биотитов из месторождений различных типов минерализации: 1 – Быстринское Cu-Au-Fe порфирово-скарновое месторождение; 2 – Cu-Au порфировое месторождение Бату-Хиджау [Idrus, 2018]; 3 – Cu-Au порфировое месторождение Maxep-Aбад [Siahcheshm et al., 2012]; 4 – Cu порфировое месторождение Даралоу [Zarasvandi et al., 2019]; 5 – Cu-Mo порфировое месторождение Даррех-Зар [Parsapoor et al., 2015]; 6 – Шахтаминское Мо порфировое (данная работа); 7 – Мо порфировое месторождение Донгоу [Jin et al., 2018]; 8 – Жирекенское Мо-порфировое (неопубликованные авторские данные); 9 – W-Mo-Cu месторождение Сиссион Брук [Zhang et al., 2016]; 10 – Cu-Mo (±W) порфирово-скарновое месторождение Матоу [Zhu et al., 2014]; 11 – биотиты из неминерализованных образцов (значительная часть точек построена по данным из этой работы и небольшая часть по литературным данным). Красными крестами отмечены центроиды групп.

Таким образом, предложенная дискриминационная диаграмма может быть использована при поисковых работах на Cu-Au порфировое оруденение по составу биотита с высокой степенью надёжности, и в меньшей степени при поисках Мопорфировой минерализации.

Ha основании вышеизложенного, можно сформулировать третье защищаемое положение: Специфика состава биотита позволяет выделять гранитоиды потенциально перспективные на порфировое оруденение. На основе содержаний F, TiO₂, MgO, FeO, Al₂O₃, SiO₂, Cl в биотите магматических пород Быстринского Cu-Au-Fe скарново-порфирового Шахтаминского Mo-И порфирового месторождений возможно разделение гранитоидов, продуктивных на Си-порфировую и Мо-порфировую минерализацию.

Выводы по главе:

Цирконы из рудоносных порфиров имеют тенденцию к снижению Th/U и к увеличению Ce/Sm и Yb/Gd отношений с понижением температуры. Отношения Ce/Sm и Yb/Gd в цирконе из безрудных порфиров незначительно изменяются с увеличением Th/U, что свидетельствует о незначительном влиянии фракционной кристаллизации на состав цирконов из этих штоков. Эти результаты подтверждают предположение, что эволюция исходной основной магмы в более кислую преимущественно за счет фракционной кристаллизации является благоприятным фактором для образования рудоносных порфиров.

Для апатита и циркона из рудопродуцирующих порфиров шахтаминского комплекса Шахтаминского и Быстринского месторождений характерно значение Eu/Eu* > 0,4, что является следствием высокой водонасыщенности и степени окисленности расплава. Высокое содержание Cl в апатите (>0,80 мас.%) из пород Быстринского месторождения, в сочетании с повышенным содержанием серы (>0,10 мас.% SO₃), может рассматриваться как возможный критерий относительно богатой медью порфировой минерализации.

На Быстринском и Шахтаминском месторождениях биотит из пород, с которыми связано Cu-Au- и Мо-порфировое оруденение, характеризуется более

высокими содержаниями MgO (>15 мас.% MgO) по сравнению с биотитом из пород безрудных интрузий. Низкие значения IV(F) и IV(F/Cl) характерны для биотита рудных штоков, что указывает на обогащение фтором и хлором флюидной фазы. Точки составов биотита из рудоносных штоков находятся ближе к гематитмагнетитовому буферу (HM), что указывает на более высокую фугитивность кислорода в магмах, из которых данные породы кристаллизовались. Это подтверждается высокими значениями X_{Mg} для биотита из пород, с которыми связано оруденение. Содержание F в среднем больше в биотитах Шахтаминского месторождения, чем в биотитах Быстринского месторождения, что, вероятно, показывает значимую роль F в формировании Мо-порфировых систем.

Показано, что состав биотита перекрывается по многим компонентам, поэтому в работе была предложена дискриминационная диаграмма, построенная по результатам линейного дискриминантного анализа, и позволяющая отделять магматические породы, связанные с Cu-Au-порфировой и Мо-порфировой минерализацией, от безрудных разностей.

ЗАКЛЮЧЕНИЕ

Исследование особенностей состава порфиров и минералов-индикаторов шахтаминского комплекса Быстринского и Шахтаминского месторождений позволило наметить последовательность действий при поисковых работах на порфировые месторождения.

В первую очередь необходимо изучение валового состава пород и рассчёт существующих критериев типичных для порфировых объектов (например Sr/Y и 10000*(Eu/Eu*)/Y, отношений). Однако, как показано в работе, данные критерии можно рассмотривать, как обязательные, но недостаточные, поскольку пограничные значения отношений варьируют в различных исследованиях, и, вероятно, требуют корректировки в зависимости от региона исследования.

Следующим шагом является изучение минералов-индикаторов. Использование минералов-индикаторов крайне является перспективным направлением при поисковых работах, поскольку их дискриминационные характеристики более универсальные и характеризуют состав материнского расплава. Это справедливо условии, при что минералы-индикаторы магматического происхождения и не испытывали наложенных метасоматических изменений. Универсальность применяемых методических подходов подтверждается согласованностью выделяемых дискриминационных признаков исследователями на порфировых месторождениях по всему миру.

Критически важными параметрами при формировании порфировых месторождений является высокая степень окисленности, повышенные содержания воды и летучих компонентов в исходных расплавах. Об окисленности и повышенном содержании воды исходных магм, из которых кристаллизовались гранитоиды поздней фазы шахтаминского комплекса и с которыми генетически связана порфировая минерализация, свидетельствует величина европиевой аномалии (Eu/Eu*>0,4) и Yb/Dy>4 отношения, установленные по циркону. На повышенную фугитивность кислорода расплава указывает также повышенная европиевая аномалия и содержание SO₃ в апатите (>0,4 и >0,1 мас.%,

соответственно). Повышенные содержания хлора в апатите рудоносных гранитоидов (>0,8 мас%) установлены для богатого медью Быстринского Cu-Au-Fe скарново-порфирового месторождения, в то время как в апатите и биотите в т.ч. рудоносных гранитоидов Шахтаминского Мо-порфирового месторождения прослеживается повышенные содержания фтора.

Ha биотита была основании изучения состава разработана дискриминационная диаграмма, позволяющая выделять потенциально рудоносные на порфировое оруденение гранитоиды, a также предполагать ИХ металлогеническую специализацию. Предложенная диаграмма верифицируется литературными данными и отличается наибольшей валидностью по сравнению с уже существующими. Предложенная диаграмма основана на содержании F, TiO₂, MgO, FeO, Al_2O_3 , SiO_2 , Cl в магматическом биотите, верифицируется литературными данными и отличается наибольшей валидностью по сравнению с уже существующими.

Методика петролого-минералогических исследований позволяет проводить выделение интрузивных пород, перспективных на промышленное порфировое оруденение. Все определяемые параметры валового состава пород и геохимические характеристики индикаторных минералов являются обоснованными с точки зрения генетических моделей порфирового оруденения. Все устанавливаемые параметры по каждому из индикаторов имеют одинаковый вес (обязательный, но не достаточный!). Только по полному набору фертильных характеристик представляется возможным делать обоснованные заключения. Недопустимо использование «одиночных» индикаторов, базирующихся на одном минерале или только на валовом составе пород. Анализ общей картины, включающей особенности валового состава пород и состава индикаторных минералов (циркон, апатит, биотит), может способствовать положительному исходу поисковых работ.

СПИСОК ЛИТЕРАТУРЫ

- 1. Аленичева А.А., Касаткин Н.С., Юрченко Ю.Ю., Зубова Т.Н., Шатов В.В., Сергеев С.А. Выявление новых объектов, перспективных на молибденмедно-порфировое оруденение при создании Госгеолкарты-1000/3 на примере листов О-55, О-56 (Северное Приохотье, Магаданская область) // Руды и металлы. 2024. № 2. С. 5-27.
- 2. Берзина А. П., Берзина А. Н., Гимон В. О. Шахтаминская Мо-порфировая рудно-магматическая система (Восточное Забайкалье): возраст, источники, генетические особенности // Геология и геофизика. 2013. Т. 54. № 6. С. 764– 78.
- Берзина А. П., Добрецов Н. Л., Сотников В. И. Медно-молибденовые рудномагматические системы разных геодинамических обстановок // Металлогения складчатых систем с позиций тектоники плит. Екатеринбург, УрО РАН. 1996. С. 184-191.
- 4. Берзина А.П., Берзина А.Н., Гимон В.О., Крымский Р.Ш., Ларионов А.Н., Николаева И.В., Серов П.А. Шахтаминская Мо-порфировая рудномагматическая система (Восточное Забайкалье): возраст, источники, генетические особенности // Геология и геофизика. 2013. Т. 54. № 6. С. 764-786.
- 5. Билибин Ю.А. Основные черты эндогенной металлогении Восточного Забайкалья // Избранные труды. М.: Издательство АН СССР, 1961. Т.3. С. 319-365.
- 6. Бушляков И. Н. Галогены в апатитах индикаторы потенциальной рудоносности гранитоидов //Ежегодник-77/Ин-т геологии и геохимии УНЦ АН СССР. Свердловск. 1978. С. 101-103.
- 7. Быбин Ф.Ф. Шахтаминское рудоуправление // Энциклопедия Забайкалья. Новосибирск: Наука, 2006. Т. 4. С. 369.
- 8. Быстринское месторождение / Харитонов Ю.Ф. (ред.). Природные ресурсы Читинской области и Агинского бурятского автономного округа. Атлас инвестиционных предложений. Чита, 2002. С. 60–63.
- 9. Вартанова Н.С., Завъялова И.В., Щербакова З.В. Гранитоиды Восточного Забайкалья. Новосибирск: Наука. 1972. 271 с.
- 10.Веснин В.С., Неволько П.А., Светлицкая Т.В., Фоминых П.А., Бондарчук Д.В. Состав апатита как инструмент оценки рудоносности порфировых систем (на примере Шахтаминского Мо-порфирового и Быстринского Си-Аи-Fe-порфирово-скарнового месторождений, Восточное Забайкалье, Россия) // Геология рудных месторождений. 2024. Т. 66. № 1. С. 113-132.
- 11.ГГК-200 M-50-X, M-50-IV [Электронный ресурс] URL: http://www.geolkarta.ru/
- 12.Грабежев А. И., Воронина Л. К. Сера в апатите из пород медно-порфировых систем Урала //Труды Института геологии и геохимии им. академика АН Заварицкого. 2012. №. 159. С. 68-70.

- 13. Ершов В.В. Шахтаминское месторождение молибдена // Энциклопедия Забайкалья. Новосибирск: Наука, 2006. Т. 4. С. 369.
- 14.Звездов В.С. Структурно-петрофизические обстановки формирования медно-порфировых штокверков // Отечественная геология. 2021. № 6. С. 3-44.
- 15.Звездов В.С., Мигачёв И.Ф., Минина О.В. Комплексные медно-порфировые рудно-магматические системы андезитоидных и базальтоидных вулканоплутонических поясов // Отечественная геология. 2023. № 5. С. 35-71.
- 16.Звездов В.С., Чурилова Т.А. Минералы-индикаторы медно-порфировых руд: возможности и сложности применения при прогнозе и поисках // В книге: Научно-методические основы прогноза, поисков, оценки месторождений алмазов, благородных и цветных металлов. Сборник тезисов докладов XIII Международной научно-практической конференции. Москва, 2024. С. 127-132.
- 17.Зоненшайн Л. П., Кузьмин М. И., Натапов Л. М. Тектоника литосферных плит территории СССР. М.: Недра, 1990. Кн. 1, 328 с.
- 18.Зорин Ю. А., Беличенко В. Г., Рутштейн И. Г., Зорина Л. Д., Спиридонов А. М. Геодинамика западной части Монголо-Охотского складчатого пояса и тектоническая позиция рудных проявлений золота в Забайкалье // Геология и геофизика. 1998. Т. 39 (11). С. 1578–1586.
- 19.Киселёва Г.Д., Языкова Ю.И., Коваленкер, В.А., Трубкин Н.В., Борисовский С.Е. Типоморфизм самородного золота как индикатор различных типов оруденения крупного скарново-порфирового Au-Fe-Cu месторождения Быстринское, Восточное Забайкалье // Руды и металлы. 2020. № 1. С. 51–68.
- 20.Китаев, Н.А., Спиридонов А.М., Зорина Л.Д. Золоторудные формации Восточного Забайкалья и Приамурья: условия рудообразования, состав и строение геохимических полей. - Новосибирск: Академическое изд-во "Гео", 2018. 228 с.
- 21.Коваленкер В.А., Абрамов С.С., Киселева Г.Д., Крылова Т.Л., Языкова Ю.И., Бортников Н.С. Крупное Быстринское Си-Аи-Fe месторождение (Восточное Забайкалье) первый в России пример ассоциированной с адакитами скарново-порфировой рудообразующей системы // ДАН. 2016. Т. 468. № 5. С. 547–552.
- 22.Коваленкер В.А., Плотинская О.Ю., Киселева Г.Д., Минервина Е.А., Борисовский С.Е., Жиличева О.М., Языкова Ю.И. Шеелит скарновопорфирового Си-Аи-Fe месторождения Быстринское (Восточное Забайкалье, Россия): генетические следствия // Геология рудных месторождений. 2019. Т. 61. № 6. С. 67–88.
- 23.Коваленкер В.А., Трубкин Н.В., Абрамова В.Д., Плотинская О.Ю., Киселева Г.Д., Борисовский С.Е., Языкова Ю.И. Типоморфные характеристика молибденита Си-Аи-Fe-порфирово-скарнового месторождения, Восточное Забайкалье, Россия // Геология рудных месторождений. 2018. Т. 60. № 1. С. 68–90.

- 24.Колпаков В.В., Неволько П.А., Фоминых П.А., Похмелкин Н.С. Минералогогеохимическая характеристика и вероятные коренные источники самородного золота россыпей района Шахтаминского Мо-порфирового месторождения (восточное Забайкалье) // Геосферные исследования. 2024. № 2. С. 61–76.
- 25.Лобанов К. В., Макаров В. А., Макеев С. М., Шведов Г. И., Муромцев Е. А., Шадчин М. В., Глушков Ю. В., Самородский П. Н. Геологоминералогическая и геохимическая зональность Мо-Аu-Сu-порфирового месторождения Ак-Суг, Северо-восточная Тува, Россия // Геосферные исследования. 2023. № 3. С.29 – 54.
- 26. Макаров В. А., Шадчин М. В., Шведов Г. И. и др. Ак-Сугское месторождение-эталонный медно-порфировый объект Восточно-Саянской металлогенической провинции / Сибирский федеральный университет; Институт цветных металлов Красноярск, 2024. 174 с.
- 27.Мигачёв И.Ф., Звездов В.С., Минина О.В. Формационные типы меднопорфировых месторождений и их рудно-магматические системы // Отечественная геология. 2022. № 1. С. 26-48.
- 28.О Компании ГРК Быстринское [Электронный ресурс] // ГРК Быстринское Электрон. дан. URL: (https://www.grkb.ru/company/about/#about-4) (дата обращения 10.10.2024)
- 29.Петров О.В., Киселёв Е.А., Ханчук А.И., Иванов В.В., Шатов В.В., Аленичева А.А., Молчанов А.В., Терехов А.В., Леонтьев В.И., Родионов Н.В., Беляцкий Б.В., Сергеев С.А. Распределение элементов-примесей (РЗЭ + Y, Hf, U, Th, Pb) в цирконе как индикатор рудоносности магматических пород Au-Cu-порфировых проявлений Малмыжского и Понийского рудных полей (Нижнее Приамурье, Дальний Восток) // Региональная геология и металлогения. 2020. № 84. С. 55-70.
- 30.Плотинская О.Ю. Минералогия благородных металлов в рудах золотопорфирового месторождения Юбилейное (Казахстан) // Минералогия. 2020. Т. 6. № 3. С. 44-53.
- 31.Плотинская О.Ю. Порфирово-эпитермальные системы Урала: источники вещества, эволюция и зональность // диссертация на соискание ученой степени доктора геолого-минералогических наук / Федеральное государственное бюджетное учреждение науки Институт геологии рудных месторождений, петрографии, минералогии и геохимии Российской Академии Наук. 2023
- 32.Покалов В.Т. Месторождения молибдена. Рудные месторождения СССР. Т. 3 М.: Недра, 1974. С. 117-170.
- 33.Рудные месторождения СССР. В 3-х т. Под ред. Акад. В. И. Смирнова. Изд. 2-е, перераб. и доп. М., Т. 3. 1978. 496 с.
- 34.Рутштейн И.Г. Геологическая карта Российской Федерации с объяснительной запиской. Издание второе. Серия Приаргунская. Лист М-50-IV (Шелопугино) /Рутштейн И.Г., Богач Г.И. и др. – С-Пб.: ГГУП «Читагеолсъемка», 2002.

- 35.Светлицкая Т.В., Неволько П.А., Дранишникова Д.Е. Улантовский гранитоидный массив: новый возрастной этап потенциально продуктивного раннедевонского магматизма на Салаире // Геосферные исследования. 2023. № 4. С. 21-48.
- 36.Светлицкая Т.В., Неволько П.А., Оценка перспектив Култуминского месторождения на порфировое оруденение на основе анализа геохимических характеристик цирконов (Восточное Забайкалье, Россия) // Разведка и охрана недр. 2023. № 3. С. 11-19.
- 37.Сидоренко В.В. Геология и петрология Шахтаминского интрузивного комплекса. М., Изд-во АН СССР. 1961. 102 с.
- 38.Сотников В.И., Берзина А.Н. Режим хлора и фтора в медно-молибденовых рудно-магматических системах // Новосибирск: ОИГГМ СО РАН. 1993. 132 с.
- 39.Сотников В.И., Берзина А.П., Гимон В.О. Шахтаминское молибденовое месторождение // Месторождения Забайкалья. Т. І. Кн. 1. Чита–Москва: Геоинформ марк, 1995. С. 187–192.
- 40.Сотников В.И., Берзина А.П., Никитина Е.И., Проскуряков А.А., Скуридин В.А. Медно-молибденовая рудная формация (на примере Сибири и сопредельных регионов). Новосибирск. Наука. 1977. 423 с.
- 41.Сотников В.И., Берзина А.П., Никитина Е.И., Королюк В.Н. Содержание и распределение хлора и фтора в минералах медно-молибденовых месторождений в зависимости от особенностей минералообразующего процесса // Минералогические критерии связи оруденения с кислым магматизмом. Л.: Наука. 1982. С. 101-108.
- 42.Сотников В.И., Пономарчук В.А., Травин А.В. и др. Возрастная последовательность проявления магматизма в Шахтаминском рудном узле, Восточное Забайкалье (Ar-Ar, K-Ar, Rb-Sr) //Докл. РАН. 1998. Т. 359. № 2. С. 242-244.
- 43.Спиридонов А.М., Зорина Л. Д., Геолого-генетические модели золоторудных месторождений Забайкальской части Монголо-Охотского складчатого пояса // Геология и геофизика. 2006. Т.47. № 11. С.1158-1169.
- 44.Таусон Л.В., Баумштейн В.И., Зорина Л.Д. // Геология рудных месторождений. 1985. № 5. С. 34–43.
- 45. Тетенькин Д.Д., Петров Е.И. Государственный доклад о состоянии и использовании минерально-сырьевых ресурсов Российской Федерации в 2022 году //М: ФГБУ «ВИМС. 2023.
- 46. Трёгер В. Е. Оптическое определение породообразующих минералов. под ред. Н. Д. Соболева // М.: Недра. 1968. 197 с.
- 47.Фёдорова А.А., Чернышева Н. Е. Особенности формирования метасоматических образований и руд на Быстринском золото-железомедном месторождении Восточного Забайкалья // Вестник Читинского государственного университета. 2009. № 1 (52). С. 136–143.
- 48.Холоднов В.В, Краснобаев А.А., Полтавец Ю.А. Летучие в акцессорных и рудных апатитах как показатели флюидного режима и потенциальной

рудоносности гранитоидов Урала. Свердловск, 1978 //Тр. ИГ и Г УНЦ АН СССР. 1978. №.136. С. 47.

- 49.Холоднов В.В. Серавкин И.Б., Косарев А.М., Коновалова Е.В., Шагалов Е.С. Распределение галогенов и серы в апатитах медно-порфировых месторождений Южного Урала (новые данные) // Минералогия. 2016. № 1. С. 54–65.
- 50.Шадчин М. В., Шведов Г. И., Макаров В. А., Лобастов Б. М., Сильянов С. А., Сердюк С. С. Новые данные по минералогии руд Аи-Мо-Си-порфирового месторождения Ак-Суг (северо-восточная Тува)//Минералогия. 2024. 10(3), 32–51
- 51.Шатов В.В., Ткаченко М.А., Зубова Т.Н., Шевченко С.С., Леонтьев В.И., Беляцкий Б.В., Родионов Н.В., Сергеев С.А., Тарасов А.В., Трушин С.И., Козлов А.В. Оценка перспектив рудоносности гранитоидных комплексов территории Российской Федерации на золото-медно-порфировое оруденение по результатам изотопно-геохимического изучения акцессорных цирконов // Региональная геология и металлогения. 2024. Т. 31. № 4 (100). С. 126-146.
- 52.Шведов Г. И., Самородский П. Н., Макаров В. А., Муромцев Е. А., Шадчин М. В., Лобастов Б. М., Глушков Ю. В. Мышьяковистая самородная медь золото-медно-порфирового месторождения Ак-Суг, Восточная Тыва // Руды и металлы. 2021. № 1. С.77–92.
- 53.Шевчук Г.А., Харитонов Ю.Ф., Карманов А.Б. Перспективы развития минерально-сырьевой базы Юго-Восточного Забайкалья // Горный журнал. 2010. № 5. С. 34–37.
- 54.Юргенсон Г.А. Золото-серебряная минеральная ассоциация в Шахтаминском рудном поле // Вестник Забайкальского госуниверситета. 2020. Т. 26. № 6. С. 54-63.
- 55.Юргенсон Г.А., Киселева Г.Д., Доломанова-Тополь А.А., Коваленкер В.А., Петров В.А., Абрамова В.Д., Языкова Ю.И., Левицкая Л.А., Трубкин Н.В., Таскаев В.И., Каримова О.В. Строение, минералого-геохимические особенности и условия образования рудных жил Мо-порфирового месторождения Шахтаминское (Восточное Забайкалье) // Геология рудных месторождений. 2023. Т. 65. № 7. С. 662–699.
- 56.Якубчук А.С. Российская меднодобывающая промышленность за 30 лет. В кн. Проблемы минерагении, экономической геологии и минеральных ресурсов. Научно-литературный альманах, Фонд академика В.И.Смирнова. Москва, 2022. сс.76-85.
- 57.Adam J., Green T., Trace element partitioning between mica- and amphibolebearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behaviour // Contrib. Mineral. Petrol. 2006. V. 152(1). P. 1-17
- 58.Afshooni S.Z., Mirnejad H., Esmaeily D., Haroni A.H. Mineral chemistry of hydrothermal biotite from the Kahang porphyry copper deposit (NE Isfahan), Central Province of Iran // Ore Geol. Rev. 2013. V. 54. P. 214–232

- 59.Ague J.J., Brimhall G.H. Regional variations in bulk chemistry, mineralogy, and the compositions of mafic and accessory minerals in the batholiths of California // Geological Society of America Bulletin. 1988. V. 100(6). P. 891–911.
- 60.Alonso-Pérez R., Müntener O., Ulmer P. Igneous garnet and amphibole fractionation in the roots of island arcs: Experimental constraints on andesitic liquids // Contrib. Miner. Petrol. 2009. V. 157(4). P. 541–558.
- 61.Ayati F., Yavuz F., Noghreyan M., Haroni H.A., Yavuz R. Chemical characteristics and composition of hydrothermal biotite from the Dalli porphyry copper prospect, Arak, central province of Iran // Miner. Petrol. 2008. V. 94. P. 107–122.
- 62.Ayers J.C. Watson E.B. Solubility of apatite, monazite, zircon, and rutile in supercritical aqueous fluids with implications for subduction zone geochemistry // Philos. Trans. R. Soc. 1991. V. 335. P. 365–375.
- 63.Azadbakht Z., Lentz D.R., McFarlane C.R., Whalen J.B. Using magmatic biotite chemistry to differentiate barren and mineralized Silurian–Devonian granitoids of New Brunswick, Canada. // Contributions to Mineralogy and Petrology. 2020. V. 175(7). P. 69.
- 64.Ballard J.R., Palin M.J., Campbell I.H. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile // Contrib. Mineral. Petrol. 2002. V. 144 (3). P. 347–364.
- 65.Belousova E., Griffin W.L., O'reilly S.Y., Fisher N. Igneous zircon: trace element composition as an indicator of source rock type // Contrib. Mineral. Petrol. 2002. V. 143. P. 602-622.
- 66.Berzin S.V., Konopelko D.L., Petrov S.V., Proskurnin V.F., Berzon E.I., Kurapov M.Yu., Golovina T.A., Chernenko N.Ya., Chervyakovskiy V.S., Palamarchuk R.S., Andreeva E.M. Evaluation of granite fertility utilizing porphyry indicator minerals (zircon, apatite, and titanite) and geochemical data: a case study from an emerging metallogenic province in the Taimyr Peninsula, Siberian High Arctic // Minerals. 2024. V. 14(11). P. 1065.
- 67.Berzina A.N., Berzina A.P., Gimon V.O. Paleozoic–Mesozoic porphyry Cu (Mo) and Mo (Cu) deposits within the southern margin of the Siberian Craton: Geochemistry, geochronology, and petrogenesis (a review) // Minerals. 2016. V. 6(4). P. 125.
- 68.Berzina A.N., Stein H.J., Zimmerman A., Sotnikov V.I. Re–Os ages for molybdenite from porphyry Cu–Mo and greizen Mo–W deposits of southern Siberia (Russia) preserve metallogenic record // Mineral Exploration and Sustainable Development, v. 1. Rotterdam. Millpress. 2003. P. 231–234.
- 69.Berzina A.P., Berzina A.N., Gimon V.O. Geochemical and Sr–Pb–Nd isotopic characteristics of the Shakhtama porphyry Mo–Cu system (Eastern Transbaikalia, Russia) // Journal of Asian Earth Sciences. 2014. V. 79. P. 655–665.
- 70.Bissig T., Leal-Mejía H., Stevens R.B., Hart C.J. High Sr/Y magma petrogenesis and the link to porphyry mineralization as revealed by garnet-bearing I-Type granodiorite porphyries of the Middle Cauca Au-Cu Belt, Colombia // Econ. Geol. 2017. V. 112. P. 551–568.

- 71.Boomeri M., Nakashima K., Lentz D.R. The Miduk porphyry Cu deposit, Kerman, Iran: a geochemical analysis of the potassic zone including halogen element systematics related to Cu mineralization processes // J. Geochem. Explor. 2009. V. 103. P. 17–29.
- 72.Boomeri M., Nakashima K., Lentz D.R. The Sarcheshmeh porphyry copper deposit, Kerman, Iran: A mineralogical analysis of the igneous rocks and alteration zones including halogen element systematics related to Cu mineralization processes // Ore Geology Reviews. 2010. V. 38(4). P. 367–381.
- 73.Bouzari F., Hart C.J., Bissig T., Barker S. Hydrothermal alteration revealed by apatite luminescence and chemistry: a potential indicator mineral for exploring covered porphyry copper deposits // Econ. Geol. 2016. V. 111 (6). P. 1397–1410.
- 74.Brimhall G.H., Crerar D.A. Ore fluids: magmatic to supergene. In: Carmichael, I.S.E., Eugster, H.P. (Eds.) // Thermodynamic Modeling of Geological Materials: Minerals. Fluids and Melts. Rev. Mineral 17. 1987. P. 235–322.
- 75.Bruand E., Storey C., Fowler M. Accessory mineral chemistry of high Ba–Sr granites from northern Scotland: constraints on petrogenesis and records of whole–rock signature // J. Petrol. 2014. V. 55 (8). P. 1619–1651.
- 76.Burnham A.D., Berry A.J. An experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity // Geochim. Cosmochim. Acta. 2012. V. 95. P. 196-212
- 77.Cao K., Yang Z.M., Hou Z.Q., White N.C., Yu C. Contrasting porphyry Cu fertilities in the Yidun arc, eastern Tibet: Insights from zircon and apatite compositions and implications for exploration // Soc. Econ. Geol. 2021. V. 24. P. 231-255.
- 78.Cao M.J., Li G.M., Qin K.Z., Seitmuratova E.Y., Liu Y.S. Major and trace element characteristics of apatites in granitoids from Central Kazakhstan: implications for petrogenesis and mineralization // Resour. Geol. 2012. V. 62. № 1. P. 63–83.
- 79.Castillo P. Adakite petrogenesis // Lithos. 2012. V. 134-135, P. 304-316.
- 80.Cavosie A.J., Valley J.W., Wilde S.A. Correlated microanalysis of zircon: Trace element, δ18O, and U-Th–Pb isotopic constraints on the igneous origin of complex>3900Ma detrital grains // Geochim. Cosmochim. Acta. 2006. V. 70 (22). P. 5601–5616.
- 81.Chen L., Yan Z., Wang Z.Q., Wang K.M. Characteristics of apatite from 160–140 Ma Cu(Mo) and Mo(W) deposits in East Qinling // Acta Geol. Sin. 2017. V. 91(9). P. 1925-1942
- 82.Chen L., Zhang Y. In situ major-, trace-elements and Sr-Nd isotopic compositions of apatite from the Luming porphyry Mo deposit, NE China: constraints on the petrogenetic-metallogenic features // Ore. Geol. Rev. 2018. V. 94. P. 93–103.
- 83.Chiaradia M., Müntener O., Beate, B. Enriched basaltic andesites from midcrustal fractional crystallization, recharge, and assimilation (Pilavo volcano, Western Cordillera of Ecuador) // J. Petrol. 2011. V. 52. P. 1107–1141.
- 84.Chiaradia M., Ulianov A., Kouzmanov, K., Beate, B. Why large porphyry Cu deposits like high Sr/Y magmas? // Sci. Rep. 2012. V. 2. P. 1-7.

- 85.Chivas A. R. Geochemical evidence for magmatic fluids in porphyry copper mineralization: Part I. Mafic silicates from the Koloula igneous complex //Contributions to Mineralogy and Petrology. 1982. V. 78(4). P. 389-403.
- 86.Claiborne L.L., Miller C.F., Walker B.A., Wooden J.L., Mazdab F.K., Bea, F. Tracking magmatic processes through Zr/Hf rations in rocks and Hf and Ti zoning in zircons: an example from the Spirit Mountain batholith // Nevada. Mineral. Mag. 2006. V. 70. P. 517–543.
- 87.Clarke D.B. The mineralogy of peraluminous granites: a review // Canadian Mineralogist. 1981. V. 19(1). P. 1–17.
- 88.Cooke D.R., Agnew P., Hollings P., Baker M., Chang Z., Wilkinson J.J., White N.C., Zhang L., Thompson J., Gemmell J.B., Fox N., Chen H., Wilkinson C.C. Porphyry Indicator Minerals (PIMS) and Porphyry Vectoring and Fertility Tools (PVFTS) indicators of mineralization styles and recorders of hypogene geochemical dispersion halos // Sixth Decennial International Conference on Mineral Exploration conference proceedings. 2017. P. 457-470
- 89.Cooke D.R., Wilkinson J.J., Baker M., Agnew P., Martin H., Chang Z., Chen H., Gemmel J.B., Wilkinson C.C., Inglis S., Danyushevsky L., Gilbert S., Hollings P. Using mineral chemistry to detect the location of concealed porphyry deposits an example from Resolution // Arizona. 27th International Association of Geochemistry Symposium conference proceedings, USA, 20-24th April. 2015. P. 1–6.
- 90.Davidson J., Turner S., Handley H., Macpherson C., Dosseto A. Amphibole "sponge" in arc crust? // Geology. 2007. V.35. P. 787–790.
- 91.Deering C.D., Keller B., Schoene B., Bachmann, O., Beane, R., Ovtcharova M. Zircon record of the plutonic-volcanic connection and protracted rhyolite melt evolution // Geology. 2016. V. 44. P. 267–270.
- 92.Dilles J.H., Kent A.J., Wooden J.L., Tosdal R.M., Koleszar A., Lee R.G., Farmer L.P. Zircon compositional evidence for sulfur-degassing from ore-forming arc magmas // Econ. Geol. 2015. V. 110 (1). P. 241–251.
- 93.Du J.G., Mao J.W., Du Y.S. Redox state and water content changes of magma during amphibole accumulation process: Tongling example // Ore Geol. Rev. 2021. V. 139. P. 104523.
- 94.Du J.G., Wang G.W., Jia L.H. In situ major and trace element compositions of apatites from Luanchuan orecluster: Implications for porphyry Mo mineralization // Ore Geol. Rev. 2019. V. 115. P. 103174.
- 95.Duan X., Chen B., Sun K., Wang Z., Yan X., Zhang Z. Accessory mineral chemistry as a monitor of petrogenetic and metallogenetic processes: A comparative study of zircon and apatite from Wushan Cu- and Zhuxiling W(Mo)-mineralization-related granitoids // Ore Geol. Rev. 2019. V. 111. P. 102940
- 96.Ferry J.M., Watson E.B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers // Contrib. Mineral. Petrol. 2007. V. 154 (4). P. 429-437.

- 97.Frei R. Sulfur in bulk rock and igneous apatite; tracing mineralized and barren trends in intrusions // Schweizerische Mineralogische Und Petrographische Mitteilungen. 1996. V. 76. № 1. P. 57-73.
- 98.Fu B., Page F.Z., Cavosie A.J., Fournelle J., Kita N.T., Lackey J.S., Wilde S.A., Valley J.W. Ti-in-zircon thermometry: applications and limitations // Contrib. Mineral. Petrol. 2008. V. 156 (2). P. 197–215.
- 99.Fu J.B. Chemical composition of biotite in porphyry copper deposits // Geology and Prospecting. 1981. V. 9(1). P. 16–19.
- 100. Green T.H., Pearson N.J. Experimental determination of REE partition coefficients between amphibole and basaltic to andesitic liquids at high pressure // Geochim. Cosmochim. Acta. 1985. V. 49 (6). P. 1465-1468
- 101. Griffin W.L., Powell W.J., Pearson N.J., O'Reilly S.Y. GLITTER: Data reduction software for laser ablation ICP-MS, in Sylvester, P. (ed.), Laser Ablation ICP-MS in the Earth Sciences: Current practices and outstanding issues: Mineralogical Association of Canada, Short Course Series. 2008. V. 40. P. 307– 311.
- 102. Harrison T.M., Watson E.B., Aikman A.B. Temperature spectra of zircon crystallization in plutonic rocks. Geology. 2007. V. 35 (7). P. 635-638.
- 103. Henry D.J., Guidotti C.V., Thomson J.A. The Ti-saturation surface for lowto-medium pressure metapelitic biotites: Implications for geothermometry and Tisubstitution mechanisms // American mineralogist. 2005. V. 90(2-3). P. 316–328.
- 104. Hoskin P.W.O., Schaltegger U., The composition of zircon and igneous and metamorphic petrogenesis. Rev. Miner. Geochem. 2003. V. 53(1). P. 27-62.
- 105. Idrus A. Petrography and Mineral Chemistry of Magmatic and Hydrothermal Biotite in Porphyry Copper-Gold Deposits: A Tool for Understanding Mineralizing Fluid Compositional Changes During Alteration Processes // Indonesian Journal on Geoscience. 2018. V. 5(1). P.47–64
- 106. Imai A. Metallogenesis of porphyry Cu deposits of the western Luzon arc, Philippines: K-Ar ages, SO3 contents of microphenocrystic apatite and significance of intrusive rocks // Resour. Geol. 2002. V. 52. P. 147–161.
- 107. Imai A. Variation of Cl and SO3 Contents of Microphenocrystic Apatite in Intermediate to Silicic Igneous Rocks of Cenozoic Japanese Island Arcs: Implications for Porphyry Cu Metallogenesis in the Western Pacific Island Arcs // Resour. Geol. 2004. V. 54. P. 357–372.
- 108. Jackson S.E., Pearson N.J., Griffin W.L., Belousova E.A., The application of laser ablation-inductively coupled plasma-mass spectrometry to in-situ U-Pb zircon geochronology // Chem. Geol. 2004. V. 211. P. 47-69.
- 109. Jacobs D.C., Parry W.T. A comparison of the geochemistry of biotite from some basin and range stocks // Economic Geology. 1976. V. 71(6). P. 1029-1035.
- 110. Jacobs D.C., Parry W.T. Geochemistry of biotite in the Santa Rita porphyry copper deposit, New Mexico // Econ. Geol. 1979. V. 74. P. 860–887.
- 111. Jahn B.M., Litvinovsky B.A., Zanvilevich A.N., Reichow M. Peralkaline granitoid magmatism in the Mongolian–Transbaikalian Belt: evolution, petrogenesis and tectonic significance // Lithos. 2009. V. 113 (3–4). P. 521–539.

- 112. Jin C., Gao X.Y., Chen W.T., Zhao T.P. Magmatic-hydrothermal evolution of the Donggou porphyry Mo deposit at the southern margin of the North China Craton: evidence from chemistry of biotite // Ore Geol. Rev. 2018. V. 92. P. 84– 96.
- 113. Jugo P.J. Sulfur content at sulfide saturation in oxidized magmas // Geology.
 2009. V. 37(5). P. 415–418.
- 114. Kelemen P. B., Hanghøj K., Greene A. R. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust //Treatise on geochemistry. 2003. V. 3. P. 593-659.
- 115. Kevrekidis E., Seymour K. St., Tombros S., Zhai D., Liu J., Zouzias D. The Agios Georgios argentiferous galena deposit on Antiparos Island, Cyclades, Hellas and its relationship to the Paros leucogranite // Neues Jahrbuch fur Mineralogie Abhandlungen. 2015. V. 192(3). P. 239-261.
- 116. Klein M., Stosch H.-G., Seck H. Partitioning of high field-strength and rareearth elements between amphibole and quartz-dioritic to tonalitic melts: an experimental study // Chemical Geology. 1997. V. 138(3-4), P. 257-271.
- Kouzmanov K., Pokrovski G.S. Hydrothermal controls on metal distribution in porphyry Cu (-Mo-Au) systems // Geol. Soc. Spec. Publ. 2012. V. 16. P. 573– 618.
- 118. Kovalenker V.A., Plotinskaya O.Y., Kiseleva G.D., Minervina E.A., Borisovskii S.E., Zhilicheva O.M., Yazykova Yu.I. Scheelite of the Bystrinskoe skarn-porphyry Cu–Au–Fe deposit, Eastern Transbaikal Region, Russia: genetic implications // Geol. Ore Depos. 2019. V. 61. P. 559-579.
- 119. Lee R.G., Byrne K., D'Angelo M., Hart C.J.R., Hollings P., Gleeson S.A., Alfaro M. Using zircon trace element composition to assess porphyry copper potential of the Guichon Creek batholith and Highland Valley Copper deposit, south-Central British Columbia // Mineral. Deposita. 2021. V. 56. P. 215-238.
- 120. Lee R.G., Dilles J.H., Tosdal R.M., Wooden J.L., Mazdab F.K., Magmatic evolution of granodiorite intrusions at the El Salvador Porphyry copper deposit, Chile, based on trace element composition and U/Pb age of zircons // Econ. Geol. 2017. V. 112. P. 245-273.
- 121. Li H., Hermann J. Chlorine and fluorine partitioning between apatite and sediment melt at 2.5 GPa, 800 C: A new experimentally derived thermodynamic model // Am. Min. 2017. V. 102 (3). P. 580–594.
- 122. Li X., Zhang C., Behrens H., Holtz F. Calculating biotite formula from electron microprobe analysis data using a machine learning method based on principal components regression // Lithos. 2020. V. 356. P. 105371.
- 123. Li Z., Li B., Li P., Sun Ya., Shi Yu. Petrogenesis and magma fertility of the Heishishan skarn deposit, East Kunlun, NW China: Insights from geochronology, mineralogy, geochemistry, and Sr-Nd-Hf isotopes // Ore Geol. Rev. 2023. P. 105436.
- 124. Liu Y., Gao J.F., Qi L., Min K. Textural and compositional variation of mica from the Dexing porphyry Cu deposit: constraints on the behavior of halogens in porphyry systems // Acta Geochimica. 2023. V. 42(2). P. 221–240.

- 125. Loader M.A., Wilkinson J.J., Armstrong R.N. The effect of titanite crystallisation on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry cu deposit fertility // Earth Planet. Sci. Lett. 2017. V. 472. P. 107-119.
- Loucks R. R., Fiorentini M. L., Henríquez G. J. New magmatic oxybarometer using trace elements in zircon //Journal of Petrology. 2020. V. 61. (3). P. egaa034.
- 127. Loucks R.R. Distinctive composition of copper-ore-forming arc magmas // Austr. J. Earth Sci. 2014. V. 61. P. 5–16.
- 128. Lu Y.J., Hou Z.Q., Yang Z.M., Parra-Avila L.A., Fiorentini M.L., McCuaig T.C., Loucks R.R. Terrane-scale porphyry Cu fertility in the Lhasa Terrane, southern Tibet // Geological Survey of Western Australia, Record. 2017. V. 6. P. 95-100.
- 129. Lu Y.J., Loucks R.R., Fiorentini M., McCuaig T.C., Evans N.J., Yang Z.M., Hou Z.Q., Kirkland C.L., Parra-Avila L.A., Kobussen A. Zircon compositions as a pathfinder for porphyry Cu ± Mo ± Au deposits // Soc. Econ. Geol. Special Publ. 2016. V. 19. P. 329–347.
- Maniar P.D., Piccoli P.M. Tectonic discrimination of granitoids // Geol. Soc. Am. Bull. 1989. V. 101 (5). P. 635–643.
- 131. Middlemost E. A. K. Naming materials in the magma/igneous rock system //Earth-science reviews. 1994. V. 37 (3-4). P. 215-224.
- 132. Miles A.J., Graham C.M., Hawkesworth C.J., Gillespie M.R., Hinton R.W. Evidence for distinct stages of magma history recorded by the compositions of accessory apatite and zircon // Contrib. Mineral. Petrol. 2013. V. 166 (1). P. 1–19.
- Miller J.S, Wooden J.L., Residence, resorption and recycling of zircons in Devils Kitchen Rhyolite, Coso volcanic field, California. J. Petrol. 2004. V. 45. P. 2155-2170.
- 134. Munoz J.L. F-OH and Cl-OH exchange in micas with applications to hydrothermal ore deposits // Reviews in Mineralogy and Geochemistry. 1984. V. 13(1). P. 469–493
- 135. Nachit H., Ibhi A., Ohoud M.B. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites // Comptes Rendus Geoscience. 2005. V. 337(16). P. 1415–1420.
- 136. Nandedkar R. H., Ulmer P., Müntener O. Fractional crystallization of primitive, hydrous arc magmas: an experimental study at 0.7 GPa // Contrib. Mineral. Petrol. 2014. V. 167(6). P. 1-27.
- 137. Nash W.P., Crecraft H.R. Partition coefficients for trace elements in silicic magmas // Geochimica et Cosmochimica Acta. 1985. V. 49(11). P. 2309–2322.
- 138. Nevolko P.A., Svetlitskaya T.V., Savichev A.A., Vesnin V.S., Fominykh P.A. Uranium-Pb zircon ages, whole-rock and zircon mineral geochemistry as indicators for magmatic fertility and porphyry Cu-Mo-Au mineralization at the Bystrinsky and Shakhtama deposits, Eastern Transbaikalia, Russia // Ore Geol. Rev. 2021. V. 139. P. 104532.

- 139. Palma G., Barra F., Reich M., Valencia V., Simon A.C., Vervoort J., Leisen M., Romero R. Halogens, trace element concentrations, and Sr-Nd isotopes in apatite from iron oxideapatite (IOA) deposits in the Chilean iron belt: Evidence for magmatic and hydrothermal stages of mineralization // Geochim. Cosmochim. Acta. 2019. V. 246. P. 515–540.
- 140. Pan L.C., Hu R.Z., Oyebamiji A., Wu H.Y., Li J.W., Li J.X. Contrasting magma compositions between Cu and Au mineralized granodiorite intrusions in the Tongling ore district in South China using apatite chemical composition and Sr-Nd isotopes // Am. Mineral. 2021. V. 106. (12). P. 1873–1889.
- 141. Pan Y., Fleet M.E. Compositions of the apatite-group minerals: substitution mechanisms and controlling factors // Rev. Mineral. Geochem. 2002. V. 48. (1). P. 13–49.
- 142. Parat F., Holtz F., Klügel A. S-rich apatite-hosted glass inclusions in xenoliths from La Palma: Constraints on the volatile partitioning in evolved alkaline magmas // Contrib. Miner. Petrol. 2011. V. 162. P. 463–478.
- 143. Parra-Avila L.A., Hammerli J., Kemp A.I.S., Rohrlach B., Loucks R., Lu Y., Williams I.S., Martin L., Roberts M.P., Fiorentini M.L. The long-lived fertility signature of Cu–Au porphyry systems: Insights from apatite and zircon at Tampakan, Philippines // Contrib. Mineral. 2022. V. 177. (2). P. 18.
- 144. Parsapoor A., Khalili M., Tepley F., Maghami M. Mineral chemistry and isotopic composition of magmatic, re-equilibrated and hydrothermal biotites from Darreh-Zar porphyry copper deposit, Kerman (Southeast of Iran) // Ore Geology Reviews. 2015. V. 66. P. 200–218.
- 145. Pasero M., Kampf A.R., Ferraris C., Pekov I. V., Rakovan J., White T.J. Nomenclature of the apatite supergroup minerals // European J. of Mineral., 2010, V. 22, P. 163–179.
- 146. Peccerillo A., Taylor S.R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey // Contrib. Mineral. Petrol. 1976. V. 58 (1). P. 63-81.
- 147. Peng G., Luhr J.F., McGee J.J. Factors controlling sulfur concentrations in volcanic apatite // Am. Min. 1997. V. 82. P. 1210–1224.
- 148. Petrov O.V., Shatov V.V., Alenicheva A.A., Molchanov A.V., Terekhov A.V., Leontev V.I., Belyatsky B.V., Rodionov N.V., Sergeev S.A., Khanchuk A.I., Ivanov V.V., Seltmann R., Dolgopolova A.V. Porphyry Indicator Zircons (PIZ) and geochronology of magmatic rocks from the Malmyzh and Pony Cu-Au porphyry ore fields (Russian Far East) // Ore Geology Reviews. 2021. V. 139. P. 104491.
- 149. Piccoli P.M., Candela P.A. Apatite in Igneous Systems // Rev. Mineral. Geochem. 2002. V. 48. (1). P. 255–292.
- 150. Pizarro H., Campos E., Bouzari F., Rousse S., Bissig T., Gregoire M., Riquelme R. Porphyry indicator zircons (PIZs): Application to exploration of porphyry copper deposits // Ore Geol. Rev. 2020. V. 126, 103771.
- 151. Plotinskaya O.Y., Kovalchuk E.V. Fahlores from porphyry Cu–(Mo) deposits of the Urals // Geology of Ore Deposits. 2023. V. 65. (S1). P. S42-S57.

- 152. Plotinskaya O.Y., Zu Bo., Seltmann R., Najorka J., Bondar D., Abramova V.D., Li Ch., Spratt J., Bergal-Kuvikas O., Belogub E. Tectonic history of the Urals as stored in molybdenites of porphyry and greisen deposits // Earth-Science Reviews. 2023. V. 247. P. 104609.
- Pokrovski G.S., Dubrovinsky L.S. The S3–ion is stable in geological fluids at elevated temperatures and pressures // Science. 2011. V. 331(6020). P. 1052-1054.
- Prowatke S., Klemme S. Rare earth element partitioning between titanite and silicate melts: Henry's law revisited // Geochim. Cosmochim. Acta. 2006. V. 70 (19) P. 4997-5012.
- 155. Rakovan J., Hughes M.J. Phosphates: geochemical, geological & material importance // Rev. Mineral. Geochem. 2002. V. 48. P. 19–33.
- 156. Rasmussen K.L., Mortensen J.K. Magmatic petrogenesis and the evolution of (F:Cl:OH) fluid composition in barren and tungsten skarn-associated plutons using apatite and biotite compositions: case studies from the northern Canadian Cordillera // Ore Geol. Rev. 2013. V. 50. P. 118–142
- 157. Rayner N., Stern R.A., Carr S.D., Grain-scale variations in trace element composition of fluid-altered zircon, Acasta Gneiss Complex, northwestern Canada // Contrib. Mineral. Petrol. 2005. V. 148 (6). P. 721-734.
- 158. Rezaei M., Zarasvandi A. Titanium-in-biotite thermometry in porphyry copper systems: Challenges to application of the thermometer //Resource Geology. 2020. V. 70(2). P. 157–168.
- 159. Richards J. High Sr/Y arc magmas and porphyry Cu±Mo±Au deposits: Just add water // Econ. Geol. 2011. V. 106. P. 1075–1081.
- 160. Richards J. P., López G. P., Zhu J. J., Creaser R. A., Locock A. J., Mumin A. H. Contrasting tectonic settings and sulfur contents of magmas associated with Cretaceous porphyry Cu±Mo±Au and intrusion-related iron oxide Cu-Au deposits in northern Chile // Econ. Geol., 2017, V. 112(2), P. 295-318.
- 161. Richards J., Kerrich R. Adakite-like rocks: their diverse origins and questionable role in metallogenesis // Econ. Geol. 2007. V. 102. P. 1–40.
- 162. Richards J., Spell T., Rameh E., Razique A., Fletcher T. High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu±Mo±Au potential: Examples from the Tethyan arcs of central and eastern Iran and western Pakistan // Econ. Geol. 2012. V. 107. P. 295–332.
- 163. Richards J.P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation // Econ. Geol. Bull. Soc. Econ. Geol. 2003. V. 98. P. 1515–1533.
- 164. Rieder M., Cavazzini G., D'yakonov Y.S., Frank-Kamenetskii V.A., Gottardi G., Guggenheim S., Wones D.R. Nomenclature of the micas // Clays and clay minerals. 1998. V. 46(5). P. 586–595
- 165. Rottier B., Audétat A., Koděra P., Lexa J. Origin and evolution of magmas in the porphyry Au-mineralized Javorie volcano (Central Slovakia): evidence from thermobarometry, melt inclusions, and sulfide inclusions // J. Petrol. 2020. V. 60 (12). P. 2449–2482.
- 166. Savichev A.A., Nevolko P.A., Kolpakov V.V., Redin Y.O., Mokrushnikov V.P., Svetlitskaya T.V., Sukhorukov V.P. Typomorphic features of placer gold from the Bystrinsky ore field with Fe-Cu-Au skarn and Mo-Cu-Au porphyry mineralization (Eastern Transbaikalia, Russia) // Ore Geol. Rev. 2021. V. 129. P. 103948.
- 167. Siahcheshm K., Calagari A.A., Abedini A., Lentz D.R. Halogen signatures of biotites from the Maher-Abad porphyry copper deposit, Iran: characterization of volatiles in syn-to post-magmatic hydrothermal fluids // International Geology Review. 2012. V. 54(12). P. 1353–1368.
- 168. Sillitoe R.H. Porphyry copper systems // Econ. Geol. 2010. V. 105. (1). P. 3–41.
- Sisson T.W., Ratajeski K., Hankins W.B., Glazner A.F. Voluminous granitic magmas from common basaltic sources // Contrib. Mineral. Petrol. 2005. V. 148 (6). P. 635-661
- 170. Slama J., Kosler J., Condon D.J., Crowley J.L., Gerdes A., Hanchar J.M., Horstwood M.S.A., Morris G.A., Nasdala L., Norberg N., Schaltegger U., Schoene N., Tubrett M.N., Whitehouse M.J. Plesovice zircon - a new natural reference material for U-Pb and Hf isotopic microanalysis // Chem. Geol. 2008. V. 249 (1-2). P. 1-35.
- 171. Smythe D.J., Brenan J.M. Magmatic oxygen fugacity estimated using zircon-melt partitioning of cerium. Earth Planet. Sci. Lett. 2016. V. 453. P. 260–266.
- 172. Speer J.A. Evolution of magmatic AFM mineral assemblages in granitoid rocks: the hornblende + melt = biotite reaction in the Liberty Hill pluton, South Carolina // Am. Mineral. 1987. V. 72. P. 863–878.
- 173. Sun S.S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implications or mantle composition and processes in so unders AD. In: Norry, M.J. (Ed.), Magmatism in the Ocean Basins // Geo L. Soc. Spe Publ. 1989. V. 42. P 313–345.
- 174. Svetlitskaya T.V., Nevolko P.A. New whole-rock skarn and porphyry fertility indicators: Insights from Cu-Au-Fe skarn and Cu-Mo-Au porphyry deposits in Eastern Transbaikalia, Russia // Ore Geol. Rev. 2022. P. 105108.
- 175. Tang M., Lee C.T.A., Ji W.Q., Wang R., Costin G. Crustal thickening and endogenic oxidation of magmatic sulfur // Sci. Adv. 2020. V. 6. (31). P. eaba6342.
- 176. Tang P., Chen Y., Tang J., Wang Y., Zheng W., Leng Q., Wu C. Advances in research of mineral chemistry of magmatic and hydrothermal biotites // Acta Geologica Sinica-English Edition. 2019. 93(6). P. 1947–1966.
- 177. Tang P., Tang J., Wang Y., Lin B., Leng Q., Zhang Q., He L., Zhang Z., Sun M., Wu C., Qi J., Li Y., Dai S. Genesis of the Lakang'e porphyry Mo (Cu) deposit, Tibet: Constraints from geochemistry, geochronology, Sr-Nd-Pb-Hf isotopes, zircon and apatite // Lithos. 2021. V. 380-381. P. 105834.
- 178. Tang P., Tang J.X., Lin B., Wang L.Q., Zheng W.B., Leng Q. F., Tang, X.Q. Mineral chemistry of magmatic and hydrothermal biotites from the Bangpu porphyry Mo (Cu) deposit, Tibet // Ore Geol. Rev. 2019. V. 115. P. 103122.

- 179. Tepper J.H., Kuehner S.M. Complex zoning in apatite from the Idaho Batholith; a record of magma mixing and intracrystalline trace element diffusion // Am. Min. 1999. V. 84(4). P. 581–595.
- 180. Tiepolo M., Tribuzio R. Petrology and U-Pb zircon geochronology of amphibole-rich cumulates with sanukitic affinity from Husky Ridge (Northern Victoria Land, Antarctica): Insights into the role of amphibole in the petrogenesis of subduction-related magmas // J. Petrol. 2008. V. 49. P. 937–970.
- 181. Trail D., Watson E.B., Tailby N.D. Ce and eu anomalies in zircon as proxies for the oxidation state of magmas // Geochim. Cosmochim. Acta. 2012. V. 97. P. 70–87.
- 182. Vermeesch P. IsoplotR: A free and open toolbox for geochronology // Geosci. Front. 2018. V. 9 (5). P. 1479-1493.
- Warr L.N. IMA–CNMNC approved mineral symbols // Mineral. Magazine. 2021. V. 85(3). P. 291-320.
- 184. Watson E.B., Wark D.A., Thomas J.B. Crystallization thermometers for zircon and rutile // Contrib. Mineral. Petrol. 2006. V.151. P. 413-433.
- 185. Webster J.D., Piccoli P.M. Magmatic apatite: a powerful, yet deceptive, mineral // Elements. 2015. V. 11(3). P. 177–182.
- 186. Wiedenbeck, M., Alle, P., Corfu, F., Griffn, W.L., Meier, M., Oberli, F., Vonquadt, A., Roddick, J.C., Speigel, W. Natural zircon standards for U-Th-Pb, Lu-Hf, trace-element and REE analyses // Geostand. Newslett. 1995. V. 19. P. 1– 23.
- Williamson B.J., Herrington R.J., Morris A. Porphyry copper enrichment linked to excess aluminium in plagioclase // Nature Geosci. 2016. V. 9. P. 237– 241.
- 188. Wones D.R., Eugster H.P. Stability of biotite: experiment, theory, and application // Am. Mineral. 1965. V. 50. P. 1228–1272.
- 189. Xing K., Shu Q., Lentz D.R. Constraints on the formation of the giant Daheishan porphyry Mo deposit (NE China) from whole-rock and accessory mineral geochemistry // J. Petrol. 2021. V. 62 (4). P. egab018.
- 190. Xing K., Shu Q.H., Lentz D.R., Wang F.Y. Zircon and apatite geochemical constraints on the formation of the Huojihe porphyry Mo deposit in the Lesser Xing'an Range, NE China // Am. Mineral. 2020. V. 105(3). P. 382–396.
- Xu B., Hou Z. Q., Griffin W. L., Lu Y., Belousova E., Xu J. F., O'Reilly, S. Y. Recycled volatiles determine fertility of porphyry deposits in collisional settings // Am. Mineral.: J. Earth and Planet. Mater., 2021, V. 106(4), P. 656-661.
- 192. Yang X.M., Lentz D.R. Chemical composition of rock-forming minerals in gold-related granitoid intrusions, southwestern New Brunswick, Canada: implications for crystallization conditions, volatile exsolution, and fluorinechlorine activity // Contributions to Mineralogy and Petrology. 2005. V. 150(3). P. 287–305.
- 193. Yardley B.W. 100th Anniversary Special Paper: metal concentrations in crustal fluids and their relationship to ore formation // Econ. Geol. 2005. V. 100(4). P. 613-632.

- 194. Yavuz F. Evaluating micas in petrologic and metallogenic aspect: part II applications using the computer program Mica+ // Comput Geosci. 2003. V. 29. P. 1215–1228.
- 195. Zarasvandi A., Heidari M., Raith J., Rezaei M., Saki A. Geochemical characteristics of collisional and pre-collisional porphyry copper systems in Kerman Cenozoic Magmatic Arc, Iran: Using plagioclase, biotite and amphibole chemistry // Lithos. 2019. V. 326. P. 279–297.
- 196. Zhang K.J., Yan L.L., Ji C. Switch of NE Asia from extension to contraction at the mid-Cretaceous: A tale of the Okhotsk oceanic plateau from initiation by the Perm Anomaly to extrusion in the Mongol–Okhotsk ocean? // Earth-Sci. Rev. 2019. V. 198. P. 102941.
- 197. Zhang Q., Shao S., Pan J., Liu Z. Halogen elements as indicator of deepseated orebodies in the Chadong As–Ag–Au deposit, western Guangdong, China // Ore Geol. Rev. 2001. V. 18. P. 169–179.
- 198. Zhang W., Lentz D.R., Thorne K.G., McFarlane C. Geochemical characteristics of biotite from felsic intrusive rocks around the Sisson Brook W– Mo–Cu deposit, west-central New Brunswick: An indicator of halogen and oxygen fugacity of magmatic systems // Ore Geology Reviews. 2016. V. 77. P. 82–96.
- 199. Zhao X., Coe R.S., Zhou Y., et al. New paleomagnetic results from Northern China: collision and suturing with Siberia and Kazakhstan // Tectonophysics. 1990. V. 114. P. 43–81.
- 200. Zhong S., Seltmann R., Qu H., Song Y. Characterization of the zircon Ce anomaly for estimation of oxidation state of magmas: a revised Ce/Ce* method // Miner. Petrol. 2019. V. 113. P. 755-763.
- 201. Zhong S.H., Feng C.Y., Seltmann R., Li D., Qu H.Y. Can magmatic zircon be distinguished from hydrothermal zircon by trace element composition? The effect of mineral inclusions on zircon trace element composition // Lithos. 2018. V. 314-315. P. 646–657.
- 202. Zhong S.H., Feng C.Y., Seltmann, R., Li D.X., Dai Z.H. Geochemical contrasts between Late Triassic ore-bearing and barren intrusions in the Weibao Cu–Pb–Zn deposit, East Kunlun Mountains, NW China: constraints from accessory minerals (zircon and apatite) // Miner. Depos. 2018. V. 53. P. 855–870.
- 203. Zhu C., Sverjensky D.A. F–Cl–OH partitioning between biotite and apatite // Geochim. Cosmochim. Acta. 1992. V. 56. P. 3435–3467
- 204. Zhu J.J., Hu R., Bi X.W., Hollings P., Zhong H., Gao J. F., Pan L.C., Huang L.M., Wang, D.Z. Porphyry Cu fertility of eastern Paleo-Tethyan arc magmas: Evidence from zircon and apatite compositions // Lithos. 2022. V. 424. P. 106775.
- 205. Zhu J.J., Richards J.P., Rees C., Creaser R., DuFrane S.A., Locock A., Petrus J.A., Lang, J. Elevated Magmatic Sulfur and Chlorine Contents in Ore-Forming Magmas at the Red Chris Porphyry Cu-Au Deposit, Northern British Columbia, Canada // Econ. Geol. 2018. V. 113(5). P. 1047–1075.
- 206. Zhu Z.Y., Jiang S.Y., Hu J., Gu L.X., Li J. Geochronology, geochemistry, and mineralization of the granodiorite porphyry hosting the Matou Cu–Mo (±W)

deposit, Lower Yangtze River metallogenic belt, eastern China // Journal of Asian Earth Sciences. 2014. V. 79. P. 623–640.

- 207. Zirner A.L.K., Marks M.A.W., Wenzel T., Jacob D.E., Markl G. Rare earth elements in apatite as a monitor of magmatic and metasomatic processes: the Ilímaussaq complex, South Greenland // Lithos. 2015. V. 228–229. P. 12–22.
- 208. Zonenshain L.P., Kuzmin M.I., Natapov L.M. Mongol-Okhotsk fold belt // Geology of the USSR: a Plate Tectonic Synthesis. Page B.M., (Ed.). American Geophysical Union, Washington, Geodynamic Series 21. 1990. P. 97–108.
- 209. Zorin Yu.A., Zorina L.D., Spiridonov A.M., Rutshtein I.G. Geodynamic setting of gold deposits in Eastern and Central Trans-Baikal-Chita Region, Russia // Ore Geol. Rev. 2001. V. 17. P. 215–232.
- Zou X., Qin K., Han X., Li G., Evans N.J., Li Z., Yang W. Insight into zircon REE oxybarometers: a lattice strain model perspective. Earth Planet. Sci. Lett. 2019. V. 506. P. 87–96.

ПРИЛОЖЕНИЯ

Приложение 1. Сводная таблица по образцам шахтаминского комплекса Быстринского и Шахтаминского месторождений и соответствующим им породам.

	Место отбора	Образец	Порода					
	-	BEPa	Amf-Bt монцодиорит					
		BEPb	Amf-Bt монцодиорит					
		BEPc	Amf-Bt монцодиорит					
	BEP	BEPd	Amf-Bt монцодиорит					
		BEPe	Amf-Bt монцодиорит					
		BEPf	порфировидный Px-Bt монцонит					
e		BEPg	порфировидный Px-Bt монцонит					
ни		BLP1a	Amf-Bt-гранит-порфир					
ыце		BLP1b	Amf-Bt-гранит-порфир					
ж0	BLP1	BLP1c	Amf-Bt-гранит-порфир					
do.		BLP1d	Amf-Bt-гранит-порфир					
гээ		BLP1e	Amf-Bt-гранит-порфир					
W		BLP2a	Amf-Bt гранодиорит порфир					
40e	BI P2	BLP2b	Amf-Bt гранодиорит порфир					
нсі	DLI 2	BLP2c	Amf-Bt гранодиорит порфир					
ри		BLP2d	Amf-Bt гранодиорит порфир					
CT		BLP3a	Amf-Bt гранодиорит порфир					
Бы	BLP3	BLP3b	Amf-Bt гранодиорит порфир					
		BLP3c	Amf-Bt гранодиорит порфир					
		BLP4a	Amf-Bt гранодиорит порфир					
		BLP4b	Amf-Bt гранодиорит порфир					
	BLP4	BLP4c	Amf-Bt гранодиорит порфир					
		BLP4d	Amf-Bt гранодиорит порфир					
		BLP4e	Amf-Bt гранодиорит порфир					
		BLP5a	Amf-Bt гранодиорит порфир					
	BLP5	BLP5b	Amf-Bt гранодиорит порфир					
		BLP5c	Amf-Bt гранодиорит порфир					

	Место отбора	Образец	Порода
	CUD	SHPa	порфировидный Amf-Bt гранодиорит
	ЗПР	SHPb	порфировидный Amf-Bt гранодиорит
	SRP	SRPa	порфировидный Amf-Bt-монцонит
		SEPa	порфировидный Bt-Amf гранодиорит
		SEPb	порфировидный Bt-Amf гранодиорит
		SEPc	порфировидный Bt-Amf гранодиорит
		SEPd	порфировидный Bt-Amf гранодиорит
	SEP	SEPe	порфировидный Bt-Amf гранодиорит
іие		SEPf	порфировидный Bt-Amf гранодиорит
цен		SEPg	порфировидный Bt-Amf гранодиорит
ſЖ		SEPh	порфировидный Bt-Amf гранодиорит
opc		SEPi	порфировидный Bt-Amf гранодиорит
стı		SLP1a	Amf-Bt лейкогранит
ме	SLP1	SLP1b	Amf-Bt лейкогранит
0e		SLP1c	Amf-Bt лейкогранит
ICK		SLP2a	Amf-Bt лейкогранит
ни		SLP2b	Amf-Bt лейкогранит
aM	SLP2	SLP2c	Amf-Bt лейкогранит
IXI		SLP2d	Amf-Bt лейкогранит
III î		SLP2e	Amf-Bt лейкогранит
_		SLP3a	Amf-Bt-гранодиорит-порфир
	SI P3	SLP3b	Amf-Bt-гранодиорит-порфир
	SLI J	SLP3c	Amf-Bt-гранодиорит-порфир
		SLP3d	Amf-Bt-гранодиорит-порфир
		SLP4a	Amf-Bt-гранит-порфир
	SI D4	SLP4b	Amf-Bt-гранит-порфир
	SLP4	SLP4c	Amf-Bt-гранит-порфир
		SLP4d	Amf-Bt-гранит-порфир
	SI D5	SLP5a	Amf-Bt-гранодиорит-порфир
	SLFJ	SLP5b	Amf-Bt-гранодиорит-порфир

№ образца	SiO ₂	TiO ₂	Al ₂ O ₃	TFeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅	LOI	Сумма	A/NK	A/CNK
					Бы	стринско	ое местор	ождение						
BEPa	53,86	0,58	13,81	7,04	0,12	7,87	5,53	3,10	2,99	0,22	4,6	99,84	1,66	0,75
BEPb	56,63	0,92	15,40	6,31	0,13	6,49	5,96	3,41	2,57	0,28	1,3	99,42	1,83	0,80
BEPc	57,35	0,69	16,26	6,06	0,04	6,29	5,80	3,64	3,06	0,23	1,6	101,12	1,75	0,82
BEPd	56,48	0,92	14,88	5,92	0,09	6,32	5,93	4,25	2,94	0,25	2,0	100,04	1,46	0,71
BEPe	54,79	0,78	15,46	5,94	0,08	6,71	6,12	3,52	3,12	0,29	2,2	99,10	1,69	0,76
BEPf	60,19	0,57	15,26	5,74	0,13	4,97	5,47	3,03	3,37	0,32	0,9	100,05	1,77	0,82
BEPg	60,07	0,81	15,72	5,43	0,04	4,62	5,33	3,62	3,87	0,28	1,3	101,22	1,55	0,79
BLP1a	69,75	0,40	15,75	1,90	0,08	1,37	2,84	3,63	4,03	0,15	0,5	100,49	1,53	1,02
BLP1b	67,43	0,47	15,42	2,38	0,05	1,39	2,55	4,03	4,60	0,08	1,4	99,95	1,33	0,95
BLP1c	68,74	0,49	15,27	2,34	0,02	1,39	3,03	4,08	4,40	0,12	0,9	100,95	1,33	0,90
BLP1d	67,35	0,32	14,66	2,50	0,02	1,35	3,01	3,61	3,93	0,10	1,2	98,10	1,44	0,93
BLP1e	68,24	0,23	14,23	1,94	0,01	2,81	2,57	4,50	3,99	0,06	0,6	99,30	1,21	0,87
BLP2a	62,74	0,26	14,40	3,31	0,08	4,53	3,69	3,54	3,49	0,14	3,3	99,52	1,50	0,88
BLP2b	62,72	0,55	14,98	3,13	0,03	4,40	4,71	4,27	3,22	0,19	1,1	99,36	1,42	0,79
BLP2c	61,79	0,28	14,44	4,37	0,05	3,85	4,58	3,07	3,57	0,06	3,1	99,23	1,62	0,84
BLP2d	61,74	0,47	13,08	4,46	0,03	4,52	4,94	3,30	2,50	0,15	2,2	97,49	1,61	0,76
BLP3a	67,14	0,20	14,70	2,07	0,10	2,26	1,69	3,95	3,56	0,06	2,0	97,76	1,42	1,09
BLP3b	62,72	0,55	14,55	3,91	0,07	3,56	4,36	3,69	2,45	0,21	3,1	99,27	1,67	0,87
BLP3c	62,47	0,57	14,80	3,81	0,01	3,64	3,33	3,36	2,88	0,04	2,7	97,73	1,71	1,01
BLP4a	62,19	0,43	14,59	3,28	0,00	4,23	3,41	3,63	3,97	0,17	4,0	99,96	1,42	0,89
BLP4b	60,28	0,34	14,31	3,31	0,09	3,93	5,08	4,03	3,21	0,16	4,3	99,17	1,42	0,74
BLP4c	64,08	0,60	14,36	3,82	0,01	4,70	3,82	3,15	3,74	0,12	1,5	99,92	1,56	0,89
BLP4d	63,99	0,25	13,97	3,71	0,02	4,77	3,71	3,71	3,02	0,03	1,9	99,17	1,49	0,87
BLP4e	62,97	0,34	14,27	3,50	0,07	3,87	4,11	3,18	3,10	0,17	3,8	99,55	1,66	0,89
BLP5a	66,61	0,48	14,89	2,41	0,01	3,09	3,66	3,99	3,38	0,15	1,4	100,25	1,46	0,88
BLP5b	66,49	0,38	14,28	2,52	0,02	2,50	3,73	4,10	3,70	0,19	2,0	100,03	1,33	0,81
BLP5c	64,00	0,35	15,38	3,88	0,08	4,47	4,27	3,80	3,51	0,17	0,9	100,90	1,53	0,86

Приложение 2. Химический состав (мас.%) пород Быстринского и Шахтаминского месторождений.

Приложение 2. (окончание)

№ образца	SiO ₂	TiO ₂	Al ₂ O ₃	TFeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅	LOI	Сумма	A/NK	A/CNK
					IIIay	ктаминсь	сое место	рождени	e					
SHPa	63,98	0,85	15,48	5,41	0,42	1,48	2,94	4,04	3,84	0,30	1,4	100,26	1,43	0,96
SHPb	65,70	0,56	15,57	4,10	0,08	1,53	3,13	3,92	3,62	0,17	0,54	99,09	1,50	0,97
SRPa	59,52	0,70	14,65	6,08	0,10	5,89	5,34	3,43	2,93	0,17	0,55	99,55	1,66	0,79
SEPa	66,42	0,55	15,01	3,66	0,04	2,66	2,99	3,61	4,43	0,06	0,02	99,48	1,40	0,93
SEPb	67,35	0,35	14,31	3,39	0,02	2,63	2,68	3,97	4,30	0,16	0,9	100,05	1,28	0,89
SEPc	67,45	0,45	15,50	3,29	0,06	2,14	2,95	3,36	4,62	0,12	0,5	100,50	1,47	0,98
SEPd	67,59	0,59	16,07	3,58	0,03	1,09	2,83	4,03	4,18	0,12	0,3	100,50	1,44	0,99
SEPe	67,43	0,27	15,19	3,11	0,04	2,03	2,50	3,39	4,21	0,11	0,6	98,98	1,50	1,03
SEPf	67,02	0,65	14,71	3,54	0,12	2,48	2,80	3,22	5,02	0,07	0,5	100,30	1,37	0,93
SEPg	67,81	0,45	15,28	2,85	0,08	2,20	2,60	3,42	4,82	0,18	0,5	100,29	1,41	0,98
SEPh	67,33	0,46	14,67	3,17	0,08	2,38	2,21	3,58	4,71	0,03	0,9	99,65	1,34	0,98
SEPi	67,48	0,40	14,56	3,40	0,03	2,23	2,72	3,90	4,15	0,02	0,7	99,71	1,33	0,92
SLP1a	74,70	0,09	12,60	1,19	0,07	0,31	1,06	3,15	5,23	0,08	0,3	98,86	1,16	0,99
SLP1b	74,21	0,09	13,98	1,21	0,03	0,41	0,86	3,63	5,11	0,12	0,1	99,89	1,22	1,07
SLP1c	71,53	0,31	13,03	2,23	0,03	0,95	1,26	3,07	5,33	0,00	0,4	98,23	1,20	0,99
SLP2a	71,23	0,34	13,42	2,60	0,12	1,08	1,82	3,22	4,39	0,12	0,2	98,49	1,34	1,01
SLP2b	73,66	0,19	14,20	1,35	0,04	0,54	0,84	3,57	5,34	0,01	0,4	100,22	1,22	1,08
SLP2c	72,25	0,20	14,27	1,82	0,05	0,66	1,34	2,76	5,20	0,00	0,4	98,98	1,40	1,13
SLP2d	74,73	0,12	13,95	1,33	0,07	0,36	0,69	3,09	4,89	0,11	0,8	100,16	1,34	1,20
SLP2e	71,79	0,43	12,80	2,08	0,01	1,15	1,71	3,12	4,32	0,11	0,6	98,12	1,31	0,99
SLP3a	67,00	0,42	15,44	3,35	0,07	2,47	2,71	3,59	4,79	0,03	1,0	101,00	1,39	0,96
SLP3b	66,23	0,34	14,00	3,59	0,05	2,17	2,79	3,24	4,82	0,22	0,5	98,07	1,33	0,90
SLP3c	64,71	0,55	15,05	3,75	0,08	2,65	3,48	4,06	4,58	0,20	0,4	99,53	1,29	0,84
SLP3d	66,42	0,54	15,11	4,16	0,10	2,82	3,10	3,54	4,51	0,22	0,4	101,05	1,41	0,92
SLP4a	69,16	0,34	14,57	2,52	0,06	1,94	2,32	4,60	4,15	0,20	0,6	100,57	1,21	0,90
SLP4b	68,30	0,51	14,26	1,68	0,05	1,94	2,23	4,96	3,94	0,11	0,9	98,94	1,15	0,87
SLP4c	68,97	0,39	13,33	2,25	0,05	1,93	1,68	3,86	4,48	0,25	1,0	98,29	1,19	0,94
SLP4d	68,52	0,32	15,89	2,33	0,10	1,25	1,73	4,50	4,59	0,06	0,7	99,93	1,28	1,02
SLP5a	64,69	0,49	15,31	3,78	0,06	2,55	3,07	3,62	3,98	0,18	0,6	98,47	1,49	0,97
SLP5b	63,19	0,51	15,58	4,45	0,05	2,98	3,17	4,45	3,12	0,13	1,5	99,25	1,46	0,95

№ образца	SHPa	SHPb	SRPa	SEPa	SEPb	SEPc	SEPd	SEPe	SEPf	SEPg	SEPh	SEPi	SLP1a	SLP1b	SLP1c	SLP2a
Sr	420	545	470	390	390	350	490	340	420	330	390	380	130	100	160	230
Y	29,55	21,29	14,94	13,45	12,95	13,55	21,95	15,95	14,65	12,35	14,70	14,70	17,15	25,45	28,55	25,80
Р	900	700	700	500	500	500	900	400	500	500	500	500	200	200	200	300
Rb	165	121	104	190	181	180	146	200	201	201	202	172	307	312	270	284
Ba	1170	978	667	640	600	610	1080	460	680	530	570	600	380	380	380	400
Th	39,52	12,94	12,67	31,14	31,16	27,55	28,46	27,62	31,09	23,02	28,82	27,87	22,60	30,06	37,74	38,33
U	6,58	1,94	3,61	6,42	7,35	4,67	6,87	5,61	6,71	5,36	6,71	5,87	6,06	14,13	9,73	9,83
Та	1,23	1,33	0,88	1,20	1,30	1,43	1,40	1,23	1,37	1,60	1,30	1,60	4,13	4,03	3,70	3,07
Nb	14	16	11	12	12	12	16	12	15	14	13	15	29	26	23	20
Hf	11	5	4	11	13	12	10	12	13	11	10	11	9	13	13	13
Ti	4000	3358	4141	2400	2200	2300	3100	2400	2700	2000	2300	2400	1000	800	1300	1900
La	53,85	36,78	30,17	37,28	28,16	52,05	38,44	47,55	34,12	36,98	47,88	46,32	25,35	32,63	44,15	56,67
Ce	91,2	74,1	61,7	72,4	57,7	93,9	81,8	87,0	74,2	72,3	94,5	85,4	43,3	68,4	82,1	108,6
Pr	10,35	8,52	7,14	8,42	6,80	9,60	8,66	8,95	8,21	7,55	9,53	9,06	5,23	6,78	9,22	11,04
Nd	39,45	28,35	25,34	29,56	27,26	33,43	34,42	32,33	30,62	26,35	34,04	32,59	18,43	24,93	33,01	39,45
Sm	6,5	4,8	4,4	4,3	4,1	5,6	6,4	4,9	5,3	4,3	5,4	5,3	2,8	4,6	5,8	6,1
Eu	1,07	0,95	0,91	0,90	0,84	0,82	1,31	0,76	0,78	0,78	0,82	0,77	0,26	0,47	0,44	0,63
Gd	5,60	3,95	3,61	3,44	3,24	3,69	4,91	3,68	3,70	3,04	3,65	3,71	2,72	3,93	4,62	4,52
Tb	0,91	0,55	0,50	0,45	0,46	0,47	0,77	0,49	0,52	0,43	0,49	0,52	0,46	0,66	0,77	0,74
Dy	4,71	3,17	2,38	2,44	2,18	2,22	3,75	2,70	2,71	2,10	2,62	2,92	2,51	3,89	4,48	4,36
Ho	1,02	0,66	0,49	0,50	0,48	0,51	0,83	0,53	0,56	0,42	0,53	0,52	0,59	0,89	0,90	0,89
Er	3,28	1,83	1,34	1,52	1,32	1,55	2,34	1,66	1,51	1,32	1,58	1,62	1,93	2,73	3,08	2,75
Tm	0,47	0,29	0,20	0,20	0,22	0,23	0,38	0,28	0,25	0,18	0,25	0,23	0,34	0,51	0,52	0,45
Yb	3,11	1,80	1,31	1,63	1,46	1,53	2,44	1,67	1,61	1,30	1,61	1,52	2,46	3,63	3,69	3,21
Lu	0,45	0,27	0,19	0,15	0,17	0,14	0,28	0,14	0,21	0,13	0,16	0,17	0,31	0,47	0,43	0,40
Sr/Y	14,21	25,61	31,45	29,00	30,12	25,83	22,32	21,32	28,67	26,72	26,53	25,85	7,58	3,93	5,60	8,91
La/Yb	17,31	20,43	23,10	22,87	19,29	34,02	15,76	28,48	21,19	28,44	29,74	30,47	10,30	8,99	11,97	17,65
(La/Yb) _{CN}	12,42	14,66	16,57	16,40	13,84	24,40	11,30	20,43	15,20	20,40	21,33	21,86	7,39	6,45	8,58	12,66
Sm/Yb	2,09	2,65	3,38	2,64	2,81	3,66	2,62	2,93	3,29	3,31	3,35	3,49	1,14	1,27	1,57	1,90
(Dy/Yb) _{CN}	1,01	1,18	1,22	1,00	1,00	0,97	1,03	1,08	1,13	1,08	1,09	1,29	0,68	0,72	0,81	0,91
(La/Sm) _{CN}	5,35	4,98	4,41	5,60	4,43	6,00	3,88	6,27	4,16	5,55	5,72	5,64	5,84	4,58	4,91	6,00
Sr/Nd	10,65	19,23	18,55	13,19	14,31	10,47	14,24	10,52	13,72	12,53	11,46	11,66	7,05	4,01	4,85	5,83
Y+Nb	43,55	37,06	25,78	25,45	24,95	25,55	37,95	27,95	29,65	26,35	27,70	29,70	46,15	51,45	51,55	45,80
10000 * (Eu/Eu*)/Y	182,66	310,97	463,08	527,76	541,77	405,81	323,53	342,83	365,36	529,13	379,90	357,05	168,22	132,07	89,66	140,80

Приложение 3. Содержания редких элементов (г/т) в породах Шахтаминского и Быстринского месторождений.

№ образца	SLP2b	SLP2c	SLP2d	SLP2e	SLP3a	SLP3b	SLP3c	SLP3d	SLP4a	SLP4b	SLP4c	SLP4d	SLP5a	SLP5b
Ŝr	130	180	160	230	450	330	450	410	810	850	590	820	670	640
Y	24,35	22,30	27,00	17,70	12,35	13,95	18,10	14,90	7,35	7,40	9,00	6,00	10,45	10,85
Р	200	400	100	400	500	300	600	600	600	500	500	400	600	700
Rb	301	276	327	243	204	191	178	187	121	105	95	112	184	165
Ba	420	440	390	500	510	520	600	700	1020	1020	900	1070	870	740
Th	31,18	17,70	28,89	24,87	27,45	29,99	27,59	20,29	14,16	14,99	18,21	11,69	18,07	15,34
U	13,67	4,37	15,65	5,03	9,54	9,94	8,69	6,64	2,66	2,59	2,57	1,73	3,08	3,99
Та	3,50	2,80	4,57	2,07	0,97	1,40	1,20	1,30	0,70	0,77	0,70	0,73	0,87	0,83
Nb	22	20	27	17	12	15	15	14	9	8	8	8	10	10
Hf	12	10	11	9	11	11	14	11	10	8	10	10	6	6
Ti	1000	1600	1000	1300	2400	2800	2900	3000	1800	2100	2100	1700	2200	2600
La	28,31	32,47	31,93	28,42	32,59	33,88	42,04	41,10	32,46	24,64	31,17	17,96	27,38	14,62
Ce	52,2	67,0	56,9	53,4	61,9	72,3	89,3	75,0	62,7	53,2	69,2	44,2	50,4	35,3
Pr	5,66	7,25	6,60	6,51	7,06	7,89	9,18	8,49	6,58	6,55	7,47	4,49	5,95	5,07
Nd	21,55	25,86	24,25	23,55	25,07	28,14	33,37	29,33	25,16	26,82	28,80	17,05	22,55	21,58
Sm	3,6	4,3	4,4	4,5	3,9	4,2	5,1	4,5	4,3	3,9	4,3	3,1	3,7	4,4
Eu	0,47	0,42	0,44	0,62	0,74	0,73	0,87	0,75	1,12	1,16	0,98	0,71	0,74	0,84
Gd	3,43	3,68	3,59	3,16	2,70	3,55	4,15	3,50	2,76	2,71	3,21	1,89	2,81	2,72
Tb	0,58	0,63	0,62	0,49	0,43	0,48	0,62	0,46	0,32	0,35	0,38	0,22	0,38	0,39
Dy	3,47	3,92	4,26	2,78	2,29	2,37	3,12	2,35	1,54	1,75	1,76	0,94	1,90	2,41
Ho	0,80	0,73	0,85	0,62	0,44	0,49	0,64	0,50	0,28	0,29	0,35	0,23	0,39	0,44
Er	2,47	2,36	2,93	2,03	1,28	1,72	2,06	1,50	0,67	0,78	0,86	0,61	1,35	1,21
Tm	0,44	0,37	0,53	0,30	0,19	0,22	0,25	0,22	0,13	0,12	0,13	0,11	0,18	0,20
Yb	3,26	2,94	3,84	2,17	1,37	1,57	1,85	1,44	0,68	0,65	0,70	0,70	1,40	1,10
Lu	0,44	0,30	0,47	0,23	0,18	0,22	0,23	0,20	0,06	0,05	0,07	0,06	0,12	0,07
Sr/Y	5,34	8,07	5,93	12,99	36,44	23,66	24,86	27,52	110,20	114,86	65,56	136,67	64,11	58,99
La/Yb	8,68	11,05	8,32	13,10	23,79	21,58	22,72	28,54	47,74	37,91	44,52	25,66	19,56	13,29
(La/Yb) _{CN}	6,23	7,92	5,96	9,40	17,06	15,48	16,30	20,47	34,24	27,19	31,94	18,40	14,03	9,54
Sm/Yb	1,10	1,46	1,15	2,07	2,85	2,68	2,76	3,13	6,32	6,00	6,14	4,43	2,64	4,00
(Dy/Yb) _{CN}	0,71	0,89	0,74	0,86	1,12	1,01	1,13	1,09	1,52	1,80	1,68	0,89	0,91	1,47
(La/Sm) _{CN}	5,08	4,88	4,68	4,08	5,39	5,21	5,32	5,90	4,87	4,08	4,68	3,74	4,78	2,15
Sr/Nd	6,03	6,96	6,60	9,77	17,95	11,73	13,49	13,98	32,20	31,69	20,49	48,10	29,72	29,66
Y+Nb	46,35	42,30	54,00	34,70	24,35	28,95	33,10	28,90	16,35	15,40	17,00	14,00	20,45	20,85
10000 * (Eu/Eu*)/Y	167,65	142,60	124,64	282,50	564,67	411,59	318,19	383,13	1341,99	1461,65	893,85	1475,66	665,68	682,30

№ образца	BEPa	BEPb	BEPc	BEPd	BEPe	BEPf	BEPg	BLP1a	BLP1b	BLP1c	BLP1d	BLP1e	BLP2a
Sr	600	650	680	570	690	610	580	660	550	520	540	630	900
Y	10,65	12,65	12,70	12,65	15,65	12,20	11,85	10,20	10,95	11,45	10,40	7,00	8,10
Р	700	1100	1100	1200	1400	1000	1000	200	500	300	400	200	300
Rb	102	115	100	117	89	133	153	113	142	146	100	93	64
Ba	610	810	680	600	620	490	620	850	780	830	780	940	660
Th	7,81	6,03	6,11	8,70	9,32	9,63	8,53	12,09	16,24	15,29	14,37	8,85	11,60
U	2,57	2,44	2,42	3,15	2,35	3,06	2,32	4,52	5,96	5,62	6,25	3,54	2,83
Та	0,53	0,50	0,43	0,53	0,57	0,67	0,57	0,50	0,67	0,57	0,57	0,50	0,53
Nb	5	4	3	5	8	8	7	10	9	7	7	7	5
Hf	4	7	5	4	5	8	8	10	9	12	10	9	5
Ti	3600	4300	3700	4800	5300	3900	3900	1900	2000	2100	1700	1800	2000
La	37,25	24,40	24,04	24,93	24,63	26,36	22,57	25,76	29,27	30,47	30,39	17,55	23,92
Ce	62,1	54,3	50,5	55,1	49,1	52,3	52,4	45,5	59,5	57,6	52,9	31,1	39,8
Pr	6,14	5,73	5,61	6,38	6,14	6,06	5,90	5,31	5,71	6,01	5,57	3,44	4,63
Nd	21,63	24,37	24,76	26,66	26,32	24,76	24,39	18,24	19,63	20,65	19,06	13,13	16,30
Sm	3,5	4,8	4,3	4,7	5,2	4,2	5,0	3,4	3,2	3,1	3,2	2,0	3,0
Eu	1,03	1,44	1,29	1,24	1,11	1,06	1,20	0,78	0,78	0,67	0,67	0,61	0,85
Gd	2,83	3,72	3,46	4,04	4,12	3,09	3,53	2,25	2,38	2,48	2,25	1,68	2,08
Tb	0,41	0,51	0,47	0,48	0,59	0,47	0,45	0,33	0,34	0,35	0,33	0,23	0,27
Dy	1,82	2,38	2,62	2,80	3,07	2,24	2,19	1,62	1,54	1,60	1,98	0,93	1,37
Но	0,42	0,48	0,50	0,49	0,59	0,45	0,47	0,35	0,36	0,39	0,37	0,24	0,29
Er	1,14	1,34	1,34	1,51	1,57	1,39	1,27	1,19	1,24	1,18	1,08	0,69	1,00
Tm	0,16	0,22	0,19	0,18	0,21	0,20	0,21	0,18	0,19	0,19	0,17	0,12	0,15
Yb	1,19	1,25	1,21	1,10	1,41	1,24	1,25	1,00	1,27	1,17	1,27	0,78	0,72
Lu	0,14	0,15	0,10	0,13	0,18	0,13	0,12	0,17	0,17	0,19	0,17	0,07	0,12
Sr/Y	56,34	51,38	53,54	45,06	44,09	50,00	48,95	64,71	50,23	45,41	51,92	90,00	111,11
La/Yb	31,30	19,52	19,87	22,67	17,47	21,26	18,05	25,76	23,04	26,04	23,93	22,50	33,23
(La/Yb) _{CN}	22,45	14,00	14,25	16,26	12,53	15,25	12,95	18,48	16,53	18,68	17,17	16,14	23,83
Sm/Yb	2,94	3,84	3,55	4,27	3,69	3,39	4,00	3,40	2,52	2,65	2,52	2,56	4,17
(Dy/Yb) _{CN}	1,02	1,27	1,45	1,70	1,46	1,21	1,17	1,08	0,81	0,92	1,04	0,80	1,27
(La/Sm) _{CN}	6,87	3,28	3,61	3,42	3,06	4,05	2,91	4,89	5,90	6,34	6,13	5,67	5,15
Sr/Nd	27,74	26,67	27,46	21,38	26,22	24,63	23,78	36,18	28,01	25,18	28,33	47,97	55,20
Y+Nb	15,65	16,65	15,70	17,65	23,65	20,20	18,85	20,20	19,95	18,45	17,40	14,00	13,10
10000 * (Eu/Eu*)/Y	929,54	818,73	801,24	683,59	465,82	732,43	730,14	839,98	788,72	645,01	734,11	1442,07	1282,27

Приложение 3. (окончание)

№ образца	BLP2b	BLP2c	BLP2d	BLP3a	BLP3b	BLP3c	BLP4a	BLP4b	BLP4c	BLP4d	BLP4e	BLP5a	BLP5b	BLP5c
Sr	580	460	440	340	630	530	520	620	530	510	560	560	610	670
Y	10,00	8,15	9,05	7,20	10,40	10,15	7,40	10,40	9,30	9,00	9,05	7,20	6,90	10,80
Р	500	400	300	800	600	600	800	900	700	700	900	400	600	700
Rb	58	99	111	117	109	123	136	111	123	109	108	87	93	85
Ba	600	660	700	790	710	690	810	870	780	720	790	890	780	770
Th	7,01	11,39	7,47	6,76	6,59	6,35	13,48	12,17	9,32	13,46	13,64	6,40	8,86	7,98
U	2,58	2,41	3,28	2,35	4,28	2,56	1,13	1,27	1,60	2,12	1,37	2,56	2,24	2,08
Та	0,57	0,40	0,53	0,53	0,50	0,53	0,70	0,53	0,80	0,53	0,70	0,60	0,47	0,50
Nb	5	6	5	6	7	7	7	6	5	5	7	5	6	6
Hf	5	4	5	6	6	6	6	6	6	7	9	5	5	5
Ti	2800	2200	2800	2000	2900	2200	2100	2700	2700	2200	2700	1800	1800	2800
La	14,85	24,07	15,56	22,04	14,44	17,19	23,56	25,58	22,35	23,19	24,01	16,45	12,75	18,77
Ce	34,0	46,4	41,2	33,4	33,5	36,2	43,4	39,8	38,9	38,7	42,3	35,2	21,9	32,4
Pr	4,37	4,78	4,21	4,12	3,54	3,73	3,99	5,05	4,40	4,54	4,42	3,28	2,90	3,93
Nd	16,71	16,63	14,54	15,17	14,39	15,54	15,23	18,55	17,27	17,16	17,13	13,21	11,95	17,25
Sm	3,4	2,6	2,9	2,1	3,2	2,4	2,7	3,4	3,4	3,0	3,2	2,3	2,0	3,1
Eu	0,84	0,87	0,85	0,67	0,69	0,74	0,65	0,87	0,72	0,76	0,79	0,62	0,70	0,88
Gd	2,61	2,13	2,31	1,64	2,34	2,23	1,85	2,57	2,35	2,10	2,19	1,75	1,80	2,49
Tb	0,36	0,30	0,32	0,24	0,32	0,31	0,25	0,35	0,28	0,32	0,29	0,23	0,25	0,32
Dy	1,81	1,45	1,90	1,02	1,63	1,62	1,45	1,90	1,62	1,46	1,45	1,09	1,31	1,81
Но	0,35	0,31	0,32	0,23	0,36	0,34	0,33	0,36	0,33	0,32	0,32	0,26	0,26	0,40
Er	1,03	0,95	1,09	0,69	1,03	0,97	0,95	0,97	0,99	0,90	0,86	0,74	0,85	1,19
Tm	0,17	0,12	0,16	0,10	0,15	0,16	0,13	0,14	0,15	0,12	0,13	0,11	0,12	0,16
Yb	1,15	0,74	0,80	0,70	0,90	0,92	0,84	0,94	0,88	1,02	0,95	0,78	0,89	1,11
Lu	0,14	0,11	0,13	0,08	0,07	0,09	0,10	0,09	0,09	0,10	0,08	0,10	0,10	0,10
Sr/Y	58,00	56,44	48,62	47,22	60,58	52,22	70,27	59,62	56,99	56,67	61,88	77,78	88,41	62,04
La/Yb	12,91	32,53	19,45	31,49	16,04	18,68	28,05	27,21	25,40	22,74	25,27	21,09	14,33	16,91
(La/Yb) _{CN}	9,26	23,33	13,95	22,59	11,51	13,40	20,12	19,52	18,22	16,31	18,13	15,13	10,28	12,13
Sm/Yb	2,96	3,51	3,63	3,00	3,56	2,61	3,21	3,62	3,86	2,94	3,37	2,95	2,25	2,79
(Dy/Yb) _{CN}	1,05	1,31	1,59	0,98	1,21	1,18	1,16	1,35	1,23	0,96	1,02	0,93	0,98	1,09
(La/Sm) _{CN}	2,82	5,98	3,46	6,78	2,91	4,62	5,63	4,86	4,24	4,99	4,84	4,62	4,12	3,91
Sr/Nd	34,71	27,66	30,26	22,41	43,79	34,10	34,14	33,42	30,68	29,73	32,69	42,39	51,05	38,84
Y+Nb	15,00	14,15	14,05	13,20	17,40	17,15	14,40	16,40	14,30	14,00	16,05	12,20	12,90	16,80
10000 * (Eu/Eu*)/Y	857,22	1382,91	1099,42	1532,38	739,07	955,07	1201,01	860,31	832,83	1020,16	999,50	1307,77	1624,35	893,06

Приложение 4. Внутреннее строение цирконов, полученное электронным микроскопом в режиме катодолюминесценции, и точки определения U/Pb возраста (белые круги) и редкоземельного состава (чёрные круги) методом LA-ISP-MS. Диаметр лазерного пучка 30 мкм.

О точки а	анализов	LA-ICP-N	MS 🔿 t	очки изм	ерения U	-Рb возрас	ста 100µп	n BLP2
BLP2c								
		3.	4	5	6 AND		8	9
10	11	¹²	13	14	15	16		18
19	20	21	22	23	24	25	26	27
BLP2a								
	3 		56	6	6	° S		11
BLP2b								
5	2	³			6			
BLP2d	2	3	4	5 9)) ⁸	9	10

SLP3 100µm О точки анализов LA-ICP-MS ○ точки измерения U-Pb возраста SLP3a 16 0 C SLP3b SLP3c Δ SLP3d

Приложение 4. (окончание)

N⁰	²³² Th	²³⁸ U	Th/II				Возраст, м.	пн лет			
точки	Γ/T	Γ/T	I II/U	²⁰⁷ Pb*/ ²⁰⁶ Pb*	$\pm 1\sigma$, %	²⁰⁷ Pb*/ ²³⁵ U	$\pm 1\sigma,\%$	²⁰⁶ Pb* ^{/238} U	$\pm 1\sigma,\%$	²⁰⁶ Pb*/ ²³⁸ U	$\pm 1\sigma$
				SHPa, кон	кордантный	возраст = 252,2	±1,2 млн лет	, СКВО=0,27			
SHPa1	286	345	0,83	0,05093	0,00109	0,28222	0,00574	0,04025	0,00073	254,38	4,52
SHPa2	324	571	0,57	0,05095	0,00107	0,27850	0,00551	0,03970	0,00072	250,97	4,46
SHPa3	319	450	0,71	0,05130	0,00108	0,28201	0,00562	0,03992	0,00072	252,34	4,46
SHPa4	508	596	0,85	0,05195	0,00108	0,28657	0,00561	0,04007	0,00072	253,27	4,46
SHPa5	80	183	0,44	0,05181	0,00124	0,27809	0,00631	0,03898	0,00071	246,51	4,41
SHPa6	195	460	0,42	0,05222	0,00115	0,28730	0,00598	0,03996	0,00073	252,59	4,53
SHPa7	408	647	0,63	0,05063	0,00105	0,27925	0,00547	0,04006	0,00072	253,20	4,46
SHPa8	323	399	0,81	0,05111	0,00109	0,27977	0,00567	0,03976	0,00072	251,35	4,46
SHPa9	913	1198	0,76	0,05161	0,00104	0,28397	0,0054	0,03996	0,00072	252,59	4,46
SHPa10	307	754	0,41	0,05197	0,00109	0,28559	0,00568	0,03992	0,00072	252,34	4,46
				SEPf, кон	кордантный	возраст = 163,9:	±0,9 млн лет,	СКВО=0,68			
SEPf1	291	394	0,74	0,05043	0,00114	0,17728	0,00379	0,0255	0,00046	162,32	2,89
SEPf2	293	353	0,83	0,05356	0,00117	0,18029	0,00391	0,02577	0,00046	164,02	2,89
SEPf3	138	199	0,69	0,05297	0,00129	0,17739	0,00432	0,02566	0,00047	163,33	2,95
SEPf4	132	204	0,65	0,05073	0,00125	0,18301	0,00404	0,02574	0,00045	163,83	2,83
SEPf5	120	145	0,83	0,05922	0,00147	0,17527	0,00481	0,02514	0,00046	160,06	2,89
SEPf6	155	248	0,63	0,04875	0,00111	0,17558	0,00376	0,02612	0,00047	166,22	2,95
SEPf7	115	143	0,81	0,05162	0,00139	0,17532	0,00448	0,02563	0,00045	163,14	2,83
SEPf8	586	730	0,80	0,0486	0,00099	0,17266	0,0033	0,02577	0,00046	164,02	2,89
SEPf9	165	231	0,72	0,04966	0,00115	0,17439	0,00382	0,02547	0,00046	162,13	2,89
				SLP2a, ко	нкордантный	і́ возраст = 162,	9±0,6 млн ле	г , СКВО=0,4			
SLP2a1	156	247	0,63	0,04961	0,00118	0,17550	0,00392	0,02566	0,00046	163,33	2,89
SLP2a2	206	263	0,78	0,04960	0,00115	0,17462	0,00381	0,02553	0,00046	162,51	2,89
SLP2a3	193	226	0,86	0,04928	0,00115	0,17442	0,00385	0,02567	0,00046	163,39	2,89

Приложение 5. Результаты U/Pb датирования методом LA-ICP-MS по цирконам из пород Шахтаминского и Быстринского месторождений.

Примечание: конкордантный возраст рассчитан с использованием IsoplotR [Vermeesch, 2018].

20	²³² Th	²³⁸ U				Изотопные	отношения			Возраст, м.	пн. лет
№ точки	Γ/T	Γ/T	In/U	²⁰⁷ Pb*/ ²⁰⁶ Pb*	$\pm 1\sigma$, %	²⁰⁷ Pb*/ ²³⁵ U	$\pm 1\sigma,\%$	²⁰⁶ Pb* ^{/238} U	$\pm 1\sigma,\%$	²⁰⁶ Pb*/ ²³⁸ U	$\pm 1\sigma$
SLP2a4	202	303	0,67	0,04928	0,00111	0,17264	0,00365	0,02541	0,00046	161,76	2,89
SLP2a5	251	371	0,68	0,05020	0,00114	0,17912	0,00381	0,02588	0,00047	164,71	2,95
SLP2a6	254	289	0,88	0,04893	0,00109	0,17076	0,00357	0,02531	0,00045	161,13	2,83
SLP2a7	181	254	0,71	0,04791	0,00107	0,16829	0,00352	0,02548	0,00046	162,20	2,89
SLP2a8	101	125	0,81	0,04880	0,00129	0,17094	0,0043	0,02541	0,00046	161,76	2,89
SLP2a9	116	183	0,63	0,04945	0,00118	0,1773	0,00399	0,02600	0,00047	165,46	2,95
SLP2a10	207	341	0,61	0,04898	0,00118	0,17221	0,00391	0,02550	0,00046	162,32	2,89
SLP2a11	241	214	1,12	0,05155	0,00117	0,17828	0,0038	0,02558	0,00045	162,83	2,83
SLP2a12	195	293	0,67	0,05241	0,00117	0,17772	0,00393	0,02598	0,00047	165,34	2,95
SLP2a13	200	287	0,70	0,06022	0,00132	0,17283	0,00435	0,02539	0,00046	161,63	2,89
SLP2a14	243	220	1,11	0,04885	0,00113	0,17309	0,00376	0,02555	0,00046	162,64	2,89
SLP2a15	416	556	0,75	0,04942	0,00103	0,17362	0,00339	0,02548	0,00046	162,20	2,89
SLP2a16	273	290	0,94	0,04973	0,0011	0,17518	0,00364	0,02555	0,00046	162,64	2,89
SLP2a17	206	298	0,69	0,05096	0,00114	0,18036	0,00379	0,02567	0,00046	163,39	2,89
SLP2a18	203	195	1,04	0,04956	0,00121	0,17229	0,00397	0,02557	0,00046	162,76	2,89
SLP2a19	104	150	0,70	0,0485	0,00120	0,17082	0,00398	0,02555	0,00046	162,64	2,89
				SLP3а , ко	нкордантный	возраст = 162,2	2±0,5 млн лет	г, СКВО=0,48			
SLP3a1	294	363	0,81	0,04991	0,00112	0,17416	0,00369	0,02535	0,00046	161,38	2,89
SLP3a2	184	239	0,77	0,05105	0,00125	0,17477	0,00404	0,02487	0,00045	158,36	2,83
SLP3a3	319	441	0,72	0,04876	0,00108	0,17117	0,00378	0,02599	0,00049	165,40	3,08
SLP3a4	372	534	0,70	0,05008	0,00113	0,17471	0,00373	0,02534	0,00046	161,32	2,89
SLP3a5	325	417	0,78	0,04924	0,00113	0,17497	0,00381	0,02581	0,00047	164,27	2,95
SLP3a6	232	355	0,65	0,04929	0,00111	0,17536	0,00372	0,02584	0,00047	164,46	2,95
SLP3a7	197	214	0,92	0,04873	0,00114	0,16923	0,00377	0,02522	0,00046	160,56	2,89
SLP3a8	134	201	0,67	0,04936	0,00126	0,17212	0,00419	0,02533	0,00047	161,25	2,95

Приложение 5. (продолжение)

N⁰	²³² Th	²³⁸ U				Изотопные	отношения			Возраст, мл	ін. лет
точки	Γ/T	г/т	In/U	²⁰⁷ Pb*/ ²⁰⁶ Pb*	$\pm 1\sigma$, %	²⁰⁷ Pb*/ ²³⁵ U	$\pm 1\sigma,\%$	²⁰⁶ Pb* ^{/238} U	$\pm 1\sigma,\%$	²⁰⁶ Pb*/ ²³⁸ U	$\pm 1\sigma$
SLP3a9	207	310	0,67	0,04960	0,00116	0,17503	0,00388	0,02563	0,00047	163,14	2,95
SLP3a10	142	158	0,90	0,05053	0,00121	0,17459	0,00397	0,02509	0,00046	159,74	2,89
SLP3a11	176	230	0,76	0,04984	0,00124	0,17416	0,00413	0,02538	0,00047	161,57	2,95
SLP3a12	357	503	0,71	0,04911	0,00107	0,17616	0,00362	0,02605	0,00047	165,78	2,95
SLP3a13	190	308	0,62	0,04753	0,00110	0,16884	0,00372	0,02580	0,00047	164,21	2,95
SLP3a14	197	296	0,66	0,04871	0,00114	0,17049	0,00379	0,02542	0,00046	161,82	2,89
SLP3a15	222	360	0,62	0,05148	0,00112	0,17680	0,00382	0,02532	0,00047	161,19	2,95
SLP3a16	217	306	0,71	0,04945	0,00111	0,17395	0,00367	0,02551	0,00046	162,39	2,89
SLP3a17	435	643	0,68	0,05366	0,00109	0,17381	0,00367	0,02520	0,00047	160,44	2,96
SLP3a18	183	302	0,61	0,04946	0,00111	0,17139	0,00363	0,02513	0,00045	160,00	2,83
SLP3a19	393	512	0,77	0,05032	0,00107	0,17667	0,00352	0,02547	0,00045	162,13	2,83
SLP3a20	146	159	0,92	0,04920	0,00114	0,17420	0,00379	0,02568	0,00046	163,45	2,89
SLP3a21	510	647	0,79	0,04926	0,00099	0,17488	0,00328	0,02575	0,00046	163,89	2,89
SLP3a22	614	987	0,62	0,05230	0,00105	0,17473	0,00347	0,02521	0,00045	160,50	2,83
SLP3a23	529	815	0,65	0,04947	0,00101	0,17363	0,00332	0,02545	0,00045	162,01	2,83
SLP3a24	678	1273	0,53	0,04968	0,00100	0,17481	0,00327	0,02552	0,00045	162,45	2,83
SLP3a25	263	428	0,61	0,04952	0,00109	0,16950	0,00349	0,02483	0,00044	158,11	2,77
SLP3a26	264	388	0,68	0,04852	0,00107	0,16901	0,0035	0,02526	0,00045	160,81	2,83
SLP3a27	314	498	0,63	0,0494	0,00105	0,17568	0,0035	0,02579	0,00046	164,15	2,89
SLP3a28	510	701	0,73	0,05012	0,00102	0,17613	0,00333	0,02549	0,00045	162,26	2,83
SLP3a29	489	750	0,65	0,05016	0,00101	0,17521	0,00341	0,0252	0,00046	160,44	2,89
				SLP4а , ко	нкордантный	возраст = 161,	5±0,6 млн лет	r, CKBO=0,29			
SLP4a1	324	932	0,35	0,04894	0,00098	0,17110	0,00322	0,02536	0,00045	161,44	2,83
SLP4a2	500	1261	0,40	0,05004	0,00099	0,17584	0,00326	0,02549	0,00045	162,26	2,83
SLP4a3	162	459	0,35	0,04880	0,00103	0,17159	0,00342	0,02551	0,00046	162,39	2,89

Приложение 5. (продолжение)

N⁰	²³² Th	²³⁸ U				Изотопные	отношения			Возраст, мл	ін. лет
точки	Γ/T	г/т	I h/U	²⁰⁷ Pb*/ ²⁰⁶ Pb*	$\pm 1\sigma$, %	²⁰⁷ Pb*/ ²³⁵ U	$\pm 1\sigma,\%$	²⁰⁶ Pb* ^{/238} U	$\pm 1\sigma,\%$	²⁰⁶ Pb*/ ²³⁸ U	$\pm 1\sigma$
SLP4a4	364	534	0,68	0,04891	0,00103	0,17177	0,00340	0,02547	0,00046	162,13	2,89
SLP4a5	134	519	0,26	0,04893	0,00102	0,17085	0,00336	0,02532	0,00045	161,19	2,83
SLP4a6	270	520	0,52	0,0498	0,00105	0,17437	0,00345	0,02539	0,00046	161,63	2,89
SLP4a7	130	174	0,75	0,04928	0,00123	0,17112	0,00406	0,02518	0,00046	160,31	2,89
SLP4a8	469	871	0,54	0,04965	0,00106	0,17209	0,00345	0,02514	0,00045	160,06	2,83
SLP4a9	286	475	0,60	0,05058	0,00107	0,1724	0,00359	0,02527	0,00046	160,88	2,89
SLP4a10	364	723	0,50	0,04907	0,00101	0,17079	0,00329	0,02524	0,00045	160,69	2,83
SLP4a11	410	757	0,54	0,05045	0,00104	0,17549	0,0034	0,02523	0,00045	160,63	2,83
SLP4a12	278	615	0,45	0,04984	0,00104	0,17677	0,00345	0,02572	0,00046	163,71	2,89
SLP4a13	211	488	0,43	0,04875	0,00103	0,16981	0,00338	0,02526	0,00045	160,81	2,83
SLP4a14	82	386	0,21	0,04919	0,00107	0,17202	0,00352	0,02536	0,00045	161,44	2,83
SLP4a15	176	439	0,40	0,05000	0,00108	0,17610	0,00356	0,02554	0,00046	162,57	2,89
SLP4a16	266	460	0,58	0,04868	0,00103	0,17250	0,00343	0,0257	0,00046	163,58	2,89
SLP4a17	362	564	0,64	0,04925	0,00103	0,16955	0,00333	0,02497	0,00045	158,99	2,83
				SLP5a , ко	нкордантный	возраст = 161,	8±0,5 млн лет	, СКВО=0,48			
SLP5a1	249	453	0,55	0,04981	0,00120	0,17528	0,00401	0,02556	0,00047	162,70	2,95
SLP5a2	225	245	0,92	0,04925	0,00120	0,17200	0,00397	0,02537	0,00046	161,51	2,89
SLP5a3	163	251	0,65	0,04918	0,00119	0,17504	0,00404	0,02585	0,00047	164,52	2,95
SLP5a4	246	328	0,75	0,04988	0,00116	0,17064	0,00375	0,02485	0,00045	158,24	2,83
SLP5a5	212	262	0,81	0,04894	0,00117	0,17401	0,00396	0,02583	0,00047	164,40	2,95
SLP5a6	185	291	0,64	0,04979	0,00117	0,17417	0,00389	0,02541	0,00046	161,76	2,89
SLP5a7	248	315	0,79	0,04924	0,00115	0,17023	0,00378	0,02511	0,00046	159,87	2,89
SLP5a8	159	260	0,61	0,04991	0,00121	0,17296	0,00398	0,02517	0,00046	160,25	2,89
SLP5a9	415	684	0,61	0,04780	0,00105	0,17034	0,00352	0,02585	0,00047	164,52	2,95
SLP5a10	401	557	0,72	0,05018	0,00104	0,17576	0,00343	0,02541	0,00045	161,76	2,83

Приложение 5. (продолжение)

N⁰	²³² Th	²³⁸ U				Изотопные	отношения			Возраст, мл	ін. лет
точки	Γ/T	Γ/T	I h/U	²⁰⁷ Pb*/ ²⁰⁶ Pb*	$\pm 1\sigma$, %	²⁰⁷ Pb*/ ²³⁵ U	$\pm 1\sigma,\%$	²⁰⁶ Pb* ^{/238} U	$\pm 1\sigma,\%$	²⁰⁶ Pb*/ ²³⁸ U	$\pm 1\sigma$
SLP5a11	239	319	0,75	0,05048	0,00113	0,17748	0,00374	0,02550	0,00046	162,32	2,89
SLP5a12	164	218	0,75	0,04803	0,00119	0,16626	0,00391	0,02511	0,00046	159,87	2,89
SLP5a13	213	363	0,59	0,04884	0,00106	0,17392	0,00354	0,02583	0,00046	164,40	2,89
SLP5a14	321	524	0,61	0,04922	0,00103	0,17093	0,00336	0,02518	0,00045	160,31	2,83
SLP5a15	328	563	0,58	0,05047	0,00105	0,17873	0,00348	0,02568	0,00046	163,45	2,89
SLP5a16	320	438	0,73	0,04924	0,00105	0,17190	0,00345	0,02532	0,00045	161,19	2,83
SLP5a17	279	446	0,63	0,04813	0,00102	0,16852	0,00336	0,02539	0,00046	161,63	2,89
SLP5a18	234	327	0,72	0,05000	0,00109	0,17498	0,00359	0,02538	0,00046	161,57	2,89
SLP5a19	207	327	0,63	0,04927	0,00110	0,17218	0,00363	0,02535	0,00046	161,38	2,89
SLP5a20	208	267	0,78	0,04864	0,00111	0,17057	0,00366	0,02543	0,00046	161,88	2,89
SLP5a21	189	325	0,58	0,04979	0,00109	0,17412	0,00358	0,02537	0,00046	161,51	2,89
SLP5a22	182	238	0,76	0,04994	0,00116	0,17217	0,00377	0,025	0,00045	159,18	2,83
				ВЕРЬ , ко	нкордантный	і возраст = 163,	3±0,5 млн лет	г, СКВО=0,6			
BEPb1	445	540	0,82	0,05002	0,00116	0,17946	0,00368	0,02561	0,00044	163,01	2,77
BEPb2	647	485	1,33	0,04928	0,00113	0,17579	0,00356	0,02544	0,00044	161,95	2,77
BEPb3	526	419	1,26	0,05058	0,00114	0,17601	0,00372	0,02528	0,00045	160,94	2,83
BEPb4	510	525	0,97	0,04988	0,00110	0,17373	0,00362	0,02530	0,00046	161,07	2,89
BEPb5	566	684	0,83	0,05305	0,00153	0,17827	0,00491	0,02541	0,00046	161,76	2,89
BEPb6	715	963	0,74	0,04850	0,00130	0,17607	0,00426	0,02587	0,00046	164,65	2,89
BEPb7	129	110	1,17	0,04807	0,00111	0,17062	0,00382	0,02523	0,00048	160,63	3,02
BEPb8	276	284	0,97	0,05521	0,00137	0,17014	0,00466	0,02494	0,00048	158,80	3,02
BEPb9	476	541	0,88	0,04927	0,00106	0,17286	0,00386	0,02595	0,00050	165,15	3,14
BEPb10	265	231	1,15	0,05115	0,00112	0,18159	0,00376	0,02575	0,00047	163,89	2,95
BEPb11	406	387	1,05	0,04943	0,00104	0,17850	0,00356	0,02619	0,00047	166,66	2,95
BEPb12	248	221	1,12	0,04821	0,00108	0,17152	0,00364	0,02580	0,00047	164,21	2,95

Приложение 5. (продолжение)

N⁰	²³² Th	²³⁸ U				Изотопные	отношения			Возраст, мл	ін. лет
точки	Γ/T	Γ/T	In/U	²⁰⁷ Pb*/ ²⁰⁶ Pb*	$\pm 1\sigma$, %	²⁰⁷ Pb*/ ²³⁵ U	$\pm 1\sigma,\%$	²⁰⁶ Pb* ^{/238} U	$\pm 1\sigma,\%$	²⁰⁶ Pb*/ ²³⁸ U	$\pm 1\sigma$
BEPb13	425	398	1,07	0,04889	0,00098	0,17610	0,0035	0,0256	0,0005	162,95	3,14
BEPb14	463	379	1,22	0,05045	0,00106	0,18050	0,00358	0,02595	0,00047	165,15	2,95
BEPb15	796	690	1,15	0,04967	0,00102	0,17507	0,00341	0,02556	0,00046	162,70	2,89
BEPb16	454	387	1,17	0,04879	0,00103	0,17213	0,00342	0,02558	0,00046	162,83	2,89
BEPb17	361	357	1,01	0,04879	0,00105	0,16974	0,00347	0,02523	0,00046	160,63	2,89
BEPb18	882	880	1,00	0,04976	0,00102	0,18017	0,0035	0,02626	0,00047	167,10	2,95
BEPb19	306	274	1,12	0,04987	0,00108	0,17559	0,00356	0,02558	0,00046	162,83	2,89
BEPb20	485	450	1,08	0,04879	0,00101	0,17444	0,00338	0,02597	0,00046	165,28	2,89
BEPb21	177	201	0,88	0,04920	0,00110	0,17236	0,00363	0,02544	0,00046	161,95	2,89
BEPb22	694	651	1,07	0,04909	0,00101	0,17664	0,00339	0,02614	0,00047	166,34	2,95
BEPb23	219	214	1,03	0,04915	0,00108	0,17318	0,00358	0,02559	0,00046	162,89	2,89
BEPb24	466	684	0,68	0,04985	0,00103	0,17347	0,00335	0,02527	0,00045	160,88	2,83
BEPb25	211	250	0,85	0,05079	0,00113	0,17533	0,00368	0,02507	0,00045	159,62	2,83
BEPb26	307	341	0,90	0,04984	0,00106	0,17432	0,00349	0,02541	0,00046	161,76	2,89
BEPb27	204	328	0,62	0,04901	0,00112	0,17336	0,00374	0,02569	0,00046	163,52	2,89
				BLP1е , ко	нкордантный	возраст = 159,4	4±0,7 млн лет	с, СКВО=0,73			
BLP1e1	191	381	0,50	0,04921	0,00100	0,16943	0,00319	0,02501	0,00044	159,24	2,77
BLP1e2	130	342	0,38	0,05039	0,00105	0,17033	0,0033	0,02456	0,00044	156,41	2,77
BLP1e3	224	347	0,65	0,04850	0,00107	0,1684	0,00347	0,02522	0,00045	160,56	2,83
BLP1e4	781	1120	0,70	0,05006	0,00103	0,1736	0,00332	0,02519	0,00045	160,37	2,83
BLP1e5	372	785	0,47	0,04947	0,00101	0,17201	0,00327	0,02526	0,00045	160,81	2,83
BLP1e6	318	461	0,69	0,05002	0,00116	0,16946	0,00368	0,02461	0,00044	156,73	2,77
BLP1e7	458	876	0,52	0,04928	0,00113	0,16579	0,00356	0,02444	0,00044	155,66	2,77
BLP1e8	528	921	0,57	0,05058	0,00114	0,17601	0,00372	0,02528	0,00045	160,94	2,83
BLP1e9	148	516	0,29	0,04988	0,0011	0,17373	0,00362	0,0253	0,00046	161,07	2,89

λ Ω	²³² Th	²³⁸ U				Изотопные	отношения			Возраст, мл	пн. лет
л⁰ точки	Γ/T	Γ/T	In/U	²⁰⁷ Pb*/ ²⁰⁶ Pb*	$\pm 1\sigma$, %	²⁰⁷ Pb*/ ²³⁵ U	$\pm 1\sigma$,%	²⁰⁶ Pb* ^{/238} U	$\pm 1\sigma,\%$	²⁰⁶ Pb*/ ²³⁸ U	$\pm 1\sigma$
BLP1e10	102	158	0,65	0,05305	0,00153	0,17827	0,00491	0,02441	0,00046	155,47	2,89
BLP1e11	98	157	0,62	0,04850	0,00130	0,16607	0,00426	0,02487	0,00046	158,36	2,89
BLP1e12	81	428	0,19	0,04807	0,00111	0,17062	0,00382	0,02523	0,00048	160,63	3,02
BLP1e13	154	199	0,77	0,05521	0,00137	0,17014	0,00466	0,02494	0,00048	158,8	3,02
				BLP2с , ко	нкордантный	возраст = 160,8	8±0,5 млн лет	г, СКВО=0,58			
BLP2c1	249	454	0,55	0,04813	0,00106	0,16635	0,00344	0,02511	0,00045	159,87	2,83
BLP2c2	428	552	0,78	0,05035	0,00107	0,17041	0,00339	0,02458	0,00044	156,54	2,77
BLP2c3	686	1055	0,65	0,04870	0,00099	0,17033	0,00321	0,02540	0,00045	161,69	2,83
BLP2c4	779	1185	0,66	0,04982	0,00101	0,17301	0,00326	0,02523	0,00045	160,63	2,83
BLP2c5	512	913	0,56	0,05036	0,00104	0,17512	0,00338	0,02526	0,00045	160,81	2,83
BLP2c6	534	688	0,78	0,05046	0,00110	0,17206	0,00353	0,02477	0,00044	157,73	2,77
BLP2c7	323	569	0,57	0,04944	0,00105	0,17714	0,00351	0,02603	0,00046	165,65	2,89
BLP2c8	254	543	0,47	0,04776	0,00104	0,16556	0,0034	0,02518	0,00045	160,31	2,83
BLP2c9	753	1047	0,72	0,04987	0,00101	0,17087	0,00323	0,02489	0,00044	158,49	2,77
BLP2c10	464	840	0,55	0,05027	0,00104	0,17452	0,00336	0,02522	0,00045	160,56	2,83
BLP2c11	597	1073	0,56	0,04993	0,00101	0,17104	0,00323	0,02488	0,00044	158,42	2,77
BLP2c12	486	950	0,51	0,04832	0,00098	0,16753	0,00318	0,02518	0,00045	160,31	2,83
BLP2c13	362	738	0,49	0,04986	0,00104	0,17046	0,00333	0,02483	0,00044	158,11	2,77
BLP2c14	340	684	0,50	0,04858	0,00103	0,17011	0,00342	0,0254	0,00046	161,69	2,89
BLP2c15	704	1134	0,62	0,04889	0,00099	0,17303	0,00328	0,02567	0,00046	163,39	2,89
BLP2c16	525	910	0,58	0,04905	0,00101	0,17096	0,00331	0,02528	0,00045	160,94	2,83
BLP2c17	727	985	0,74	0,04889	0,00099	0,17212	0,00328	0,02553	0,00046	162,51	2,89
BLP2c18	430	706	0,61	0,04873	0,00102	0,16845	0,00332	0,02507	0,00045	159,62	2,83
BLP2c19	582	849	0,69	0,05020	0,00103	0,17576	0,0034	0,02539	0,00046	161,63	2,89
BLP2c20	854	1164	0,73	0,05011	0,00101	0,17552	0,00334	0,02541	0,00045	161,76	2,83

10	²³² Th	²³⁸ U				Изотопные	отношения			Возраст, м.	пн. лет
№ точки	Γ/T	г/т	In/U	²⁰⁷ Pb*/ ²⁰⁶ Pb*	$\pm 1\sigma$, %	²⁰⁷ Pb*/ ²³⁵ U	$\pm 1\sigma,\%$	²⁰⁶ Pb* ^{/238} U	$\pm 1\sigma,\%$	²⁰⁶ Pb*/ ²³⁸ U	$\pm 1\sigma$
BLP2c21	439	760	0,58	0,04928	0,00103	0,17151	0,00337	0,02524	0,00045	160,69	2,83
BLP2c22	554	899	0,62	0,04878	0,00101	0,17002	0,0033	0,02528	0,00045	160,94	2,83
BLP2c23	191	356	0,54	0,04932	0,00113	0,17183	0,00374	0,02527	0,00046	160,88	2,89
BLP2c24	548	1038	0,53	0,04899	0,00100	0,17352	0,00333	0,02569	0,00046	163,52	2,89
BLP2c25	281	508	0,55	0,04955	0,00108	0,17106	0,00352	0,02504	0,00045	159,43	2,83
BLP2c26	429	708	0,61	0,04832	0,00102	0,17084	0,00339	0,02564	0,00046	163,20	2,89
BLP2c27	782	1327	0,59	0,04890	0,00098	0,17426	0,00329	0,02585	0,00046	164,52	2,89
				BLP3b , к	онкордантный	й возраст = 161,6	б±0,5 млн лет	, СКВО=0,49			
BLP3b1	326	314	1,04	0,04908	0,00115	0,16995	0,00379	0,02511	0,00046	159,87	2,89
BLP3b2	399	504	0,79	0,0509	0,00116	0,17524	0,00377	0,02497	0,00045	158,99	2,83
BLP3b3	464	684	0,68	0,04859	0,0011	0,16859	0,00361	0,02517	0,00046	160,25	2,89
BLP3b4	277	355	0,78	0,04881	0,00112	0,16892	0,00369	0,0251	0,00046	159,81	2,89
BLP3b5	938	1247	0,75	0,04966	0,00102	0,17363	0,00336	0,02536	0,00045	161,44	2,83
BLP3b6	508	845	0,60	0,05027	0,00111	0,17549	0,00365	0,02532	0,00046	161,19	2,89
BLP3b7	290	457	0,63	0,05008	0,0012	0,17238	0,00392	0,02497	0,00046	158,99	2,89
BLP3b8	613	948	0,65	0,04996	0,00112	0,17381	0,00368	0,02523	0,00046	160,63	2,89
BLP3b9	413	954	0,43	0,04913	0,00114	0,17235	0,00378	0,02544	0,00046	161,95	2,89
BLP3b10	272	337	0,81	0,04913	0,00103	0,17493	0,00347	0,02582	0,00046	164,33	2,89
BLP3b11	543	690	0,79	0,04868	0,00103	0,17361	0,00348	0,02586	0,00047	164,59	2,95
BLP3b12	607	857	0,71	0,04916	0,00102	0,17507	0,00343	0,02583	0,00046	164,40	2,89
BLP3b13	766	793	0,97	0,04883	0,00114	0,17069	0,00377	0,02535	0,00046	161,38	2,89
BLP3b14	257	334	0,77	0,04881	0,00107	0,17195	0,00358	0,02555	0,00046	162,64	2,89
BLP3b15	582	854	0,68	0,04851	0,00109	0,16975	0,0036	0,02538	0,00046	161,57	2,89
BLP3b16	255	357	0,71	0,04949	0,00110	0,17151	0,00359	0,02513	0,00045	160,00	2,83
BLP3b17	504	954	0,53	0,04896	0,00127	0,17116	0,00424	0,02535	0,00047	161,38	2,95

171

λ Ω	²³² Th	²³⁸ U	Th /I I			Изотопные	отношения			Возраст, м.	пн. лет
№ точки	Γ/T	г/т	I h/U	²⁰⁷ Pb*/ ²⁰⁶ Pb*	$\pm 1\sigma$, %	²⁰⁷ Pb*/ ²³⁵ U	$\pm 1\sigma,\%$	²⁰⁶ Pb* ^{/238} U	$\pm 1\sigma,\%$	²⁰⁶ Pb*/ ²³⁸ U	$\pm 1\sigma$
BLP3b18	130	191	0,68	0,05678	0,00135	0,17117	0,00447	0,02525	0,00046	160,75	2,89
BLP3b19	170	239	0,71	0,04935	0,00111	0,17290	0,00369	0,02541	0,00046	161,76	2,89
BLP3b20	376	584	0,64	0,05110	0,00110	0,17984	0,00364	0,02553	0,00046	162,51	2,89
BLP3b21	104	467	0,22	0,05168	0,00129	0,17800	0,00421	0,02498	0,00045	159,05	2,83
BLP3b22	206	887	0,23	0,05095	0,00112	0,17889	0,00368	0,02547	0,00046	162,13	2,89
BLP3b23	50	183	0,28	0,04958	0,00099	0,17262	0,00321	0,02525	0,00045	160,75	2,83
BLP3b24	47	171	0,28	0,05065	0,00133	0,17390	0,00432	0,0249	0,00045	158,55	2,83
BLP3b25	106	384	0,28	0,04948	0,00130	0,17108	0,00425	0,02508	0,00046	159,68	2,89
BLP3b26	1330	1617	0,82	0,05004	0,00106	0,17486	0,00346	0,02534	0,00045	161,32	2,83
BLP3b27	50	160	0,31	0,04954	0,00104	0,17350	0,0034	0,0254	0,00045	161,69	2,83
				BLP4с , ко	нкордантный	возраст = 160,	3±0,6 млн лет	г, СКВО=0,44			
BLP4c1	165	363	0,46	0,04926	0,00111	0,17218	0,00365	0,02539	0,00046	161,63	2,89
BLP4c2	264	493	0,53	0,04930	0,00107	0,17774	0,00364	0,02619	0,00047	166,66	2,95
BLP4c3	252	447	0,56	0,04902	0,00107	0,16959	0,00349	0,02513	0,00045	160,00	2,83
BLP4c4	183	365	0,50	0,04963	0,00112	0,17072	0,00362	0,02498	0,00045	159,05	2,83
BLP4c5	510	735	0,69	0,04902	0,00102	0,17264	0,00336	0,02558	0,00046	162,83	2,89
BLP4c6	181	414	0,44	0,04927	0,00109	0,17090	0,00357	0,02519	0,00045	160,37	2,83
BLP4c7	210	424	0,49	0,04849	0,00108	0,16886	0,00353	0,02529	0,00046	161,00	2,89
BLP4c8	540	766	0,70	0,05023	0,00104	0,17509	0,00342	0,02532	0,00045	161,19	2,83
BLP4c9	304	558	0,55	0,04916	0,00106	0,16876	0,00341	0,02493	0,00045	158,74	2,83
BLP4c10	258	517	0,50	0,04873	0,00106	0,16745	0,00343	0,02496	0,00045	158,93	2,83
BLP4c11	232	413	0,56	0,04962	0,00109	0,17276	0,00359	0,02529	0,00046	161,00	2,89
BLP4c12	242	529	0,46	0,04855	0,00104	0,16729	0,00338	0,02503	0,00045	159,37	2,83
BLP4c13	190	407	0,47	0,04995	0,00112	0,17062	0,0036	0,02481	0,00045	157,98	2,83
BLP4c14	186	397	0,47	0,04857	0,00109	0,16914	0,00358	0,02529	0,00046	161,00	2,89

172

20	²³² Th	²³⁸ U				Изотопные	отношения			Возраст, мл	пн. лет
л⁰ точки	Γ/T	Γ/T	In/U	²⁰⁷ Pb*/ ²⁰⁶ Pb*	$\pm 1\sigma$, %	²⁰⁷ Pb*/ ²³⁵ U	$\pm 1\sigma,\%$	²⁰⁶ Pb* ^{/238} U	$\pm 1\sigma,\%$	²⁰⁶ Pb*/ ²³⁸ U	$\pm 1\sigma$
BLP4c15	118	288	0,41	0,04914	0,00117	0,16811	0,00378	0,02485	0,00045	158,24	2,83
BLP4c16	177	362	0,49	0,04845	0,00111	0,16823	0,00364	0,02522	0,00046	160,56	2,89
BLP4c17	346	593	0,58	0,04918	0,00106	0,16971	0,00344	0,02506	0,00045	159,56	2,83
BLP4c18	277	508	0,55	0,04925	0,00107	0,17290	0,00356	0,02550	0,00046	162,32	2,89
BLP4c19	211	387	0,55	0,04969	0,00111	0,17224	0,00363	0,02517	0,00045	160,25	2,83
				BLP5b , ко	нкордантный	і возраст = 162,	2±0,4 млн лет	г, СКВО=0,48			
BLP5b1	229	433	0,53	0,04905	0,00101	0,17240	0,00332	0,02553	0,00045	162,51	2,83
BLP5b2	32	244	0,13	0,04922	0,00098	0,17244	0,0032	0,02545	0,00045	162,01	2,83
BLP5b3	106	489	0,22	0,04929	0,00103	0,17194	0,00338	0,02534	0,00045	161,32	2,83
BLP5b4	292	501	0,58	0,05031	0,00113	0,17404	0,00369	0,02513	0,00045	160,00	2,83
BLP5b5	563	856	0,66	0,04936	0,00103	0,17500	0,00343	0,02575	0,00046	163,89	2,89
BLP5b6	1050	1501	0,70	0,04992	0,00113	0,17065	0,00365	0,02483	0,00045	158,11	2,83
BLP5b7	380	677	0,56	0,05033	0,00105	0,17445	0,00339	0,02518	0,00045	160,31	2,83
BLP5b8	174	385	0,45	0,04966	0,00107	0,17041	0,00346	0,02492	0,00045	158,68	2,83
BLP5b9	356	654	0,54	0,04897	0,00099	0,17443	0,00328	0,02588	0,00046	164,71	2,89
BLP5b10	150	353	0,42	0,04936	0,00104	0,17027	0,00337	0,02506	0,00045	159,56	2,83
BLP5b11	400	770	0,52	0,04874	0,00108	0,17624	0,00344	0,02578	0,00044	164,08	2,77
BLP5b12	344	543	0,63	0,04909	0,0012	0,17629	0,00381	0,02560	0,00044	162,95	2,77
BLP5b13	779	1218	0,64	0,04928	0,00108	0,17793	0,00344	0,02575	0,00044	163,89	2,77
BLP5b14	286	625	0,46	0,04971	0,00108	0,17812	0,00343	0,02556	0,00044	162,70	2,77
BLP5b15	641	1165	0,55	0,05021	0,00102	0,17184	0,00349	0,02526	0,00047	160,81	2,96
BLP5b16	189	979	0,19	0,04914	0,00101	0,17560	0,0034	0,02592	0,00047	164,96	2,95
BLP5b17	149	676	0,22	0,04991	0,00106	0,17555	0,00351	0,02551	0,00046	162,39	2,89
BLP5b18	488	737	0,66	0,05010	0,00105	0,17660	0,00349	0,02556	0,00046	162,70	2,89
BLP5b19	718	2162	0,33	0,04974	0,00098	0,17488	0,00325	0,0255	0,00046	162,32	2,89

Приложение 5. (окончание)

No morrier	²³² Th	²³⁸ U	Th/II			Изотопные	отношения			Возраст, мл	пн. лет
л⁰ точки	Γ/T	Γ/T	11/0	²⁰⁷ Pb*/ ²⁰⁶ Pb*	$\pm 1\sigma$, %	²⁰⁷ Pb*/ ²³⁵ U	$\pm 1\sigma,\%$	²⁰⁶ Pb* ^{/238} U	$\pm 1\sigma,\%$	²⁰⁶ Pb*/ ²³⁸ U	$\pm 1\sigma$
BLP5b20	357	1050	0,34	0,04935	0,00101	0,17128	0,00331	0,02517	0,00045	160,25	2,83
BLP5b21	171	806	0,21	0,04934	0,00103	0,17536	0,00346	0,02578	0,00046	164,08	2,89
BLP5b22	186	366	0,51	0,04957	0,00123	0,16838	0,00421	0,0251	0,00048	159,81	3,02
BLP5b23	402	496	0,81	0,04915	0,00107	0,17472	0,00359	0,02578	0,00047	164,08	2,95
BLP5b24	204	1173	0,17	0,04941	0,00101	0,17141	0,00330	0,02516	0,00045	160,18	2,83
BLP5b25	201	708	0,28	0,04888	0,00102	0,17634	0,00348	0,02617	0,00047	166,53	2,95
BLP5b26	364	614	0,59	0,04922	0,00105	0,16974	0,00344	0,02501	0,00045	159,24	2,83
BLP5b27	123	296	0,42	0,04889	0,00116	0,17414	0,00393	0,02583	0,00047	164,40	2,95
BLP5b28	207	454	0,46	0,04980	0,00112	0,16746	0,00376	0,02514	0,00047	160,06	2,96
BLP5b29	282	1225	0,23	0,04847	0,00099	0,16990	0,00327	0,02542	0,00046	161,82	2,89
BLP5b30	369	686	0,54	0,04874	0,00103	0,17376	0,00347	0,02586	0,00047	164,59	2,95
BLP5b31	192	950	0,20	0,04924	0,00102	0,17412	0,00341	0,02565	0,00046	163,27	2,89
BLP5b32	243	823	0,30	0,04963	0,00104	0,17154	0,0034	0,02507	0,00045	159,62	2,83

№ точки	BEPb1	BEPb2	BEPb3	BEPb4	BEPb5	BEPb6	BEPb7	BEPb8	BEPb9	BEPb10	BEPb11	BEPb12	BEPc1	BEPc2	BEPc3	BEPc4	BEPc5	BEPc6	BLP1a1	BLP1a2	BLP1d1	BLP1d2
La	< 0.03	< 0.03	0,05	0,09	< 0.03	0,09	< 0.03	0,07	< 0.03	0,05	0,05	< 0.03	0,51	< 0.03	0,04	< 0.03	0,09	0,09	< 0.03	0,04	< 0.03	< 0.03
Ce	13,72	17,67	29,03	18,89	18,63	15,29	22,33	21,77	20,76	19,49	16,67	14,28	16,00	11,00	17,00	13,00	27,00	14,00	12,24	12,00	16,82	10,00
Pr	0,10	0,17	0,55	0,53	0,25	0,42	0,33	0,51	0,16	0,37	0,32	0,15	0,66	0,12	0,29	0,22	0,33	0,45	0,09	0,03	0,10	0,04
Nd	2,15	2,53	8,38	8,03	4,74	7,06	5,59	7,65	2,32	6,86	5,71	2,43	7,20	2,20	5,10	3,80	5,70	6,80	0,80	0,73	1,68	1,50
Sm	3,84	5,07	14,28	11,50	8,86	10,92	10,15	12,80	4,79	9,62	8,84	4,71	7,80	4,00	8,80	6,10	9,80	8,80	2,09	1,46	4,02	2,10
Eu	0,63	0,79	1,83	1,76	1,01	1,29	1,47	1,59	0,72	1,22	1,23	0,64	1,20	0,64	1,30	0,75	1,30	1,20	0,24	0,14	0,16	0,26
Gd	14,81	19,57	50,86	53,33	29,96	39,07	37,88	43,09	18,77	35,23	33,15	19,63	35,00	16,00	33,00	23,00	39,00	35,00	7,94	8,25	17,03	7,13
Tb	5,30	5,86	15,92	15,01	9,31	11,47	11,97	13,15	5,63	11,26	9,87	5,98	10,00	5,10	9,40	7,20	12,00	10,00	2,80	3,15	4,90	2,61
Dy	62,7	70,1	180,4	168,1	103,6	127,5	130,1	145,5	68,5	127,7	116,9	72,1	112,0	64,0	105,0	82,0	131,0	115,0	36,7	41,1	59,8	30,6
Ho	23,09	24,77	57,75	54,86	34,83	40,28	42,51	46,90	22,90	42,62	37,74	24,76	38,00	24,00	34,00	28,00	45,00	39,00	13,41	17,23	20,51	11,44
Er	107,5	110,8	264,7	231,5	157,5	176,9	180,8	205,7	103,4	186,7	165,9	113,3	162,0	117,0	148,0	119,0	195,0	168,0	69,5	91,0	89,8	57,2
Tm	25,28	24,93	56,31	49,09	34,50	37,02	41,19	44,49	23,42	41,37	36,05	25,48	37,00	27,00	32,00	27,00	44,00	35,00	18,87	24,83	20,61	14,09
Yb	220,7	213,9	445,5	391,0	277,7	297,5	328,6	353,6	207,8	327,1	292,0	218,8	295,0	236,0	267,0	227,0	371,0	294,0	175,5	236,1	172,0	120,1
Lu	42,4	38,2	81,4	67,6	48,8	51,0	59,0	62,7	37,1	58,4	52,5	39,5	53,0	45,0	47,0	42,0	65,0	51,0	40,8	53,7	33,4	25,3
Ti	13,4	13,2	9,3	18,5	10,2	13,0	11,6	11,0	11,0	11,1	11,8	10,8	14,0	14,0	8,9	9,5	5,9	14,0	2,5	3,3	7,3	7,3
Y	672	698	1657	1528	1022	1155	1217	1303	658	1171	1050	716	1095	723	1040	852	1369	1115	431	544	596	376
Nb	1,26	1,31	1,63	1,44	0,96	1,19	1,15	1,28	1,43	1,36	1,11	1,21	1,20	1,50	1,10	1,20	1,50	1,10	1,06	1,96	2,24	1,95
Hf	8953	9160	10282	8285	10269	9092	10203	9692	10023	10154	9666	9696	7645	7811	8008	7693	9273	7650	8207	9566	9694	10951
Та	0,65	0,69	0,81	0,60	0,63	0,46	0,57	0,63	0,79	0,63	0,57	0,57	0,58	0,73	0,37	0,46	0,68	0,41	0,41	0,99	1,21	1,02
Th	191	330	782	634	343	323	449	470	299	380	340	206	385	177	241	217	444	281	156	269	117	84
U	299	363	660	478	347	294	410	420	358	380	318	264	334	255	218	223	389	262	287	486	155	149
T(°C)-Ti	767	766	734	798	743	765	754	749	749	750	756	748	771	771	731	736	697	771	631	653	714	714
Yb/Gd	14,90	10,93	8,76	7,33	9,27	7,61	8,68	8,21	11,07	9,29	8,81	11,15	8,43	14,75	8,09	9,87	9,51	8,40	22,11	28,62	10,10	16,84
Ce/Sm	3,57	3,49	2,03	1,64	2,10	1,40	2,20	1,70	4,33	2,03	1,89	3,03	2,05	2,75	1,93	2,13	2,76	1,59	5,86	8,22	4,18	4,76
Yb/Dy	3,52	3,05	2,47	2,33	2,68	2,33	2,53	2,43	3,03	2,56	2,50	3,03	2,63	3,69	2,54	2,77	2,83	2,56	4,78	5,74	2,88	3,92
Ce/Ce*(1)	-	-	40,71	21,06	-	19,48	-	28,18	-	33,52	31,93	-	6,61	-	37,86	-	37,57	16,68	-	88,34	-	-
Ce/Ce*(2)	26,27	32,26	13,61	7,76	16,93	7,72	16,72	10,97	42,58	9,18	10,42	26,25	5,55	20,95	13,26	12,66	18,77	6,14	92,13	75,16	55,22	21,51
Ce/Ce*(3)	85,83	69,49	28,25	18,76	31,95	15,47	32,08	21,08	88,98	25,22	24,72	62,02	20,97	69,08	25,38	31,82	42,48	17,45	291,91	492,72	97,77	102,21
Eu/Eu*(1)	0,25	0,24	0,21	0,22	0,19	0,19	0,23	0,21	0,23	0,20	0,22	0,20	0,22	0,24	0,23	0,19	0,20	0,21	0,18	0,12	0,06	0,20
Eu/Eu*(2)	0,28	0,29	0,24	0,25	0,22	0,22	0,27	0,24	0,28	0,22	0,25	0,24	0,23	0,27	0,28	0,22	0,24	0,23	0,21	0,13	0,08	0,20
Примечание	e: Pac	чёт С	Ce/Ce*:	(1) m	радиц	ионны.	м мет	одом,	Ce/Ce	*= Ce	$n/(La_n)$	$(Pr_n)^{0,5}$; (2)	Ce/Ce*	$k = Ce_n$	(Nd_n^2/N)	Sm_n)[Loader	et al.,	2017];	(3) ме	тодом,
основанныл	ı на ф	vнкииі	ı cmen	енной	зависи	мості	і. Расч	ëm Eu	/Eu*: ((1) mp	адииис	оным	мето	дом. Е	u/Eu*	$= Eu_n/($	Sm _n *G	$(d_n)^{0,5}$: ((2) мет	одом. о	снован	ным на

Приложение 6. Содержания рассеянных элементов (г/т) в цирконах из пород Быстринского и Шахтаминского месторождений, отношения элементов, европиевая и цериевая аномалии, оценка температуры по Ті-термометру.

основанным на функции степенной зависимости. Расчёт Eu/Eu^* : (1) традициооным методом, $Eu/Eu^* = Eu_n/(Sm_n^*Gd_n)^{0.5}$; (2) методом, основанным на функции степенной зависимости [Nevolko et al., 2021]. Оценка температуры по Ti-термометру [Watson et al., 2006].

№ точки	BLP1d3	BLP1e1	BLP1e2	BLP1e3	BLP1e4	BLP1e5	BLP1e6	BLP2a1	BLP2a2	BLP2a3	BLP2a4	BLP2a5	BLP2a6	BLP2a7	BLP2a8	BLP2a9	BLP2a10	BLP2a11	BLP2b1	BLP2b2
La	0,06	< 0.03	< 0.03	0,45	< 0.03	0,21	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0,06	< 0.03	0,11	< 0.03	0,12	0,06	< 0.03	< 0.03	0,42
Ce	15,71	12,24	10,72	3,36	19,02	14,23	17,81	19,24	59,17	56,56	49,59	20,69	22,09	13,05	26,39	47,71	32,85	27,00	14,60	13,60
Pr	0,04	< 0.02	0,05	0,05	0,03	0,19	0,05	0,11	0,06	0,05	0,05	0,05	< 0.02	0,13	0,05	0,14	0,06	0,11	0,06	0,11
Nd	0,85	0,51	0,72	2,08	3,00	1,97	0,66	1,39	1,23	1,59	1,21	0,79	0,42	1,30	0,73	1,25	0,80	1,80	0,82	1,22
Sm	1,81	1,21	1,56	3,16	4,91	2,89	1,74	2,52	2,90	3,59	2,51	1,61	1,36	1,25	1,81	3,24	1,41	3,25	1,23	1,98
Eu	0,19	0,21	0,21	0,23	0,31	0,15	0,29	0,96	1,25	1,32	1,16	0,64	0,48	0,61	0,81	1,24	0,75	1,38	0,66	0,77
Gd	7,05	9,35	8,28	21,05	13,93	13,05	8,77	11,13	15,20	16,64	12,50	7,61	6,57	5,70	9,70	13,26	9,86	14,13	6,86	6,78
Tb	2,53	4,10	2,71	10,57	4,32	3,93	3,01	3,42	5,32	6,00	4,40	2,76	2,47	1,95	3,91	5,03	3,60	5,23	2,48	2,70
Dy	30,9	64,6	31,8	152,5	56,2	49,0	38,5	42,1	68,5	78,1	55,0	39,2	36,7	26,4	54,5	69,5	51,3	62,3	34,4	35,3
Ho	11,59	29,88	11,65	64,45	22,29	16,75	13,42	15,23	26,19	29,21	20,37	14,81	14,50	9,92	21,40	27,22	20,25	23,86	13,38	13,35
Er	55,1	169,3	54,5	338,4	113,4	78,5	63,8	81,8	133,7	150,9	103,1	82,5	80,1	55,0	109,1	139,9	111,4	124,4	72,5	75,1
Tm	13,56	48,43	12,89	86,96	28,55	18,73	14,97	21,18	34,82	38,57	26,85	21,78	21,70	16,29	30,32	36,51	30,10	31,30	20,40	19,31
Yb	121,0	504,1	112,2	820,1	289,7	174,8	131,6	208,9	337,0	377,9	261,4	229,8	224,3	157,8	306,1	358,3	303,2	324,7	206,4	192,8
Lu	24,6	113,0	20,6	162,2	58,4	33,4	25,9	43,9	70,8	78,1	54,1	51,4	48,8	37,1	63,7	72,5	64,6	67,5	43,5	46,0
Ti	5,9	2,6	7,8	4,0	2,9	9,5	12,4	2,7	2,4	4,0	1,7	1,3	1,8	1,6	1,5	2,6	3,2	1,9	2,5	5,8
Y	371	1006	358	1897	700	524	424	500	797	903	637	498	464	332	657	824	638	728	437	426
Nb	1,75	6,60	1,24	7,08	4,72	2,97	2,40	1,60	3,93	4,73	3,02	1,64	1,70	1,18	2,39	4,02	2,37	1,94	1,66	1,42
Hf	9494	10828	8482	11529	9970	8859	9930	8940	10170	10189	10274	9261	9979	9839	9295	10065	10166	10302	8996	9233
Та	0,72	1,98	0,52	2,84	1,62	1,03	0,86	0,70	1,99	2,16	1,75	0,71	0,90	0,61	1,39	1,94	1,31	0,87	0,66	0,64
Th	101	133	61	153	331	107	98	243	873	970	1005	277	241	168	344	727	385	422	106	123
U	155	682	84	760	755	218	158	378	1249	1409	1299	498	491	329	677	1181	698	722	244	227
T(°C)-Ti	697	636	720	667	641	736	760	637	628	666	607	589	608	600	598	634	649	612	633	695
Yb/Gd	17,16	53,91	13,56	38,96	20,79	13,40	15,00	18,77	22,17	22,71	20,91	30,19	34,14	27,68	31,56	27,02	30,75	22,98	30,08	28,44
Ce/Sm	8,68	10,12	6,87	1,06	3,87	4,92	10,24	7,63	20,40	15,75	19,76	12,85	16,24	10,44	14,58	14,73	23,30	8,31	11,87	6,87
Yb/Dy	3,91	7,80	3,53	5,38	5,15	3,57	3,42	4,96	4,92	4,84	4,75	5,86	6,11	5,97	5,62	5,16	5,92	5,21	5,99	5,46
Ce/Ce*(1)	76,11	-	-	5,40	-	17,21	-	-	-	-	-	86,46	-	25,66	-	88,34	136,02	-	-	15,12
Ce/Ce*(2)	90,71	131,76	73,53	5,66	23,92	24,42	162,98	57,84	261,42	185,12	195,95	123,02	398,20	22,25	206,59	228,02	166,81	62,42	61,56	41,70
Ce/Ce*(3)	280,91	1414,87	205,14	67,29	102,58	97,71	393,17	250,61	1044,95	740,81	829,91	737,27	1557,69	300,46	1052,61	851,73	1440,84	312,27	559,17	270,94
Eu/Eu*(1)	0,16	0,19	0,18	0,09	0,11	0,07	0,23	0,55	0,57	0,52	0,63	0,55	0,49	0,69	0,58	0,57	0,61	0,62	0,69	0,64
Eu/Eu*(2)	0,18	0,19	0,21	0,08	0,12	0,08	0,28	0,63	0,67	0,59	0,72	0,60	0,59	0,62	0,65	0,66	0,63	0,67	0,69	0,64

№ точки	BLP2b3	BLP2b4	BLP2b5	BLP2b6	BLP2c1	BLP2c2	BLP2c3	BLP2c4	BLP2c5	BLP2c6	BLP2c7	BLP2c8	BLP2c9	BLP2c10	BLP2c11	BLP2c12	BLP2d1	BLP2d2	BLP2d3
La	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0,05	0,29	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0,06	0,05
Ce	27,72	14,31	8,84	34,52	31,61	6,93	18,78	40,78	34,29	29,51	32,55	23,36	29,57	18,15	19,59	39,71	21,61	31,10	24,10
Pr	0,03	0,02	0,03	0,06	0,05	0,02	0,03	0,05	0,04	0,06	0,05	0,10	0,03	0,03	0,03	0,09	0,03	0,05	0,05
Nd	0,55	0,35	0,51	0,80	1,44	0,55	0,58	0,83	0,79	0,69	0,87	0,81	0,57	0,70	0,75	1,57	0,61	0,75	1,13
Sm	2,81	1,55	1,09	1,81	3,50	0,84	1,31	1,83	1,99	2,10	1,60	1,59	1,99	1,44	1,81	2,95	1,57	1,74	2,00
Eu	0,69	0,82	0,44	1,02	1,02	0,46	0,61	0,86	0,96	0,93	0,75	0,66	0,61	0,74	0,71	1,70	0,58	0,75	0,92
Gd	14,34	11,30	4,25	11,20	16,16	5,41	7,47	11,27	11,45	11,35	9,25	8,33	9,95	7,47	8,23	18,26	8,75	10,43	11,24
Tb	5,47	4,92	1,63	3,86	5,49	1,67	2,64	4,14	4,25	4,00	3,52	3,19	3,87	2,83	2,91	7,03	3,06	3,87	4,00
Dy	78,9	79,0	20,1	55,7	62,8	23,1	39,5	58,5	56,5	55,1	51,7	46,2	51,4	38,6	37,4	88,7	37,6	51,8	54,7
Но	31,09	31,74	8,39	21,78	23,39	8,92	16,50	24,68	22,60	21,29	21,38	17,88	20,22	15,27	16,05	32,74	15,48	20,83	20,88
Er	161,4	174,7	42,2	114,7	114,3	49,4	83,3	129,3	118,1	115,7	109,3	94,8	110,6	85,1	83,9	164,5	79,8	112,8	109,8
Tm	42,86	45,86	12,17	30,77	27,09	13,80	22,88	33,57	30,90	30,52	29,48	25,36	29,74	22,52	22,05	41,43	20,47	29,31	28,93
Yb	414,2	468,2	122,1	297,8	247,1	138,0	234,9	329,0	299,6	296,4	286,4	262,9	283,3	231,2	222,5	400,2	194,0	288,0	277,0
Lu	83,9	94,1	27,0	64,0	53,0	32,3	52,4	73,6	65,6	65,1	63,1	57,5	65,2	50,9	49,6	82,5	45,3	65,1	64,7
Ti	2,9	1,9	2,7	2,8	7,7	3,8	1,6	1,6	2,7	1,9	1,4	2,1	1,2	1,3	1,8	4,3	4,8	2,0	2,0
Y	1004	1021	258	671	712	297	498	732	700	670	637	544	625	479	485	1010	482	685	662
Nb	6,34	6,85	1,13	2,94	2,85	1,12	1,49	3,24	3,16	2,86	2,90	2,14	2,36	1,50	1,30	4,18	2,13	2,38	1,86
Hf	10214	10003	8659	9726	9811	8561	10317	10657	10098	9649	10500	10260	10114	9778	9410	8953	9331	10454	10557
Та	2,09	2,17	0,50	1,49	1,36	0,46	0,61	1,72	1,61	1,31	1,18	0,97	1,21	0,56	0,63	1,78	0,78	1,08	0,87
Th	280	200	59	437	424	73	234	512	469	375	381	302	388	246	267	716	247	439	379
U	794	948	152	827	558	194	546	815	883	687	655	607	596	519	531	1206	383	719	689
T(°C)-Ti	642	614	639	641	718	663	603	600	637	614	594	619	585	589	611	672	680	615	617
Yb/Gd	28,89	41,44	28,72	26,59	15,29	25,50	31,44	29,20	26,17	26,12	30,96	31,56	28,47	30,95	27,03	21,92	22,17	27,61	24,64
Ce/Sm	9,86	9,23	8,11	19,07	9,03	8,25	14,34	22,28	17,23	14,05	20,34	14,69	14,86	12,60	10,82	13,46	13,76	17,87	12,05
Yb/Dy	5,25	5,93	6,07	5,35	3,93	5,97	5,95	5,63	5,30	5,38	5,54	5,69	5,51	5,99	5,94	4,51	5,17	5,56	5,06
Ce/Ce*(1)	-	-	-	-	-	-	-	-	-	-	153,37	33,24	-	-	-	-	-	130,43	112,71
Ce/Ce*(2)	593,49	410,26	85,72	225,02	122,97	44,84	166,26	249,68	252,00	300,01	158,59	130,48	417,44	122,94	145,29	109,54	211,54	221,73	87,00
Ce/Ce*(3)	1198,42	1584,16	421,16	1225,71	325,54	388,99	1024,13	1539,84	1149,73	1074,52	1220,62	881,94	1341,42	777,89	647,57	595,49	824,84	1205,86	575,53
Eu/Eu*(1)	0,33	0,60	0,62	0,69	0,41	0,65	0,59	0,58	0,61	0,58	0,59	0,55	0,42	0,68	0,56	0,70	0,48	0,53	0,59
Eu/Eu*(2)	0,45	0,74	0,69	0,78	0,51	0,70	0,66	0,63	0,71	0,72	0,61	0,58	0,52	0,74	0,65	0,76	0,58	0,61	0,62

№ точки	BLP2d4	BLP2d5	BLP2d6	BLP2d7	BLP2d8	BLP2d9	BLP2d10	BLP3b1	BLP3b2	BLP3b3	BLP3b4	BLP3b5	BLP3b6	BLP3b7	BLP4c1	BLP4c2	BLP4c3	BLP4c4	BLP4c5
La	< 0.03	0,11	< 0.03	0,08	< 0.03	< 0.03	< 0.03	0,05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0,04	< 0.03	< 0.03	0,06	< 0.03	< 0.03
Ce	22,52	23,43	37,88	16,58	64,82	54,96	26,51	14,00	18,00	9,60	14,00	12,00	29,00	12,00	13,88	20,32	25,80	16,08	20,76
Pr	0,04	0,07	0,03	0,09	0,06	0,05	0,04	0,03	0,05	0,03	0,15	0,05	0,09	< 0.02	0,02	0,05	0,11	0,04	0,04
Nd	0,64	0,54	0,84	1,58	1,22	1,31	0,85	0,61	1,60	0,44	2,50	0,62	1,40	0,44	0,64	0,83	1,41	0,54	0,53
Sm	1,31	1,46	1,88	2,96	2,68	2,29	1,96	1,40	3,50	0,87	5,90	1,60	3,20	1,20	1,22	1,48	2,37	1,06	1,72
Eu	0,73	0,62	0,85	1,08	1,06	0,99	0,82	0,71	1,40	0,35	1,10	0,30	0,68	0,60	0,61	0,63	1,14	0,43	0,62
Gd	8,45	6,96	13,24	11,30	18,38	15,59	10,47	8,10	21,00	4,10	25,00	6,10	17,00	9,60	6,50	7,52	12,69	6,95	8,36
Tb	3,57	2,58	5,04	3,89	7,34	5,95	3,93	3,30	8,10	1,60	7,40	2,10	6,30	3,90	2,34	2,72	4,31	2,22	2,90
Dy	45,9	32,2	69,2	45,9	102,2	84,2	53,6	44,0	111,0	22,0	84,0	26,0	76,0	60,0	33,2	34,6	56,7	31,8	41,7
Но	18,87	12,12	28,29	17,68	40,32	33,07	21,15	18,00	45,00	9,30	27,00	9,30	28,00	25,00	12,66	13,58	22,37	13,45	16,89
Er	103,0	62,4	148,5	86,9	212,1	173,1	107,6	101,0	239,0	49,0	117,0	42,0	128,0	141,0	68,9	72,2	117,9	72,3	94,7
Tm	27,42	16,74	37,59	21,85	55,70	45,30	28,44	27,00	65,00	14,00	26,00	10,00	32,00	40,00	18,89	19,49	31,24	20,13	25,80
Yb	274,3	158,6	358,3	213,7	514,0	431,6	271,3	280,0	629,0	153,0	230,0	88,0	276,0	414,0	195,6	195,4	306,4	199,8	261,9
Lu	61,4	36,8	79,0	48,4	111,7	94,1	61,9	64,0	134,0	34,0	39,0	17,0	51,0	86,0	42,9	40,6	64,3	44,2	57,3
Ti	1,6	2,8	2,8	1,3	3,0	1,9	2,4	1,5	1,5	1,5	18,0	23,0	11,0	2,1	1,8	2,1	2,2	2,4	4,2
Y	613	385	871	552	1282	1048	664	600	1490	304	802	285	861	833	394	414	688	412	535
Nb	1,98	1,75	3,72	1,28	5,68	4,16	2,70	2,30	5,90	1,20	1,70	1,40	3,40	4,50	1,50	2,13	2,34	1,52	2,31
Hf	10291	9752	10172	9641	10359	10384	9554	7727	9024	8146	8264	8427	9753	8610	9396	8913	8837	9283	9274
Та	0,92	0,94	1,57	0,63	2,68	1,72	1,27	0,64	1,80	0,48	0,55	0,60	1,70	1,40	0,72	0,93	1,11	1,02	1,31
Th	304	341	473	275	836	731	406	83	210	47	148	64	314	76	179	202	421	193	249
U	641	605	886	406	1340	1080	625	264	827	131	143	106	419	438	368	368	622	391	534
T(°C)-Ti	600	641	641	589	645	612	629	598	598	598	795	820	749	620	611	619	622	630	671
Yb/Gd	32,47	22,78	27,06	18,91	27,96	27,68	25,92	34,57	29,95	37,32	9,20	14,43	16,24	43,13	30,10	25,99	24,14	28,75	31,33
Ce/Sm	17,19	16,05	20,15	5,60	24,19	24,00	13,53	10,00	5,14	11,03	2,37	7,50	9,06	10,00	11,38	13,73	10,89	15,17	12,07
Yb/Dy	5,98	4,93	5,17	4,66	5,03	5,13	5,07	6,36	5,67	6,95	2,74	3,38	3,63	6,90	5,89	5,64	5,40	6,28	6,28
Ce/Ce*(1)	-	61,87	-	47,55	-	-	-	86,69	-	-	-	-	-	-	-	-	78,14	-	-
Ce/Ce*(2)	164,97	270,38	232,62	45,31	269,01	169,04	165,76	121,41	56,72	99,43	30,46	115,12	109,13	171,43	95,29	100,62	70,89	134,72	292,99
Ce/Ce*(3)	1216,35	931,25	1393,79	180,24	1662,03	1341,97	814,06	790,62	347,14	733,17	46,60	237,51	330,56	1266,58	648,09	623,53	460,41	975,60	1089,52
Eu/Eu*(1)	0,67	0,59	0,52	0,57	0,46	0,50	0,55	0,64	0,50	0,56	0,28	0,29	0,28	0,54	0,66	0,58	0,63	0,48	0,50
Eu/Eu*(2)	0,70	0,72	0,57	0,63	0,50	0,52	0,62	0,70	0,54	0,59	0,36	0,36	0,33	0,60	0,70	0,62	0,67	0,54	0,62

№ точки	BLP4c6	BLP4c7	BLP4c8	BLP4c9	BLP4c10	BLP4c11	BLP4c12	BLP4c13	BLP4c14	BLP4c15	BLP4c16	BLP4c17	BLP4c18	BLP4d1	BLP4d2	BLP4d3	BLP4d4	BLP4d5	BLP4d6	BLP4d7
La	0,06	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0,08	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0,08	< 0.03
Ce	23,11	18,13	12,59	11,53	19,31	19,25	13,60	10,86	21,22	23,72	35,13	15,08	19,72	30,00	22,00	23,00	8,80	12,00	24,00	12,00
Pr	0,04	0,05	0,04	< 0.02	0,04	0,03	0,03	0,02	0,06	0,10	0,06	0,03	< 0.02	0,05	0,04	0,03	0,05	< 0.02	0,06	0,04
Nd	1,11	0,70	0,38	0,56	0,55	0,87	0,35	0,37	1,10	0,84	1,25	0,40	0,76	1,10	0,70	0,72	0,42	0,29	1,20	0,52
Sm	1,98	1,75	1,07	1,36	1,22	1,33	1,38	0,95	1,51	1,70	2,59	1,16	1,50	2,30	1,40	1,70	0,98	1,10	2,00	1,20
Eu	0,91	0,68	0,28	0,63	0,63	0,66	0,54	0,44	0,75	0,80	1,14	0,54	0,60	0,94	0,69	0,64	0,53	0,42	0,79	0,47
Gd	9,92	8,77	4,69	5,64	6,48	6,95	6,72	5,47	6,88	9,04	13,80	6,31	7,31	13,00	9,10	8,70	5,60	4,80	11,00	6,10
Tb	3,57	3,00	1,78	2,19	2,51	2,39	2,30	1,96	2,77	3,48	5,11	2,38	2,83	4,00	3,30	3,20	1,90	1,90	3,90	2,00
Dy	51,6	40,6	26,9	29,4	37,7	31,1	33,8	25,2	35,4	48,6	69,4	33,1	37,9	56,0	42,0	44,0	23,0	26,0	48,0	29,0
Но	20,43	15,85	11,06	11,62	15,62	12,42	12,99	10,60	13,42	19,39	26,68	12,70	15,12	22,00	17,00	18,00	9,80	11,00	19,00	12,00
Er	103,1	86,3	56,9	63,7	78,4	61,8	71,7	57,5	66,8	103,0	144,5	72,0	83,3	107,0	85,0	96,0	50,0	57,0	96,0	63,0
Tm	27,50	22,52	15,87	17,00	22,18	16,59	19,78	15,32	17,65	27,11	35,99	19,14	22,00	28,00	23,00	25,00	13,00	16,00	26,00	18,00
Yb	261,7	237,1	167,5	181,0	222,6	171,5	200,6	160,3	173,6	272,1	361,5	205,4	227,9	274,0	229,0	262,0	141,0	167,0	250,0	185,0
Lu	58,5	51,0	36,8	38,1	46,1	36,2	44,1	36,0	37,2	56,7	76,9	44,0	50,0	59,0	51,0	57,0	32,0	36,0	54,0	41,0
Ti	2,0	1,3	1,3	1,4	2,0	2,5	1,4	2,2	3,3	2,2	2,8	1,6	1,8	2,9	2,9	3,2	1,5	1,8	1,5	1,5
Y	599	485	329	355	447	361	408	321	401	605	814	411	472	683	545	570	302	335	601	374
Nb	2,31	1,57	1,16	1,09	1,77	1,40	1,26	1,02	1,51	2,24	3,02	1,59	1,86	2,50	1,90	2,20	0,98	1,10	2,10	1,20
Hf	8748	9272	9056	9003	9073	9438	8547	9468	9041	8972	9006	9090	8999	7882	7930	8022	8315	8607	8233	8359
Та	1,04	0,79	0,71	0,53	1,04	0,81	0,80	0,54	1,02	1,23	1,61	0,73	1,01	1,10	0,84	0,94	0,44	0,52	1,00	0,58
Th	382	244	140	150	243	307	184	118	373	303	513	177	250	592	320	318	114	144	430	157
U	595	453	299	319	462	511	368	283	546	554	810	390	451	690	496	494	231	285	488	299
T(°C)-Ti	618	589	589	593	618	632	595	622	652	622	641	602	609	643	643	650	598	610	598	598
Yb/Gd	26,38	27,03	35,71	32,09	34,35	24,68	29,85	29,30	25,23	30,10	26,20	32,56	31,17	21,08	25,16	30,11	25,18	34,79	22,73	30,33
Ce/Sm	11,67	10,36	11,77	8,48	15,83	14,47	9,86	11,43	14,05	13,95	13,56	13,00	13,15	13,04	15,71	13,53	8,98	10,91	12,00	10,00
Yb/Dy	5,07	5,84	6,22	6,15	5,91	5,52	5,94	6,36	4,90	5,59	5,21	6,20	6,02	4,89	5,45	5,95	6,13	6,42	5,21	6,38
Ce/Ce*(1)	108,78	-	-	-	-	-	-	-	-	66,95	-	-	-	-	-	-	-	-	83,08	-
Ce/Ce*(2)	85,60	149,24	215,02	115,25	179,50	77,96	353,12	173,70	61,04	131,72	134,21	251,99	118,04	131,43	144,88	173,84	112,68	361,76	76,83	122,74
Ce/Ce*(3)	558,49	652,85	986,84	542,43	1133,31	560,19	1001,30	859,03	471,35	823,27	728,59	1121,21	760,53	613,16	879,53	905,02	538,90	1134,11	484,40	674,69
Eu/Eu*(1)	0,62	0,53	0,38	0,69	0,69	0,66	0,54	0,58	0,71	0,62	0,58	0,61	0,55	0,52	0,59	0,51	0,69	0,56	0,51	0,53
Eu/Eu*(2)	0,65	0,63	0,44	0,77	0,73	0,69	0,72	0,69	0,68	0,66	0,63	0,73	0,58	0,61	0,65	0,57	0,82	0,70	0,55	0,61

№ точки	BLP4d8	BLP4e1	BLP4e2	BLP4e3	BLP4e4	BLP4e5	BLP4e6	BLP4e7	BLP4e8	BLP4e9	BLP4e10	BLP4e11	BLP5a1	BLP5a2	BLP5a3	BLP5a4	BLP5b1	BLP5b2	BLP5b3
La	0,10	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0,12	< 0.03	< 0.03	0,04	0,37	< 0.03	0,06	< 0.03	< 0.03	< 0.03
Ce	16,00	20,39	11,77	14,09	29,89	12,48	20,88	13,42	12,88	20,04	11,91	24,28	10,00	15,00	16,00	34,00	16,01	19,10	25,20
Pr	0,14	0,06	0,09	0,05	0,05	0,06	0,05	0,04	0,06	0,06	0,10	0,16	0,03	0,28	0,03	0,04	0,04	0,05	0,07
Nd	1,10	0,92	0,78	0,43	1,37	0,46	0,79	0,77	0,51	0,86	1,22	2,48	0,75	2,20	0,28	1,00	0,97	0,69	0,97
Sm	1,70	1,66	1,15	1,53	2,42	1,22	1,46	0,99	1,29	1,38	2,04	4,54	1,10	2,40	1,70	3,30	2,45	1,69	3,46
Eu	0,51	0,79	0,47	0,49	1,01	0,68	0,59	0,78	0,62	0,52	0,98	1,79	0,62	0,66	0,80	0,77	0,95	0,56	0,87
Gd	7,30	8,24	5,17	6,46	12,10	6,74	6,98	6,62	6,64	5,98	9,81	17,00	7,20	8,60	13,00	17,00	15,91	7,88	21,10
Tb	2,50	3,09	1,80	2,43	4,74	2,32	2,92	2,47	2,35	2,35	3,11	5,75	2,50	3,10	5,40	6,60	6,21	2,78	7,71
Dy	35,0	42,0	23,2	32,4	61,3	28,6	38,5	34,2	30,8	28,6	39,5	64,6	36,0	42,0	75,0	83,0	93,3	40,2	100,1
Ho	14,00	17,42	9,27	12,48	23,62	11,70	15,43	13,98	12,59	11,16	14,33	24,12	15,00	16,00	34,00	32,00	38,28	15,87	37,66
Er	74,0	96,9	51,2	67,9	123,3	59,1	84,9	74,6	70,2	55,1	71,3	117,9	79,0	90,0	189,0	160,0	210,5	85,4	178,0
Tm	20,00	25,49	14,26	18,69	31,91	16,21	23,00	19,99	18,72	14,70	18,79	31,26	23,00	24,00	52,00	43,00	55,69	22,54	45,14
Yb	207,0	259,7	147,7	194,9	319,3	167,4	237,1	209,3	191,7	149,5	188,5	299,0	241,0	255,0	562,0	424,0	533,6	215,5	404,6
Lu	46,0	53,8	32,4	42,9	67,3	34,3	49,9	46,1	40,1	29,3	37,7	59,6	51,0	56,0	117,0	85,0	120,3	52,3	84,0
Ti	2,9	1,3	2,2	1,5	3,1	1,6	1,6	2,3	1,3	3,7	3,7	1,3	3,4	3,1	1,5	4,2	3,6	1,8	3,7
Y	439	547	292	395	717	348	473	424	379	321	428	721	487	544	1133	997	1239	508	1144
Nb	1,60	2,05	1,60	1,12	2,72	1,03	1,74	1,37	1,05	1,49	1,02	1,69	1,60	2,70	8,20	6,50	5,26	1,66	10,43
Hf	8487	8633	9284	9205	9148	9500	9407	9307	9212	9173	8698	9097	8010	7887	9697	9355	10541	9723	11180
Та	0,93	1,09	0,71	0,60	1,50	0,56	0,91	0,64	0,57	0,66	0,42	0,78	0,52	0,90	2,30	2,00	1,45	0,98	3,55
Th	255	272	119	195	454	146	255	193	163	282	140	439	68	344	257	516	162	254	511
U	363	515	275	377	747	282	496	409	362	502	247	622	229	221	963	804	727	444	1407
T(°C)-Ti	643	589	622	596	648	604	603	625	589	661	661	589	654	648	598	670	658	610	660
Yb/Gd	28,36	31,52	28,57	30,17	26,39	24,84	33,97	31,61	28,87	25,00	19,22	17,59	33,47	29,65	43,23	24,94	33,54	27,34	19,18
Ce/Sm	9,41	12,28	10,23	9,21	12,35	10,23	14,30	13,56	9,98	14,52	5,84	5,35	9,09	6,25	9,41	10,30	6,53	11,30	7,28
Yb/Dy	5,91	6,18	6,38	6,02	5,21	5,85	6,16	6,12	6,22	5,24	4,78	4,63	6,69	6,07	7,49	5,11	5,72	5,36	4,04
Ce/Ce*(1)	32,43	-	-	-	-	-	-	-	-	57,85	-	-	69,23	11,18	-	166,45	-	-	-
Ce/Ce*(2)	51,81	92,17	51,28	268,72	88,83	165,84	112,58	51,65	147,23	86,18	37,62	41,31	45,07	17,14	799,64	258,60	96,09	155,81	213,59
Ce/Ce*(3)	390,30	666,98	415,96	790,67	557,29	643,17	817,37	645,36	680,58	517,83	184,55	149,39	500,85	181,30	2275,87	743,78	590,62	730,32	499,81
Eu/Eu*(1)	0,44	0,65	0,59	0,48	0,57	0,72	0,56	0,93	0,64	0,55	0,67	0,62	0,67	0,44	0,52	0,31	0,46	0,46	0,31
Eu/Eu*(2)	0,45	0,67	0,60	0,60	0,59	0,88	0,57	0,88	0,75	0,56	0,74	0,70	0,67	0,40	0,73	0,39	0,51	0,53	0,41

№ точки	BLP5b4	BLP5b5	BLP5b6	BLP5b7	BLP5b8	BLP5b9	BLP5b10	BLP5b11	BLP5b12	SHPa1	SHPa2	SHPa3	SHPa4	SHPa5	SHPa6	SHPa7	SHPa8	SHPb1		
La	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0,16	< 0.03	< 0.03	0,08	0,28	0,04	< 0.03	< 0.03	< 0.03	0,03	< 0.03	0,31	0,07		
Ce	24,41	12,31	16,64	13,49	29,02	15,23	12,13	19,65	14,08	29,07	12,90	18,02	14,76	27,17	37,38	25,67	22,72	41,00		
Pr	< 0.02	0,04	0,05	< 0.02	0,05	0,17	0,03	< 0.02	0,03	0,13	0,07	0,03	0,17	0,03	0,05	< 0.02	0,19	0,05		
Nd	0,72	0,52	0,84	0,56	0,97	1,56	0,80	0,53	0,53	1,46	0,91	0,66	3,02	1,01	1,30	0,52	1,64	1,10		
Sm	1,94	1,37	1,86	1,24	2,20	1,72	2,39	2,28	1,26	3,00	1,96	1,95	6,12	2,32	2,97	1,57	2,41	2,20		
Eu	0,62	0,35	0,43	0,55	0,98	0,59	0,82	1,06	0,58	0,44	0,54	0,37	1,59	0,40	0,40	0,23	0,32	0,40		
Gd	10,99	7,41	8,82	7,70	11,73	7,78	11,62	16,74	7,31	16,82	8,80	10,71	27,86	14,03	16,72	10,90	14,67	11,00		
Tb	4,45	2,41	3,38	2,99	4,07	2,92	3,90	7,30	2,94	6,67	3,77	3,97	10,10	5,54	6,36	4,40	6,41	4,50		
Dy	63,5	30,1	43,0	40,7	55,5	41,5	52,3	110,2	40,9	88,5	47,9	58,0	127,0	71,7	91,4	66,1	87,7	61,0		
Но	25,35	12,03	15,43	15,52	22,10	15,67	20,85	47,51	16,31	35,22	18,60	22,89	46,99	28,51	35,87	27,63	36,04	25,00		
Er	132,0	55,8	79,4	87,8	107,2	87,2	110,3	261,6	84,9	174,0	98,4	115,4	221,3	142,9	185,1	144,5	192,8	131,0		
Tm	35,06	13,73	18,70	23,75	28,64	23,12	30,13	70,88	22,93	45,36	24,78	31,43	49,87	34,87	44,76	36,66	48,09	34,00		
Yb	336,1	123,0	165,2	233,1	274,4	214,1	285,5	670,3	208,6	444,6	242,0	298,0	450,7	327,6	420,9	360,9	468,8	329,0		
Lu	73,0	24,8	34,3	54,6	60,7	51,0	63,8	147,6	45,5	80,8	46,1	56,7	85,2	66,2	84,8	71,3	95,0	66,0		
Ti	1,9	10,0	11,5	2,5	1,9	2,1	3,2	3,0	7,1	3,0	4,7	3,4	6,4	4,3	3,5	3,1	3,0	3,8		
Y	825	353	501	519	667	508	642	1491	511	1064	572	702	1329	854	1100	860	1135	788		
Nb	4,63	1,47	2,56	1,93	2,39	2,62	1,98	8,21	2,73	5,21	2,22	3,92	1,89	5,05	7,05	5,99	10,04	5,60		
Hf	12160	9237	11324	9343	9623	9919	9441	10417	10795	10290	8783	9837	8281	9459	9967	10272	9790	10906		
Та	2,34	0,56	1,35	0,83	1,17	1,09	0,69	2,21	1,14	2,71	0,97	1,96	0,83	2,44	3,38	3,65	4,41	2,20		
Th	255	51	110	66	482	235	95	166	103	296	139	240	187	327	398	227	274	319		
U	760	96	189	213	660	512	347	860	338	494	264	475	236	495	611	433	659	431		
T(°C)-Ti	612	741	753	631	614	619	649	646	712	644	678	654	703	671	656	646	645	663		
Yb/Gd	30,59	16,60	18,73	30,27	23,40	27,52	24,57	40,04	28,54	26,43	27,50	27,82	16,18	23,35	25,17	33,11	31,96	29,91		
Ce/Sm	12,58	8,99	8,95	10,88	13,19	8,85	5,08	8,62	11,17	9,69	6,58	9,24	2,41	11,71	12,59	16,35	9,43	18,64		
Yb/Dy	5,29	4,08	3,84	5,73	4,94	5,16	5,46	6,08	5,10	5,03	5,05	5,14	3,55	4,57	4,61	5,46	5,35	5,39		
Ce/Ce*(1)	-	-	-	-	-	22,41	-	-	65,52	36,92	55,60	-	-	-	212,60	-	22,77	169,92		
Ce/Ce*(2)	212,90	142,65	101,10	122,50	156,39	24,81	104,40	371,81	143,39	94,30	70,37	187,63	22,83	142,42	151,41	344,85	46,92	173,62		
Ce/Ce*(3)	1011,97	398,43	357,76	781,31	709,23	287,14	349,89	1502,68	770,02	499,82	333,01	699,41	74,34	647,68	724,29	1655,63	471,73	1040,53		
Eu/Eu*(1)	0,41	0,33	0,32	0,54	0,59	0,49	0,47	0,52	0,58	0,19	0,40	0,25	0,37	0,21	0,17	0,17	0,16	0,25		
Eu/Eu*(2)	0,46	0,42	0,37	0,59	0,67	0,44	0,59	0,65	0,64	0,20	0,42	0,29	0,41	0,24	0,19	0,19	0,15	0,23		
№ точки	SHPb2	SHPb3	SHPb4	SHPb5	SHPb6	SHPb7	SHPb8	SHPb9	SRP1	SRP2	SRP3	SRP4	SRP5	SRP6	SRP7	SRP8	SRP9	SEPd1	SEPd2	SEPd3
-----------	--------	---------	--------	--------	--------	--------	---------	--------	--------	--------	--------	--------	-------	--------	-------	--------	-------	--------	--------	--------
La	0,02	< 0.01	0,10	< 0.01	0,62	0,05	< 0.01	5,20	< 0.01	< 0.01	< 0.01	< 0.01	0,03	< 0.01	0,09	0,01	0,02	0,10	< 0.03	0,41
Ce	26,00	43,00	37,00	52,00	48,00	40,00	28,00	71,00	20,00	17,00	19,00	16,00	24,00	21,00	19,00	19,00	30,00	25,00	19,00	16,00
Pr	0,16	0,05	0,08	0,06	0,20	0,05	0,02	1,60	0,06	0,11	0,05	0,10	0,40	0,10	0,54	0,05	0,32	0,10	0,18	0,17
Nd	2,90	0,97	1,10	1,40	1,90	1,10	0,52	7,70	1,10	1,80	0,93	1,80	6,20	1,90	7,10	1,10	6,10	1,30	3,00	1,30
Sm	5,60	2,40	2,10	3,00	2,80	2,40	1,20	5,20	2,60	2,80	2,00	3,60	8,80	3,20	9,10	2,10	9,70	2,20	4,40	2,30
Eu	1,70	0,43	0,50	0,62	0,53	0,45	0,23	0,92	0,27	0,32	0,26	0,46	1,00	0,35	1,00	0,33	1,00	0,31	0,71	0,30
Gd	25,00	13,00	11,00	15,00	15,00	13,00	7,00	22,00	11,00	12,00	8,80	14,00	31,00	13,00	30,00	9,20	35,00	11,00	17,00	12,00
Tb	8,40	5,40	4,10	5,70	5,60	5,10	2,80	8,00	3,70	3,80	3,00	4,60	9,10	3,90	8,40	3,30	10,00	3,60	4,40	5,00
Dy	97,0	74,0	56,0	76,0	74,0	66,0	39,0	98,0	43,0	43,0	36,0	51,0	93,0	44,0	89,0	39,0	109,0	44,0	54,0	70,0
Ho	34,00	29,00	23,00	30,00	29,00	26,00	16,00	38,00	15,00	15,00	13,00	17,00	31,00	15,00	28,00	15,00	35,00	16,00	18,00	27,00
Er	158,0	153,0	116,0	151,0	147,0	131,0	82,0	182,0	67,0	66,0	60,0	74,0	126,0	67,0	120,0	71,0	146,0	76,0	83,0	136,0
Tm	35,00	39,00	30,00	38,00	37,00	33,00	21,00	45,00	15,00	15,00	14,00	16,00	27,00	15,00	25,00	16,00	30,00	18,00	19,00	34,00
Yb	327,0	376,0	285,0	357,0	367,0	317,0	208,0	421,0	123,0	124,0	115,0	133,0	216,0	126,0	205,0	153,0	244,0	165,0	164,0	311,0
Lu	62,0	66,0	57,0	74,0	72,0	65,0	43,0	82,0	23,0	23,0	22,0	24,0	38,0	23,0	35,0	30,0	43,0	32,0	31,0	58,0
Ti	6,1	3,6	3,8	4,7	3,9	3,8	2,4	4,4	16,0	19,0	17,0	21,0	20,0	20,0	24,0	9,2	17,0	9,2	16,0	6,3
Y	1026	880	696	945	884	781	484	1166	451	446	392	505	882	464	822	457	1032	494	549	832
Nb	2,30	6,70	4,80	6,40	5,80	5,40	4,00	7,90	2,00	1,80	1,90	1,80	1,60	1,80	1,50	2,30	1,80	2,40	1,60	9,60
Hf	9022	11385	11002	10719	11083	11201	11675	10895	10553	10532	10766	9678	10254	10410	9606	11292	10579	8297	7867	9859
Та	0,66	2,60	1,80	2,30	2,20	2,20	1,70	3,00	0,72	0,62	0,73	0,61	0,50	0,52	0,52	1,40	0,68	1,00	0,66	4,30
Th	151	356	256	508	341	285	152	642	119	115	98	128	209	149	199	177	239	225	176	220
U	167	527	359	560	468	403	262	576	130	132	117	128	173	161	185	349	194	257	175	517
T(°C)-Ti	699	658	663	679	664	663	629	674	784	801	790	811	806	806	824	734	790	734	784	702
Yb/Gd	13,08	28,92	25,91	23,80	24,47	24,38	29,71	19,14	11,18	10,33	13,07	9,50	6,97	9,69	6,83	16,63	6,97	15,00	9,65	25,92
Ce/Sm	4,64	17,92	17,62	17,33	17,14	16,67	23,33	13,65	7,69	6,07	9,50	4,44	2,73	6,56	2,09	9,05	3,09	11,36	4,32	6,96
Yb/Dy	3,37	5,08	5,09	4,70	4,96	4,80	5,33	4,30	2,86	2,88	3,19	2,61	2,32	2,86	2,30	3,92	2,24	3,75	3,04	4,44
Ce/Ce*(1)	112,69	-	101,42	-	33,42	196,14	-	6,04	-	-	-	-	53,72	-	21,13	208,33	91,94	59,96	-	14,54
Ce/Ce*(2)	40,32	255,46	149,56	185,38	86,71	184,79	289,42	14,50	100,09	34,22	102,33	41,41	12,80	43,36	7,99	76,80	18,21	75,01	21,41	50,19
Ce/Ce*(3)	111,38	1144,36	860,55	852,72	631,00	870,09	1583,49	188,01	189,76	98,59	256,95	77,34	25,80	104,45	17,08	267,45	32,66	297,69	61,15	307,54
Eu/Eu*(1)	0,44	0,24	0,32	0,28	0,25	0,25	0,24	0,26	0,15	0,17	0,19	0,20	0,19	0,17	0,19	0,23	0,17	0,19	0,25	0,17
Eu/Eu*(2)	0,49	0,25	0,32	0,30	0,24	0,26	0,25	0,21	0,18	0,18	0,21	0,23	0,20	0,19	0,20	0,25	0,19	0,21	0,29	0,17

№ точки	SEPd4	SEPd5	SEPd6	SEPf1	SEPf2	SEPf3	SEPf4	SEPf5	SEPf6	SEPf7	SEPf8	SEPf9	SLP1c1	SLP1c2	SLP1c3	SLP1c4	SLP1c5	SLP2a1	SLP2a2	SLP2a3
La	0,68	< 0.03	0,30	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0,16	< 0.03	0,58	0,92	< 0.03	< 0.03	< 0.03	< 0.03
Ce	33,00	15,00	17,00	17,03	19,25	17,52	25,23	18,47	18,88	19,99	15,13	17,25	60,00	31,00	19,00	30,00	18,00	25,00	17,00	22,00
Pr	0,28	0,08	0,18	0,10	0,11	0,09	0,09	0,14	0,10	0,13	0,12	0,05	0,19	0,07	0,22	1,40	0,09	0,05	0,07	0,06
Nd	3,00	1,10	3,50	1,66	1,87	1,38	1,26	2,53	1,75	1,88	1,61	1,30	2,30	1,40	1,90	7,60	2,60	0,95	1,40	1,10
Sm	4,60	1,70	3,50	3,13	3,10	2,61	2,91	4,34	2,91	3,72	2,86	2,57	4,50	2,80	2,00	9,40	3,90	2,10	2,40	2,70
Eu	0,62	0,42	0,77	0,55	0,71	0,44	0,49	0,76	0,62	0,56	0,57	0,56	0,63	0,39	0,26	1,50	0,67	0,57	0,54	0,34
Gd	20,00	8,80	15,00	13,35	14,04	11,45	12,47	17,47	13,18	14,56	12,19	12,55	25,00	15,00	9,40	34,00	16,00	10,00	11,00	11,00
Tb	7,00	2,80	4,40	4,19	4,37	3,58	4,09	5,92	3,91	4,62	4,35	4,14	9,50	5,00	3,20	10,00	4,80	3,50	3,90	3,90
Dy	78,0	35,0	48,0	49,0	53,8	44,8	47,4	62,9	48,2	57,8	48,4	49,1	127,0	58,0	39,0	113,0	57,0	44,0	43,0	46,0
Но	28,00	12,00	16,00	16,65	19,47	16,21	16,27	22,59	16,15	21,55	18,03	17,53	48,00	22,00	13,00	37,00	19,00	16,00	16,00	18,00
Er	135,0	59,0	69,0	77,2	93,7	78,3	73,0	103,9	77,9	106,3	84,3	82,5	237,0	100,0	62,0	157,0	88,0	79,0	70,0	85,0
Tm	32,00	14,00	16,00	17,32	22,50	18,19	16,34	22,94	17,75	24,39	19,33	19,86	63,00	26,00	16,00	35,00	22,00	19,00	17,00	22,00
Yb	291,0	127,0	134,0	170,7	208,8	172,6	155,0	216,8	159,1	231,7	186,6	184,1	622,0	242,0	141,0	325,0	211,0	177,0	161,0	207,0
Lu	53,0	25,0	24,0	31,2	39,8	32,7	27,9	41,8	29,8	45,5	34,3	36,2	113,0	44,0	26,0	56,0	35,0	33,0	28,0	36,0
Ti	4,6	12,0	20,0	11,4	13,0	8,7	15,1	11,0	13,0	13,4	10,4	10,5	8,0	6,2	11,0	13,0	9,1	4,6	15,0	4,3
Y	855	391	478	512	611	508	489	686	488	652	557	525	1496	617	410	1069	578	496	448	512
Nb	3,10	1,50	1,40	1,71	2,08	1,76	1,93	1,88	1,65	2,52	1,56	1,85	17,00	3,30	1,80	2,00	1,70	2,00	1,50	3,20
Hf	8872	7909	8682	8132	7876	8626	9212	8596	8866	8241	8652	8640	8720	8896	9110	8114	8417	8060	8445	8851
Та	1,50	0,93	0,61	1,15	1,04	0,96	0,96	0,95	0,76	1,23	1,03	1,15	7,00	1,60	1,10	0,92	0,78	1,10	0,85	1,50
Th	396	105	122	154	207	161	193	212	177	202	154	169	652	242	110	351	169	220	123	149
U	434	127	123	206	274	227	230	271	214	300	221	234	1012	345	157	291	204	309	163	248
T(°C)-Ti	677	757	806	753	765	729	779	749	764	768	744	746	722	701	749	765	733	677	778	672
Yb/Gd	14,55	14,43	8,93	12,78	14,87	15,07	12,43	12,41	12,07	15,91	15,31	14,67	24,88	16,13	15,00	9,56	13,19	17,70	14,64	18,82
Ce/Sm	7,17	8,82	4,86	5,44	6,21	6,71	8,67	4,26	6,49	5,37	5,29	6,71	13,33	11,07	9,50	3,19	4,62	11,90	7,08	8,15
Yb/Dy	3,73	3,63	2,79	3,48	3,88	3,85	3,27	3,45	3,30	4,01	3,86	3,75	4,90	4,17	3,62	2,88	3,70	4,02	3,74	4,50
Ce/Ce*(1)	18,14	-	17,55	-	-	-	-	-	-	-	-	-	82,53	-	12,76	6,34	-	-	-	-
Ce/Ce*(2)	38,88	48,57	11,19	44,58	39,33	55,34	106,59	28,86	41,35	48,49	38,48	60,46	117,64	102,07	24,26	11,25	23,93	134,08	47,98	113,15
Ce/Ce*(3)	152,28	212,01	46,91	119,97	150,94	180,81	221,00	83,92	131,34	152,16	130,36	193,50	620,20	355,63	157,76	34,75	82,37	433,18	164,54	308,34
Eu/Eu*(1)	0,20	0,33	0,32	0,26	0,33	0,25	0,25	0,26	0,30	0,23	0,29	0,30	0,18	0,18	0,18	0,25	0,26	0,38	0,32	0,19
Eu/Eu*(2)	0,21	0,36	0,33	0,30	0,37	0,28	0,30	0,30	0,35	0,27	0,33	0,35	0,19	0,21	0,18	0,28	0,29	0,44	0,35	0,23

№ точки	SLP2a4	SLP2a5	SLP2a6	SLP2a7	SLP2d1	SLP2d2	SLP2b1	SLP2b2	SLP2b3	SLP2b4	SLP2b5	SLP3a1	SLP3a2	SLP3a3	SLP3a4	SLP3a5	SLP3a6	SLP3a7	SLP3a8	SLP3a9
La	< 0.03	0,26	< 0.03	< 0.03	< 0.03	< 0.03	0,11	0,15	2,10	< 0.03	0,42	< 0.03	< 0.03	0,03	< 0.03	0,69	0,09	0,24	0,09	< 0.03
Ce	28,00	23,00	18,00	26,00	24,00	18,00	26,00	22,00	43,00	24,00	23,00	27,90	26,38	18,08	16,64	22,61	22,37	37,67	25,48	18,51
Pr	0,12	0,40	0,04	0,05	0,10	0,11	0,72	0,11	0,64	0,04	0,19	0,06	0,12	0,17	0,04	0,21	0,11	0,16	0,09	0,08
Nd	2,00	5,80	1,30	1,50	1,60	2,50	9,80	2,40	3,30	1,20	1,60	1,55	1,68	2,25	1,26	1,40	2,23	2,02	1,51	1,48
Sm	4,10	8,10	2,60	2,50	4,10	4,80	12,00	4,90	2,90	2,20	2,80	3,17	3,94	3,75	2,02	2,67	3,60	3,29	3,04	2,80
Eu	0,80	1,30	0,48	0,44	0,98	0,83	1,70	0,92	0,58	0,44	0,50	0,53	0,74	0,68	0,46	0,49	0,74	0,65	0,47	0,58
Gd	16,00	26,00	11,00	13,00	17,00	19,00	38,00	22,00	15,00	11,00	12,00	12,76	17,07	15,03	9,63	11,94	14,47	14,73	12,27	12,82
Tb	4,90	8,10	3,60	4,30	6,00	5,70	11,00	6,50	6,00	3,70	4,50	4,00	5,50	4,73	3,31	3,80	4,98	5,45	4,47	4,22
Dy	65,0	84,0	39,0	52,0	71,0	67,0	131,0	80,0	81,0	45,0	53,0	52,6	69,3	50,9	36,1	46,5	59,6	66,3	50,1	47,3
Но	23,00	27,00	14,00	19,00	26,00	22,00	45,00	27,00	33,00	16,00	19,00	19,60	25,47	17,73	12,70	17,24	20,47	23,62	18,52	17,19
Er	112,0	119,0	64,0	96,0	118,0	99,0	202,0	124,0	171,0	81,0	95,0	89,5	130,1	80,9	60,8	78,8	99,2	116,8	85,4	83,3
Tm	28,00	26,00	15,00	23,00	28,00	23,00	47,00	29,00	44,00	20,00	23,00	21,49	29,55	18,25	13,87	18,51	22,26	27,83	20,46	18,94
Yb	252,0	227,0	139,0	215,0	263,0	195,0	386,0	257,0	443,0	187,0	211,0	199,2	295,9	166,7	130,8	170,0	215,5	265,5	184,8	180,5
Lu	45,0	40,0	24,0	40,0	48,0	35,0	71,0	47,0	92,0	35,0	40,0	36,1	56,1	30,2	24,2	32,5	40,1	48,4	33,6	34,9
Ti	7,6	16,0	13,0	7,7	5,2	14,0	20,0	9,1	1,5	3,9	4,2	5,9	8,0	14,3	12,4	19,2	7,2	4,0	9,0	11,1
Y	708	800	432	601	748	650	1325	808	1034	511	556	573	807	532	392	514	625	743	545	528
Nb	3,60	1,30	1,70	3,00	2,20	1,10	1,70	1,40	8,20	2,10	2,30	2,47	3,41	1,97	1,43	2,13	2,14	3,74	2,25	1,83
Hf	7804	7738	7817	8250	8223	8153	7759	8331	9321	8592	9549	10216	8930	8646	9297	9098	9030	9706	9255	8561
Та	1,50	0,68	0,93	1,40	1,00	0,47	1,20	0,79	1,80	1,10	1,10	1,27	1,72	0,89	0,66	1,05	1,16	1,94	0,98	0,97
Th	255	243	148	189	202	179	492	223	415	202	175	272	276	157	147	251	213	420	288	171
U	348	215	163	276	238	157	388	212	573	293	266	378	447	208	190	319	318	552	373	242
T(°C)-Ti	717	784	765	719	687	771	806	733	598	664	670	697	722	774	760	802	712	667	732	750
Yb/Gd	15,75	8,73	12,64	16,54	15,47	10,26	10,16	11,68	29,53	17,00	17,58	15,61	17,33	11,09	13,59	14,24	14,89	18,03	15,06	14,08
Ce/Sm	6,83	2,84	6,92	10,40	5,85	3,75	2,17	4,49	14,83	10,91	8,21	8,80	6,70	4,82	8,24	8,47	6,21	11,45	8,38	6,61
Yb/Dy	3,88	2,70	3,56	4,13	3,70	2,91	2,95	3,21	5,47	4,16	3,98	3,78	4,27	3,28	3,63	3,66	3,62	4,00	3,69	3,82
Ce/Ce*(1)	-	17,10	-	-	-	-	22,16	41,08	8,90	-	19,53	-	-	59,68	-	14,34	53,75	46,64	67,90	-
Ce/Ce*(2)	66,15	12,76	63,83	66,58	88,59	31,86	7,49	43,14	26,39	84,51	57,98	84,85	84,88	30,87	48,80	70,99	37,33	70,01	78,30	54,54
Ce/Ce*(3)	192,45	30,25	156,49	294,24	196,32	68,52	24,84	103,46	417,56	335,19	231,52	248,40	241,43	82,93	177,63	221,52	134,87	310,37	222,08	170,12
Eu/Eu*(1)	0,30	0,27	0,27	0,23	0,36	0,26	0,24	0,27	0,27	0,27	0,26	0,25	0,27	0,27	0,32	0,26	0,31	0,28	0,23	0,29
Eu/Eu*(2)	0,35	0,30	0,33	0,26	0,44	0,32	0,26	0,33	0,22	0,31	0,28	0,30	0,33	0,32	0,35	0,30	0,34	0,30	0,27	0,34

№ точки	SLP3b1	SLP3b2	SLP3b3	SLP3b4	SLP3b5	SLP3b6	SLP3b7	SLP3b8	SLP3b9	SLP3c1	SLP3c2	SLP3c3	SLP3c4	SLP3c5	SLP3c6	SLP3c7	SLP3c8	SLP3c9	SLP3d1	SLP3d2
La	< 0.03	< 0.03	< 0.03	< 0.03	0,04	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0,53	< 0.03	< 0.03	0,16	< 0.03	0,05	< 0.03	< 0.03	0,34
Ce	21,75	22,86	18,71	20,62	27,35	22,83	21,09	29,57	26,18	24,30	18,74	32,35	18,73	25,13	24,53	22,00	18,62	27,37	20,05	23,06
Pr	0,33	0,12	0,08	0,09	0,10	0,20	0,09	0,05	0,13	0,09	0,09	0,26	0,10	0,05	0,13	0,08	0,07	0,10	0,17	0,36
Nd	5,30	2,25	1,41	2,07	1,54	3,35	1,76	1,23	2,78	2,08	1,64	3,12	1,60	1,25	2,16	1,34	1,03	1,99	3,32	3,32
Sm	7,57	3,99	2,91	3,93	3,68	5,82	3,25	3,05	5,73	3,76	3,21	4,43	3,08	2,33	3,50	3,00	2,03	3,77	4,95	5,79
Eu	1,23	0,53	0,42	0,59	0,52	0,87	0,42	0,65	0,87	0,61	0,53	0,80	0,61	0,70	0,56	0,41	0,42	0,56	0,83	0,86
Gd	28,10	17,49	12,61	17,11	14,99	19,51	14,72	13,95	22,62	14,48	12,35	18,40	13,25	11,71	14,08	12,99	9,45	14,42	19,59	19,38
Tb	8,40	5,29	4,01	5,78	4,72	5,75	4,37	4,73	7,67	4,93	3,92	5,89	4,70	3,67	4,64	4,55	2,74	4,51	5,90	5,80
Dy	91,1	62,4	48,9	62,5	57,4	64,1	52,9	56,8	84,4	58,9	43,3	66,1	52,6	44,9	57,4	55,8	32,8	52,7	67,0	64,0
Но	30,12	22,64	17,76	21,42	20,17	20,44	18,80	20,66	28,44	21,61	14,10	24,57	19,12	16,56	20,17	19,83	11,61	18,62	22,86	22,46
Er	129,7	107,0	82,4	96,0	92,3	92,2	88,5	104,5	126,2	103,0	64,5	112,5	87,4	80,0	91,9	92,8	55,0	86,6	101,7	99,8
Tm	27,22	24,78	18,24	21,48	20,59	20,41	20,03	23,53	27,42	24,97	15,21	27,48	21,48	19,88	22,67	23,02	12,67	20,03	21,77	22,00
Yb	243,7	223,7	167,8	193,5	193,6	180,5	182,8	217,0	239,9	239,0	139,1	249,0	202,4	190,5	206,9	212,0	123,6	192,8	200,4	198,8
Lu	44,0	45,0	32,4	35,2	35,7	31,1	35,3	42,5	43,3	45,4	24,8	45,6	37,8	33,3	38,3	40,8	22,6	34,3	35,6	36,2
Ti	14,4	12,2	10,5	11,1	12,7	16,3	14,6	6,9	8,1	10,6	20,9	11,3	11,1	6,4	10,9	8,6	15,7	13,8	13,1	13,8
Y	870	676	527	613	596	595	559	640	824	673	437	747	575	505	593	592	367	560	680	667
Nb	1,28	2,33	1,86	1,39	2,35	1,80	1,86	2,89	1,42	2,52	1,51	2,60	2,04	2,25	2,13	2,31	1,67	2,08	1,33	1,71
Hf	9063	8703	9126	9246	9515	9074	9039	9481	9286	8544	8099	8987	8350	9204	9628	9417	8670	9052	8860	9011
Та	0,73	1,23	0,99	0,79	1,22	0,75	1,16	1,43	0,71	1,32	0,65	1,31	1,04	1,20	1,01	1,29	0,62	0,94	0,57	0,76
Th	267	229	163	203	314	187	185	256	274	264	153	535	172	177	257	196	136	275	203	216
U	224	310	207	216	345	182	226	328	257	398	189	553	265	289	335	291	186	322	193	225
T(°C)-Ti	774	759	745	750	763	786	776	709	723	746	810	751	750	703	748	728	782	770	765	770
Yb/Gd	8,67	12,79	13,30	11,31	12,91	9,25	12,42	15,56	10,61	16,50	11,26	13,53	15,27	16,26	14,69	16,32	13,08	13,37	10,23	10,26
Ce/Sm	2,87	5,73	6,43	5,25	7,43	3,92	6,49	9,70	4,57	6,46	5,84	7,30	6,08	10,79	7,01	7,33	9,17	7,26	4,05	3,98
Yb/Dy	2,67	3,58	3,43	3,09	3,37	2,81	3,46	3,82	2,84	4,06	3,21	3,77	3,85	4,24	3,60	3,80	3,77	3,66	2,99	3,11
Ce/Ce*(1)	-	-	-	-	102,69	-	-	-	-	-	-	20,74	-	-	40,71	-	72,80	-	-	15,72
Ce/Ce*(2)	13,51	41,53	63,12	43,59	97,82	27,29	51,00	137,40	44,74	48,68	51,55	33,93	51,94	86,37	42,41	84,72	82,12	60,06	20,75	27,92
Ce/Ce*(3)	33,65	130,35	167,29	105,90	201,67	54,00	148,73	348,53	89,37	168,39	112,54	134,89	161,51	316,69	152,92	240,89	227,86	158,96	58,48	61,70
Eu/Eu*(1)	0,26	0,19	0,21	0,22	0,21	0,25	0,18	0,30	0,23	0,25	0,25	0,27	0,29	0,40	0,24	0,20	0,29	0,23	0,26	0,25
Eu/Eu*(2)	0,29	0,22	0,25	0,26	0,27	0,30	0,22	0,37	0,28	0,28	0,31	0,29	0,33	0,47	0,27	0,23	0,36	0,27	0,29	0,29

№ точки	SLP3d3	SLP3d4	SLP3d5	SLP3d6	SLP3d7	SLP3d8	SLP3d9	SLP3d10	SLP4a1	SLP4a2	SLP4a3	SLP4a4	SLP4a5	SLP4a6	SLP4c1	SLP4c2	SLP4c3	SLP4c4	SLP4c5	SLP4c6	SLP4d1
La	< 0.03	< 0.03	< 0.03	< 0.03	1,24	< 0.03	< 0.03	0,06	0,10	< 0.03	0,05	0,13	0,13	< 0.03	0,08	< 0.03	0,48	0,07	< 0.03	< 0.03	< 0.03
Ce	29,52	23,18	14,98	25,29	25,43	20,63	31,29	21,73	21,00	15,00	32,00	27,00	22,00	22,00	48,00	44,00	30,00	17,00	24,00	24,00	27,00
Pr	0,18	0,31	0,03	0,09	0,60	0,10	0,22	0,25	0,03	0,11	0,05	0,08	0,05	0,03	0,11	0,08	0,13	0,04	0,04	0,06	0,04
Nd	3,54	4,43	1,00	1,47	3,87	2,05	3,94	3,70	0,87	1,80	0,48	0,92	0,76	1,00	1,80	1,40	1,40	0,82	0,98	0,78	0,49
Sm	5,09	7,51	1,80	3,15	4,10	4,53	6,82	6,63	2,10	3,00	1,30	2,30	1,20	2,40	4,30	2,60	2,50	1,90	2,60	1,90	1,40
Eu	0,79	1,01	0,36	0,48	0,68	0,47	0,82	1,11	1,20	0,71	0,52	1,30	0,56	1,30	1,70	0,97	1,30	1,00	1,40	0,90	0,26
Gd	20,08	26,74	8,89	12,14	14,59	18,72	26,12	25,31	11,00	12,00	9,50	15,00	7,20	14,00	18,00	10,00	12,00	9,40	13,00	10,00	4,90
Tb	6,71	7,85	2,85	4,01	4,71	5,75	8,24	7,83	4,40	3,60	3,50	4,50	2,20	4,20	6,00	3,40	3,90	3,40	4,20	3,50	2,00
Dy	79,1	83,4	35,6	45,4	55,2	67,8	92,3	79,2	56,0	41,0	50,0	55,0	30,0	55,0	70,0	38,0	49,0	41,0	53,0	48,0	23,0
Ho	28,40	28,55	12,98	16,33	20,97	22,72	31,90	26,99	23,00	15,00	22,00	21,00	12,00	23,00	26,00	15,00	18,00	16,00	21,00	20,00	9,30
Er	127,6	125,0	61,8	71,8	99,0	102,9	143,3	116,1	120,0	75,0	137,0	109,0	65,0	119,0	127,0	69,0	89,0	82,0	102,0	101,0	50,0
Tm	28,60	27,36	14,05	15,49	23,37	22,27	31,19	24,81	30,00	18,00	38,00	27,00	17,00	30,00	31,00	18,00	24,00	22,00	26,00	27,00	14,00
Yb	269,0	234,4	128,2	144,1	213,6	198,2	287,1	222,4	298,0	161,0	419,0	266,0	178,0	289,0	301,0	185,0	245,0	221,0	268,0	278,0	148,0
Lu	48,0	42,4	23,9	26,5	41,7	35,8	50,9	39,3	66,0	34,0	102,0	58,0	41,0	60,0	59,0	39,0	50,0	44,0	52,0	57,0	31,0
Ti	10,6	13,3	10,2	15,0	12,9	12,1	9,3	15,0	3,0	12,0	1,5	3,9	2,2	2,8	4,7	2,4	3,0	3,4	1,8	1,5	1,5
Y	834	831	389	477	646	667	933	780	838	505	852	754	420	789	874	476	631	544	705	661	317
Nb	2,78	1,32	1,17	1,87	2,64	1,28	2,60	1,31	4,40	1,60	5,00	3,50	1,60	3,70	4,60	2,40	3,40	2,60	3,10	3,40	2,40
Hf	8701	9003	8922	9063	8507	9518	9245	8735	8967	7940	10739	8475	9479	8549	8389	8751	8424	8210	7611	8222	9992
Та	1,30	0,72	0,52	0,78	1,17	0,66	1,23	0,65	0,62	0,70	1,50	0,64	0,36	0,81	0,89	0,56	0,75	0,76	0,69	0,58	1,50
Th	373	260	100	204	403	201	403	240	275	136	393	250	180	174	476	599	347	101	219	153	295
U	421	233	131	220	310	187	417	214	890	185	1010	577	362	543	607	802	547	365	492	450	558
T(°C)-Ti	746	767	743	778	764	758	735	778	645	757	598	664	623	640	679	629	645	654	610	598	598
Yb/Gd	13,40	8,76	14,42	11,87	14,64	10,59	10,99	8,79	27,09	13,42	44,11	17,73	24,72	20,64	16,72	18,50	20,42	23,51	20,62	27,80	30,20
Ce/Sm	5,80	3,09	8,32	8,03	6,20	4,55	4,59	3,28	10,00	5,00	24,62	11,74	18,33	9,17	11,16	16,92	12,00	8,95	9,23	12,63	19,29
Yb/Dy	3,40	2,81	3,61	3,18	3,87	2,92	3,11	2,81	5,32	3,93	8,38	4,84	5,93	5,25	4,30	4,87	5,00	5,39	5,06	5,79	6,43
Ce/Ce*(1)	-	-	-	-	7,09	-	-	43,08	91,95	-	153,49	63,50	65,45	-	122,72	-	28,80	77,05	-	-	-
Ce/Ce*(2)	27,64	20,45	62,15	84,97	16,05	51,25	31,68	24,26	134,29	32,01	416,15	169,11	105,35	121,70	146,83	134,53	88,20	110,72	149,75	172,75	362,86
Ce/Ce*(3)	102,3	42,04	218,9	178,16	91,99	97,60	78,42	46,99	630,07	110,49	3233,08	589,09	822,01	484,35	391,78	508,78	422,51	447,42	462,03	806,33	1217,62
Eu/Eu*(1)	0,24	0,22	0,27	0,24	0,27	0,15	0,19	0,26	0,76	0,36	0,45	0,67	0,58	0,68	0,59	0,58	0,72	0,72	0,73	0,63	0,30
Eu/Eu*(2)	0,25	0,26	0,31	0,28	0,26	0,19	0,22	0,31	0,85	0,41	0,52	0,86	0,62	0,84	0,72	0,66	0,81	0,84	0,91	0,73	0,36

№ точки	SLP4d2	SLP4d3	SLP5a1	SLP5a2	SLP5a3	SLP5a4	SLP5a5	SLP5a6	SLP5a7	SLP5a8	SLP5a9	SLP5a10	SLP5a11	SLP5a12	SLP5a13	SLP5a14	SLP5b1	SLP5b2	SLP5b3	SLP5b4	SLP5b5
La	< 0.03	0,64	< 0.03	0,22	< 0.03	< 0.03	0,10	1,10	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0,49	0,09	< 0.03	0,92	0,07	1,00	0,39	< 0.03
Ce	14,00	34,00	18,00	54,00	34,00	44,00	32,00	36,00	21,00	23,00	49,00	48,00	27,00	34,00	43,00	26,00	37,00	29,00	24,00	21,00	27,00
Pr	0,05	0,20	0,07	0,17	0,04	0,05	0,08	0,45	0,08	0,11	0,05	0,06	0,07	0,16	0,08	0,05	0,29	0,12	0,34	0,16	0,06
Nd	0,57	1,30	1,20	1,90	1,00	1,10	0,73	2,80	2,10	1,70	1,30	1,20	1,80	1,90	1,20	1,20	1,80	1,40	2,60	1,30	1,40
Sm	0,96	2,00	2,90	3,20	2,00	2,60	1,80	2,40	3,40	3,30	2,00	2,80	3,60	3,00	2,50	2,20	3,00	2,10	2,80	2,20	3,10
Eu	0,18	1,10	0,53	0,77	0,47	0,56	0,37	0,62	0,62	0,54	0,66	0,59	0,68	0,52	0,66	0,36	0,45	0,48	0,46	0,42	0,45
Gd	4,60	10,00	10,00	14,00	11,00	13,00	8,00	11,00	16,00	11,00	13,00	13,00	14,00	12,00	10,00	9,80	12,00	10,00	13,00	8,60	13,00
Tb	1,60	3,80	3,50	4,90	3,60	4,70	3,00	3,40	4,80	3,80	4,50	4,50	4,70	4,40	3,60	3,40	4,10	3,50	4,40	3,10	4,70
Dy	21,0	49,0	39,0	63,0	46,0	60,0	37,0	44,0	57,0	44,0	57,0	57,0	59,0	53,0	45,0	41,0	52,0	42,0	52,0	37,0	58,0
Ho	8,20	21,00	14,00	24,00	17,00	24,00	15,00	17,00	20,00	14,00	22,00	22,00	20,00	19,00	17,00	16,00	19,00	16,00	19,00	14,00	21,00
Er	40,0	110,0	66,0	129,0	85,0	122,0	75,0	86,0	96,0	71,0	111,0	106,0	96,0	91,0	87,0	77,0	94,0	81,0	92,0	68,0	107,0
Tm	11,00	30,00	16,00	34,00	22,00	31,00	20,00	22,00	23,00	17,00	30,00	28,00	23,00	23,00	24,00	20,00	24,00	20,00	22,00	17,00	26,00
Yb	112,0	316,0	140,0	325,0	205,0	295,0	196,0	212,0	196,0	158,0	309,0	280,0	215,0	212,0	232,0	184,0	218,0	192,0	202,0	159,0	240,0
Lu	23,0	70,0	26,0	69,0	42,0	59,0	41,0	44,0	40,0	27,0	59,0	54,0	38,0	38,0	46,0	35,0	43,0	39,0	40,0	30,0	47,0
Ti	2,9	3,1	11,0	5,8	4,0	4,0	1,5	3,2	9,0	12,0	1,5	3,0	6,7	4,7	2,9	4,5	5,7	5,1	8,9	8,6	7,3
Y	263	711	442	812	570	796	501	570	647	477	702	682	628	584	549	495	606	518	595	443	674
Nb	1,60	3,40	1,70	5,40	3,20	4,60	3,10	3,00	2,20	2,10	5,10	4,70	2,30	3,10	3,30	2,60	3,50	2,80	2,40	2,20	2,90
Hf	10681	8918	8217	9972	9955	9586	10135	10042	8510	7817	9355	8921	8242	9104	8871	9176	9593	9479	8711	8887	9101
Та	1,30	0,70	0,77	2,60	1,30	2,10	1,60	1,80	1,20	0,89	2,50	2,10	1,20	1,60	1,90	1,70	1,70	1,30	1,30	1,20	1,80
Th	101	306	143	890	408	508	432	514	196	211	651	575	389	403	637	292	448	272	190	150	259
U	342	607	173	1297	547	616	646	671	244	263	1037	702	432	474	791	399	592	396	247	216	393
T(°C)-Ti	643	648	749	695	666	666	598	650	732	757	598	645	707	679	643	675	694	685	731	728	714
Yb/Gd	24,35	31,60	14,00	23,21	18,64	22,69	24,50	19,27	12,25	14,36	23,77	21,54	15,36	17,67	23,20	18,78	18,17	19,20	15,54	18,49	18,46
Ce/Sm	14,58	17,00	6,21	16,88	17,00	16,92	17,78	15,00	6,18	6,97	24,50	17,14	7,50	11,33	17,20	11,82	12,33	13,81	8,57	9,55	8,71
Yb/Dy	5,33	6,45	3,59	5,16	4,46	4,92	5,30	4,82	3,44	3,59	5,42	4,91	3,64	4,00	5,16	4,49	4,19	4,57	3,88	4,30	4,14
Ce/Ce*(1)	-	22,79	-	66,97	-	-	85,81	12,27	-	-	-	-	-	29,12	121,54	-	17,18	75,89	9,87	20,16	-
Ce/Ce*(2)	95,34	92,74	83,55	110,33	156,73	217,91	249,13	25,40	37,32	60,53	133,65	215,12	69,15	65,12	172,06	91,55	78,96	71,61	22,91	63,01	98,43
Ce/Ce*(3)	573,5	818,6	169,7	629,6	665,16	857,37	946,39	274,88	131,69	151,94	980,44	767,33	195,63	278,37	707	379,97	343,18	400,7	153,4	262,47	315,69
Eu/Eu*(1)	0,26	0,75	0,30	0,35	0,30	0,29	0,30	0,37	0,26	0,27	0,39	0,30	0,29	0,26	0,40	0,24	0,23	0,32	0,23	0,29	0,22
Eu/Eu*(2)	0,28	0,74	0,36	0,37	0,35	0,34	0,34	0,33	0,29	0,31	0,41	0,35	0,34	0,28	0,45	0,26	0,24	0,33	0,22	0,31	0,25

Приложение 6. (окончание)

№ точки	SLP5b6	SLP5b7
La	0,07	0,09
Ce	19,00	34,00
Pr	0,26	0,08
Nd	4,50	0,93
Sm	5,80	3,00
Eu	0,94	0,50
Gd	20,00	9,80
Tb	5,90	3,70
Dy	69,0	47,0
Но	23,00	18,00
Er	103,0	89,0
Tm	25,00	23,00
Yb	221,0	235,0
Lu	40,0	44,0
Ti	13,0	3,2
Y	713	595
Nb	1,60	2,90
Hf	8429	9356
Та	0,82	1,80
Th	228	326
U	251	506
T(°C)-Ti	765	650
Yb/Gd	11,05	23,98
Ce/Sm	3,28	11,33
Yb/Dy	3,20	5,00
Ce/Ce*(1)	33,78	96,10
Ce/Ce*(2)	12,54	271,82
Ce/Ce*(3)	42,58	607,05
Eu/Eu*(1)	0,27	0,28
Eu/Eu*(2)	0.29	0.35

No Touris	CaO	D.O.	SiO.	FoO	MnO	No.O	5-0	UO.	CarOa	Nd.O.	Б	CI	50.	Curre	Cl	F	OH	Spacnл	Clpaспл	AST
л⊻ точки	CaU	1 205	5102	reo	MIIO		510	002	CE2O3	140203	Г	CI	503	Сумма	ф.е.	ф.е.	ф.е.	г/т	мас.%	ASI
BEPa1	53,66	41,67	0,16	0,04	0,05	0,11	0,11	0,00	0,34	0,25	1,43	1,43	0,02	99,26	0,21	0,38	0,41	9,72	0,44	796
BEPa2	54,60	42,04	0,08	0,04	0,02	0,03	0,07	0,06	0,09	0,05	1,75	0,96	0,00	99,79	0,14	0,46	0,39	7,66	0,33	796
BEPa3	53,08	40,78	0,69	0,16	0,04	0,12	0,09	0,00	0,44	0,18	1,56	1,26	0,03	98,43	0,19	0,41	0,40	11,87	0,41	796
BEPa4	53,75	41,32	0,15	0,04	0,05	0,16	0,13	0,01	0,47	0,28	1,38	1,71	0,00	99,45	0,25	0,37	0,38	8,13	0,49	796
BEPa5	53,78	41,43	0,20	0,04	0,04	0,13	0,06	0,02	0,42	0,18	1,51	1,46	0,00	99,25	0,21	0,40	0,39	7,66	0,45	796
BEPa6	53,61	41,11	0,19	0,05	0,05	0,13	0,13	0,00	0,44	0,16	1,33	1,71	0,00	98,92	0,25	0,35	0,39	7,82	0,49	796
BEPa7	53,72	41,44	0,20	0,02	0,03	0,10	0,11	0,01	0,32	0,20	1,35	1,49	0,00	98,98	0,22	0,36	0,42	7,97	0,44	796
BEPa8	53,93	41,62	0,18	0,04	0,03	0,14	0,06	0,01	0,37	0,17	1,61	1,25	0,04	99,43	0,18	0,43	0,39	14,19	0,40	796
BEPa9	53,63	41,25	0,17	0,04	0,03	0,14	0,11	0,03	0,40	0,26	1,30	1,75	0,04	99,12	0,26	0,34	0,40	13,36	0,49	796
BEPa10	54,18	41,55	0,13	0,04	0,01	0,09	0,05	0,01	0,22	0,13	1,55	1,37	0,00	99,33	0,20	0,41	0,39	7,66	0,43	796
BEPb1	53,74	40,63	0,25	0,05	0,03	0,15	0,11	0,02	0,51	0,33	1,43	1,67	0,01	98,92	0,25	0,38	0,37	8,63	0,57	863
BEPb2	53,48	40,84	0,21	0,33	0,05	0,10	0,10	0,00	0,47	0,18	1,53	1,42	0,32	99,02	0,21	0,41	0,39	1294,43	0,51	863
BEPb3	53,60	40,59	0,19	0,05	0,04	0,09	0,06	0,04	0,27	0,18	1,52	1,87	0,02	98,53	0,28	0,40	0,32	10,52	0,64	863
BEPb4	54,12	41,07	0,14	0,02	0,03	0,10	0,10	0,02	0,28	0,13	1,43	1,10	0,00	98,55	0,16	0,38	0,46	7,66	0,42	863
BEPb5	53,95	40,91	0,16	0,02	0,03	0,07	0,11	0,01	0,34	0,18	1,63	0,94	0,00	98,36	0,14	0,43	0,43	7,82	0,38	863
BEPb6	53,34	40,73	0,19	0,04	0,05	0,13	0,10	0,01	0,53	0,20	1,35	1,93	0,01	98,61	0,28	0,36	0,36	8,45	0,63	863
BEPb7	53,82	40,92	0,16	0,07	0,03	0,09	0,13	0,01	0,30	0,25	1,63	1,18	0,00	98,58	0,17	0,43	0,39	7,66	0,45	863
BLP1a1	54,93	41,48	0,14	0,04	0,04	0,01	0,01	0,02	0,14	0,13	2,36	0,25	0,05	99,59	0,04	0,63	0,34	16,95	0,15	942
BLP1a2	54,05	41,01	0,48	0,04	0,03	0,05	0,05	0,00	0,59	0,26	2,21	0,30	0,09	99,17	0,04	0,59	0,37	31,51	0,17	942
BLP1a3	55,20	41,33	0,06	0,02	0,04	0,09	0,11	0,00	0,12	0,09	2,31	0,30	0,12	99,79	0,04	0,61	0,34	48,56	0,17	942
BLP1a4	54,68	41,43	0,08	0,04	0,07	0,06	0,05	0,00	0,11	0,11	2,26	0,28	0,01	99,20	0,04	0,60	0,36	8,63	0,16	942
BLP1a5	54,66	41,05	0,23	0,02	0,06	0,04	0,03	0,00	0,19	0,16	2,35	0,27	0,01	99,07	0,04	0,62	0,34	8,97	0,16	942
BLP1a6	54,60	41,19	0,23	0,05	0,04	0,10	0,05	0,00	0,30	0,15	2,55	0,28	0,30	99,84	0,04	0,68	0,28	869,89	0,17	942
BLP1b1	54,39	41,22	0,36	0,01	0,05	0,08	0,05	0,00	0,46	0,24	2,23	0,33	0,10	99,52	0,05	0,59	0,36	34,83	0,16	851
BLP1b2	54,94	41,42	0,12	0,04	0,03	0,03	0,06	0,00	0,14	0,02	2,45	0,30	0,08	99,63	0,04	0,65	0,30	27,93	0,15	851
BLP1b3	55,05	41,14	0,26	0,01	0,04	0,09	0,06	0,01	0,22	0,12	2,47	0,28	0,30	100,03	0,04	0,66	0,30	869,89	0,14	851
BLP1b4	54,34	41,03	0,42	0,01	0,03	0,06	0,08	0,00	0,48	0,28	2,37	0,30	0,17	99,57	0,04	0,63	0,33	119,80	0,15	851
BLP1b5	54,60	41,49	0,21	0,03	0,04	0,04	0,04	0,01	0,20	0,10	2,70	0,19	0,12	99,78	0,03	0,72	0,26	51,83	0,11	851
BLP1b6	54,83	40,96	0,20	0,05	0,08	0,12	0,08	0,00	0,24	0,21	2,88	0,29	0,17	100,10	0,04	0,77	0,19	114,59	0,18	851
BLP1b7	53,83	40,66	0,45	0,04	0,07	0,08	0,08	0,01	0,56	0,26	2,29	0,39	0,07	98,79	0,06	0,61	0,33	23,37	0,19	851
BLP1b8	54,48	40,86	0,30	0,07	0,07	0,11	0,07	0,02	0,38	0,17	2,21	0,39	0,14	99,26	0,06	0,59	0,36	75,55	0,19	851
BLP1b9	54,60	41,04	0,20	0,03	0,05	0,10	0,05	0,00	0,31	0,14	2,41	0,24	0,16	99,33	0,04	0,64	0,32	99,79	0,12	851
BLP1b10	54,36	40,76	0,40	0,02	0,04	0,06	0,06	0,01	0,53	0,24	2,35	0,36	0,09	99,28	0,05	0,62	0,32	32,74	0,17	851
BLP1d1	54,49	41,33	0,32	0,02	0,04	0,05	0,08	0,00	0,26	0,11	2,11	0,41	0,15	99,37	0,06	0,56	0,38	83,38	0,19	873
BLP1d2	54,29	40,70	0,31	0,02	0,04	0,07	0,04	0,00	0,28	0,22	2,29	0,28	0,16	98,71	0,04	0,61	0,35	97,59	0,14	873
BLP1d3	54,70	41,14	0,17	0,03	0,05	0,09	0,01	0,02	0,19	0,04	2,20	0,42	0,33	99,40	0,06	0,58	0,35	1539,35	0,20	873
BLP1d4	54,88	41,35	0,09	0,03	0,03	0,06	0,08	0,02	0,14	0,16	2,38	0,20	0,08	99,50	0,03	0,63	0,34	25,75	0,10	873

Приложение 7. Содержание основных компонентов в апатите Быстринского и Шахтаминского месторождений в мас. %.

Примечание: S_{распл} – оценённое содержание серы в расплаве по Parat et al., 2011; Cl_{распл} – оценённое содержание хлора в расплаве по Li and Hermann, 2017; ф.е. – формульные единицы, AST – температура насыщения апатита, рассчитанная для каждой пробы.

№ тонки	CaO	P	SiO	FeO	MnO	NacO	SrO	UO	CerOr	Nd ₂ O ₂	F	CI	SO2	Сумма	Cl	F	OH	Spacпл	Clpaспл	AST
J12 104KH	CaU	1 205	5102	100	MIIO	14420	510	002	Ct203	1111203	r	CI	503	Сумма	ф.е.	ф.е.	ф.е.	г/т	мас.%	ADI
BLP1d5	54,67	40,86	0,24	0,03	0,03	0,06	0,02	0,00	0,29	0,04	2,41	0,30	0,13	99,09	0,04	0,64	0,32	64,14	0,16	873
BLP1d6	54,43	40,87	0,38	0,06	0,05	0,08	0,04	0,04	0,39	0,26	2,91	0,31	0,19	99,99	0,05	0,77	0,18	148,48	0,21	873
BLP1d7	54,31	41,02	0,43	0,03	0,04	0,06	0,04	0,00	0,43	0,23	2,28	0,33	0,10	99,31	0,05	0,61	0,34	34,78	0,17	873
BLP1d8	55,06	41,50	0,21	0,02	0,03	0,06	0,07	0,00	0,26	0,17	3,25	0,26	0,03	100,93	0,04	0,86	0,10	12,59	0,24	873
BLP1d9	54,64	41,28	0,25	0,04	0,05	0,08	0,09	0,00	0,30	0,15	2,52	0,30	0,16	99,85	0,04	0,67	0,29	96,05	0,16	873
BLP1d10	54,87	41,72	0,06	0,02	0,04	0,10	0,05	0,00	0,07	0,07	2,75	0,25	0,14	100,15	0,04	0,73	0,23	69,67	0,15	873
BLP1e1	54,74	41,69	0,10	0,03	0,03	0,08	0,11	0,01	0,12	0,08	2,11	0,27	0,10	99,47	0,04	0,56	0,40	39,37	0,12	836
BLP1e2	54,92	41,50	0,08	0,04	0,02	0,05	0,05	0,00	0,05	0,07	2,23	0,60	0,12	99,72	0,09	0,59	0,32	50,77	0,27	836
BLP1e3	54,56	41,45	0,08	0,01	0,02	0,08	0,08	0,04	0,14	0,00	2,26	0,27	0,08	99,06	0,04	0,60	0,36	25,35	0,13	836
BLP1e4	54,80	41,34	0,06	0,05	0,03	0,07	0,10	0,00	0,05	0,10	1,89	0,51	0,07	99,07	0,08	0,50	0,42	22,46	0,22	836
BLP1e5	54,96	41,28	0,18	0,07	0,04	0,07	0,10	0,00	0,16	0,13	2,89	0,69	0,11	100,67	0,10	0,77	0,13	44,14	0,46	836
BLP1e6	54,50	41,30	0,37	0,03	0,03	0,09	0,06	0,01	0,31	0,26	2,09	0,32	0,24	99,59	0,05	0,55	0,40	327,22	0,14	836
BLP1e7	54,69	41,67	0,11	0,04	0,03	0,08	0,08	0,01	0,17	0,08	2,02	0,52	0,14	99,65	0,08	0,54	0,39	67,38	0,22	836
BLP1e8	54,97	41,56	0,08	0,03	0,03	0,09	0,01	0,02	0,12	0,04	2,05	0,39	0,08	99,47	0,06	0,55	0,40	27,97	0,17	836
BLP1e9	54,30	41,46	0,14	0,06	0,03	0,12	0,04	0,00	0,24	0,07	2,15	0,55	0,12	99,27	0,08	0,57	0,35	55,15	0,24	836
BLP1e10	54,60	41,67	0,12	0,02	0,03	0,07	0,04	0,00	0,08	0,09	1,97	0,72	0,08	99,50	0,11	0,52	0,37	29,11	0,29	836
BLP1e11	54,82	41,21	0,31	0,03	0,03	0,05	0,04	0,02	0,26	0,17	2,14	0,48	0,19	99,75	0,07	0,57	0,36	146,14	0,21	836
BLP2a1	53,81	40,82	0,22	0,07	0,03	0,13	0,06	0,01	0,42	0,20	1,54	1,28	0,17	98,75	0,19	0,41	0,40	116,42	0,47	861
BLP2a2	54,44	41,32	0,18	0,06	0,03	0,19	0,08	0,01	0,42	0,18	1,29	1,13	0,18	99,51	0,17	0,34	0,49	131,59	0,42	861
BLP2a3	53,85	40,91	0,19	0,06	0,04	0,13	0,11	0,00	0,38	0,12	1,33	1,52	0,16	98,82	0,22	0,35	0,42	105,33	0,52	861
BLP2a4	53,74	40,98	0,16	0,06	0,04	0,12	0,07	0,00	0,35	0,13	1,24	1,70	0,11	98,68	0,25	0,33	0,42	41,42	0,56	861
BLP2a5	54,03	40,89	0,24	0,06	0,06	0,15	0,07	0,03	0,45	0,17	1,51	1,33	0,17	99,15	0,20	0,40	0,41	114,41	0,48	861
BLP2a6	54,32	41,34	0,17	0,03	0,05	0,14	0,06	0,01	0,34	0,21	2,25	0,92	0,12	99,96	0,13	0,60	0,27	50,77	0,42	861
BLP2a7	54,24	40,84	0,18	0,04	0,03	0,14	0,06	0,03	0,38	0,13	1,53	1,29	0,14	99,02	0,19	0,41	0,40	65,48	0,47	861
BLP2b1	54,30	41,13	0,13	0,02	0,02	0,11	0,08	0,00	0,29	0,10	1,96	0,92	0,15	99,20	0,13	0,52	0,35	83,24	0,42	896
BLP2b2	54,22	41,48	0,09	0,05	0,04	0,10	0,06	0,00	0,26	0,05	1,84	1,10	0,15	99,45	0,16	0,49	0,35	86,62	0,47	896
BLP2b3	54,44	41,31	0,22	0,03	0,02	0,08	0,03	0,00	0,26	0,14	1,89	0,74	0,18	99,34	0,11	0,50	0,39	124,07	0,33	896
BLP2b4	54,64	41,75	0,10	0,05	0,03	0,14	0,05	0,00	0,24	0,22	2,45	0,81	0,07	100,54	0,12	0,65	0,23	23,78	0,44	896
BLP2b5	54,34	41,63	0,08	0,07	0,03	0,12	0,10	0,00	0,24	0,06	1,81	0,98	0,11	99,58	0,14	0,48	0,37	45,86	0,42	896
BLP2b6	54,20	41,20	0,16	0,06	0,03	0,12	0,03	0,00	0,32	0,18	1,72	1,15	0,19	99,37	0,17	0,46	0,37	156,73	0,48	896
BLP2c1	54,33	41,36	0,20	0,02	0,04	0,09	0,03	0,00	0,37	0,13	1,33	1,46	0,18	99,55	0,21	0,35	0,43	138,89	0,41	766
BLP2c2	54,08	41,08	0,16	0,06	0,06	0,13	0,02	0,00	0,30	0,11	1,36	1,31	0,20	98,87	0,19	0,36	0,45	198,94	0,38	766
BLP2c3	53,76	40,89	0,16	0,06	0,05	0,16	0,03	0,00	0,36	0,11	1,29	1,76	0,12	98,76	0,26	0,34	0,40	54,62	0,46	766
BLP2c4	53,60	40,37	0,19	0,05	0,05	0,15	0,02	0,00	0,42	0,16	1,31	1,77	0,07	98,18	0,26	0,35	0,39	25,14	0,46	766
BLP2c5	53,74	40,76	0,22	0,06	0,05	0,13	0,07	0,01	0,40	0,14	1,31	1,64	0,18	98,71	0,24	0,35	0,41	138,89	0,44	766
BLP2c6	53,48	40,93	0,16	0,09	0,06	0,15	0,09	0,02	0,44	0,12	1,19	1,82	0,15	98,71	0,27	0,32	0,42	86,35	0,46	766
BLP2c7	53,97	40,99	0,20	0,04	0,02	0,16	0,08	0,02	0,36	0,14	1,25	1,59	0,22	99,03	0,23	0,33	0,43	237,71	0,43	766
BLP2c8	54,56	41,28	0,11	0,01	0,00	0,04	0,09	0,02	0,11	0,06	1,69	0,52	0,02	98,51	0,08	0,45	0,47	9,72	0,19	766
BLP2c9	53,33	40,94	0,18	0,05	0,05	0,21	0,07	0,00	0,58	0,27	1,24	1,96	0,18	99,06	0,29	0,33	0,38	133,69	0,49	766

№ точки	CaO	P2O5	SiO ₂	FeO	MnO	Na ₂ O	SrO	UO2	Ce2O3	Nd ₂ O ₃	F	CI	SO 3	Суммя	Cl	F	ОН	Spacпл	Clpaспл	AST
512 TO IKH	CaO	1 205	5102	100	mito	11420	510	002	00203	110203	•	CI	503	Сумма	ф.е.	ф.е.	ф.е.	г/т	мас.%	1101
BLP2c10	54,21	41,10	0,20	0,04	0,03	0,10	0,03	0,00	0,31	0,10	1,64	0,98	0,14	98,89	0,14	0,44	0,42	65,58	0,32	766
BLP4b1	53,84	40,58	0,25	0,04	0,05	0,17	0,05	0,01	0,34	0,19	1,31	1,16	0,25	98,25	0,17	0,35	0,48	391,61	0,42	845
BLP4b2	54,40	41,23	0,21	0,04	0,05	0,09	0,00	0,02	0,33	0,18	1,47	0,99	0,13	99,13	0,15	0,39	0,46	57,02	0,37	845
BLP4b3	53,61	40,77	0,23	0,06	0,06	0,16	0,00	0,01	0,49	0,14	1,36	1,16	0,20	98,24	0,17	0,36	0,47	180,84	0,42	845
BLP4b4	53,92	41,22	0,36	0,09	0,05	0,12	0,07	0,01	0,35	0,11	1,61	0,97	0,28	99,16	0,14	0,43	0,43	689,70	0,37	845
BLP4b5	53,42	40,53	0,21	0,05	0,06	0,17	0,00	0,00	0,52	0,17	1,07	1,62	0,22	98,04	0,24	0,28	0,48	247,35	0,52	845
BLP4b6	53,98	41,08	0,18	0,02	0,06	0,13	0,04	0,00	0,27	0,14	1,50	0,91	0,15	98,44	0,13	0,40	0,47	80,13	0,35	845
BLP4b7	54,24	40,92	0,19	0,03	0,03	0,13	0,02	0,01	0,31	0,21	1,51	0,72	0,19	98,50	0,11	0,40	0,49	148,72	0,29	845
BLP4b8	53,91	40,96	0,21	0,06	0,04	0,15	0,03	0,02	0,38	0,12	1,50	1,21	0,27	98,87	0,18	0,40	0,42	561,81	0,44	845
BLP4b9	53,78	40,49	0,21	0,05	0,04	0,14	0,02	0,00	0,43	0,12	1,32	1,37	0,20	98,17	0,20	0,35	0,45	176,58	0,47	845
BLP4b10	53,87	40,83	0,22	0,03	0,02	0,13	0,00	0,00	0,31	0,04	1,47	0,86	0,20	97,99	0,13	0,39	0,48	192,10	0,34	845
BLP4c1	53,83	40,88	0,27	0,04	0,03	0,12	0,08	0,00	0,44	0,15	1,54	0,76	0,13	98,26	0,11	0,41	0,48	60,86	0,31	859
BLP4c2	53,62	41,11	0,16	0,07	0,04	0,21	0,01	0,00	0,47	0,15	1,43	1,43	0,29	98,99	0,21	0,38	0,41	772,11	0,50	859
BLP4c3	53,61	40,64	0,26	0,06	0,05	0,14	0,05	0,02	0,46	0,12	1,16	1,63	0,16	98,35	0,24	0,31	0,45	105,33	0,54	859
BLP4c4	54,07	40,96	0,20	0,02	0,03	0,15	0,07	0,01	0,44	0,17	1,48	0,93	0,18	98,70	0,14	0,39	0,47	131,79	0,36	859
BLP4c5	53,79	40,81	0,17	0,04	0,04	0,11	0,03	0,02	0,39	0,20	1,42	1,38	0,20	98,61	0,20	0,38	0,42	183,74	0,49	859
BLP4c6	53,92	40,77	0,21	0,04	0,05	0,19	0,01	0,00	0,41	0,14	1,52	1,07	0,24	98,58	0,16	0,40	0,44	327,74	0,41	859
BLP4c7	53,97	40,92	0,22	0,04	0,03	0,11	0,05	0,00	0,35	0,16	1,39	0,71	0,16	98,11	0,10	0,37	0,53	97,90	0,29	859
BLP4c8	54,12	40,91	0,25	0,05	0,06	0,12	0,04	0,01	0,37	0,16	1,50	1,11	0,16	98,85	0,16	0,40	0,44	95,59	0,42	859
BLP4c9	53,97	40,73	0,17	0,06	0,04	0,17	0,00	0,00	0,39	0,11	1,46	1,14	0,23	98,47	0,17	0,39	0,44	302,21	0,43	859
BLP4c10	54,06	40,92	0,19	0,05	0,04	0,16	0,00	0,00	0,44	0,16	1,40	1,12	0,22	98,77	0,16	0,37	0,46	248,54	0,42	859
BLP4d1	53,41	40,69	0,33	0,08	0,07	0,19	0,09	0,00	0,46	0,14	1,28	1,47	0,23	98,43	0,22	0,34	0,44	274,72	0,37	726
BLP4d2	53,26	40,86	0,19	0,06	0,07	0,18	0,06	0,02	0,42	0,18	1,27	1,47	0,21	98,24	0,22	0,34	0,45	203,74	0,37	726
BLP4d3	53,82	41,37	0,13	0,03	0,05	0,18	0,02	0,03	0,32	0,11	1,58	1,37	0,15	99,15	0,20	0,42	0,38	86,48	0,36	726
BLP4d4	54,07	41,12	0,18	0,01	0,03	0,16	0,06	0,02	0,33	0,14	1,49	0,92	0,20	98,73	0,13	0,40	0,47	173,79	0,27	726
BLP4d5	53,34	40,91	0,19	0,05	0,05	0,25	0,03	0,00	0,43	0,16	1,29	1,55	0,24	98,47	0,23	0,34	0,43	339,94	0,38	726
BLP4d6	53,78	41,12	0,21	0,04	0,04	0,19	0,06	0,02	0,38	0,17	1,38	1,35	0,25	99,00	0,20	0,37	0,44	406,85	0,35	726
BLP4d7	53,82	41,30	0,23	0,03	0,06	0,14	0,00	0,00	0,35	0,14	1,58	0,94	0,17	98,75	0,14	0,42	0,44	119,04	0,28	726
BLP4d8	53,29	40,96	0,24	0,06	0,07	0,18	0,00	0,02	0,49	0,11	1,30	1,39	0,14	98,25	0,20	0,35	0,45	70,78	0,36	726
BLP4d9	54,41	41,53	0,05	0,00	0,03	0,03	0,04	0,00	0,09	0,06	1,93	0,22	0,03	98,42	0,03	0,51	0,46	12,33	0,08	726
BLP4d10	54,48	41,59	0,13	0,04	0,03	0,04	0,07	0,00	0,19	0,09	1,73	0,52	0,05	98,96	0,08	0,46	0,46	15,66	0,17	726
BLP4d11	53,80	40,94	0,21	0,04	0,04	0,16	0,03	0,01	0,42	0,11	1,65	1,07	0,22	98,71	0,16	0,44	0,40	262,34	0,31	726
BLP4e1	53,51	40,46	0,19	0,05	0,07	0,20	0,05	0,00	0,48	0,21	1,22	1,66	0,21	98,31	0,24	0,32	0,43	233,22	0,57	882
BLP4e2	53,34	40,15	0,22	0,07	0,06	0,18	0,00	0,00	0,53	0,19	1,27	1,58	0,17	97,76	0,23	0,34	0,43	123,48	0,56	882
BLP5b1	54,14	41,46	0,11	0,14	0,06	0,12	0,12	0,00	0,25	0,06	1,87	0,99	0,12	99,43	0,14	0,50	0,36	50,53	0,46	935
BLP5b2	54,02	41,07	0,11	0,17	0,07	0,14	0,05	0,02	0,26	0,08	1,72	0,99	0,19	98,87	0,14	0,46	0,40	162,31	0,45	935
BLP5b3	54,15	41,14	0,13	0,14	0,08	0,14	0,10	0,00	0,30	0,13	1,81	0,95	0,13	99,21	0,14	0,48	0,38	62,73	0,44	935
BLP5b4	53,96	41,15	0,07	0,12	0,06	0,11	0,11	0,04	0,23	0,13	1,91	0,81	0,09	98,78	0,12	0,51	0,37	33,96	0,40	935
BLP5b5	53,95	41,09	0,13	0,17	0,07	0,10	0,17	0,02	0,32	0,06	1,83	1,08	0,16	99,14	0,16	0,49	0,36	97,13	0,50	935

№ точки	CaO	P2O5	SiO2	FeO	MnO	Na2O	SrO	UO		Nd ₂ O ₂	F	CI	SO ₂	Суммя	Cl	F	ОН	Spacпл	Clpaспл	AST
J12 104KH	CaU	1 205	5102	100	MIIO	14420	510	002	Ct203	110205	T.	CI	503	Сумма	ф.е.	ф.е.	ф.е.	г/т	мас.%	ADI
BLP5b6	53,89	41,12	0,09	0,18	0,07	0,10	0,09	0,00	0,17	0,04	1,80	0,95	0,12	98,63	0,14	0,48	0,38	49,42	0,44	935
BLP5b7	54,77	41,34	0,09	0,13	0,05	0,16	0,10	0,00	0,22	0,10	2,12	0,68	0,19	99,96	0,10	0,56	0,34	169,16	0,35	935
BLP5b8	53,59	40,26	0,46	0,14	0,06	0,09	0,13	0,01	0,67	0,24	1,76	1,00	0,10	98,50	0,15	0,47	0,39	37,54	0,46	935
BLP5b9	52,95	40,18	0,49	0,22	0,09	0,06	0,10	0,02	0,62	0,29	1,55	1,27	0,05	97,89	0,19	0,41	0,40	16,95	0,55	935
BLP5b10	54,00	41,43	0,12	0,12	0,06	0,15	0,12	0,01	0,32	0,17	1,87	0,97	0,19	99,52	0,14	0,50	0,36	150,86	0,46	935
SHPa1	54,26	40,60	0,41	0,06	0,09	0,03	0,04	0,01	0,41	0,17	2,46	0,19	0,02	98,76	0,03	0,65	0,32	10,97	0,12	963
SHPa2	53,72	40,13	0,70	0,04	0,10	0,03	0,02	0,00	0,70	0,35	2,50	0,18	0,05	98,54	0,03	0,66	0,31	15,71	0,12	963
SHPa3	53,57	40,09	0,80	0,05	0,08	0,03	0,05	0,01	0,81	0,30	2,50	0,17	0,01	98,46	0,02	0,66	0,31	8,29	0,11	963
SHPa4	53,91	40,45	0,74	0,04	0,09	0,02	0,06	0,00	0,72	0,33	2,33	0,17	0,03	98,88	0,02	0,62	0,36	12,61	0,10	963
SHPa5	54,81	41,59	0,13	0,09	0,09	0,06	0,07	0,00	0,26	0,09	2,28	0,24	0,02	99,73	0,04	0,60	0,36	10,32	0,14	963
SHPa6	54,34	40,90	0,54	0,04	0,07	0,04	0,04	0,01	0,59	0,20	2,48	0,12	0,01	99,38	0,02	0,66	0,32	9,35	0,08	963
SHPa7	54,13	40,76	0,60	0,06	0,10	0,03	0,03	0,00	0,64	0,27	2,57	0,20	0,03	99,40	0,03	0,68	0,29	11,65	0,13	963
SHPa8	53,93	40,64	0,68	0,07	0,10	0,03	0,00	0,00	0,80	0,30	2,33	0,20	0,06	99,13	0,03	0,62	0,35	18,83	0,12	963
SHPa9	54,76	41,35	0,16	0,04	0,10	0,08	0,03	0,00	0,15	0,06	2,42	0,16	0,24	99,55	0,02	0,64	0,33	352,60	0,10	963
SHPa10	55,15	41,75	0,08	0,05	0,09	0,03	0,00	0,00	0,12	0,02	2,51	0,11	0,01	99,92	0,02	0,67	0,32	8,46	0,07	963
SHPa11	54,29	41,00	0,42	0,06	0,10	0,05	0,07	0,00	0,51	0,24	2,47	0,12	0,05	99,37	0,02	0,66	0,33	16,37	0,07	963
SEPd1	53,92	41,50	0,35	0,07	0,10	0,17	0,02	0,02	0,64	0,32	2,49	0,47	0,11	100,17	0,07	0,66	0,27	46,23	0,26	895
SEPd2	53,71	41,25	0,45	0,07	0,08	0,14	0,10	0,00	0,68	0,30	2,35	0,45	0,09	99,68	0,07	0,62	0,31	32,12	0,24	895
SEPd3	54,12	42,13	0,21	0,05	0,11	0,17	0,06	0,00	0,45	0,21	2,69	0,34	0,04	100,58	0,05	0,71	0,24	15,21	0,20	895
SEPd4	53,30	41,92	0,46	0,05	0,09	0,18	0,02	0,00	0,61	0,24	2,25	0,44	0,12	99,68	0,06	0,60	0,34	49,18	0,22	895
SEPd5	53,60	41,20	0,37	0,06	0,08	0,22	0,08	0,00	0,61	0,32	2,37	0,51	0,15	99,57	0,07	0,63	0,30	77,87	0,27	895
SEPd6	54,20	41,68	0,18	0,06	0,09	0,15	0,03	0,01	0,39	0,19	2,66	0,32	0,03	99,99	0,05	0,71	0,25	12,41	0,19	895
SEPd7	53,68	41,09	0,32	0,08	0,08	0,25	0,01	0,00	0,49	0,26	2,36	0,44	0,35	99,43	0,06	0,63	0,31	2102,16	0,23	895
SEPd8	53,47	41,38	0,38	0,09	0,12	0,20	0,01	0,05	0,68	0,25	2,54	0,46	0,12	99,76	0,07	0,68	0,26	55,15	0,26	895
SEPd9	54,15	41,93	0,25	0,06	0,10	0,19	0,06	0,01	0,51	0,13	2,63	0,46	0,14	100,60	0,07	0,70	0,24	75,91	0,26	895
SEPf1	55,03	41,97	0,05	0,02	0,05	0,07	0,06	0,00	0,13	0,12	2,44	0,12	0,02	100,08	0,02	0,65	0,33	9,72	0,06	842
SEPf2	53,55	40,89	0,29	0,09	0,08	0,16	0,00	0,00	0,67	0,26	2,08	0,51	0,01	98,59	0,08	0,55	0,37	8,63	0,23	842
SEPf3	53,64	40,87	0,31	0,06	0,08	0,18	0,02	0,00	0,71	0,26	2,35	0,40	0,20	99,08	0,06	0,62	0,32	193,33	0,19	842
SEPf4	53,05	40,16	0,58	0,11	0,07	0,13	0,03	0,00	1,10	0,40	2,22	0,44	0,03	98,32	0,06	0,59	0,35	11,65	0,21	842
SEPf5	53,91	41,17	0,21	0,06	0,07	0,21	0,02	0,00	0,59	0,11	2,27	0,29	0,22	99,14	0,04	0,60	0,35	235,83	0,14	842
SEPf6	54,29	41,14	0,27	0,03	0,05	0,08	0,05	0,01	0,47	0,18	2,49	0,31	0,08	99,44	0,05	0,66	0,29	26,33	0,16	842
SEPf7	53,84	41,16	0,22	0,09	0,08	0,17	0,08	0,00	0,60	0,21	2,28	0,48	0,05	99,27	0,07	0,61	0,32	16,34	0,23	842
SEPf8	53,20	40,16	0,63	0,04	0,04	0,09	0,02	0,00	1,06	0,32	2,39	0,16	0,07	98,17	0,02	0,63	0,34	22,07	0,08	842
SEPf9	53,37	40,50	0,59	0,03	0,08	0,10	0,02	0,00	0,93	0,31	2,45	0,28	0,13	98,79	0,04	0,65	0,31	59,81	0,14	842
SEPf10	53,54	40,52	0,39	0,09	0,07	0,22	0,03	0,00	0,77	0,29	2,28	0,50	0,17	98,88	0,07	0,60	0,32	122,11	0,24	842
SLP1c1	52,57	40,54	0,32	0,03	0,10	0,20	0,00	0,06	0,41	0,20	2,70	0,29	0,14	97,55	0,04	0,72	0,24	72,72	0,13	725
SLP1c2	54,86	42,41	0,05	0,05	0,06	0,10	0,13	0,00	0,03	0,01	2,99	0,01	0,17	100,87	0,00	0,79	0,20	112,78	0,01	725
SLP2a1	53,41	40,85	0,47	0,06	0,13	0,18	0,02	0,01	0,72	0,32	2,81	0,07	0,09	99,16	0,01	0,75	0,24	32,48	0,05	933
SLP2a2	53,84	41,41	0,43	0,08	0,15	0,17	0,02	0,01	0,65	0,25	2,87	0,11	0,13	100,14	0,02	0,76	0,22	61,74	0,08	933

№ точки	CaO	P2O5	SiO ₂	FeO	MnO	Na ₂ O	SrO		Ce ₂ O ₃	Nd ₂ O ₃	F	CI	SO 3	Сумма	Cl	F	ОН	Spacпл	СІраспл	AST
512 TO IKH	CuO	1203	5102	100	mino	11420	510	0.02	00203	110205	-	ĊI	503	Cymma	ф.е.	ф.е.	ф.е.	г/т	мас.%	1101
SLP2a3	53,84	41,70	0,23	0,02	0,12	0,14	0,02	0,01	0,46	0,19	2,85	0,05	0,10	99,73	0,01	0,76	0,24	39,68	0,03	933
SLP2a4	53,65	41,22	0,40	0,06	0,13	0,19	0,09	0,02	0,58	0,28	2,75	0,09	0,22	99,67	0,01	0,73	0,26	240,76	0,06	933
SLP2a5	54,22	41,66	0,19	0,04	0,15	0,12	0,06	0,00	0,41	0,18	2,99	0,07	0,08	100,17	0,01	0,79	0,20	27,01	0,05	933
SLP2a6	53,34	40,99	0,36	0,05	0,14	0,17	0,02	0,01	0,56	0,23	2,91	0,11	0,09	98,97	0,02	0,77	0,21	33,00	0,08	933
SLP2a7	53,74	41,35	0,45	0,03	0,14	0,10	0,00	0,00	0,62	0,29	2,83	0,07	0,08	99,72	0,01	0,75	0,24	28,69	0,05	933
SLP2a8	53,75	41,19	0,30	0,03	0,12	0,13	0,02	0,02	0,47	0,22	3,00	0,08	0,07	99,40	0,01	0,80	0,19	24,44	0,07	933
SLP2a9	53,90	41,00	0,22	0,08	0,13	0,19	0,03	0,00	0,42	0,19	3,04	0,09	0,19	99,50	0,01	0,81	0,18	160,01	0,08	933
SLP2a10	54,06	41,34	0,18	0,04	0,12	0,31	0,08	0,00	0,39	0,15	2,84	0,09	0,36	99,97	0,01	0,75	0,23	2391,07	0,06	933
SLP2d1	53,04	41,00	0,50	0,08	0,43	0,15	0,06	0,01	0,64	0,35	3,03	0,04	0,18	99,52	0,01	0,80	0,19	136,70	0,03	956
SLP2d2	52,79	40,49	0,34	0,08	0,44	0,37	0,02	0,02	0,49	0,23	2,94	0,06	0,30	98,58	0,01	0,78	0,21	874,05	0,05	956
SLP2d3	53,29	41,37	0,22	0,10	0,35	0,17	0,00	0,02	0,53	0,27	2,95	0,05	0,00	99,30	0,01	0,78	0,21	7,66	0,04	956
SLP2d4	51,85	40,12	0,76	0,09	0,43	0,24	0,00	0,02	0,83	0,44	3,03	0,03	0,04	97,88	0,00	0,80	0,19	14,55	0,03	956
SLP2d5	53,68	41,13	0,22	0,10	0,29	0,15	0,00	0,00	0,50	0,23	3,24	0,03	0,11	99,68	0,00	0,86	0,14	45,28	0,03	956
SLP2d6	54,24	41,05	0,25	0,11	0,30	0,13	0,08	0,00	0,61	0,19	3,55	0,04	0,08	100,62	0,01	0,94	0,05	28,56	0,07	956
SLP2d7	54,57	41,19	0,21	0,11	0,30	0,13	0,00	0,00	0,51	0,18	3,69	0,03	0,09	100,99	0,00	0,98	0,02	32,17	0,07	956
SLP2d8	53,43	41,20	0,41	0,10	0,38	0,19	0,09	0,00	0,65	0,32	3,21	0,03	0,17	100,17	0,00	0,85	0,14	111,53	0,03	956
SLP3a1	53,97	41,02	0,41	0,03	0,04	0,13	0,04	0,02	0,69	0,25	2,46	0,21	0,12	99,38	0,03	0,65	0,32	49,11	0,09	772
SLP3a2	53,27	40,18	0,56	0,04	0,06	0,11	0,02	0,01	0,81	0,31	2,30	0,36	0,11	98,14	0,05	0,61	0,34	47,12	0,15	772
SLP3a3	54,17	41,19	0,41	0,09	0,04	0,12	0,04	0,01	0,63	0,29	2,43	0,39	0,09	99,90	0,06	0,65	0,30	30,38	0,16	772
SLP3a4	54,27	41,40	0,18	0,06	0,07	0,17	0,02	0,00	0,36	0,10	2,38	0,32	0,17	99,50	0,05	0,63	0,32	119,99	0,13	772
SLP3a5	54,20	41,30	0,28	0,06	0,07	0,19	0,00	0,00	0,53	0,16	2,32	0,33	0,21	99,63	0,05	0,61	0,34	201,81	0,13	772
SLP3a6	53,98	40,73	0,37	0,04	0,05	0,22	0,04	0,00	0,44	0,20	2,22	0,68	0,21	99,16	0,10	0,59	0,31	230,64	0,26	772
SLP3a7	53,85	40,47	0,46	0,09	0,06	0,15	0,01	0,01	0,76	0,25	2,21	0,38	0,16	98,86	0,06	0,59	0,36	100,26	0,15	772
SLP3a8	54,14	40,91	0,28	0,04	0,04	0,15	0,06	0,00	0,44	0,17	2,22	0,28	0,26	98,99	0,04	0,59	0,37	483,83	0,11	772
SLP3a9	54,29	41,16	0,24	0,05	0,06	0,15	0,00	0,00	0,46	0,17	2,17	0,39	0,14	99,29	0,06	0,58	0,37	72,72	0,15	772
SLP3a10	54,58	41,21	0,18	0,05	0,04	0,08	0,01	0,00	0,35	0,14	2,30	0,25	0,08	99,26	0,04	0,61	0,35	25,31	0,10	772
SLP3b1	53,47	40,52	0,37	0,07	0,07	0,22	0,08	0,00	0,63	0,23	2,15	0,45	0,32	98,58	0,07	0,57	0,36	1165,49	0,25	953
SLP3b2	55,12	41,78	0,01	0,01	0,00	0,00	0,05	0,00	0,00	0,01	2,58	0,06	0,02	99,65	0,01	0,69	0,30	10,11	0,04	953
SLP3b3	53,85	40,93	0,26	0,09	0,07	0,16	0,06	0,01	0,61	0,30	2,44	0,33	0,05	99,16	0,05	0,65	0,30	16,66	0,20	953
SLP3b4	53,75	40,60	0,41	0,10	0,06	0,20	0,05	0,00	0,75	0,33	2,78	0,30	0,04	99,38	0,04	0,74	0,22	14,79	0,22	953
SLP3b5	54,32	41,23	0,22	0,07	0,06	0,17	0,06	0,00	0,56	0,16	2,44	0,22	0,13	99,64	0,03	0,65	0,32	60,96	0,13	953
SLP3b6	53,92	40,70	0,37	0,04	0,06	0,16	0,05	0,00	0,62	0,24	2,53	0,16	0,34	99,18	0,02	0,67	0,31	1737,05	0,10	953
SLP3b7	53,86	40,44	0,45	0,03	0,03	0,14	0,05	0,00	0,87	0,34	2,41	0,27	0,07	98,97	0,04	0,64	0,32	24,36	0,17	953
SLP3b8	54,72	41,38	0,15	0,05	0,05	0,14	0,04	0,00	0,44	0,19	2,35	0,23	0,02	99,76	0,03	0,62	0,34	11,18	0,14	953
SLP3b9	53,83	40,56	0,41	0,08	0,07	0,14	0,03	0,00	0,73	0,31	2,51	0,17	0,17	99,01	0,02	0,67	0,31	111,00	0,11	953
SLP3b10	53,48	41,03	0,54	0,10	0,06	0,19	0,07	0,00	0,86	0,31	2,35	0,40	0,17	99,55	0,06	0,62	0,32	111,53	0,23	953
SLP3c1	54,19	41,30	0,28	0,06	0,05	0,17	0,05	0,00	0,47	0,22	2,46	0,21	0,19	99,64	0,03	0,65	0,32	162,83	0,12	925
SLP3c2	53,36	40,48	0,53	0,07	0,07	0,12	0,03	0,01	0,92	0,37	2,27	0,49	0,12	98,83	0,07	0,60	0,33	52,16	0,27	925
SLP3c3	54,17	41,24	0,27	0,08	0,06	0,17	0,06	0,00	0,49	0,15	2,33	0,39	0,16	99,55	0,06	0,62	0,32	92,75	0,22	925

№ точки	CaO	P2O5	SiO ₂	FeO	MnO	Na ₂ O	SrO		Ce2O3	Nd ₂ O ₃	F	CI	SO 3	Суммя	Cl	F	ОН	Spacпл	Clpaспл	AST
512 TO IKH	CuO	1 203	5102	100	mito	11420	510	002	00203	110205	-	Ċ1	503	Cymma	ф.е.	ф.е.	ф.е.	г/т	мас.%	1101
SLP3c4	53,59	40,87	0,52	0,08	0,08	0,13	0,04	0,01	0,77	0,31	2,20	0,35	0,09	99,04	0,05	0,58	0,36	31,66	0,19	925
SLP3c5	54,20	41,21	0,29	0,08	0,08	0,14	0,01	0,00	0,65	0,19	2,19	0,33	0,05	99,42	0,05	0,58	0,37	17,03	0,17	925
SLP3c6	53,82	40,65	0,36	0,06	0,08	0,16	0,04	0,00	0,73	0,30	2,33	0,42	0,11	99,04	0,06	0,62	0,32	46,15	0,24	925
SLP3c7	53,95	40,98	0,34	0,07	0,06	0,13	0,00	0,03	0,68	0,28	2,46	0,42	0,10	99,50	0,06	0,65	0,29	35,67	0,25	925
SLP3c8	53,84	40,92	0,36	0,08	0,07	0,19	0,03	0,01	0,67	0,15	2,26	0,46	0,24	99,29	0,07	0,60	0,33	361,11	0,25	925
SLP3c9	53,93	40,74	0,33	0,07	0,06	0,15	0,04	0,01	0,65	0,20	2,34	0,40	0,19	99,11	0,06	0,62	0,32	168,89	0,22	925
SLP3d1	53,80	40,56	0,39	0,28	0,07	0,12	0,02	0,00	0,71	0,30	2,50	0,44	0,17	99,38	0,06	0,66	0,27	111,53	0,28	954
SLP3d2	53,36	40,65	0,43	0,21	0,08	0,15	0,06	0,00	0,94	0,33	2,11	0,60	0,07	98,98	0,09	0,56	0,35	23,00	0,33	954
SLP3d3	54,26	41,24	0,22	0,04	0,06	0,09	0,01	0,00	0,46	0,22	2,60	0,14	0,00	99,34	0,02	0,69	0,29	7,66	0,09	954
SLP3d4	53,88	40,60	0,50	0,11	0,07	0,14	0,05	0,00	0,82	0,35	2,33	0,30	0,08	99,23	0,04	0,62	0,34	27,01	0,18	954
SLP3d5	54,14	41,02	0,26	0,14	0,06	0,09	0,00	0,00	0,60	0,21	2,28	0,25	0,11	99,15	0,04	0,61	0,36	41,03	0,14	954
SLP3d6	53,82	40,51	0,35	0,38	0,05	0,11	0,02	0,00	0,68	0,17	2,38	0,39	0,29	99,15	0,06	0,63	0,31	785,74	0,24	954
SLP3d7	53,73	40,92	0,31	0,37	0,09	0,17	0,07	0,00	0,69	0,27	2,32	0,47	0,27	99,69	0,07	0,62	0,31	573,54	0,27	954
SLP3d8	53,70	41,00	0,39	0,17	0,07	0,12	0,04	0,00	0,81	0,24	2,40	0,39	0,10	99,44	0,06	0,64	0,30	35,67	0,23	954
SLP3d9	53,79	40,79	0,43	0,25	0,07	0,15	0,08	0,03	0,80	0,29	2,53	0,23	0,21	99,63	0,03	0,67	0,30	203,10	0,15	954
SLP4a1	53,18	40,57	0,41	0,07	0,10	0,23	0,05	0,00	0,53	0,17	2,45	0,48	0,27	98,50	0,07	0,65	0,28	531,40	0,31	971
SLP4a2	54,31	40,99	0,26	0,03	0,03	0,16	0,10	0,01	0,41	0,24	2,30	0,34	0,21	99,37	0,05	0,61	0,34	200,21	0,20	971
SLP4a3	54,68	41,58	0,12	0,06	0,06	0,17	0,13	0,00	0,18	0,11	2,53	0,29	0,24	100,14	0,04	0,67	0,29	325,14	0,18	971
SLP4a4	53,11	40,84	0,58	0,07	0,12	0,15	0,05	0,02	0,82	0,21	2,33	0,49	0,00	98,78	0,07	0,62	0,31	7,66	0,30	971
SLP4a5	54,33	41,75	0,22	0,02	0,03	0,11	0,09	0,02	0,29	0,13	2,56	0,29	0,18	100,01	0,04	0,68	0,28	133,48	0,19	971
SLP4a6	54,05	41,17	0,23	0,09	0,07	0,14	0,11	0,00	0,30	0,15	2,42	0,38	0,19	99,31	0,06	0,64	0,30	147,31	0,24	971
SLP4a7	53,90	41,40	0,25	0,07	0,06	0,15	0,19	0,00	0,45	0,12	2,53	0,34	0,16	99,63	0,05	0,67	0,28	102,52	0,22	971
SLP4a8	54,15	41,12	0,25	0,02	0,04	0,14	0,05	0,00	0,38	0,17	2,35	0,35	0,16	99,19	0,05	0,63	0,32	96,05	0,22	971
SLP4a9	53,79	41,27	0,43	0,08	0,07	0,14	0,14	0,03	0,51	0,22	2,34	0,40	0,21	99,64	0,06	0,62	0,32	226,64	0,24	971
SLP4c1	54,56	41,69	0,32	0,04	0,05	0,14	0,07	0,04	0,37	0,13	2,35	0,35	0,21	100,33	0,05	0,62	0,32	226,64	0,22	995
SLP4c2	54,32	41,63	0,28	0,03	0,04	0,12	0,00	0,01	0,35	0,10	2,46	0,29	0,22	99,85	0,04	0,65	0,30	235,46	0,19	995
SLP4c3	54,53	41,63	0,26	0,02	0,04	0,12	0,05	0,00	0,30	0,04	3,32	0,33	0,18	100,82	0,05	0,88	0,07	133,91	0,47	995
SLP4c4	54,05	41,13	0,26	0,08	0,06	0,14	0,17	0,02	0,42	0,15	2,66	0,36	0,17	99,67	0,05	0,71	0,24	107,53	0,26	995
SLP4c5	53,89	41,72	0,27	0,08	0,08	0,16	0,14	0,03	0,38	0,12	2,39	0,37	0,18	99,81	0,05	0,64	0,31	136,92	0,23	995
SLP4c6	54,60	41,95	0,08	0,04	0,04	0,11	0,04	0,00	0,16	0,00	2,51	0,34	0,15	100,03	0,05	0,67	0,28	87,87	0,23	995
SLP4c7	53,93	41,18	0,27	0,08	0,07	0,16	0,10	0,00	0,43	0,04	2,31	0,53	0,22	99,30	0,08	0,61	0,31	263,59	0,33	995
SLP4c8	54,40	41,49	0,24	0,04	0,01	0,13	0,04	0,02	0,30	0,11	2,67	0,20	0,22	99,88	0,03	0,71	0,26	258,20	0,14	995
SLP4c9	54,31	41,66	0,28	0,04	0,05	0,18	0,07	0,00	0,44	0,12	2,48	0,31	0,20	100,14	0,05	0,66	0,30	188,47	0,20	995
SLP4d1	54,70	41,64	0,13	0,03	0,04	0,13	0,06	0,01	0,24	0,02	2,54	0,28	0,20	100,04	0,04	0,67	0,28	197,37	0,14	837
SLP4d2	54,28	42,09	0,10	0,06	0,04	0,07	0,11	0,00	0,25	0,19	2,47	0,37	0,04	100,08	0,05	0,66	0,29	15,53	0,18	837
SLP4d3	54,21	41,84	0,23	0,03	0,03	0,14	0,09	0,00	0,31	0,10	2,59	0,27	0,19	100,03	0,04	0,69	0,27	152,55	0,14	837
SLP4d4	54,09	41,30	0,24	0,07	0,03	0,14	0,08	0,00	0,30	0,15	2,39	0,36	0,17	99,32	0,05	0,63	0,31	119,42	0,17	837
SLP4d5	54,17	41,41	0,24	0,06	0,03	0,15	0,09	0,01	0,32	0,03	2,49	0,36	0,22	99,57	0,05	0,66	0,29	262,34	0,18	837
SLP4d6	54,26	41,52	0,22	0,06	0,04	0,16	0,08	0,00	0,27	0,15	2,31	0,39	0,24	99,72	0,06	0,61	0,33	347,60	0,18	837

М тонки	CaO	P2O5	SiO	FeO	MnO	NacO	SrO	UO	CerOr	Nd2O2	F	CI	SO	Сумма	Cl	F	ОН	Spacпл	Clpaспл	AST
<u>л</u> 2 точки	CaU	1 205	5102	rto	MIIO	11420	510	002	Ct203	110203	1.	CI	503	Сумма	ф.е.	ф.е.	ф.е.	г/т	мас.%	ADI
SLP4d7	54,18	41,74	0,25	0,07	0,04	0,16	0,06	0,00	0,38	0,14	2,55	0,39	0,19	100,16	0,06	0,68	0,26	165,44	0,20	837
SLP4d8	54,29	41,89	0,13	0,17	0,04	0,23	0,17	0,00	0,17	0,15	2,41	0,29	0,34	100,28	0,04	0,64	0,32	1830,61	0,14	837
SLP4d9	54,21	41,67	0,12	0,19	0,06	0,22	0,14	0,00	0,22	0,11	3,37	0,28	0,36	100,97	0,04	0,90	0,06	2229,53	0,31	837
SLP4d10	54,19	41,16	0,13	0,19	0,06	0,22	0,15	0,00	0,21	0,10	3,14	0,29	0,32	100,17	0,04	0,83	0,12	1282,14	0,23	837
SLP5a1	53,82	41,38	0,46	0,11	0,10	0,12	0,12	0,00	0,53	0,31	2,12	0,53	0,19	99,77	0,08	0,56	0,36	163,09	0,27	914
SLP5a2	53,46	40,68	0,62	0,12	0,09	0,10	0,17	0,03	0,70	0,29	2,15	0,71	0,10	99,20	0,10	0,57	0,32	38,69	0,36	914
SLP5a3	53,76	41,07	0,44	0,10	0,08	0,11	0,11	0,00	0,54	0,24	2,20	0,57	0,22	99,44	0,08	0,58	0,33	238,85	0,30	914
SLP5a4	53,47	40,87	0,47	0,10	0,09	0,09	0,14	0,01	0,58	0,20	2,09	0,65	0,06	98,82	0,09	0,55	0,35	20,65	0,32	914
SLP5a5	54,17	41,13	0,34	0,12	0,08	0,14	0,09	0,00	0,44	0,21	2,26	0,58	0,19	99,74	0,09	0,60	0,31	168,09	0,30	914
SLP5a6	54,08	41,42	0,16	0,11	0,10	0,21	0,19	0,00	0,25	0,09	2,37	0,46	0,32	99,76	0,07	0,63	0,30	1298,55	0,25	914
SLP5a7	54,45	41,93	0,09	0,09	0,07	0,18	0,09	0,03	0,26	0,08	2,43	0,44	0,26	100,39	0,06	0,65	0,29	472,42	0,24	914
SLP5a8	53,93	41,25	0,37	0,09	0,06	0,13	0,09	0,00	0,42	0,20	2,55	0,40	0,17	99,67	0,06	0,68	0,26	108,21	0,24	914
SLP5a9	53,54	40,80	0,42	0,11	0,09	0,16	0,14	0,00	0,54	0,20	2,52	0,30	0,24	99,06	0,04	0,67	0,29	342,11	0,18	914
SLP5a10	54,16	41,59	0,27	0,11	0,08	0,10	0,07	0,00	0,42	0,13	2,33	0,41	0,17	99,84	0,06	0,62	0,32	114,95	0,22	914
SLP5a11	53,91	41,22	0,25	0,12	0,06	0,12	0,09	0,00	0,33	0,14	2,25	0,43	0,19	99,11	0,06	0,60	0,34	149,19	0,23	914
SLP5a12	54,17	41,25	0,32	0,14	0,08	0,12	0,10	0,00	0,37	0,22	2,33	0,53	0,32	99,95	0,08	0,62	0,30	1186,05	0,29	914
SLP5a13	54,62	41,84	0,07	0,18	0,06	0,11	0,17	0,00	0,11	0,06	2,21	0,36	0,13	99,93	0,05	0,59	0,36	60,67	0,19	914
SLP5a14	54,38	41,60	0,05	0,20	0,06	0,11	0,11	0,00	0,17	0,07	3,10	0,35	0,14	100,33	0,05	0,82	0,12	68,35	0,32	914
SLP5a15	54,37	41,70	0,22	0,11	0,06	0,18	0,11	0,03	0,32	0,11	2,23	0,43	0,19	100,05	0,06	0,59	0,35	153,04	0,22	914
SLP5a16	54,82	41,72	0,28	0,09	0,05	0,11	0,10	0,03	0,34	0,22	2,92	0,40	0,13	101,20	0,06	0,77	0,17	55,94	0,29	914
SLP5a17	53,95	41,31	0,51	0,11	0,09	0,08	0,10	0,01	0,55	0,22	2,40	0,47	0,20	100,01	0,07	0,64	0,30	187,58	0,26	914
SLP5a18	53,72	41,15	0,43	0,10	0,09	0,09	0,13	0,03	0,44	0,24	1,69	0,69	0,16	98,96	0,10	0,45	0,45	98,37	0,32	914
SLP5a19	54,46	41,73	0,12	0,10	0,08	0,11	0,08	0,00	0,23	0,08	2,20	0,45	0,21	99,84	0,07	0,58	0,35	201,81	0,23	914
SLP5a20	54,35	41,60	0,21	0,08	0,07	0,14	0,10	0,01	0,29	0,15	2,01	0,58	0,13	99,71	0,08	0,53	0,38	64,14	0,28	914
SLP5a21	54,18	41,48	0,37	0,10	0,07	0,15	0,14	0,02	0,40	0,16	2,43	0,38	0,19	100,06	0,06	0,65	0,30	161,54	0,21	914
SLP5b1	54,46	41,63	0,11	0,15	0,05	0,22	0,07	0,00	0,15	0,14	3,25	0,26	0,26	100,76	0,04	0,86	0,10	478,47	0,25	860
SLP5b2	53,96	41,43	0,38	0,11	0,08	0,11	0,12	0,00	0,44	0,32	1,92	0,65	0,17	99,69	0,10	0,51	0,39	105,66	0,28	860
SLP5b3	54,05	41,56	0,33	0,10	0,07	0,13	0,12	0,00	0,47	0,21	2,08	0,67	0,22	100,01	0,10	0,55	0,35	251,72	0,29	860
SLP5b4	53,86	41,41	0,44	0,07	0,08	0,14	0,08	0,00	0,47	0,23	1,75	0,67	0,22	99,43	0,10	0,47	0,44	236,96	0,28	860
SLP5b5	53,98	41,56	0,30	0,11	0,09	0,12	0,09	0,00	0,40	0,14	2,14	0,66	0,17	99,78	0,10	0,57	0,33	111,89	0,30	860
SLP5b6	53,70	41,23	0,33	0,11	0,08	0,14	0,05	0,02	0,36	0,20	1,89	0,64	0,24	99,00	0,09	0,50	0,40	339,40	0,28	860
SLP5b7	53,94	41,20	0,33	0,13	0,08	0,17	0,08	0,02	0,43	0,13	2,26	0,64	0,31	99,72	0,09	0,60	0,31	1109,44	0,30	860
SLP5b8	54,24	41,65	0,23	0,10	0,08	0,14	0,14	0,00	0,31	0,17	2,10	0,59	0,08	99,83	0,09	0,56	0,36	27,88	0,26	860
SLP5b9	54,94	42,42	0,22	0,11	0,07	0,14	0,11	0,00	0,32	0,12	1,56	0,49	0,06	100,55	0,07	0,41	0,51	18,62	0,21	860
SLP5b10	53,82	41,35	0,42	0,10	0,07	0,13	0,07	0,01	0,56	0,18	1,89	0,65	0,26	99,51	0,10	0,50	0,40	499,46	0,28	860

№ точки	Mn	Sr	Zr	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Pb	Th	U	ZREE	Eu/Eu*	Ce/Ce*	(La/Lu)n
BEPa1	3300	700	0,4	1200	3200	500	1900	330	27	250	27	140	22	60	7	36	5	11	40	26	7704	0,29	1,01	25,72
BEPa2	490	900	0,5	1700	3900	500	1900	290	17	210	21	100	17	44	4,6	25	3,4	4	50	50	8732	0,21	1,04	53,59
BEPa3	380	940	0,5	1200	3000	440	1900	320	18	240	26	130	21	60	6	32	4	7	50	40	7397	0,20	1,01	32,15
BEPa4	410	600	0,4	1400	3300	440	1800	280	22	200	20	100	16	40	4	25	3	6	50	50	7650	0,28	1,03	50,01
BEPa5	240	800	0,7	1200	3600	500	2100	360	20	280	30	160	25	70	7	35	4	4	30	26	8391	0,19	1,14	32,15
BEPa6	470	870	1	1600	3700	540	2100	350	18	250	27	120	20	50	6	30	4	7	50	49	8815	0,19	0,98	42,87
BLP1a1	440	370	0,9	1200	2300	280	1100	170	20	150	16	80	16	40	6	33	5	2,8	80	23	5416	0,38	0,97	25,72
BLP1a2	500	490	1	1500	3800	550	2000	360	34	270	30	150	31	90	10	60	8	4,5	100	25	8893	0,33	1,03	20,09
BLP1a3	540	340	0,8	1400	3100	440	1800	280	26	220	25	130	23	70	8	50	6	3	90	24	7578	0,32	0,97	25,01
BLP1a4	610	1300	3,1	1200	2900	410	1600	280	23	230	25	140	24	60	8	40	7	5	90	25	6947	0,28	1,01	18,37
BLP1a5	490	250	2,3	1500	2800	390	1400	200	15	150	17	90	16	44	5	32	5	3,5	90	26	6664	0,26	0,90	32,15
BLP1d1	490	280	3,5	1200	2400	310	1200	200	20	160	19	90	17	50	6	38	6	3	70	20	5716	0,34	0,96	21,43
BLP1d2	440	200	0,42	1100	2400	310	1300	200	18	160	18	100	17	50	6	37	5	2,6	50	19	5721	0,31	1,01	23,58
BLP1d3	500	250	3,7	700	1700	230	900	160	18	130	15	70	12	33	3,6	22	2,9	2,3	18	8	3997	0,38	1,04	25,87
BLP1d4	410	370	1	1600	3600	530	2100	320	30	260	30	160	27	80	9	50	7	4	90	19	8803	0,32	0,96	24,50
BLP2a1	610	390	1	1900	4100	500	1500	200	34	140	14	60	10	27	3,1	18	3	3	100	37	8509	0,62	1,03	67,88
BLP2a2	560	380	0,3	1500	3500	460	1800	270	38	190	22	110	18	48	5,8	34	5	2,3	54	80	8001	0,51	1,03	32,15
BLP2a3	550	360	0,9	1800	3800	460	1700	260	28	190	19	90	17	40	5	35	5	2,7	70	70	8449	0,39	1,02	38,58
BLP2a4	410	440	0,7	1600	3800	450	1800	270	38	210	26	140	26	70	10	60	9	3,1	70	60	8509	0,49	1,10	19,05
BLP2a5	600	450	2	2300	4200	520	1900	270	44	200	20	100	18	50	6,5	40	6	5	130	40	9675	0,58	0,94	41,08
BLP2c1	410	400	1	1400	3100	420	1600	250	31	190	20	90	15	42	4,5	30	4,2	2,7	60	40	7197	0,43	0,99	35,72
BLP2c2	470	450	0,5	1500	3500	450	2000	330	40	190	26	80	21	60	8	30	6	3	70	50	8241	0,49	1,04	26,79
BLP2c3	430	440	0,6	1600	3800	500	2100	300	30	220	21	110	19	40	5	31	5	2,3	60	40	8781	0,36	1,04	34,30
BLP2c4	430	500	0,5	1500	3900	600	2200	320	35	250	29	130	16	50	7	30	6	3	50	40	9073	0,38	1,01	26,79
BLP2c5	300	280	0,15	1200	2500	300	1300	160	30	160	12	60	12	30	4	27	3	3	70	40	5798	0,57	1,02	42,87
BLP4b1	480	210	0,25	1100	2900	350	1300	190	25	140	14	70	12	35	4	25	3,7	3,5	40	40	6169	0,47	1,15	31,86
BLP4b2	470	210	0,5	1200	3100	370	1600	230	33	170	17	90	17	40	5	34	4,3	4	70	45	6910	0,51	1,14	29,91
BLP4b3	610	260	0,6	1900	3900	460	1600	210	22	160	16	80	13	37	5	29	4,2	3,7	80	34	8436	0,37	1,02	48,48
BLP4b4	500	310	0,7	1500	3200	370	1100	120	15	60	5,5	25	4,1	10	1,2	8	1,1	1,7	28	30	6420	0,54	1,05	146,14
BLP4b5	390	210	0,6	1200	3400	500	2100	330	50	240	24	130	22	60	7	40	6	2,5	60	40	8109	0,54	1,08	21,43
BLP4d1	1100	110	1,2	1300	3000	400	1400	220	30	160	17	80	15	40	5	31	4	4	70	30	6702	0,49	1,02	34,83
BLP4d2	580	230	3,9	1300	2900	380	1400	200	25	150	15	70	13	32	3,9	22	3,1	2,3	35	28	6514	0,44	1,01	44,94
BLP4d3	440	210	2,1	1100	2700	400	1500	230	35	180	19	100	18	50	6	38	5	4	70	29	6381	0,53	1,00	23,58
BLP4d4	470	240	0,6	1500	3400	430	1500	190	23	140	14	70	11	31	3,6	22	3	3,5	60	23	7338	0,43	1,04	53,59
BLP4d5	550	210	0,7	1600	4000	500	2000	290	33	190	20	110	14	50	4	30	5	4,4	80	29	8846	0,43	1,10	34,30

Приложение 8. Содержание примесных элементов в апатите Быстринского и Шахтаминского месторождений (г/т).

Примечание: $\Sigma REE - сумма редкоземельных элементов, Eu/Eu* и Ce/Ce* - европиевая и цериевая аномалии.$

196

№ точки	Mn	Sr	Zr	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Pb	Th	U	ZREE	Eu/Eu*	Ce/Ce*	(La/Lu)n
BLP5b1	840	890	0,3	1200	2400	300	1000	140	18	100	10	52	9	24	2,6	16	2,3	9	10	9	5274	0,47	0,98	55,92
BLP5b2	970	1100	1,6	1500	3200	430	1400	190	26	150	17	76	14	36	4	25	3,5	13	30	13	7072	0,47	0,98	45,93
BLP5b3	710	1000	0,59	1500	3000	380	1400	180	24	130	14	70	11	29	3,4	19	2,9	10	20	19	6763	0,48	0,97	55,43
BLP5b4	600	1000	1	1400	2800	320	1300	150	21	110	12	60	8	24	2,8	16	2	5	16	9	6226	0,50	1,03	75,02
BLP5b5	650	1000	3,5	1800	3500	440	1600	230	29	180	19	90	17	41	5,1	30	3,7	8	60	19	7985	0,44	0,96	52,14
BLP5b6	700	1000	1,2	1400	2600	330	1200	170	23	140	14	60	12	30	3,5	20	2,8	7	32	12	6005	0,46	0,94	53,59
BLP5b7	510	1000	1,4	1300	2600	290	1100	140	18	110	11	52	9	25	2,6	16	2,2	5	14	9	5676	0,44	1,04	63,33
BLP5b8	610	1000	0,5	1200	2400	280	1000	130	18	100	10	50	8	24	2,8	15	2,1	5	14	8	5240	0,48	1,02	61,24
BLP5b9	690	950	4	1900	3800	480	1800	230	30	170	17	80	15	39	4,8	26	3,9	10	90	28	8596	0,46	0,98	52,21
SEPd1	800	370	2,4	2500	6000	700	2500	360	19	280	28	130	22	60	7	40	6	9	50	15	12652	0,18	1,11	44,66
SEPd2	800	500	4	3100	7000	800	3500	470	28	340	34	160	29	70	8	47	6	10	90	18	15592	0,21	1,09	55,37
SEPd3	720	300	2,8	2800	5900	700	2700	360	18	260	27	130	22	60	7	46	6	9	100	22	13036	0,18	1,03	50,01
SEPd4	800	370	2,9	3000	6600	700	2800	350	18	240	25	120	23	60	7	40	6	10	90	23	13989	0,19	1,12	53,59
SEPf1	700	300	3,6	2600	5000	700	2400	310	15	220	22	110	20	55	7	42	6	11	80	19	11507	0,18	0,91	46,44
SEPf2	550	310	3,7	2700	6000	800	2800	370	19	260	25	130	21	60	7	44	6	6	120	29	13242	0,19	1,00	48,23
SEPf3	800	1000	4,5	2300	5300	700	2600	410	21	320	37	200	38	110	14	90	13	10	90	24	12153	0,18	1,02	18,96
SEPf4	1000	240	3,8	2400	5700	700	2700	410	19	320	40	200	40	120	15	100	15	13	110	30	12779	0,16	1,08	17,15
SEPf5	1000	240	7	2500	6100	800	3200	490	31	370	40	200	34	90	10	60	7	9	100	20	13932	0,22	1,06	38,28
SEPf6	900	500	1,5	1900	4300	570	2200	340	16	270	30	170	31	90	12	80	11	11	80	21	10020	0,16	1,01	18,51
SHPa1	900	300	1,8	3000	5700	800	2900	450	38	370	43	230	44	130	18	110	18	7	210	70	13851	0,28	0,90	17,86
SHPa2	900	320	1,5	2400	4900	700	2500	380	36	310	38	200	37	110	14	90	13	6	160	40	11728	0,32	0,93	19,79
SHPa3	1000	290	1,9	2300	6000	700	2500	300	36	330	40	200	38	100	14	90	13	5,7	170	42	12661	0,35	1,16	18,96
SHPa4	1000	370	0,5	1400	2700	340	1300	200	20	160	19	100	20	60	6	40	6	4,2	50	16	6371	0,34	0,96	25,01
SHPa5	910	290	1,5	2500	4700	580	2300	340	33	290	33	190	35	100	14	80	13	6	160	40	11208	0,32	0,96	20,61
SHPa6	1000	340	1,6	2600	5000	700	2700	400	30	340	40	210	40	110	14	90	13	6	150	32	12287	0,25	0,91	21,43
SHPa7	1000	300	1,3	1800	4100	510	1900	290	29	240	29	170	32	90	11	70	11	7	130	33	9282	0,34	1,05	17,54
SHPa8	1100	400	1,5	3300	8000	800	2800	400	40	360	39	240	50	140	16	100	14	10	200	40	16299	0,32	1,21	25,26
SHPa9	900	330	1,1	1600	3000	400	1500	270	18	230	26	140	25	70	8	45	7	4	70	22	7339	0,22	0,92	24,50
SHPa10	900	310	0,5	800	1200	120	400	60	9	60	6	40	8	22	3	20	4	3,3	40	40	2752	0,46	0,95	21,43
SLP1c1	230	800	2	900	2300	270	1000	200	3	160	25	130	23	70	10	50	6	10	22	8	5147	0,05	1,14	16,08
SLP1c2	530	900	0,9	1500	3600	430	1600	290	8	240	32	190	37	110	16	110	17	5	70	33	8180	0,09	1,10	9,46
SLP2a1	800	900	2,9	2500	5800	800	3300	600	21	440	58	310	60	160	21	120	18	9	140	31	14208	0,12	1,01	14,89
SLP2a2	1400	220	1,5	2000	5000	700	2600	450	15	410	50	300	60	160	19	130	16	7	120	29	11910	0,11	1,04	13,40
SLP2a3	1300	180	2,5	1500	3300	400	1500	250	9	180	19	100	17	40	5	30	6	8	40	10	7356	0,13	1,04	26,79
SLP2a4	1200	160	4	1900	4200	520	2100	340	18	240	28	150	25	70	8	44	5,7	7	72	16	9649	0,19	1,04	35,72

197

Приложение 8. (окончание)

№ точки	Mn	Sr	Zr	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Pb	Th	U	ZREE	Eu/Eu*	Ce/Ce*	(La/Lu)n
SLP2a5	1200	290	2,6	1000	2500	300	1300	220	6	150	17	100	16	40	5	30	4	31	44	8	5688	0,10	1,12	26,79
SLP2d1	1300	110	1,4	1600	4000	600	2700	600	16	490	74	430	79	240	33	220	32	9	35	9	11114	0,09	1,00	5,36
SLP2d2	4200	270	1,1	1900	4900	630	2700	650	11	610	90	600	110	320	47	330	45	7	90	50	12943	0,05	1,10	4,53
SLP2d3	3700	220	1,8	1700	4500	560	2400	360	17	300	36	170	30	90	11	70	9	7	40	11	10253	0,16	1,13	20,24
SLP2d4	3500	350	1,1	1800	5000	700	2900	600	17	500	80	500	90	260	38	250	33	9	90	19	12768	0,09	1,09	5,85
SLP2d5	3700	260	8	2500	6000	800	3200	500	38	380	38	210	33	90	11	60	9	11	100	22	13869	0,27	1,04	29,77
SLP3a1	800	390	2,4	2800	6000	800	2900	330	17	260	24	80	21	40	7	40	6	21	60	17	13325	0,18	0,98	50,01
SLP3a2	830	390	2,7	3200	7000	800	3000	380	18	280	30	150	26	80	9	60	7	12	110	26	15040	0,17	1,07	48,99
SLP3a3	900	460	2	3100	7000	800	3100	400	21	290	26	140	22	60	7	40	6	13	90	22	15012	0,19	1,09	55,37
SLP3a4	700	380	0,5	2500	6000	700	2700	350	17	260	24	110	22	50	7	40	6	6	40	21	12786	0,17	1,11	44,66
SLP3d1	750	420	4	3300	7000	800	3000	400	19	270	26	130	22	60	7	43	6	9	100	40	15083	0,18	1,06	58,95
SLP3d2	720	310	2,3	2800	6000	600	2400	300	15	220	22	110	19	50	7	42	6	17	80	16	12591	0,18	1,13	50,01
SLP3d3	440	500	3,1	2600	6100	800	3100	450	28	320	34	170	29	70	8	43	5	6	120	26	13757	0,23	1,04	55,73
SLP3d4	590	410	2,8	2400	5300	700	2500	370	24	280	31	140	26	70	9	50	8	6	100	25	11908	0,23	1,00	32,15
SLP3d5	470	200	2,3	2200	4600	500	1800	250	14	200	20	110	19	60	7	50	7	6	90	31	9837	0,19	1,08	33,68
SLP3d6	600	260	1,5	2500	5000	700	2500	380	22	270	27	140	24	70	8	49	7	6	120	30	11697	0,21	0,93	38,28
SLP4a1	410	600	2,5	2100	3000	300	1000	120	18	80	7	40	6	17	2	13	1,8	7	30	14	6705	0,56	0,93	125,04
SLP4a2	570	900	0,6	1600	3000	340	1200	150	25	110	10	40	7	19	2,2	12	1,8	9	40	13	6517	0,60	1,00	95,26
SLP4d1	380	600	1,1	1800	3100	340	1200	150	21	100	10	50	8	21	2,5	16	2,3	3	30	27	6821	0,52	0,97	83,87
SLP4d2	370	700	0,3	1300	2400	300	1200	180	19	170	19	100	19	50	6	30	4	5	19	23	5797	0,33	0,94	34,83
SLP4d3	340	800	0,6	2000	3500	300	1200	150	21	100	9	40	7	19	2,4	15	2,5	4	40	13	7366	0,52	1,11	85,74
SLP4d4	400	900	0,6	1800	3500	370	1300	150	24	110	9	40	8	19	2,5	15	2,5	6	50	15	7350	0,57	1,05	77,16
SLP4d5	360	800	0,8	1700	2900	310	1100	130	18	90	8	36	6,7	18	2,1	14	2,1	5	40	16	6335	0,51	0,98	86,76
SLP4d6	390	900	0,6	1800	3300	360	1200	150	26	110	10	50	8	24	2,9	19	3	6	50	16	7063	0,62	1,01	64,30
SLP4d7	390	800	1,2	1400	2500	260	900	100	18	70	6	27	4	11	1,3	8	1,1	4	22	16	5306	0,66	1,02	136,40
SLP5a1	440	700	2,2	770	1700	250	900	130	17	100	10	53	9	25	2,8	17	2,2	6	21	8	3986	0,46	0,95	37,51
SLP5a2	610	1200	6	1400	3700	560	2100	360	36	260	29	160	27	72	8	47	7	13	110	38	8766	0,36	1,02	21,43
SLP5a3	760	800	1,1	1700	4300	500	2000	300	34	230	24	120	21	60	7	40	6	7	140	36	9342	0,40	1,14	30,37
SLP5a4	700	800	1,4	1500	3800	500	2000	320	40	230	26	120	22	60	7	40	6	10	140	30	8671	0,45	1,08	26,79
SLP5a5	750	1000	1,5	1700	4300	600	2100	340	38	240	26	130	23	60	9	50	7	12	170	40	9623	0,41	1,04	26,03
SLP5b1	940	200	2,1	1100	2900	410	1500	230	31	160	16	83	15	44	6	35	5	10	220	34	6535	0,49	1,06	23,58
SLP5b2	700	800	20	1400	3700	500	1900	290	40	220	23	120	21	60	7	43	6	14	190	40	8330	0,48	1,08	25,01
SLP5b3	700	1100	1,5	1600	4100	600	2100	310	39	220	24	130	23	60	8	50	7	16	160	40	9271	0,46	1,03	24,50
SLP5b4	770	900	1,3	700	1800	240	800	130	17	90	9	49	8	25	2,9	17	2,4	16	19	6	3890	0,48	1,08	31,26
SLP5b5	680	900	1,4	2100	5000	600	2200	320	34	220	24	110	19	50	7	40	5	10	170	40	10729	0,39	1,09	45,01

№ точки	BEPal	BEPa2	BEPa3	BEPa4	BEPa5	BEPa6	BEPa7	BEPa8	BEPa9	BEPa10	BEPb1	BEPb2	BEPb3	BEP64	BEPb5	BEPb6	BEPb7	BEPb8	BEPb9	BEPb10
SiO ₂	38,34	38,16	39,03	38,96	38,95	38,45	38,54	38,44	39,31	38,54	38,81	37,67	38,30	38,73	37,79	37,15	35,83	39,13	37,43	37,24
Al ₂ O ₃	14,50	13,82	14,44	14,66	15,22	14,69	14,71	14,68	14,47	14,06	13,07	13,68	13,62	12,81	13,49	13,39	13,63	13,16	13,67	13,28
TiO ₂	5,73	5,84	5,84	5,70	5,65	5,80	5,77	5,86	5,66	5,74	4,97	5,62	5,41	4,85	5,45	5,45	5,54	5,16	5,74	5,65
FeO	12,92	13,66	13,03	12,89	13,04	12,92	13,17	13,14	13,13	12,89	14,22	12,71	14,53	14,81	14,88	13,99	13,27	12,73	13,83	14,50
MgO	16,57	16,85	16,83	16,43	17,36	16,58	17,04	16,86	16,82	16,67	14,56	14,77	14,58	14,33	13,90	13,90	13,35	15,67	14,07	13,71
Cr ₂ O ₃	0,30	0,41	0,31	0,25	0,32	0,29	0,33	0,28	0,35	0,29	0,20	0,28	0,23	0,30	0,29	0,34	0,65	0,32	0,24	0,22
MnO	0,10	0,09	0,12	0,14	0,11	0,14	0,13	0,13	0,11	0,10	0,07	0,11	0,12	0,10	0,10	0,04	0,12	0,07	0,14	0,09
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na ₂ O	0,26	0,29	0,25	0,29	0,31	0,17	0,37	0,23	0,28	0,26	0,07	0,13	0,17	0,08	0,15	0,04	0,06	0,11	0,15	0,13
K ₂ O	8,73	8,49	8,90	8,75	8,86	8,68	8,88	8,89	8,86	8,94	9,29	9,44	9,51	9,20	9,44	9,18	9,16	9,40	9,05	8,92
F	0,24	0,32	0,31	0,24	0,30	0,32	0,41	0,34	0,17	0,42	0,35	0,43	0,20	0,27	0,26	0,50	0,23	0,40	0,33	0,34
Cl	0,13	0,25	0,15	0,18	0,17	0,34	0,15	0,14	0,15	0,14	0,29	0,37	0,32	0,28	0,38	0,31	0,35	0,25	0,37	0,48
Сумма	97,84	98,18	99,19	98,48	100,30	98,37	99,49	98,99	99,31	98,04	95,91	95,19	96,98	95,76	96,13	94,28	92,20	96,39	95,02	94,55
Si	5,52	5,51	5,55	5,57	5,47	5,52	5,48	5,49	5,57	5,56	5,77	5,63	5,64	5,77	5,64	5,64	5,56	5,75	5,62	5,64
Al ^{IV}	2,46	2,35	2,42	2,43	2,52	2,48	2,47	2,47	2,42	2,39	2,23	2,37	2,36	2,23	2,36	2,36	2,44	2,25	2,38	2,36
Al ^{VI}	0,00	0,00	0,00	0,04	0,00	0,00	0,00	0,00	0,00	0,00	0,05	0,04	0,01	0,03	0,01	0,04	0,05	0,02	0,04	0,01
Ti	0,62	0,63	0,62	0,61	0,60	0,63	0,62	0,63	0,60	0,62	0,56	0,63	0,60	0,54	0,61	0,62	0,65	0,57	0,65	0,64
Fe ³⁺	0,10	0,18	0,09	0,04	0,17	0,09	0,16	0,14	0,08	0,09	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Fe ²⁺	1,45	1,46	1,45	1,49	1,36	1,45	1,40	1,42	1,47	1,45	1,76	1,58	1,79	1,84	1,85	1,77	1,72	1,56	1,73	1,83
Mg	3,56	3,63	3,57	3,50	3,64	3,55	3,61	3,59	3,55	3,58	3,22	3,29	3,20	3,19	3,09	3,15	3,09	3,43	3,15	3,10
Cr	0,03	0,05	0,04	0,03	0,04	0,03	0,04	0,03	0,04	0,03	0,02	0,03	0,03	0,04	0,03	0,04	0,08	0,04	0,03	0,03
Mn	0,01	0,01	0,01	0,02	0,01	0,02	0,02	0,02	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,01	0,02	0,01
Ca	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na	0,07	0,08	0,07	0,08	0,09	0,05	0,10	0,06	0,08	0,07	0,02	0,04	0,05	0,02	0,04	0,01	0,02	0,03	0,04	0,04
K	1,60	1,56	1,61	1,59	1,59	1,59	1,61	1,62	1,60	1,64	1,76	1,80	1,79	1,75	1,80	1,78	1,81	1,76	1,73	1,72
F	0,11	0,15	0,14	0,11	0,13	0,15	0,19	0,15	0,08	0,19	0,16	0,20	0,10	0,13	0,12	0,24	0,11	0,19	0,16	0,16
Cl	0,03	0,06	0,04	0,04	0,04	0,08	0,04	0,03	0,04	0,04	0,07	0,09	0,08	0,07	0,10	0,08	0,09	0,06	0,09	0,12
OH	3,86	3,79	3,83	3,85	3,83	3,77	3,78	3,81	3,89	3,77	3,76	3,70	3,82	3,80	3,78	3,68	3,79	3,75	3,75	3,72
X_{Mg}	0,70	0,69	0,70	0,69	0,70	0,70	0,70	0,70	0,70	0,70	0,65	0,67	0,64	0,63	0,62	0,64	0,64	0,69	0,64	0,63
X _{Fe}	0,30	0,31	0,30	0,31	0,30	0,30	0,30	0,30	0,30	0,30	0,35	0,33	0,36	0,37	0,38	0,36	0,36	0,31	0,36	0,37
IV (F)	2,70	2,56	2,60	2,71	2,62	2,57	2,47	2,55	2,86	2,45	2,47	2,40	2,70	2,57	2,56	2,28	2,61	2,46	2,48	2,45
IV(F/Cl)	6,98	7,11	6,93	7,12	7,01	7,26	6,81	6,85	7,17	6,78	7,01	7,11	7,27	7,07	7,19	6,86	7,25	7,01	7,13	7,19
Т, ℃	804	804	805	802	802	805	804	805	801	805	779	800	786	773	784	790	795	792	796	791
log(X _{Mg} /X _{Fe})	0,36	0,34	0,36	0,36	0,38	0,36	0,36	0,36	0,36	0,36	0,26	0,32	0,25	0,24	0,22	0,25	0,25	0,34	0,26	0,23
log(X _F /X _{OH})	-1,54	-1,41	-1,44	-1,56	-1,46	-1,41	-1,31	-1,40	-1,71	-1,29	-1,36	-1,26	-1,60	-1,48	-1,49	-1,19	-1,52	-1,30	-1,38	-1,36
Df _{Mo}	-0,09	1,22	-0,15	-0,83	0,10	0,06	0,52	0,25	-0,58	0,44	-1,44	-0,74	-1,54	-1,53	-1,69	-0,99	-1,27	-0,59	-1,41	-1,20
Df _{Cu}	-1,90	-3,32	-1,93	-0,32	-1,16	-0,11	-2,65	-2,68	-0,88	-2,71	0,85	0,63	0,35	0,55	0,38	-0,86	0,28	0,52	0,07	0,33

Приложение 9. Результаты анализа состава биотита Быстринского и Шахтаминского месторождений (мас. %).

№ точки	BEPc1	BEPc2	BEPc3	BEPc4	BEPc5	BEPc6	BEPc7	BEPc8	BEPc9	BEPc10	BLP1a1	BLP1a2	BLP1a3	BLP1a4	BLP1a5	BLP1a6	BLP1a7	BLP1a8	BLP1a9	BLP1a10
SiO ₂	38,06	37,74	37,96	36,22	38,40	38,29	37,23	38,25	39,05	37,18	37,71	37,75	38,02	38,04	38,09	37,43	37,90	38,59	37,03	37,86
Al ₂ O ₃	14,00	13,96	13,79	13,58	13,26	13,64	13,40	14,07	13,23	13,95	13,55	13,22	13,25	13,23	13,68	13,73	13,14	13,19	13,32	13,53
TiO ₂	5,53	5,53	5,23	5,37	4,10	5,19	5,45	5,32	4,58	5,47	2,93	3,13	3,45	3,16	2,80	2,83	2,62	3,17	3,50	3,25
FeO	12,76	13,19	13,51	15,09	15,99	14,09	16,23	14,29	16,83	12,83	16,31	15,80	16,18	16,13	15,80	15,92	15,59	15,75	15,95	16,04
MgO	15,00	14,93	14,87	12,91	14,71	14,74	12,80	14,25	13,79	14,85	14,58	14,14	14,33	14,32	14,69	14,49	14,85	15,02	13,78	14,51
Cr_2O_3	0,18	0,24	0,30	0,32	0,31	0,23	0,22	0,26	0,36	0,36	0,17	0,13	0,07	0,12	0,10	0,17	0,15	0,07	0,15	0,05
MnO	0,09	0,06	0,12	0,10	0,05	0,08	0,13	0,10	0,08	0,11	0,18	0,16	0,18	0,15	0,20	0,11	0,17	0,19	0,23	0,15
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na ₂ O	0,17	0,13	0,08	0,04	0,09	0,13	0,06	0,08	0,11	0,13	0,13	0,10	0,08	0,09	0,13	0,12	0,14	0,15	0,16	0,14
K ₂ O	9,36	9,48	9,52	9,16	9,78	9,34	9,23	9,43	9,43	9,19	9,58	9,38	9,58	9,42	9,34	9,30	9,38	9,40	9,41	9,50
F	0,32	0,34	0,30	0,34	0,39	0,43	0,40	0,38	0,29	0,45	0,81	0,88	0,96	0,93	1,00	0,85	0,97	0,86	0,89	0,98
Cl	0,26	0,25	0,28	0,32	0,26	0,28	0,49	0,30	0,36	0,28	0,19	0,17	0,14	0,16	0,17	0,18	0,18	0,14	0,19	0,17
Сумма	95,72	95,83	95,95	93,44	97,34	96,45	95,64	96,73	98,11	94,81	96,14	94,87	96,25	95,76	96,00	95,14	95,09	96,52	94,63	96,18
Si	5,63	5,60	5,63	5,58	5,69	5,66	5,64	5,65	5,74	5,58	5,69	5,76	5,73	5,75	5,74	5,69	5,77	5,77	5,68	5,71
Al ^{IV}	2,37	2,40	2,37	2,42	2,31	2,34	2,36	2,35	2,26	2,42	2,31	2,24	2,27	2,25	2,26	2,31	2,23	2,23	2,32	2,29
Al ^{VI}	0,08	0,04	0,05	0,05	0,01	0,04	0,03	0,09	0,04	0,04	0,10	0,13	0,08	0,11	0,17	0,15	0,12	0,09	0,09	0,11
Ti	0,62	0,62	0,58	0,62	0,46	0,58	0,62	0,59	0,51	0,62	0,33	0,36	0,39	0,36	0,32	0,32	0,30	0,36	0,40	0,37
Fe ³⁺	0,00	0,00	0,00	0,00	0,16	0,00	0,00	0,00	0,03	0,00	0,30	0,19	0,20	0,21	0,26	0,28	0,28	0,23	0,19	0,24
Fe ²⁺	1,57	1,63	1,67	1,94	1,82	1,74	2,05	1,76	2,03	1,61	1,76	1,82	1,83	1,82	1,73	1,74	1,70	1,73	1,86	1,78
Mg	3,31	3,30	3,29	2,97	3,25	3,25	2,89	3,14	3,02	3,32	3,28	3,22	3,22	3,23	3,30	3,29	3,37	3,35	3,15	3,26
Cr	0,02	0,03	0,03	0,04	0,04	0,03	0,03	0,03	0,04	0,04	0,02	0,02	0,01	0,01	0,01	0,02	0,02	0,01	0,02	0,01
Mn	0,01	0,01	0,02	0,01	0,01	0,01	0,02	0,01	0,01	0,01	0,02	0,02	0,02	0,02	0,02	0,01	0,02	0,02	0,03	0,02
Ca	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na	0,05	0,04	0,02	0,01	0,03	0,04	0,02	0,02	0,03	0,04	0,04	0,03	0,02	0,03	0,04	0,04	0,04	0,04	0,05	0,04
K	1,77	1,79	1,80	1,80	1,85	1,76	1,78	1,78	1,77	1,76	1,84	1,82	1,84	1,82	1,79	1,80	1,82	1,79	1,84	1,83
F	0,15	0,16	0,14	0,17	0,18	0,20	0,19	0,18	0,13	0,21	0,39	0,42	0,46	0,45	0,48	0,41	0,47	0,41	0,43	0,47
Cl	0,07	0,06	0,07	0,08	0,07	0,07	0,12	0,07	0,09	0,07	0,05	0,04	0,04	0,04	0,04	0,05	0,05	0,04	0,05	0,04
OH	3,79	3,78	3,79	3,75	3,75	3,73	3,69	3,75	3,78	3,72	3,56	3,53	3,51	3,51	3,48	3,54	3,48	3,56	3,52	3,49
X _{Mg}	0,68	0,67	0,66	0,60	0,62	0,65	0,58	0,64	0,59	0,67	0,61	0,61	0,61	0,61	0,62	0,62	0,63	0,63	0,61	0,62
X _{Fe}	0,32	0,33	0,34	0,40	0,38	0,35	0,42	0,36	0,41	0,33	0,39	0,39	0,39	0,39	0,38	0,38	0,37	0,37	0,39	0,38
IV (F)	2,54	2,51	2,55	2,40	2,40	2,37	2,32	2,42	2,50	2,37	2,03	1,99	1,95	1,96	1,94	2,00	1,96	2,03	1,97	1,94
IV(F/Cl)	7,10	7,03	7,10	6,92	6,85	6,91	6,99	6,96	7,02	6,97	6,37	6,29	6,15	6,23	6,25	6,33	6,31	6,27	6,28	6,24
<u> </u>	798	796	788	782	749	784	777	784	755	798	705	716	726	715	701	702	694	719	729	720
log(X _{Mg} /X _{Fe})	0,32	0,30	0,29	0,18	0,21	0,27	0,15	0,25	0,16	0,31	0,20	0,20	0,20	0,20	0,22	0,21	0,23	0,23	0,19	0,21
log(X _F /X _{OH})	-1,41	-1,38	-1,43	-1,35	-1,32	-1,27	-1,29	-1,33	-1,45	-1,24	-0,97	-0,92	-0,88	-0,90	-0,86	-0,94	-0,87	-0,94	-0,91	-0,87
Df _{Mo}	-1,26	-0,99	-1,07	-1,65	-0,69	-1,10	-2,02	-2,00	-2,27	-0,48	0,20	-0,17	-0,04	-0,05	0,15	0,19	0,80	0,21	-0,09	0,17
Df _{Cu}	0,62	-0,25	0,60	-0,88	0,34	0,04	0,20	0,90	1,30	-0,36	0,49	0,34	-1,17	-0,18	0,96	0,86	0,73	-0,06	-0,80	-0,45

№ точки	BLP1b1	BLP1b2	BLP1b3	BLP1b4	BLP1b5	BLP1b6	BLP1b7	BLP168	BLP169	BLP1b10	BLP1c1	BLP1c2	BLP1c3	BLP1c4	BLP1c5	BLP1c6	BLP1c7	BLP1c8	BLP1c9	BLP1c10
SiO ₂	38,73	37,83	38,18	38,32	38,22	37,92	38,32	38,52	37,97	38,50	37,94	38,10	38,30	37,43	38,34	38,46	38,19	38,57	38,08	38,02
Al ₂ O ₃	13,54	13,58	13,47	13,60	13,64	13,49	13,38	14,38	13,46	13,72	13,48	13,60	13,66	13,38	13,61	13,63	13,46	13,64	13,42	13,87
TiO ₂	3,16	3,60	2,69	3,50	3,61	3,51	2,72	2,46	3,42	3,71	3,43	3,66	3,58	3,69	3,62	3,51	3,61	3,42	3,48	3,31
FeO	16,37	16,38	16,05	16,53	16,22	16,56	16,08	15,28	16,33	14,70	16,33	16,14	16,64	16,00	16,28	16,51	16,17	16,33	16,28	16,09
MgO	14,65	14,18	15,23	14,26	14,25	14,12	15,14	16,56	14,11	15,30	14,05	14,25	14,54	14,03	14,88	14,22	14,51	14,08	14,13	14,39
Cr ₂ O ₃	0,08	0,06	0,07	0,11	0,05	0,10	0,07	0,11	0,16	0,10	0,13	0,08	0,15	0,33	0,09	0,13	0,09	0,09	0,06	0,09
MnO	0,12	0,08	0,11	0,08	0,10	0,07	0,09	0,07	0,09	0,07	0,11	0,04	0,09	0,07	0,10	0,04	0,10	0,04	0,06	0,10
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na ₂ O	0,15	0,06	0,13	0,12	0,14	0,10	0,10	0,07	0,12	0,17	0,06	0,14	0,15	0,18	0,11	0,10	0,13	0,08	0,11	0,13
K ₂ O	9,63	9,37	9,12	9,51	9,54	9,61	9,36	9,67	9,56	9,65	9,60	9,54	9,79	9,48	9,69	9,68	9,65	9,45	9,34	9,60
F	0,88	0,84	0,99	0,75	0,78	0,80	0,99	0,98	0,87	0,94	0,95	0,92	0,90	0,77	0,85	0,89	0,79	0,89	0,99	0,97
Cl	0,18	0,18	0,07	0,14	0,12	0,14	0,13	0,18	0,13	0,11	0,18	0,13	0,16	0,16	0,15	0,16	0,19	0,15	0,19	0,15
Сумма	97,47	96,16	96,11	96,91	96,67	96,41	96,36	98,28	96,21	96,97	96,25	96,59	97,96	95,53	97,73	97,31	96,90	96,75	96,13	96,73
Si	5,75	5,70	5,74	5,72	5,71	5,70	5,75	5,65	5,72	5,71	5,72	5,71	5,68	5,68	5,68	5,73	5,71	5,76	5,74	5,69
Al ^{IV}	2,25	2,30	2,26	2,28	2,29	2,30	2,25	2,35	2,28	2,29	2,28	2,29	2,32	2,32	2,32	2,27	2,29	2,24	2,26	2,31
Al ^{VI}	0,12	0,11	0,12	0,11	0,12	0,09	0,12	0,13	0,11	0,10	0,12	0,11	0,07	0,07	0,06	0,12	0,08	0,16	0,12	0,14
Ti	0,35	0,41	0,30	0,39	0,41	0,40	0,31	0,27	0,39	0,41	0,39	0,41	0,40	0,42	0,40	0,39	0,41	0,38	0,39	0,37
Fe ³⁺	0,22	0,20	0,33	0,19	0,17	0,20	0,31	0,42	0,18	0,16	0,18	0,16	0,23	0,17	0,24	0,17	0,20	0,13	0,17	0,21
Fe ²⁺	1,81	1,86	1,67	1,87	1,86	1,88	1,70	1,44	1,87	1,66	1,88	1,86	1,83	1,86	1,77	1,89	1,82	1,90	1,88	1,80
Mg	3,24	3,18	3,41	3,17	3,18	3,17	3,39	3,62	3,17	3,38	3,16	3,18	3,21	3,17	3,29	3,16	3,23	3,14	3,17	3,21
Cr	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,01	0,02	0,01	0,02	0,04	0,01	0,01	0,01	0,01	0,01	0,01
Mn	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
Ca	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na	0,04	0,02	0,04	0,03	0,04	0,03	0,03	0,02	0,03	0,05	0,02	0,04	0,04	0,05	0,03	0,03	0,04	0,02	0,03	0,04
K	1,82	1,80	1,75	1,81	1,82	1,84	1,79	1,81	1,84	1,82	1,85	1,82	1,85	1,83	1,83	1,84	1,84	1,80	1,80	1,83
F	0,41	0,40	0,47	0,36	0,37	0,38	0,47	0,46	0,42	0,44	0,45	0,43	0,42	0,37	0,40	0,42	0,37	0,42	0,47	0,46
Cl	0,04	0,05	0,02	0,04	0,03	0,04	0,03	0,04	0,03	0,03	0,04	0,03	0,04	0,04	0,04	0,04	0,05	0,04	0,05	0,04
OH	3,54	3,55	3,51	3,61	3,60	3,58	3,50	3,50	3,55	3,53	3,50	3,53	3,54	3,59	3,57	3,54	3,58	3,54	3,48	3,50
X _{Mg}	0,61	0,61	0,63	0,61	0,61	0,60	0,63	0,66	0,61	0,65	0,61	0,61	0,61	0,61	0,62	0,61	0,62	0,61	0,61	0,61
X _{Fe}	0,39	0,39	0,37	0,39	0,39	0,40	0,37	0,34	0,39	0,35	0,39	0,39	0,39	0,39	0,38	0,39	0,38	0,39	0,39	0,39
IV (F)	2,00	2,00	1,96	2,06	2,05	2,03	1,96	2,00	1,99	2,01	1,94	1,97	1,98	2,05	2,03	1,98	2,05	1,98	1,92	1,95
IV(F/Cl)	6,30	6,29	5,91	6,23	6,15	6,21	6,13	6,39	6,14	6,18	6,23	6,14	6,21	6,29	6,25	6,21	6,37	6,20	6,25	6,18
<u> </u>	713	731	696	725	731	726	697	689	723	744	724	733	728	736	733	725	732	722	726	721
log(X _{Mg} /X _{Fe})	0,20	0,19	0,23	0,19	0,19	0,18	0,22	0,29	0,19	0,27	0,19	0,20	0,19	0,19	0,21	0,19	0,20	0,19	0,19	0,20
log(X _F /X _{OH})	-0,94	-0,95	-0,87	-1,01	-0,99	-0,98	-0,87	-0,89	-0,93	-0,90	-0,89	-0,91	-0,92	-0,99	-0,95	-0,93	-0,98	-0,92	-0,87	-0,88
Df _{Mo}	-0,43	-0,41	0,81	-0,86	-0,87	-0,57	0,71	1,61	-0,54	0,16	-0,43	-0,53	-0,28	-0,35	0,00	-0,82	-0,31	-1,11	-0,34	-0,36
Df _{Cu}	0,60	-0,69	-0,67	-0,22	-0,51	-0,78	-0,15	1,44	-0,64	-0,56	-0,42	-0,98	-1,08	-0,98	-1,15	-0,21	-0,38	0,39	-0,50	-0,07

№ точки	BLP1d1	BLP1d2	BLP1d3	BLP1d4	BLP1d5	BLP1d6	BLP1d7	BLP1d8	BLP1d9	BLP1d10	BLP1e1	BLP1e2	BLP1e3	BLP1e4	BLP1e5	BLP1e6	BLP1e7	BLP1e8	BLP1e9	BLP1e10
SiO ₂	38,42	38,39	38,42	38,47	38,65	37,83	37,36	38,06	37,85	38,70	38,26	38,47	38,67	38,57	38,37	38,40	38,41	38,10	38,22	38,37
Al ₂ O ₃	13,27	13,20	13,26	13,05	13,24	13,33	13,60	13,16	13,51	14,05	14,14	14,15	14,12	14,28	14,52	14,24	13,87	13,95	13,98	14,19
TiO ₂	3,26	3,22	3,36	2,95	2,93	3,35	3,35	3,07	2,98	3,21	3,06	2,98	3,24	3,12	2,89	3,01	3,07	3,18	3,10	3,73
FeO	16,08	16,01	16,18	15,83	15,93	16,22	15,87	16,04	16,07	16,41	13,95	14,68	14,29	14,28	14,23	14,43	14,11	14,69	14,52	13,88
MgO	14,56	14,54	14,44	14,57	14,95	14,50	14,52	14,37	14,80	15,17	16,16	15,70	15,87	16,09	16,67	16,18	16,23	15,42	15,69	16,34
Cr ₂ O ₃	0,14	0,14	0,15	0,07	0,07	0,16	0,11	0,14	0,13	0,12	0,14	0,12	0,20	0,17	0,11	0,13	0,24	0,13	0,21	0,17
MnO	0,13	0,14	0,15	0,20	0,14	0,16	0,19	0,16	0,20	0,18	0,15	0,16	0,06	0,16	0,15	0,10	0,11	0,08	0,13	0,06
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na ₂ O	0,20	0,15	0,12	0,09	0,09	0,21	0,21	0,08	0,11	0,18	0,07	0,12	0,10	0,10	0,10	0,15	0,13	0,06	0,10	0,05
K ₂ O	9,71	9,60	9,67	9,54	9,41	9,71	9,49	9,55	9,36	9,61	9,30	9,40	9,70	9,28	9,38	9,36	9,55	9,37	9,43	9,78
F	1,07	0,97	0,97	0,94	1,01	0,87	0,88	0,95	0,90	0,78	0,83	0,82	1,04	0,76	0,84	0,80	0,85	0,76	0,78	0,89
Cl	0,19	0,18	0,18	0,19	0,16	0,19	0,20	0,21	0,20	0,19	0,14	0,22	0,15	0,17	0,16	0,19	0,14	0,16	0,15	0,13
Сумма	97,02	96,52	96,89	95,91	96,57	96,51	95,76	95,78	96,09	98,59	96,20	96,82	97,44	96,96	97,41	96,97	96,70	95,90	96,31	97,57
Si	5,75	5,76	5,75	5,80	5,78	5,69	5,66	5,76	5,71	5,68	5,68	5,70	5,70	5,68	5,63	5,67	5,69	5,69	5,69	5,63
Al ^{IV}	2,25	2,24	2,25	2,20	2,22	2,31	2,34	2,24	2,29	2,32	2,32	2,30	2,30	2,32	2,37	2,33	2,31	2,31	2,31	2,37
Al ^{VI}	0,09	0,10	0,09	0,12	0,12	0,06	0,09	0,11	0,11	0,11	0,15	0,17	0,15	0,16	0,15	0,15	0,11	0,15	0,14	0,08
Ti	0,37	0,36	0,38	0,34	0,33	0,38	0,38	0,35	0,34	0,35	0,34	0,33	0,36	0,35	0,32	0,33	0,34	0,36	0,35	0,41
Fe ³⁺	0,20	0,20	0,19	0,20	0,24	0,24	0,26	0,21	0,29	0,29	0,28	0,26	0,22	0,27	0,36	0,30	0,28	0,24	0,26	0,24
Fe ²⁺	1,81	1,81	1,83	1,79	1,74	1,80	1,75	1,81	1,73	1,72	1,45	1,55	1,54	1,48	1,38	1,47	1,46	1,59	1,54	1,46
Mg	3,25	3,25	3,22	3,28	3,34	3,25	3,28	3,24	3,32	3,32	3,58	3,47	3,49	3,53	3,65	3,56	3,58	3,44	3,48	3,57
Cr	0,02	0,02	0,02	0,01	0,01	0,02	0,01	0,02	0,02	0,01	0,02	0,01	0,02	0,02	0,01	0,02	0,03	0,02	0,02	0,02
Mn	0,02	0,02	0,02	0,03	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,01	0,02	0,02	0,01	0,01	0,01	0,02	0,01
Ca	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na	0,06	0,04	0,03	0,03	0,03	0,06	0,06	0,02	0,03	0,05	0,02	0,03	0,03	0,03	0,03	0,04	0,04	0,02	0,03	0,02
K	1,85	1,84	1,85	1,84	1,80	1,86	1,83	1,84	1,80	1,80	1,76	1,78	1,82	1,74	1,76	1,76	1,80	1,79	1,79	1,83
F	0,51	0,46	0,46	0,45	0,48	0,41	0,42	0,45	0,43	0,36	0,39	0,38	0,48	0,35	0,39	0,37	0,40	0,36	0,37	0,41
Cl	0,05	0,04	0,05	0,05	0,04	0,05	0,05	0,05	0,05	0,05	0,04	0,06	0,04	0,04	0,04	0,05	0,04	0,04	0,04	0,03
OH	3,45	3,50	3,50	3,50	3,48	3,54	3,53	3,49	3,52	3,59	3,58	3,56	3,48	3,60	3,57	3,58	3,57	3,60	3,60	3,56
X _{Mg}	0,62	0,62	0,61	0,62	0,63	0,61	0,62	0,61	0,62	0,62	0,67	0,66	0,66	0,67	0,68	0,67	0,67	0,65	0,66	0,68
X _{Fe}	0,38	0,38	0,39	0,38	0,37	0,39	0,38	0,39	0,38	0,38	0,33	0,34	0,34	0,33	0,32	0,33	0,33	0,35	0,34	0,32
IV (F)	1,90	1,96	1,95	1,97	1,95	2,00	1,99	1,96	1,99	2,07	2,10	2,08	1,98	2,13	2,10	2,10	2,09	2,11	2,11	2,07
IV(F/Cl)	6,24	6,26	6,27	6,33	6,24	6,33	6,35	6,33	6,35	6,39	6,41	6,55	6,30	6,50	6,45	6,52	6,39	6,43	6,40	6,34
<u> </u>	719	718	722	708	707	723	725	712	709	716	726	717	730	725	717	721	726	725	723	751
$\log(X_{Mg}/X_{Fe})$	0,21	0,21	0,20	0,22	0,22	0,20	0,21	0,20	0,22	0,22	0,31	0,28	0,30	0,30	0,32	0,30	0,31	0,27	0,28	0,32
$\log(X_F/X_{OH})$	-0,83	-0,88	-0,88	-0,89	-0,86	-0,93	-0,92	-0,89	-0,92	-1,00	-0,96	-0,97	-0,86	-1,01	-0,96	-0,98	-0,96	-1,00	-0,99	-0,94
Df _{Mo}	0,13	0,00	-0,17	0,03	0,34	0,20	0,39	0,10	0,48	-0,22	0,95	0,41	0,63	0,50	1,34	0,89	1,14	0,29	0,51	1,07
Df _{Cu}	-0,38	-0,09	-0,25	0,79	0,26	-0,61	-0,47	0,34	0,23	0,72	1,42	2,39	0,90	1,97	1,57	1,79	0,96	1,28	1,28	-0,35

№ точки	BLP2a1	BLP2a2	BLP2a3	BLP2a4	BLP2a5	BLP2a6	BLP2a7	BLP2a8	BLP2a9	BLP2a10	BLP2b1	BLP2b2	BLP2b3	BLP2b4	BLP2b5	BLP2b6	BLP2b7	BLP268	BLP2b9	BLP2b10
SiO ₂	38,29	38,74	38,94	37,93	39,01	38,85	38,07	38,66	38,58	39,07	40,41	39,91	40,47	39,85	39,98	40,53	40,33	40,19	40,03	40,16
Al ₂ O ₃	13,50	13,43	13,12	13,77	13,68	13,65	14,02	14,33	13,54	13,82	12,80	12,44	13,00	13,25	13,04	12,43	12,80	12,86	13,32	13,36
TiO ₂	2,90	2,94	2,97	2,93	2,88	2,79	2,67	3,00	2,69	2,82	2,48	2,49	2,58	2,60	2,55	2,40	2,64	2,58	2,65	2,62
FeO	14,53	14,38	14,06	14,30	14,63	14,63	14,84	14,29	14,17	14,37	13,45	13,09	13,19	13,59	13,26	13,30	13,41	13,57	13,58	13,61
MgO	15,63	15,65	15,52	15,89	15,78	16,21	16,12	16,37	15,60	16,21	17,35	17,02	16,91	16,67	16,83	17,39	17,01	17,13	16,52	16,56
Cr ₂ O ₃	0,47	0,38	0,38	0,38	0,37	0,31	0,42	0,30	0,44	0,29	0,23	0,26	0,20	0,24	0,22	0,23	0,26	0,28	0,22	0,24
MnO	0,11	0,08	0,07	0,06	0,10	0,11	0,12	0,08	0,12	0,15	0,05	0,04	0,07	0,04	0,06	0,07	0,05	0,08	0,11	0,02
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na ₂ O	0,19	0,25	0,23	0,20	0,15	0,23	0,23	0,13	0,20	0,12	0,09	0,14	0,04	0,11	0,11	0,08	0,12	0,12	0,08	0,03
K ₂ O	9,17	9,23	9,44	9,13	9,47	9,52	9,21	9,10	9,25	9,12	8,45	8,57	9,29	9,37	9,29	8,77	9,13	8,76	9,44	9,51
F	0,43	0,36	0,46	0,34	0,54	0,55	0,38	0,50	0,50	0,49	0,62	0,47	0,69	0,54	0,73	0,68	0,57	0,52	0,63	0,77
Cl	0,22	0,25	0,22	0,26	0,22	0,20	0,24	0,21	0,28	0,21	0,15	0,15	0,14	0,14	0,15	0,16	0,15	0,13	0,15	0,14
Сумма	95,44	95,70	95,42	95,18	96,83	97,05	96,30	96,96	95,36	96,66	96,09	94,57	96,57	96,40	96,22	96,04	96,46	96,22	96,72	97,01
Si	5,73	5,77	5,82	5,69	5,76	5,73	5,66	5,67	5,78	5,75	5,92	5,94	5,92	5,86	5,89	5,96	5,91	5,90	5,87	5,88
Al ^{IV}	2,27	2,23	2,18	2,31	2,24	2,27	2,34	2,33	2,22	2,25	2,08	2,06	2,08	2,14	2,11	2,04	2,09	2,10	2,13	2,12
Al ^{VI}	0,11	0,13	0,13	0,12	0,14	0,10	0,11	0,15	0,16	0,15	0,13	0,12	0,17	0,15	0,15	0,11	0,12	0,12	0,17	0,18
Ti	0,33	0,33	0,33	0,33	0,32	0,31	0,30	0,33	0,30	0,31	0,27	0,28	0,28	0,29	0,28	0,27	0,29	0,28	0,29	0,29
Fe ³⁺	0,26	0,21	0,15	0,29	0,23	0,30	0,37	0,30	0,22	0,27	0,26	0,23	0,18	0,22	0,21	0,25	0,21	0,25	0,19	0,18
Fe ²⁺	1,56	1,58	1,60	1,50	1,57	1,50	1,47	1,45	1,55	1,50	1,38	1,39	1,43	1,45	1,42	1,37	1,43	1,40	1,47	1,48
Mg	3,49	3,48	3,46	3,55	3,47	3,56	3,57	3,58	3,48	3,56	3,79	3,78	3,69	3,65	3,70	3,81	3,72	3,75	3,61	3,61
Cr	0,06	0,04	0,05	0,04	0,04	0,04	0,05	0,04	0,05	0,03	0,03	0,03	0,02	0,03	0,03	0,03	0,03	0,03	0,03	0,03
Mn	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,01	0,00	0,01	0,00	0,01	0,01	0,01	0,01	0,01	0,00
Ca	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na	0,06	0,07	0,07	0,06	0,04	0,07	0,07	0,04	0,06	0,03	0,02	0,04	0,01	0,03	0,03	0,02	0,03	0,03	0,02	0,01
K	1,75	1,75	1,80	1,75	1,78	1,79	1,75	1,70	1,77	1,71	1,58	1,63	1,74	1,76	1,75	1,64	1,71	1,64	1,77	1,78
F	0,20	0,17	0,22	0,16	0,25	0,25	0,18	0,23	0,24	0,23	0,29	0,22	0,32	0,25	0,34	0,32	0,26	0,24	0,29	0,35
Cl	0,06	0,06	0,05	0,07	0,05	0,05	0,06	0,05	0,07	0,05	0,04	0,04	0,04	0,03	0,04	0,04	0,04	0,03	0,04	0,04
ОН	3,74	3,77	3,73	3,77	3,69	3,70	3,76	3,72	3,69	3,72	3,68	3,74	3,65	3,72	3,62	3,64	3,70	3,73	3,67	3,61
X _{Mg}	0,66	0,66	0,66	0,66	0,66	0,66	0,66	0,67	0,66	0,67	0,70	0,70	0,70	0,69	0,69	0,70	0,69	0,69	0,68	0,68
X _{Fe}	0,34	0,34	0,34	0,34	0,34	0,34	0,34	0,33	0,34	0,33	0,30	0,30	0,30	0,31	0,31	0,30	0,31	0,31	0,32	0,32
IV (F)	2,39	2,47	2,36	2,49	2,28	2,29	2,44	2,33	2,32	2,35	2,28	2,41	2,23	2,33	2,20	2,24	2,32	2,36	2,25	2,16
IV(F/Cl)	6,84	6,98	6,82	7,03	6,73	6,71	6,93	6,77	6,90	6,79	6,66	6,76	6,57	6,63	6,55	6,63	6,68	6,62	6,59	6,48
<u> </u>	715	717	720	7/18	712	709	703	721	7/06	7/12	703	7/06	708	7/06	707	700	710	707	708	7/06
$\log(X_{Mg}/X_{Fe})$	0,28	0,29	0,29	0,30	0,28	0,30	0,29	0,31	0,29	0,30	0,36	0,37	0,36	0,34	0,35	0,37	0,35	0,35	0,34	0,34
$\log(X_F/X_{OH})$	-1,27	-1,34	-1,23	-1,37	-1,16	-1,16	-1,33	-1,20	-1,20	-1,22	-1,11	-1,23	-1,06	-1,17	-1,03	-1,06	-1,15	-1,19	-1,10	-1,01
	0,26	-0,12	-0,18	0,56	-0,05	0,63	0,71	0,40	0,10	0,21	1,27	1,19	0,58	0,44	0,93	1,56	0,80	0,96	0,20	0,33
Df _{Cu}	2,98	3,92	3,58	3,37	3,40	2,72	3,27	3,14	4,57	3,56	3,33	3,49	3,86	3,73	3,38	3,16	3,48	3,11	3,93	3,64

№ точки	BLP2c1	BLP2c2	BLP2c3	BLP2c4	BLP2c5	BLP2c6	BLP2c7	BLP2c8	BLP2c9	BLP2c10	BLP2d1	BLP2d2	BLP2d3	BLP2d4	BLP2d5	BLP2d6	BLP2d7	BLP2d8	BLP2d9	BLP2d10
SiO ₂	39,15	38,79	38,17	38,90	38,91	38,89	38,47	37,86	38,66	38,48	38,47	38,75	38,01	38,95	38,92	38,72	39,29	38,42	38,13	38,53
Al ₂ O ₃	14,28	14,13	13,96	13,99	13,93	13,95	13,74	13,81	13,66	13,76	13,88	14,03	13,46	13,99	13,69	13,60	13,87	13,73	13,86	14,13
TiO ₂	2,82	2,92	2,82	2,87	2,87	2,96	3,03	2,99	2,77	2,87	2,84	2,69	2,89	2,98	2,83	3,08	2,75	2,79	2,93	2,73
FeO	13,42	14,01	14,01	13,83	13,56	13,85	14,04	13,87	13,96	13,94	14,61	14,24	13,74	14,66	14,47	14,42	14,66	14,15	14,16	14,28
MgO	16,12	16,72	16,22	16,44	16,34	16,35	15,66	16,07	16,02	16,09	16,25	16,20	14,32	15,95	15,73	15,85	16,29	15,92	16,16	16,44
Cr ₂ O ₃	0,38	0,34	0,33	0,31	0,29	0,27	0,32	0,40	0,33	0,25	0,35	0,33	0,37	0,32	0,28	0,29	0,33	0,30	0,29	0,29
MnO	0,03	0,13	0,13	0,08	0,11	0,11	0,11	0,06	0,10	0,11	0,08	0,10	0,10	0,11	0,10	0,05	0,12	0,06	0,11	0,07
CaO	0,00	0,00	0,00	0,00	0,05	0,00	0,15	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na ₂ O	0,10	0,12	0,14	0,15	0,11	0,11	0,13	0,17	0,14	0,09	0,18	0,09	0,24	0,12	0,15	0,13	0,14	0,10	0,07	0,12
K ₂ O	8,74	9,02	8,69	9,02	9,04	9,13	8,33	9,18	9,03	9,04	9,38	8,76	9,51	8,96	9,08	9,10	9,21	8,83	9,06	8,94
F	0,41	0,31	0,40	0,36	0,38	0,33	0,53	0,32	0,35	0,29	0,42	0,39	0,31	0,57	0,52	0,41	0,59	0,37	0,49	0,35
Cl	0,18	0,23	0,25	0,22	0,21	0,18	0,22	0,23	0,22	0,22	0,21	0,21	0,30	0,21	0,23	0,21	0,19	0,22	0,20	0,23
Сумма	95,62	96,71	95,12	96,17	95,78	96,14	94,73	94,97	95,23	95,14	96,66	95,77	93,25	96,82	96,01	95,86	97,42	94,88	95,45	96,12
Si	5,77	5,69	5,70	5,73	5,75	5,73	5,76	5,68	5,76	5,74	5,69	5,74	5,81	5,73	5,78	5,75	5,75	5,75	5,69	5,70
Al ^{IV}	2,23	2,31	2,30	2,27	2,25	2,27	2,24	2,32	2,24	2,26	2,31	2,26	2,19	2,27	2,22	2,25	2,25	2,25	2,31	2,30
Al ^{VI}	0,26	0,13	0,16	0,16	0,18	0,16	0,18	0,12	0,16	0,16	0,10	0,19	0,24	0,16	0,17	0,13	0,14	0,17	0,13	0,16
Ti	0,31	0,32	0,32	0,32	0,32	0,33	0,34	0,34	0,31	0,32	0,32	0,30	0,33	0,33	0,32	0,34	0,30	0,31	0,33	0,30
Fe ³⁺	0,18	0,32	0,31	0,26	0,23	0,25	0,18	0,29	0,25	0,26	0,33	0,29	0,05	0,25	0,22	0,23	0,28	0,26	0,31	0,33
Fe ²⁺	1,47	1,39	1,43	1,43	1,44	1,45	1,57	1,45	1,49	1,47	1,48	1,47	1,71	1,54	1,57	1,55	1,50	1,50	1,45	1,43
Mg	3,54	3,66	3,61	3,61	3,60	3,59	3,50	3,59	3,56	3,58	3,58	3,58	3,26	3,50	3,48	3,51	3,56	3,55	3,60	3,62
Cr	0,04	0,04	0,04	0,04	0,03	0,03	0,04	0,05	0,04	0,03	0,04	0,04	0,04	0,04	0,03	0,03	0,04	0,03	0,03	0,03
Mn	0,00	0,02	0,02	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
Ca	0,00	0,00	0,00	0,00	0,01	0,00	0,02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na	0,03	0,04	0,04	0,04	0,03	0,03	0,04	0,05	0,04	0,03	0,05	0,03	0,07	0,03	0,04	0,04	0,04	0,03	0,02	0,03
K	1,64	1,69	1,65	1,69	1,70	1,72	1,59	1,76	1,72	1,72	1,77	1,65	1,85	1,68	1,72	1,72	1,72	1,69	1,73	1,69
F	0,19	0,14	0,19	0,17	0,18	0,15	0,25	0,15	0,17	0,14	0,20	0,18	0,15	0,26	0,24	0,19	0,27	0,17	0,23	0,16
Cl	0,04	0,06	0,06	0,05	0,05	0,05	0,06	0,06	0,05	0,06	0,05	0,05	0,08	0,05	0,06	0,05	0,05	0,06	0,05	0,06
OH	3,76	3,80	3,75	3,78	3,77	3,80	3,69	3,79	3,78	3,81	3,75	3,76	3,77	3,68	3,70	3,75	3,68	3,77	3,72	3,78
X _{Mg}	0,68	0,68	0,67	0,68	0,68	0,68	0,67	0,67	0,67	0,67	0,66	0,67	0,65	0,66	0,66	0,66	0,66	0,67	0,67	0,67
X _{Fe}	0,32	0,32	0,33	0,32	0,32	0,32	0,33	0,33	0,33	0,33	0,34	0,33	0,35	0,34	0,34	0,34	0,34	0,33	0,33	0,33
IV (F)	2,44	2,57	2,43	2,50	2,47	2,53	2,29	2,53	2,49	2,57	2,40	2,44	2,51	2,26	2,31	2,41	2,26	2,47	2,34	2,49
IV(F/Cl)	6,83	7,07	6,97	6,97	6,94	6,93	6,78	7,03	6,96	7,06	6,84	6,89	7,08	6,70	6,79	6,84	6,66	6,94	6,77	6,98
Т, ℃	717	720	716	718	720	722	723	724	712	717	712	707	715	717	711	723	707	712	720	709
log(X _{Mg} /X _{Fe})	0,33	0,33	0,31	0,33	0,33	0,32	0,30	0,31	0,31	0,31	0,30	0,31	0,27	0,29	0,29	0,29	0,30	0,30	0,31	0,31
log(X _F /X _{OH})	-1,29	-1,43	-1,30	-1,35	-1,33	-1,39	-1,17	-1,40	-1,36	-1,44	-1,28	-1,31	-1,40	-1,15	-1,18	-1,29	-1,13	-1,34	-1,21	-1,36
Df _{Mo}	-0,58	0,55	0,71	0,25	0,13	0,09	0,07	0,68	0,15	0,23	0,64	0,15	-1,37	0,02	-0,10	0,05	0,30	0,22	0,82	0,54
Df _{Cu}	5,18	3,88	3,75	4,18	4,37	3,80	3,37	3,19	4,15	4,02	2,86	4,20	6,02	3,10	3,85	2,97	3,19	3,90	2,52	3,95

№ точки	BLP2d11	BLP2d12	BLP2d13	BLP2d14	BLP2d15	BLP2d16	BLP2d17	BLP2d18	BLP2d19	BLP2d20	BLP3b1	BLP3b2	BLP3b3	BLP3b4	BLP3b5	BLP3b6	BLP3b7	BLP3b8	BLP3b9	BLP3b10
SiO ₂	38,52	39,70	39,34	39,48	38,63	38,45	38,32	38,89	38,14	38,71	38,42	37,19	37,99	38,07	38,08	37,48	38,97	38,49	38,99	38,51
Al ₂ O ₃	13,71	13,63	13,97	14,51	14,05	13,85	13,60	13,79	14,36	13,81	12,93	13,90	14,28	14,31	14,48	14,43	14,57	14,40	14,25	14,40
TiO ₂	3,18	2,74	3,07	2,56	2,99	3,00	2,99	2,88	2,91	2,85	3,21	2,96	3,02	3,01	3,02	2,86	2,97	2,77	2,78	3,11
FeO	13,78	13,82	14,42	13,86	14,43	14,11	13,68	13,69	14,16	13,74	14,42	14,55	14,46	14,35	14,77	13,80	13,09	14,61	14,66	14,60
MgO	15,91	15,89	16,28	17,22	16,23	16,32	16,39	16,46	16,62	16,62	16,12	14,16	15,84	15,72	15,85	15,90	17,08	16,02	16,19	16,11
Cr ₂ O ₃	0,23	0,34	0,36	0,23	0,33	0,35	0,29	0,25	0,22	0,31	0,02	0,22	0,14	0,16	0,15	0,15	0,17	0,14	0,13	0,15
MnO	0,10	0,11	0,14	0,11	0,15	0,12	0,08	0,15	0,14	0,13	0,11	0,12	0,09	0,11	0,09	0,05	0,04	0,05	0,11	0,11
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na ₂ O	0,11	0,15	0,11	0,04	0,14	0,12	0,08	0,18	0,18	0,13	0,09	0,14	0,12	0,13	0,17	0,14	0,12	0,12	0,05	0,10
K ₂ O	9,00	9,13	9,38	8,98	9,21	9,09	9,02	9,25	9,28	8,95	9,18	9,34	9,17	8,98	8,86	8,44	8,94	8,53	8,91	9,13
F	0,42	0,54	0,33	0,53	0,35	0,44	0,36	0,37	0,37	0,49	0,43	0,37	0,43	0,43	0,41	0,53	0,44	0,32	0,41	0,44
Cl	0,19	0,22	0,22	0,19	0,20	0,20	0,20	0,23	0,20	0,20	0,36	0,35	0,28	0,29	0,32	0,43	0,30	0,30	0,32	0,28
Сумма	95,17	96,26	97,60	97,70	96,69	96,04	95,02	96,14	96,59	95,94	95,29	93,31	95,80	95,57	96,22	94,20	96,70	95,74	96,78	96,95
Si	5,74	5,85	5,73	5,72	5,69	5,70	5,72	5,74	5,63	5,73	5,76	5,72	5,66	5,68	5,65	5,66	5,69	5,70	5,73	5,66
Al ^{IV}	2,26	2,15	2,27	2,28	2,31	2,30	2,28	2,26	2,37	2,27	2,24	2,28	2,34	2,32	2,35	2,34	2,31	2,30	2,27	2,34
Al ^{VI}	0,15	0,22	0,13	0,20	0,13	0,12	0,12	0,14	0,12	0,14	0,05	0,23	0,17	0,19	0,18	0,22	0,20	0,22	0,20	0,16
Ti	0,36	0,30	0,34	0,28	0,33	0,33	0,34	0,32	0,32	0,32	0,36	0,34	0,34	0,34	0,34	0,32	0,33	0,31	0,31	0,34
Fe ³⁺	0,21	0,15	0,25	0,34	0,30	0,30	0,28	0,26	0,36	0,30	0,28	0,15	0,29	0,27	0,31	0,30	0,28	0,30	0,29	0,29
Fe ²⁺	1,51	1,55	1,51	1,33	1,48	1,45	1,42	1,42	1,38	1,40	1,52	1,72	1,50	1,52	1,51	1,43	1,31	1,50	1,50	1,49
Mg	3,54	3,49	3,54	3,72	3,56	3,61	3,65	3,62	3,65	3,66	3,60	3,24	3,52	3,49	3,50	3,58	3,72	3,54	3,55	3,53
Cr	0,03	0,04	0,04	0,03	0,04	0,04	0,03	0,03	0,03	0,04	0,00	0,03	0,02	0,02	0,02	0,02	0,02	0,02	0,01	0,02
Mn	0,01	0,01	0,02	0,01	0,02	0,01	0,01	0,02	0,02	0,02	0,01	0,02	0,01	0,01	0,01	0,01	0,00	0,01	0,01	0,01
Ca	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na	0,03	0,04	0,03	0,01	0,04	0,04	0,02	0,05	0,05	0,04	0,03	0,04	0,03	0,04	0,05	0,04	0,03	0,04	0,01	0,03
K	1,71	1,72	1,74	1,66	1,73	1,72	1,72	1,74	1,75	1,69	1,76	1,83	1,74	1,71	1,68	1,62	1,67	1,61	1,67	1,71
F	0,20	0,25	0,15	0,24	0,16	0,21	0,17	0,17	0,17	0,23	0,21	0,18	0,20	0,20	0,19	0,25	0,20	0,15	0,19	0,20
Cl	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,06	0,05	0,05	0,09	0,09	0,07	0,07	0,08	0,11	0,07	0,07	0,08	0,07
ОН	3,75	3,70	3,80	3,71	3,79	3,74	3,78	3,77	3,78	3,72	3,70	3,73	3,73	3,72	3,73	3,64	3,72	3,78	3,73	3,72
X _{Mg}	0,67	0,67	0,67	0,69	0,67	0,67	0,68	0,68	0,68	0,68	0,67	0,63	0,66	0,66	0,66	0,67	0,70	0,66	0,66	0,66
X _{Fe}	0,33	0,33	0,33	0,31	0,33	0,33	0,32	0,32	0,32	0,32	0,33	0,37	0,34	0,34	0,34	0,33	0,30	0,34	0,34	0,34
IV (F)	2,42	2,31	2,53	2,34	2,50	2,39	2,49	2,49	2,47	2,36	2,39	2,40	2,38	2,38	2,39	2,29	2,42	2,52	2,41	2,38
IV(F/Cl)	6,84	6,79	6,98	6,78	6,91	6,83	6,95	7,00	6,92	6,83	7,08	7,02	6,94	6,95	7,00	7,07	7,09	7,10	7,03	6,95
Т, ℃	732	709	722	703	720	723	726	720	719	719	731	714	721	721	719	719	728	708	708	723
log(X _{Mg} /X _{Fe})	0,31	0,31	0,30	0,35	0,30	0,31	0,33	0,33	0,32	0,33	0,30	0,24	0,29	0,29	0,28	0,31	0,37	0,29	0,29	0,29
log(X _F /X _{OH})	-1,28	-1,17	-1,40	-1,19	-1,37	-1,26	-1,34	-1,34	-1,34	-1,21	-1,26	-1,32	-1,27	-1,26	-1,28	-1,16	-1,26	-1,40	-1,29	-1,26
Df _{Mo}	0,11	-0,55	-0,26	0,68	0,21	0,69	0,86	0,41	0,89	0,90	1,28	-0,92	0,29	0,06	0,17	0,90	0,71	-0,06	0,03	0,19
Df _{Cu}	3,04	5,12	3,89	4,41	3,23	2,72	2,91	4,14	2,97	3,21	2,58	5,15	3,61	4,10	4,05	5,24	5,20	5,01	5,07	3,70

205

№ точки	BLP4b1	BLP4b2	BLP4b3	BLP4b4	BLP4b5	BLP4b6	BLP4b7	BLP4b8	BLP4b9	BLP4b10	BLP4c1	BLP4c2	BLP4c3	BLP4c4	BLP4c5	BLP4c6	BLP4c7	BLP4c8	BLP4c9	BLP4c10
SiO ₂	38,53	38,54	38,63	38,40	38,56	39,02	38,74	39,18	38,48	38,77	38,29	38,44	38,23	37,74	38,64	38,51	38,50	39,24	38,39	38,82
Al ₂ O ₃	13,83	13,89	13,93	13,94	13,72	14,04	13,85	13,71	14,06	13,97	14,08	13,97	13,75	14,50	13,90	14,22	13,95	13,94	13,73	13,73
TiO ₂	2,84	2,81	3,05	2,90	3,15	2,84	2,87	2,89	2,88	2,77	2,93	2,87	2,98	2,76	3,00	2,98	3,38	3,15	3,05	3,15
FeO	14,03	13,98	14,24	14,55	14,43	13,76	15,07	15,13	14,50	14,21	14,53	14,67	15,49	14,83	14,64	14,10	13,52	14,11	14,27	14,71
MgO	16,27	16,29	15,73	16,07	16,08	17,10	16,00	15,47	16,48	16,63	16,11	16,09	15,40	17,26	16,00	16,26	15,85	15,91	15,77	15,72
Cr ₂ O ₃	0,27	0,31	0,33	0,27	0,35	0,35	0,25	0,36	0,26	0,30	0,35	0,25	0,33	0,32	0,31	0,31	0,32	0,28	0,28	0,29
MnO	0,14	0,11	0,13	0,12	0,12	0,12	0,12	0,17	0,11	0,12	0,14	0,13	0,08	0,14	0,11	0,11	0,07	0,13	0,10	0,10
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na ₂ O	0,12	0,10	0,12	0,10	0,08	0,20	0,10	0,10	0,10	0,07	0,17	0,14	0,13	0,11	0,06	0,10	0,13	0,05	0,13	0,06
K ₂ O	9,26	9,15	8,94	9,03	9,33	9,24	9,40	9,51	9,33	9,30	9,41	9,57	9,20	8,43	9,47	9,41	9,46	9,34	9,23	9,48
F	0,33	0,55	0,38	0,34	0,31	0,39	0,50	0,34	0,38	0,52	0,50	0,31	0,36	0,37	0,51	0,35	0,39	0,40	0,44	0,36
Cl	0,13	0,12	0,17	0,13	0,11	0,16	0,19	0,17	0,13	0,10	0,15	0,15	0,17	0,16	0,15	0,14	0,22	0,18	0,17	0,11
Сумма	95,74	95,86	95,65	95,85	96,24	97,22	97,09	97,01	96,71	96,76	96,64	96,59	96,12	96,61	96,79	96,49	95,76	96,73	95,56	96,53
Si	5,72	5,72	5,74	5,70	5,71	5,70	5,71	5,77	5,67	5,70	5,66	5,68	5,70	5,56	5,70	5,68	5,71	5,76	5,73	5,73
Al ^{IV}	2,28	2,28	2,26	2,30	2,29	2,30	2,29	2,23	2,33	2,30	2,34	2,32	2,30	2,44	2,30	2,32	2,29	2,24	2,27	2,27
Al ^{VI}	0,14	0,15	0,18	0,14	0,10	0,11	0,12	0,15	0,11	0,13	0,12	0,12	0,11	0,08	0,12	0,15	0,15	0,17	0,14	0,13
Ti	0,32	0,31	0,34	0,32	0,35	0,31	0,32	0,32	0,32	0,31	0,33	0,32	0,33	0,31	0,33	0,33	0,38	0,35	0,34	0,35
Fe ³⁺	0,29	0,29	0,22	0,30	0,27	0,33	0,31	0,22	0,35	0,33	0,32	0,32	0,29	0,51	0,28	0,28	0,17	0,18	0,24	0,23
Fe ²⁺	1,45	1,44	1,54	1,49	1,51	1,34	1,54	1,64	1,44	1,41	1,48	1,50	1,63	1,30	1,52	1,45	1,51	1,55	1,54	1,59
Mg	3,60	3,60	3,48	3,55	3,55	3,72	3,52	3,40	3,62	3,65	3,55	3,55	3,42	3,79	3,52	3,57	3,51	3,48	3,51	3,46
Cr	0,03	0,04	0,04	0,03	0,04	0,04	0,03	0,04	0,03	0,04	0,04	0,03	0,04	0,04	0,04	0,04	0,04	0,03	0,03	0,03
Mn	0,02	0,01	0,02	0,02	0,01	0,02	0,02	0,02	0,01	0,01	0,02	0,02	0,01	0,02	0,01	0,01	0,01	0,02	0,01	0,01
Ca	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na	0,03	0,03	0,04	0,03	0,02	0,06	0,03	0,03	0,03	0,02	0,05	0,04	0,04	0,03	0,02	0,03	0,04	0,01	0,04	0,02
K	1,75	1,73	1,69	1,71	1,76	1,72	1,77	1,79	1,75	1,75	1,77	1,80	1,75	1,58	1,78	1,77	1,79	1,75	1,76	1,79
F	0,15	0,26	0,18	0,16	0,14	0,18	0,23	0,16	0,18	0,24	0,23	0,15	0,17	0,17	0,24	0,17	0,18	0,19	0,21	0,17
Cl	0,03	0,03	0,04	0,03	0,03	0,04	0,05	0,04	0,03	0,03	0,04	0,04	0,04	0,04	0,04	0,04	0,05	0,04	0,04	0,03
OH	3,81	3,71	3,78	3,81	3,83	3,78	3,72	3,80	3,79	3,73	3,73	3,82	3,79	3,79	3,73	3,80	3,76	3,77	3,75	3,81
X _{Mg}	0,67	0,67	0,66	0,66	0,67	0,69	0,65	0,65	0,67	0,68	0,66	0,66	0,64	0,67	0,66	0,67	0,68	0,67	0,66	0,66
X _{Fe}	0,33	0,33	0,34	0,34	0,33	0,31	0,35	0,35	0,33	0,32	0,34	0,34	0,36	0,33	0,34	0,33	0,32	0,33	0,34	0,34
IV (F)	2,53	2,30	2,44	2,50	2,55	2,48	2,32	2,48	2,46	2,33	2,33	2,54	2,44	2,48	2,32	2,49	2,45	2,43	2,38	2,47
IV(F/Cl)	6,78	6,53	6,79	6,71	6,71	6,83	6,70	6,77	6,69	6,48	6,62	6,80	6,72	6,81	6,60	6,77	6,93	6,80	6,73	6,60
Т, ℃	716	715	722	715	727	718	710	708	715	712	716	713	713	711	718	721	740	726	723	724
log(X _{Mg} /X _{Fe})	0,32	0,32	0,29	0,29	0,30	0,35	0,28	0,26	0,31	0,32	0,30	0,29	0,25	0,32	0,29	0,31	0,32	0,30	0,29	0,28
log(X _F /X _{OH})	-1,39	-1,16	-1,32	-1,38	-1,42	-1,32	-1,20	-1,38	-1,34	-1,19	-1,21	-1,42	-1,34	-1,35	-1,20	-1,36	-1,32	-1,31	-1,26	-1,36
Df _{Mo}	0,33	0,61	-0,35	0,18	0,13	0,92	0,30	-0,89	0,63	0,79	0,50	0,17	-0,16	1,98	0,24	0,12	-0,19	-0,61	0,11	-0,43
Df _{Cu}	3,00	2,45	3,39	2,48	1,92	3,11	2,52	3,59	2,21	2,15	2,19	2,73	2,04	1,24	2,18	3,05	3,48	3,76	2,62	2,17

206

№ точки	BLP4e1	BLP4e2	BLP4e3	BLP4e4	BLP4e5	BLP4e6	BLP4e7	BLP4e8	BLP4e9	BLP4e10	BLP5a1	BLP5a2	BLP5a3	BLP5a4	BLP5a5	BLP5a6	BLP5a7	BLP5a8	BLP5a9	BLP5a10
SiO ₂	38,16	39,13	38,20	38,77	38,61	38,67	38,68	38,32	38,63	39,13	39,25	40,13	39,97	38,84	39,64	39,89	39,84	40,31	40,34	39,65
Al ₂ O ₃	13,73	14,27	13,56	13,83	13,55	13,75	13,77	14,07	13,63	13,75	13,29	13,81	13,91	13,43	13,58	12,88	13,20	13,18	12,62	12,90
TiO ₂	3,10	3,20	3,09	3,10	3,14	2,83	3,25	3,04	2,84	2,95	3,32	3,42	3,56	3,68	3,47	3,71	3,65	3,65	3,49	3,54
FeO	14,24	14,41	15,28	14,18	14,14	15,03	14,06	14,17	13,91	14,00	14,08	13,90	14,54	14,68	14,11	14,39	14,17	14,16	14,08	14,23
MgO	15,67	16,21	15,26	16,04	16,01	15,67	16,20	16,44	15,84	16,25	15,51	16,99	17,52	16,67	16,50	16,24	16,53	16,55	16,33	16,55
Cr ₂ O ₃	0,61	0,52	0,37	0,30	0,50	0,31	0,33	0,38	0,31	0,27	0,12	0,16	0,27	0,17	0,12	0,15	0,15	0,19	0,18	0,16
MnO	0,05	0,06	0,10	0,11	0,13	0,11	0,09	0,09	0,11	0,09	0,08	0,08	0,14	0,12	0,12	0,10	0,11	0,11	0,08	0,06
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,33	0,00	0,04	0,03	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00
Na ₂ O	0,07	0,17	0,18	0,09	0,10	0,21	0,11	0,12	0,14	0,13	0,09	0,04	0,08	0,08	0,10	0,06	0,10	0,09	0,12	0,10
K ₂ O	8,99	9,68	9,37	9,18	9,59	9,28	9,50	8,81	8,90	9,08	8,75	8,64	9,60	9,15	8,55	9,67	9,58	9,52	9,36	9,59
F	0,51	0,46	0,40	0,52	0,33	0,31	0,34	0,54	0,36	0,45	1,30	1,35	1,23	1,28	1,41	1,46	1,29	1,47	1,24	1,16
Cl	0,16	0,10	0,14	0,17	0,15	0,21	0,10	0,12	0,16	0,13	0,16	0,16	0,18	0,17	0,17	0,17	0,18	0,18	0,19	0,17
Сумма	95,28	98,19	95,95	96,27	96,26	96,38	96,43	96,09	95,16	96,23	96,00	98,71	100,98	98,27	97,77	98,72	98,79	99,39	98,03	98,12
Si	5,71	5,68	5,71	5,73	5,72	5,73	5,71	5,67	5,76	5,77	5,84	5,79	5,68	5,69	5,79	5,82	5,79	5,82	5,89	5,80
Al ^{IV}	2,29	2,32	2,29	2,27	2,28	2,27	2,29	2,33	2,24	2,23	2,16	2,21	2,32	2,31	2,21	2,18	2,21	2,18	2,11	2,20
Al ^{VI}	0,13	0,12	0,10	0,14	0,08	0,13	0,10	0,12	0,16	0,16	0,17	0,13	0,01	0,00	0,12	0,03	0,05	0,06	0,06	0,02
Ti	0,35	0,35	0,35	0,34	0,35	0,32	0,36	0,34	0,32	0,33	0,37	0,37	0,38	0,40	0,38	0,41	0,40	0,40	0,38	0,39
Fe ³⁺	0,24	0,24	0,26	0,24	0,24	0,27	0,25	0,32	0,17	0,23	0,11	0,21	0,33	0,31	0,20	0,16	0,19	0,15	0,12	0,21
Fe ²⁺	1,54	1,51	1,65	1,51	1,51	1,59	1,49	1,43	1,57	1,49	1,64	1,45	1,40	1,48	1,50	1,59	1,53	1,55	1,59	1,53
Mg	3,49	3,51	3,40	3,53	3,54	3,46	3,56	3,63	3,52	3,57	3,44	3,65	3,71	3,64	3,59	3,53	3,58	3,56	3,55	3,61
Cr	0,07	0,06	0,04	0,03	0,06	0,04	0,04	0,04	0,04	0,03	0,01	0,02	0,03	0,02	0,01	0,02	0,02	0,02	0,02	0,02
Mn	0,01	0,01	0,01	0,01	0,02	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,01	0,01	0,01	0,01	0,01	0,01	0,01
Ca	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,05	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na	0,02	0,05	0,05	0,02	0,03	0,06	0,03	0,03	0,04	0,04	0,03	0,01	0,02	0,02	0,03	0,02	0,03	0,02	0,03	0,03
K	1,72	1,79	1,79	1,73	1,81	1,75	1,79	1,66	1,69	1,71	1,66	1,59	1,74	1,71	1,59	1,80	1,77	1,75	1,74	1,79
F	0,24	0,21	0,19	0,24	0,16	0,14	0,16	0,25	0,17	0,21	0,61	0,61	0,55	0,59	0,65	0,67	0,59	0,67	0,57	0,54
Cl	0,04	0,02	0,04	0,04	0,04	0,05	0,03	0,03	0,04	0,03	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,05	0,04
OH	3,72	3,76	3,77	3,72	3,81	3,80	3,82	3,72	3,79	3,76	3,35	3,35	3,40	3,36	3,31	3,29	3,37	3,29	3,38	3,42
X _{Mg}	0,66	0,67	0,64	0,67	0,67	0,65	0,67	0,67	0,67	0,67	0,66	0,69	0,68	0,67	0,68	0,67	0,68	0,68	0,67	0,67
X _{Fe}	0,34	0,33	0,36	0,33	0,33	0,35	0,33	0,33	0,33	0,33	0,34	0,31	0,32	0,33	0,32	0,33	0,32	0,32	0,33	0,33
IV (F)	2,31	2,38	2,39	2,31	2,52	2,53	2,52	2,30	2,48	2,39	1,86	1,89	1,94	1,89	1,85	1,83	1,90	1,84	1,92	1,95
IV(F/Cl)	6,65	6,48	6,61	6,67	6,80	6,94	6,66	6,53	6,80	6,64	6,24	6,30	6,37	6,28	6,27	6,24	6,32	6,27	6,36	6,36
Т, ℃	725	727	718	725	728	708	733	725	715	720	734	740	742	747	741	747	746	746	741	743
log(X _{Mg} /X _{Fe})	0,29	0,30	0,25	0,30	0,31	0,27	0,31	0,32	0,31	0,32	0,29	0,34	0,33	0,31	0,32	0,30	0,32	0,32	0,32	0,32
log(X _F /X _{OH})	-1,19	-1,25	-1,30	-1,18	-1,39	-1,42	-1,38	-1,17	-1,35	-1,26	-0,74	-0,74	-0,79	-0,75	-0,71	-0,69	-0,76	-0,69	-0,77	-0,80
Df _{Mo}	0,25	-0,32	-0,19	0,18	0,15	-0,27	0,13	0,87	-0,10	0,05	0,66	1,50	2,18	2,40	1,57	1,61	1,52	1,46	1,20	1,72
Df _{Cu}	2,18	2,35	1,59	2,57	2,38	3,56	1,92	1,56	3,62	3,00	0,41	0,02	-1,12	-2,53	-0,60	-1,74	-0,92	-0,99	-0,15	-0,97

№ точки	SHPa1	SHPa2	SHPa3	SHPa4	SHPa5	SHPa6	SHPa7	SHPa8	SHPa9	SHPa10	SEPd1	SEPd2	SEPd3	SEPd4	SEPd5	SEPd6	SEPd7	SEPd8	SEPd9	SEPd10
SiO ₂	36,34	36,31	36,53	37,24	37,10	37,08	36,96	36,55	36,43	36,72	37,93	39,23	39,03	38,15	38,98	38,57	38,76	38,34	36,64	38,16
Al ₂ O ₃	14,53	14,78	13,70	13,66	14,23	14,42	14,38	14,83	14,74	14,13	12,97	12,67	12,74	12,79	12,58	12,89	12,94	12,98	12,36	12,85
TiO ₂	3,41	2,40	4,00	4,18	2,67	3,61	3,71	3,13	3,09	3,07	3,64	3,56	3,63	3,53	3,44	3,67	3,67	3,69	4,05	3,82
FeO	20,37	19,23	19,60	19,97	19,09	20,15	20,79	19,61	19,84	19,76	16,86	16,05	16,73	16,48	16,42	16,58	16,40	16,25	17,30	16,30
MgO	11,83	12,43	10,74	11,02	11,64	11,61	11,49	11,95	12,23	11,37	14,06	15,02	14,46	14,05	14,72	14,92	14,76	14,88	12,87	14,49
Cr_2O_3	0,07	0,06	0,11	0,06	0,06	0,13	0,06	0,03	0,03	0,07	0,13	0,07	0,08	0,11	0,08	0,10	0,04	0,13	0,15	0,08
MnO	0,53	0,55	0,53	0,53	0,57	0,56	0,58	0,54	0,50	0,53	0,27	0,19	0,21	0,18	0,13	0,26	0,24	0,25	0,33	0,24
CaO	0,08	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na ₂ O	0,13	0,09	0,17	0,08	0,08	0,21	0,16	0,11	0,09	0,07	0,22	0,12	0,15	0,19	0,18	0,24	0,18	0,20	0,28	0,17
K ₂ O	8,16	9,03	9,44	9,56	8,66	8,69	8,75	8,56	8,18	9,13	9,60	9,75	9,49	9,61	9,59	9,80	9,81	9,34	9,37	9,61
F	0,80	0,76	0,72	0,65	1,02	0,72	0,81	0,77	0,69	0,64	1,44	1,67	1,56	1,75	1,64	1,45	1,50	1,30	1,34	1,61
Cl	0,16	0,15	0,21	0,21	0,16	0,26	0,26	0,17	0,10	0,20	0,29	0,27	0,24	0,31	0,37	0,35	0,31	0,23	0,27	0,28
Сумма	96,41	95,79	95,75	97,16	95,27	97,44	97,94	96,25	95,93	95,67	97,41	98,59	98,30	97,16	98,13	98,83	98,59	97,60	94,94	97,60
Si	5,55	5,57	5,64	5,66	5,71	5,60	5,58	5,57	5,56	5,65	5,71	5,81	5,80	5,77	5,81	5,72	5,75	5,72	5,69	5,73
Al ^{IV}	2,45	2,43	2,36	2,34	2,29	2,40	2,42	2,43	2,44	2,35	2,29	2,19	2,20	2,23	2,19	2,25	2,25	2,28	2,26	2,27
Al ^{VI}	0,16	0,25	0,14	0,11	0,30	0,17	0,14	0,24	0,21	0,22	0,02	0,02	0,03	0,04	0,02	0,00	0,01	0,00	0,00	0,00
Ti	0,39	0,28	0,46	0,48	0,31	0,41	0,42	0,36	0,36	0,35	0,41	0,40	0,41	0,40	0,39	0,41	0,41	0,41	0,47	0,43
Fe ³⁺	0,32	0,39	0,09	0,09	0,21	0,23	0,26	0,30	0,35	0,23	0,22	0,18	0,17	0,17	0,19	0,25	0,21	0,24	0,17	0,20
Fe ²⁺	2,26	2,06	2,44	2,44	2,23	2,30	2,35	2,19	2,15	2,30	1,91	1,80	1,90	1,91	1,85	1,80	1,82	1,78	2,08	1,84
Mg	2,69	2,84	2,47	2,50	2,67	2,61	2,59	2,72	2,78	2,61	3,16	3,31	3,20	3,17	3,27	3,30	3,26	3,31	2,98	3,24
Cr	0,01	0,01	0,01	0,01	0,01	0,02	0,01	0,00	0,00	0,01	0,02	0,01	0,01	0,01	0,01	0,01	0,00	0,01	0,02	0,01
Mn	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,06	0,07	0,03	0,02	0,03	0,02	0,02	0,03	0,03	0,03	0,04	0,03
Ca	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na	0,04	0,03	0,05	0,02	0,02	0,06	0,05	0,03	0,03	0,02	0,07	0,04	0,04	0,06	0,05	0,07	0,05	0,06	0,08	0,05
K	1,59	1,77	1,86	1,85	1,70	1,67	1,68	1,67	1,59	1,79	1,84	1,84	1,80	1,85	1,82	1,85	1,86	1,78	1,86	1,84
F	0,39	0,37	0,35	0,31	0,49	0,34	0,39	0,37	0,33	0,31	0,69	0,78	0,73	0,84	0,77	0,68	0,70	0,61	0,66	0,77
Cl	0,04	0,04	0,05	0,05	0,04	0,07	0,07	0,04	0,03	0,05	0,07	0,07	0,06	0,08	0,09	0,09	0,08	0,06	0,07	0,07
OH	3,57	3,59	3,59	3,63	3,46	3,59	3,55	3,58	3,64	3,63	3,24	3,15	3,21	3,08	3,14	3,23	3,22	3,33	3,27	3,16
X _{Mg}	0,51	0,54	0,49	0,50	0,52	0,51	0,50	0,52	0,52	0,51	0,60	0,63	0,61	0,60	0,62	0,62	0,62	0,62	0,57	0,61
X _{Fe}	0,49	0,46	0,51	0,50	0,48	0,49	0,50	0,48	0,48	0,49	0,40	0,37	0,39	0,40	0,38	0,38	0,38	0,38	0,43	0,39
IV (F)	1,89	1,95	1,93	1,99	1,79	1,95	1,88	1,92	1,98	1,99	1,72	1,70	1,71	1,63	1,69	1,75	1,74	1,81	1,72	1,69
IV(F/Cl)	5,96	6,04	6,07	6,13	5,88	6,21	6,12	6,03	5,85	6,14	6,25	6,24	6,17	6,21	6,36	6,39	6,33	6,26	6,17	6,24
т, °С	703	657	724	728	670	709	711	693	692	689	730	732	730	728	725	733	734	736	741	739
log(X _{Mg} /X _{Fe})	0,01	0,06	-0,01	-0,01	0,04	0,01	-0,01	0,04	0,04	0,01	0,17	0,22	0,19	0,18	0,20	0,21	0,21	0,21	0,12	0,20
log(X _F /X _{OH})	-0,97	-0,99	-1,01	-1,07	-0,85	-1,02	-0,96	-0,98	-1,04	-1,06	-0,67	-0,61	-0,64	-0,57	-0,61	-0,68	-0,66	-0,73	-0,70	-0,62
Df _{Mo}	-2,24	-1,82	-3,44	-3,68	-2,72	-3,08	-2,88	-2,59	-2,26	-3,11	0,89	1,45	0,77	1,26	1,47	1,55	1,16	1,20	0,68	1,47
Df _{Cu}	-1,97	0,98	-1,33	-1,50	0,99	-0,14	-1,31	-0,02	-1,13	0,68	-2,39	-2,34	-2,56	-2,46	-1,43	-2,05	-1,91	-2,54	-4,31	-3,21

208

№ точки	SEPf1	SEPf2	SEPf3	SEPf4	SEPf5	SEPf6	SEPf7	SEPf8	SEPf9	SEPf10	SLP1a1	SLP1a2	SLP1a3	SLP1a4	SLP1a5	SLP1a6	SLP1a7	SLP1a8	SLP1a9	SLP1a10
SiO ₂	38,11	38,26	38,18	37,50	36,91	38,27	37,06	37,69	38,56	36,17	39,03	38,93	38,44	40,27	37,88	39,96	39,10	38,39	39,22	39,13
Al ₂ O ₃	13,50	13,67	13,53	13,79	13,11	13,24	13,39	13,06	13,29	12,91	14,96	14,80	14,46	15,23	13,99	14,32	15,29	15,29	15,00	15,12
TiO ₂	4,09	4,04	4,33	3,97	4,36	3,85	3,97	4,13	3,73	3,68	2,61	2,31	2,84	2,66	2,17	2,65	2,45	2,29	2,62	2,27
FeO	17,14	17,70	17,09	17,71	17,22	17,38	17,33	17,39	16,99	16,74	18,25	16,29	17,30	15,15	17,75	16,05	17,67	18,67	17,12	18,38
MgO	12,69	13,19	13,73	12,88	12,60	13,40	13,02	12,91	13,46	12,76	11,06	11,80	11,27	13,68	9,48	12,64	10,88	9,82	11,27	10,89
Cr ₂ O ₃	0,12	0,12	0,11	0,13	0,20	0,13	0,20	0,34	0,18	0,61	0,02	0,03	0,09	0,03	0,10	0,07	0,03	0,04	0,04	0,04
MnO	0,24	0,23	0,22	0,25	0,29	0,24	0,27	0,23	0,28	0,25	0,35	0,24	1,07	0,22	1,11	1,14	0,85	1,28	0,80	0,49
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na ₂ O	0,07	0,12	0,13	0,11	0,12	0,06	0,08	0,23	0,08	0,19	0,16	0,24	0,27	0,19	0,38	0,24	0,40	0,37	0,21	0,20
K ₂ O	9,23	9,53	9,58	9,56	9,44	9,50	9,51	9,48	9,66	9,22	9,86	9,63	9,54	9,73	9,36	9,83	9,64	9,80	9,69	9,57
F	0,77	0,76	0,73	0,90	0,75	0,81	0,90	0,79	0,87	0,73	2,92	3,24	4,10	3,21	3,67	3,69	3,68	3,48	3,61	3,15
Cl	0,20	0,21	0,20	0,22	0,23	0,19	0,19	0,29	0,17	0,24	0,16	0,20	0,18	0,19	0,14	0,14	0,20	0,20	0,19	0,19
Сумма	96,14	97,81	97,83	97,01	95,23	97,07	95,91	96,55	97,26	93,50	99,36	97,71	99,56	100,55	96,01	100,73	100,19	99,63	99,76	99,43
Si	5,75	5,70	5,67	5,65	5,66	5,74	5,65	5,70	5,76	5,66	5,84	5,89	5,82	5,86	5,95	5,90	5,84	5,81	5,86	5,87
Al ^{IV}	2,25	2,30	2,33	2,35	2,34	2,26	2,35	2,30	2,24	2,34	2,16	2,11	2,18	2,14	2,05	2,10	2,16	2,19	2,14	2,13
Al ^{VI}	0,15	0,10	0,04	0,10	0,04	0,08	0,06	0,03	0,11	0,03	0,48	0,53	0,40	0,48	0,54	0,39	0,54	0,54	0,51	0,54
Ti	0,46	0,45	0,48	0,45	0,50	0,43	0,46	0,47	0,42	0,43	0,29	0,26	0,32	0,29	0,26	0,29	0,28	0,26	0,29	0,26
Fe ³⁺	0,02	0,12	0,13	0,14	0,09	0,13	0,16	0,09	0,10	0,17	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Fe ²⁺	2,13	2,08	1,99	2,09	2,12	2,04	2,04	2,11	2,02	2,03	2,28	2,05	2,18	1,84	2,32	1,98	2,20	2,36	2,13	2,29
Mg	2,86	2,93	3,04	2,89	2,88	2,99	2,96	2,91	3,00	2,97	2,47	2,66	2,54	2,97	2,22	2,78	2,42	2,22	2,51	2,43
Cr	0,01	0,01	0,01	0,02	0,02	0,02	0,02	0,04	0,02	0,07	0,00	0,00	0,01	0,00	0,01	0,01	0,00	0,01	0,00	0,00
Mn	0,03	0,03	0,03	0,03	0,04	0,03	0,03	0,03	0,03	0,03	0,04	0,03	0,14	0,03	0,15	0,14	0,11	0,16	0,10	0,06
Ca	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na	0,02	0,03	0,04	0,03	0,04	0,02	0,02	0,07	0,02	0,06	0,05	0,07	0,08	0,05	0,11	0,07	0,12	0,11	0,06	0,06
K	1,78	1,81	1,81	1,84	1,85	1,82	1,85	1,83	1,84	1,84	1,88	1,86	1,84	1,81	1,87	1,85	1,84	1,89	1,85	1,83
F	0,37	0,36	0,34	0,43	0,37	0,38	0,44	0,38	0,41	0,36	1,38	1,55	1,96	1,48	1,82	1,72	1,74	1,66	1,71	1,49
Cl	0,05	0,05	0,05	0,06	0,06	0,05	0,05	0,08	0,04	0,06	0,04	0,05	0,05	0,05	0,04	0,03	0,05	0,05	0,05	0,05
OH	3,58	3,59	3,61	3,51	3,58	3,57	3,52	3,55	3,55	3,57	2,58	2,40	1,99	2,47	2,14	2,25	2,21	2,28	2,25	2,46
X _{Mg}	0,57	0,57	0,59	0,56	0,57	0,58	0,57	0,57	0,59	0,58	0,52	0,56	0,54	0,62	0,49	0,58	0,52	0,48	0,54	0,51
X _{Fe}	0,43	0,43	0,41	0,44	0,43	0,42	0,43	0,43	0,41	0,42	0,48	0,44	0,46	0,38	0,51	0,42	0,48	0,52	0,46	0,49
IV (F)	2,00	2,01	2,06	1,92	2,00	2,00	1,92	1,99	1,97	2,02	1,21	1,19	0,98	1,29	0,98	1,15	1,05	1,03	1,09	1,15
IV(F/Cl)	6,26	6,28	6,36	6,22	6,32	6,25	6,18	6,42	6,19	6,39	5,43	5,60	5,39	5,75	5,18	5,47	5,42	5,34	5,46	5,44
Т, ℃	739	736	748	734	748	732	737	740	729	731	662	655	681	686	632	679	652	635	667	638
log(X _{Mg} /X _{Fe})	0,12	0,12	0,16	0,11	0,12	0,14	0,13	0,12	0,15	0,13	0,03	0,11	0,07	0,21	-0,02	0,15	0,04	-0,03	0,07	0,02
log(X _F /X _{OH})	-0,99	-1,00	-1,02	-0,91	-0,99	-0,97	-0,91	-0,97	-0,94	-1,00	-0,27	-0,19	-0,01	-0,22	-0,07	-0,12	-0,11	-0,14	-0,12	-0,22
Df _{Mo}	-2,45	-1,96	-1,30	-1,60	-1,36	-1,41	-0,91	-1,36	-1,60	-0,49	-2,68	-1,33	0,03	-0,59	-2,05	-0,23	-2,07	-2,97	-1,70	-2,66
Df _{Cu}	-0,14	-0,74	-1,59	-1,16	-2,17	-1,03	-2,21	-0,92	-0,42	-1,19	0,13	0,91	-4,15	1,00	-1,23	-1,79	-0,15	0,33	-0,55	0,78

№ точки	SLP1b1	SLP1b2	SLP1b3	SLP1b4	SLP1b5	SLP1b6	SLP1b7	SLP1b8	SLP1b9	SLP1b10	SLP1c1	SLP1c2	SLP1c3	SLP1c4	SLP1c5	SLP1c6	SLP1c7	SLP1c8	SLP1c9	SLP1c10
SiO ₂	39,06	38,87	38,48	37,37	37,91	38,50	38,22	38,55	39,08	38,09	38,32	39,20	39,38	40,26	40,58	40,51	39,87	38,30	39,52	39,93
Al ₂ O ₃	14,27	14,25	14,57	13,42	14,77	14,56	14,56	14,82	14,61	15,12	13,07	13,22	13,05	12,63	12,53	12,76	12,87	13,52	12,95	12,95
TiO ₂	2,65	2,82	2,54	2,51	3,02	2,66	2,64	2,38	3,04	2,94	3,18	3,21	3,46	3,34	2,80	2,86	3,30	3,38	3,09	3,01
FeO	18,04	17,45	18,37	16,84	17,10	17,09	18,57	17,35	16,79	17,06	17,26	17,83	18,23	17,81	16,82	16,78	16,87	17,99	17,01	17,10
MgO	11,16	10,81	10,95	11,42	11,11	11,72	10,49	12,10	11,84	11,20	11,66	11,61	11,68	11,86	13,19	12,86	12,19	10,98	12,11	11,92
Cr_2O_3	0,05	0,06	0,03	0,10	0,01	0,04	0,03	0,03	0,08	0,05	0,10	0,04	0,07	0,05	0,08	0,04	0,09	0,07	0,08	0,07
MnO	1,18	1,09	1,00	1,00	1,02	0,99	1,17	0,52	0,78	1,12	0,48	0,48	0,42	0,38	0,36	0,36	0,40	0,44	0,40	0,41
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na ₂ O	0,31	0,21	0,19	0,26	0,29	0,26	0,36	0,28	0,39	0,35	0,23	0,18	0,16	0,24	0,17	0,16	0,15	0,18	0,21	0,19
K ₂ O	9,77	9,48	9,66	9,64	9,44	9,72	9,63	9,57	9,72	9,50	9,52	9,49	9,54	9,61	9,10	8,94	9,58	9,35	9,43	9,61
F	3,83	3,67	3,10	3,70	3,89	3,39	3,52	3,58	3,69	3,80	2,62	2,57	2,02	1,87	2,13	2,19	2,10	1,74	3,07	2,87
Cl	0,26	0,22	0,25	0,33	0,27	0,26	0,23	0,26	0,23	0,21	0,16	0,18	0,22	0,22	0,15	0,16	0,19	0,23	0,17	0,17
Сумма	100,57	98,92	99,13	96,58	98,82	99,17	99,42	99,43	100,25	99,42	96,61	98,01	98,21	98,26	97,92	97,64	97,61	96,18	98,03	98,23
Si	5,86	5,89	5,82	5,84	5,77	5,81	5,81	5,80	5,83	5,75	5,89	5,93	5,92	6,02	6,05	6,05	5,99	5,87	5,97	6,01
Al ^{IV}	2,14	2,11	2,18	2,16	2,23	2,19	2,19	2,20	2,17	2,25	2,11	2,07	2,08	1,98	1,95	1,95	2,01	2,13	2,03	1,99
Al ^{VI}	0,38	0,44	0,42	0,32	0,42	0,40	0,41	0,43	0,39	0,44	0,26	0,28	0,23	0,24	0,25	0,30	0,27	0,31	0,28	0,31
Ti	0,30	0,32	0,29	0,30	0,35	0,30	0,30	0,27	0,34	0,33	0,37	0,36	0,39	0,38	0,31	0,32	0,37	0,39	0,35	0,34
Fe ³⁺	0,00	0,00	0,01	0,03	0,00	0,00	0,00	0,05	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Fe ²⁺	2,26	2,20	2,31	2,17	2,17	2,15	2,36	2,12	2,09	2,15	2,21	2,24	2,28	2,21	2,08	2,08	2,11	2,29	2,14	2,14
Mg	2,49	2,44	2,47	2,66	2,52	2,63	2,38	2,71	2,63	2,52	2,67	2,62	2,62	2,64	2,93	2,86	2,73	2,51	2,73	2,68
Cr	0,01	0,01	0,00	0,01	0,00	0,00	0,00	0,00	0,01	0,01	0,01	0,00	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
Mn	0,15	0,14	0,13	0,13	0,13	0,13	0,15	0,07	0,10	0,14	0,06	0,06	0,05	0,05	0,05	0,05	0,05	0,06	0,05	0,05
Ca	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na	0,09	0,06	0,06	0,08	0,08	0,08	0,11	0,08	0,11	0,10	0,07	0,05	0,05	0,07	0,05	0,05	0,04	0,05	0,06	0,06
K	1,87	1,83	1,86	1,92	1,83	1,87	1,87	1,84	1,85	1,83	1,87	1,83	1,83	1,83	1,73	1,70	1,84	1,83	1,82	1,85
F	1,82	1,76	1,48	1,83	1,87	1,62	1,69	1,70	1,74	1,81	1,28	1,23	0,96	0,89	1,00	1,03	1,00	0,84	1,47	1,37
Cl	0,07	0,06	0,07	0,09	0,07	0,07	0,06	0,07	0,06	0,05	0,04	0,05	0,06	0,05	0,04	0,04	0,05	0,06	0,04	0,04
OH	2,12	2,18	2,45	2,09	2,06	2,32	2,25	2,23	2,20	2,13	2,68	2,73	2,98	3,06	2,96	2,93	2,95	3,10	2,49	2,59
X_{Mg}	0,52	0,52	0,52	0,55	0,54	0,55	0,50	0,55	0,56	0,54	0,55	0,54	0,53	0,54	0,58	0,58	0,56	0,52	0,56	0,55
X _{Fe}	0,48	0,48	0,48	0,45	0,46	0,45	0,50	0,45	0,44	0,46	0,45	0,46	0,47	0,46	0,42	0,42	0,44	0,48	0,44	0,45
IV (F)	1,02	1,05	1,16	1,04	1,00	1,14	1,05	1,10	1,09	1,03	1,31	1,33	1,47	1,54	1,52	1,49	1,49	1,52	1,24	1,29
IV(F/Cl)	5,54	5,48	5,59	5,73	5,57	5,66	5,45	5,66	5,60	5,48	5,58	5,61	5,79	5,85	5,77	5,76	5,81	5,82	5,57	5,59
T, ℃	666	678	659	670	691	674	663	656	693	686	702	699	708	704	688	690	708	705	698	693
log(X _{Mg} /X _{Fe})	0,04	0,04	0,03	0,08	0,06	0,09	0,00	0,09	0,10	0,07	0,08	0,06	0,06	0,07	0,15	0,14	0,11	0,04	0,10	0,09
log(X _F /X _{OH})	-0,07	-0,09	-0,22	-0,06	-0,04	-0,16	-0,12	-0,12	-0,10	-0,07	-0,32	-0,35	-0,49	-0,54	-0,47	-0,45	-0,47	-0,56	-0,23	-0,28
Df _{Mo}	-0,66	-1,33	-1,72	1,25	-0,22	-0,54	-1,44	0,09	-0,51	-0,69	-0,76	-1,60	-2,28	-2,76	-1,09	-1,52	-2,04	-3,06	-0,41	-1,25
Df _{Cu}	-2,37	-1,90	-0,45	-3,02	-3,02	-1,14	-2,04	-1,41	-2,27	-2,59	-2,95	-2,06	-1,15	0,19	-0,28	0,11	-0,19	0,34	-3,08	-1,75

№ точки	SLP2a1	SLP2a2	SLP2a3	SLP2a4	SLP2a5	SLP2a6	SLP2a7	SLP2a8	SLP2a9	SLP2a10	SLP2b1	SLP2b2	SLP2b3	SLP2b4	SLP2b5	SLP2b6	SLP2b7	SLP2b8	SLP2b9	SLP2b10
SiO ₂	39,47	39,07	40,50	40,05	39,11	40,42	39,23	40,81	40,03	40,77	35,77	38,81	37,53	37,45	38,44	37,93	37,85	38,74	37,80	38,49
Al ₂ O ₃	12,62	13,26	12,00	11,82	12,53	12,01	11,87	12,15	11,86	11,98	12,74	13,40	13,73	13,11	13,22	13,47	13,48	13,14	12,81	13,61
TiO ₂	2,23	2,53	2,82	2,68	3,18	2,82	2,78	2,82	2,60	2,91	3,38	3,07	3,26	3,05	3,28	3,86	3,03	3,53	3,70	3,44
FeO	15,88	17,02	14,80	14,52	16,21	15,64	14,80	14,47	15,05	14,76	18,13	17,21	18,26	17,45	17,61	18,63	17,55	18,47	18,37	17,24
MgO	14,85	13,99	15,92	15,72	13,78	15,59	15,33	16,31	16,26	15,95	11,67	13,51	12,24	13,14	13,01	12,22	13,09	12,57	12,07	13,22
Cr ₂ O ₃	0,06	0,08	0,06	0,07	0,06	0,12	0,05	0,08	0,08	0,10	0,22	0,10	0,05	0,05	0,06	0,09	0,05	0,04	0,08	0,07
MnO	0,61	0,61	0,65	0,61	0,75	0,68	0,59	0,53	0,52	0,46	0,40	0,39	0,21	0,17	0,34	0,30	0,18	0,32	0,38	0,24
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na ₂ O	0,23	0,19	0,16	0,14	0,16	0,24	0,14	0,16	0,18	0,20	0,58	0,20	0,16	0,16	0,24	0,22	0,25	0,18	0,39	0,22
K ₂ O	9,56	9,90	9,54	9,26	9,52	9,78	9,28	9,53	9,75	9,70	9,60	9,70	9,48	9,69	9,59	9,70	9,46	9,93	9,70	9,74
F	3,28	2,91	3,56	3,76	3,11	3,75	3,43	3,54	3,41	4,06	2,33	2,81	2,30	3,10	3,02	2,69	2,82	2,81	2,56	2,74
Cl	0,18	0,20	0,16	0,19	0,17	0,20	0,20	0,18	0,19	0,17	0,29	0,20	0,21	0,22	0,18	0,20	0,22	0,20	0,25	0,21
Сумма	98,96	99,76	100,16	98,79	98,57	101,24	97,70	100,56	99,91	101,06	95,10	99,40	97,44	97,59	98,98	99,31	97,97	99,93	98,09	99,20
Si	5,91	5,82	5,96	5,98	5,89	5,94	5,93	5,96	5,92	5,98	5,66	5,80	5,73	5,75	5,79	5,71	5,75	5,80	5,77	5,76
Al ^{IV}	2,09	2,18	2,04	2,02	2,11	2,06	2,07	2,04	2,07	2,02	2,34	2,20	2,27	2,25	2,21	2,29	2,25	2,20	2,23	2,24
Al ^{VI}	0,14	0,15	0,05	0,07	0,11	0,02	0,05	0,06	0,00	0,05	0,04	0,16	0,19	0,12	0,14	0,11	0,17	0,11	0,07	0,16
Ti	0,25	0,28	0,31	0,30	0,36	0,31	0,32	0,31	0,29	0,32	0,40	0,35	0,37	0,35	0,37	0,44	0,35	0,40	0,42	0,39
Fe ³⁺	0,24	0,23	0,19	0,18	0,10	0,21	0,21	0,18	0,29	0,15	0,19	0,15	0,14	0,21	0,13	0,10	0,18	0,09	0,08	0,11
Fe ²⁺	1,74	1,89	1,63	1,63	1,93	1,70	1,66	1,58	1,57	1,66	2,22	2,00	2,19	2,03	2,09	2,24	2,05	2,22	2,26	2,05
Mg	3,31	3,11	3,49	3,50	3,09	3,41	3,46	3,55	3,59	3,48	2,75	3,01	2,78	3,01	2,92	2,74	2,96	2,80	2,75	2,95
Cr	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,03	0,01	0,01	0,01	0,01	0,01	0,01	0,00	0,01	0,01
Mn	0,08	0,08	0,08	0,08	0,09	0,08	0,08	0,07	0,06	0,06	0,05	0,05	0,03	0,02	0,04	0,04	0,02	0,04	0,05	0,03
Ca	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na	0,07	0,06	0,04	0,04	0,05	0,07	0,04	0,04	0,05	0,06	0,18	0,06	0,05	0,05	0,07	0,06	0,07	0,05	0,12	0,06
K	1,83	1,88	1,79	1,76	1,83	1,83	1,79	1,78	1,84	1,81	1,94	1,85	1,84	1,90	1,84	1,86	1,83	1,90	1,89	1,86
F	1,55	1,37	1,66	1,/8	1,48	1,/4	1,64	1,64	1,60	1,88	1,16	1,33	1,11	1,51	1,44	1,28	1,35	1,33	1,23	1,29
	0,04	0,05	0,04	0,05	0,04	0,05	0,05	0,04	0,05	0,04	0,08	0,05	0,05	0,06	0,05	0,05	0,06	0,05	0,06	0,05
OH V	2,40	2,58	2,30	2,18	2,48	2,21	2,31	2,32	2,36	2,08	2,76	2,62	2,84	2,44	2,52	2,67	2,59	2,62	2,70	2,65
A _{Mg}	0,62	0,59	0,00	0,00	0,60	0,04	0,05	0,07	0,00	0,00	0,55	0,58	0,54	0,57	0,57	0,54	0,57	0,55	0,54	0,58
A _{Fe}	0,38	0,41	0,34	0,34	0,40	0,30	0,35	0,33	0,34	0,54	0,47	0,42	0,40	0,43	0,43	0,40	0,43	0,45	0,40	0,42
	1,28	1,32	1,28	1,23	1,29	1,22	1,27	1,30	1,51	1,18	1,35	1,33	1,39	1,23	1,20	1,30	1,30	1,29	1,33	1,34
	5,/6	5,11	5,80	5,84	5,72	5,82	5,88	5,88	5,88	5,/6	5,84	5,/5	5,/5	5,/1	5,62	5,63	5,/4	5,65	5,75	5,/5
$1, \mathcal{C}$	0.00	0.17	/08	/04	/15	/03	/0/	/11	0.28	/13	/12	/02	/04	/02	/09	/24	0.12	/13	/21	/1/
$\log(\Lambda_{Mg}/\Lambda_{Fe})$	0,22	0,17	0,28	0,29	0,18	0,25	0,27	0,30	0,28	0,28	0,00	0,15	0,08	0,15	0,12	0,07	0,12	0,08	0,07	0,14
IOG(AF/AOH)	-0,19	-0,27	-0,14	-0,09	-0,22	-0,10	-0,15	-0,15	-0,1/	-0,04	-0,37	-0,30	-0,41	-0,21	-0,24	-0,32	-0,28	-0,29	-0,34	-0,31
	3,49	1,93	4,62	5,14	2,20	4,/4	4,83	4,/1	5,58	5,22	1,31	1,28	-0,12	2,01	1,41	0,32	1,55	0,51	0,49	0,90
DI _{Cu}	-4,28	-3,46	-0,31	-0,50	-5,45	-/,00	-0,34	-3,/3	-0,49	-7,62	-5,42	-4,15	-3,56	-0,38	-5,82	-0,30	-4,/1	-3,68	-3,39	-4,50

№ точки	SLP2d1	SLP2d2	SLP2d3	SLP2d4	SLP2d5	SLP2d6	SLP2d7	SLP2d8	SLP2d9	SLP2d10	SLP3a1	SLP3a2	SLP3a3	SLP3a4	SLP3a5	SLP3a6	SLP3a7	SLP3a8	SLP3a9	SLP3a10
SiO ₂	39,04	37,54	39,98	39,00	38,70	38,74	38,12	38,47	38,94	37,68	38,05	38,64	38,89	38,54	38,98	38,49	38,49	38,99	39,04	38,60
Al ₂ O ₃	13,69	13,52	13,89	14,30	14,00	13,87	13,76	13,73	13,86	14,19	13,00	12,74	13,17	13,24	13,24	12,62	12,93	13,51	13,25	13,20
TiO ₂	2,79	2,83	2,31	2,95	2,61	2,69	3,53	2,72	2,70	3,73	3,26	2,96	2,81	2,75	3,05	3,08	2,91	2,97	3,07	3,08
FeO	18,06	19,20	17,08	18,90	19,44	18,36	19,08	18,81	18,26	19,50	15,37	15,87	15,16	15,42	15,26	15,40	15,21	15,23	15,19	15,26
MgO	11,91	10,50	12,95	11,73	11,46	11,99	11,22	11,44	11,62	10,99	15,54	15,12	16,38	15,82	15,81	15,38	15,57	15,96	15,64	15,47
Cr_2O_3	0,10	0,39	0,06	0,04	0,01	0,07	0,06	0,05	0,11	0,08	0,40	0,24	0,77	0,55	0,20	0,14	0,03	0,00	0,07	0,07
MnO	1,12	1,03	0,54	0,59	0,91	0,94	0,91	1,09	0,98	0,59	0,15	0,13	0,12	0,10	0,11	0,16	0,13	0,10	0,09	0,13
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na ₂ O	0,44	0,36	0,20	0,29	0,17	0,24	0,28	0,16	0,38	0,30	0,15	0,18	0,18	0,20	0,23	0,14	0,08	0,07	0,12	0,07
K ₂ O	9,86	9,76	9,81	9,70	10,01	9,81	9,60	9,54	9,77	9,59	9,11	9,31	8,71	8,89	9,24	9,15	8,73	9,25	9,29	9,40
F	3,50	2,80	3,57	2,90	3,39	3,19	3,42	2,76	3,31	3,00	1,07	0,85	1,17	1,12	1,05	0,90	1,19	1,25	1,23	1,06
Cl	0,19	0,25	0,15	0,19	0,17	0,18	0,16	0,17	0,21	0,14	0,19	0,16	0,23	0,20	0,20	0,19	0,20	0,17	0,18	0,19
Сумма	100,70	98,18	100,54	100,58	100,86	100,07	100,13	98,93	100,15	99,78	96,29	96,20	97,58	96,84	97,36	95,64	95,46	97,48	97,17	96,52
Si	5,84	5,78	5,92	5,80	5,80	5,81	5,75	5,82	5,84	5,69	5,71	5,80	5,74	5,74	5,77	5,80	5,80	5,76	5,79	5,77
Al ^{IV}	2,16	2,22	2,08	2,20	2,20	2,19	2,25	2,18	2,16	2,31	2,29	2,20	2,26	2,26	2,23	2,20	2,20	2,24	2,21	2,23
Al ^{VI}	0,25	0,23	0,35	0,30	0,28	0,26	0,20	0,28	0,29	0,21	0,01	0,05	0,03	0,06	0,08	0,04	0,10	0,11	0,11	0,09
Ti	0,31	0,33	0,26	0,33	0,29	0,30	0,40	0,31	0,30	0,42	0,37	0,33	0,31	0,31	0,34	0,35	0,33	0,33	0,34	0,35
Fe ³⁺	0,06	0,06	0,04	0,05	0,12	0,11	0,05	0,10	0,04	0,06	0,30	0,26	0,35	0,33	0,27	0,26	0,28	0,29	0,24	0,26
Fe ²⁺	2,20	2,42	2,07	2,29	2,31	2,19	2,35	2,28	2,25	2,40	1,62	1,73	1,52	1,59	1,61	1,67	1,62	1,58	1,64	1,64
Mg	2,65	2,41	2,86	2,60	2,56	2,68	2,52	2,58	2,60	2,47	3,48	3,38	3,60	3,51	3,49	3,46	3,50	3,51	3,46	3,45
Cr	0,01	0,05	0,01	0,00	0,00	0,01	0,01	0,01	0,01	0,01	0,05	0,03	0,09	0,06	0,02	0,02	0,00	0,00	0,01	0,01
Mn	0,14	0,13	0,07	0,07	0,12	0,12	0,12	0,14	0,12	0,08	0,02	0,02	0,01	0,01	0,01	0,02	0,02	0,01	0,01	0,02
Ca	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na	0,13	0,11	0,06	0,08	0,05	0,07	0,08	0,05	0,11	0,09	0,04	0,05	0,05	0,06	0,06	0,04	0,02	0,02	0,03	0,02
K	1,88	1,92	1,85	1,84	1,91	1,88	1,85	1,84	1,87	1,85	1,74	1,78	1,64	1,69	1,74	1,76	1,68	1,74	1,76	1,79
F	1,65	1,36	1,67	1,36	1,61	1,51	1,63	1,32	1,57	1,43	0,51	0,40	0,55	0,53	0,49	0,43	0,57	0,58	0,58	0,50
Cl	0,05	0,06	0,04	0,05	0,04	0,04	0,04	0,04	0,05	0,04	0,05	0,04	0,06	0,05	0,05	0,05	0,05	0,04	0,05	0,05
OH	2,30	2,57	2,29	2,59	2,35	2,44	2,33	2,64	2,38	2,53	3,45	3,56	3,40	3,42	3,46	3,52	3,38	3,37	3,38	3,45
X_{Mg}	0,54	0,49	0,57	0,53	0,51	0,54	0,51	0,52	0,53	0,50	0,64	0,63	0,66	0,65	0,65	0,64	0,65	0,65	0,65	0,64
X _{Fe}	0,46	0,51	0,43	0,47	0,49	0,46	0,49	0,48	0,47	0,50	0,36	0,37	0,34	0,35	0,35	0,36	0,35	0,35	0,35	0,36
IV (F)	1,12	1,20	1,16	1,24	1,11	1,18	1,10	1,26	1,15	1,17	1,94	2,04	1,92	1,92	1,96	2,02	1,89	1,87	1,88	1,94
IV(F/Cl)	5,50	5,56	5,50	5,53	5,37	5,49	5,33	5,48	5,53	5,31	6,32	6,32	6,42	6,35	6,38	6,41	6,32	6,23	6,27	6,34
T, ℃	677	674	655	681	661	671	707	670	671	713	727	710	708	703	717	719	713	714	718	718
log(X _{Mg} /X _{Fe})	0,07	-0,01	0,13	0,04	0,02	0,07	0,02	0,04	0,05	0,00	0,26	0,23	0,28	0,26	0,27	0,25	0,26	0,27	0,26	0,26
log(X _F /X _{OH})	-0,14	-0,28	-0,14	-0,28	-0,17	-0,21	-0,15	-0,30	-0,18	-0,25	-0,83	-0,95	-0,79	-0,81	-0,85	-0,91	-0,78	-0,76	-0,77	-0,84
Df _{Mo}	0,09	-1,19	0,46	-1,30	-0,37	-0,11	-0,13	-1,11	-0,52	-0,96	1,73	0,63	2,19	1,66	1,14	1,19	1,65	1,41	1,11	1,05
Df _{Cu}	-3,91	-2,83	-2,43	-2,52	-4,26	-3,49	-6,80	-2,61	-2,82	-6,28	-1,55	-0,12	-0,09	0,01	0,23	-0,37	-0,45	-0,31	-0,17	-0,02

№ точки	SLP3a11	SLP3a12	SLP3a13	SLP3a14	SLP3a15	SLP3a16	SLP3a17	SLP3a18	SLP3a19	SLP3a20	SLP3a21	SLP3a22	SLP3a23	SLP3a24	SLP3a25	SLP3a26	SLP3a27	SLP3a28	SLP3a29	SLP3a30
SiO ₂	39,30	39,15	38,53	38,94	38,42	38,77	38,67	38,87	38,59	39,44	38,12	38,56	38,26	38,84	37,96	38,16	38,64	38,32	37,57	38,05
Al ₂ O ₃	13,30	13,10	13,00	12,91	12,93	13,01	13,15	13,16	13,02	13,04	13,02	12,72	13,33	13,21	13,17	13,37	13,22	13,07	13,64	13,55
TiO ₂	3,16	3,39	3,56	3,16	3,21	3,37	3,38	2,99	3,50	3,76	3,92	3,56	4,27	3,81	4,08	4,16	3,81	4,00	3,95	3,99
FeO	15,76	14,95	15,10	14,43	14,42	14,48	14,49	15,33	15,42	15,94	16,38	15,48	15,64	16,31	15,53	15,91	16,27	15,77	16,07	16,74
MgO	15,78	15,59	15,53	16,26	16,12	15,81	15,68	15,31	15,70	15,25	13,94	15,29	14,73	14,57	14,60	14,38	14,25	14,54	14,51	13,47
Cr ₂ O ₃	0,09	0,36	0,23	0,03	0,02	0,02	0,02	0,04	0,08	0,06	0,17	0,12	0,13	0,10	0,18	0,13	0,11	0,12	0,18	0,16
MnO	0,07	0,19	0,16	0,12	0,11	0,13	0,10	0,07	0,13	0,08	0,12	0,14	0,15	0,10	0,20	0,14	0,14	0,23	0,16	0,09
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na ₂ O	0,19	0,20	0,11	0,08	0,09	0,15	0,19	0,06	0,17	0,13	0,08	0,10	0,18	0,13	0,10	0,15	0,12	0,17	0,09	0,11
K ₂ O	9,29	9,37	9,33	9,22	9,18	9,21	9,30	9,30	9,14	9,46	9,34	9,08	9,38	9,54	9,39	9,31	9,35	9,44	9,53	9,44
F	1,11	1,03	1,08	1,11	1,13	1,10	1,18	0,97	1,21	1,05	0,82	0,82	0,84	0,84	0,83	0,83	0,92	0,93	0,90	0,92
Cl	0,19	0,22	0,19	0,19	0,16	0,16	0,17	0,17	0,20	0,19	0,19	0,16	0,16	0,19	0,23	0,15	0,13	0,20	0,18	0,15
Сумма	98,23	97,54	96,83	96,46	95,79	96,19	96,32	96,27	97,14	98,40	96,10	96,02	97,07	97,62	96,27	96,68	96,95	96,81	96,75	96,66
Si	5,77	5,78	5,74	5,79	5,76	5,79	5,77	5,81	5,74	5,79	5,74	5,78	5,69	5,75	5,70	5,70	5,76	5,73	5,63	5,71
Al ^{IV}	2,23	2,22	2,26	2,21	2,24	2,21	2,23	2,19	2,26	2,21	2,26	2,22	2,31	2,25	2,30	2,30	2,24	2,27	2,37	2,29
Al ^{VI}	0,07	0,06	0,02	0,06	0,05	0,07	0,09	0,13	0,02	0,04	0,06	0,02	0,02	0,06	0,03	0,05	0,08	0,03	0,04	0,11
Ti	0,35	0,38	0,40	0,35	0,36	0,38	0,38	0,34	0,39	0,42	0,44	0,40	0,48	0,42	0,46	0,47	0,43	0,45	0,44	0,45
Fe ³⁺	0,27	0,19	0,23	0,26	0,28	0,21	0,20	0,22	0,27	0,17	0,13	0,22	0,15	0,15	0,16	0,13	0,13	0,15	0,22	0,09
Fe ²⁺	1,66	1,65	1,65	1,52	1,52	1,59	1,60	1,69	1,64	1,78	1,93	1,71	1,79	1,86	1,79	1,85	1,89	1,82	1,79	2,00
Mg	3,45	3,43	3,45	3,61	3,60	3,52	3,49	3,41	3,48	3,33	3,13	3,42	3,26	3,22	3,27	3,20	3,17	3,24	3,24	3,02
Cr	0,01	0,04	0,03	0,00	0,00	0,00	0,00	0,01	0,01	0,01	0,02	0,01	0,02	0,01	0,02	0,02	0,01	0,01	0,02	0,02
Mn	0,01	0,02	0,02	0,02	0,01	0,02	0,01	0,01	0,02	0,01	0,02	0,02	0,02	0,01	0,03	0,02	0,02	0,03	0,02	0,01
Ca	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na	0,05	0,06	0,03	0,02	0,03	0,04	0,05	0,02	0,05	0,04	0,02	0,03	0,05	0,04	0,03	0,04	0,03	0,05	0,03	0,03
K	1,74	1,76	1,77	1,75	1,76	1,75	1,77	1,77	1,73	1,77	1,79	1,73	1,78	1,80	1,80	1,77	1,78	1,80	1,82	1,81
F	0,51	0,48	0,51	0,52	0,54	0,52	0,56	0,46	0,57	0,49	0,39	0,39	0,39	0,39	0,39	0,39	0,43	0,44	0,42	0,44
Cl	0,05	0,05	0,05	0,05	0,04	0,04	0,04	0,04	0,05	0,05	0,05	0,04	0,04	0,05	0,06	0,04	0,03	0,05	0,05	0,04
OH	3,44	3,47	3,44	3,43	3,42	3,44	3,40	3,50	3,38	3,46	3,56	3,57	3,57	3,56	3,55	3,57	3,53	3,51	3,53	3,53
X_{Mg}	0,64	0,65	0,65	0,67	0,67	0,66	0,66	0,64	0,64	0,63	0,60	0,64	0,63	0,61	0,63	0,62	0,61	0,62	0,62	0,59
X _{Fe}	0,36	0,35	0,35	0,33	0,33	0,34	0,34	0,36	0,36	0,37	0,40	0,36	0,37	0,39	0,37	0,38	0,39	0,38	0,38	0,41
IV (F)	1,93	1,97	1,94	1,96	1,94	1,95	1,91	1,99	1,88	1,94	2,02	2,07	2,04	2,03	2,04	2,03	1,97	1,98	1,99	1,94
IV(F/Cl)	6,31	6,43	6,35	6,40	6,31	6,30	6,30	6,32	6,31	6,31	6,33	6,37	6,31	6,34	6,46	6,27	6,13	6,36	6,30	6,11
T , ℃	719	732	738	729	731	735	735	713	735	739	741	736	756	738	751	751	737	747	744	739
log(X _{Mg} /X _{Fe})	0,25	0,27	0,26	0,30	0,30	0,29	0,29	0,25	0,26	0,23	0,18	0,25	0,23	0,20	0,22	0,21	0,19	0,22	0,21	0,16
log(X _F /X _{OH})	-0,83	-0,86	-0,83	-0,82	-0,80	-0,82	-0,79	-0,88	-0,78	-0,85	-0,96	-0,96	-0,96	-0,96	-0,95	-0,96	-0,91	-0,90	-0,92	-0,91
Df _{Mo}	0,96	0,75	1,29	1,90	2,12	1,34	1,30	0,51	1,70	0,26	-0,61	0,78	-0,09	-0,49	0,15	-0,45	-0,70	0,03	0,17	-1,35
Df _{Cu}	-0,33	0,23	-1,37	-0,43	-1,25	-0,73	-0,68	0,61	-1,95	-1,21	-1,26	-1,24	-2,05	-0,77	-1,27	-1,77	-1,31	-1,47	-1,88	-1,36

№ точки	SLP3b1	SLP3b2	SLP3b3	SLP3b4	SLP3b5	SLP3b6	SLP3b7	SLP3b8	SLP3b9	SLP3b10	SLP3c1	SLP3c2	SLP3c3	SLP3c4	SLP3c5	SLP3c6	SLP3c7	SLP3c8	SLP3c9	SLP3c10
SiO ₂	38,04	38,23	37,91	37,18	38,28	37,66	37,66	37,70	37,69	38,14	38,49	37,20	37,26	38,27	38,02	38,25	38,71	38,18	37,89	38,22
Al ₂ O ₃	13,42	13,10	13,30	13,44	13,42	13,30	13,48	13,33	12,73	12,89	13,77	13,93	12,72	13,57	13,93	13,64	13,80	13,62	13,46	13,83
TiO ₂	4,36	4,32	4,39	3,88	4,35	4,50	4,30	4,02	4,14	4,30	3,14	2,75	2,94	3,93	3,04	3,07	3,01	2,88	2,96	2,93
FeO	17,83	18,59	18,49	18,53	18,40	18,13	18,09	17,86	18,35	17,76	16,07	16,49	15,73	16,03	16,20	16,20	15,86	16,19	16,18	16,42
MgO	12,73	12,39	12,30	12,49	12,15	12,50	12,55	12,66	12,62	13,03	14,87	14,13	13,84	14,74	14,98	14,89	14,97	14,75	14,71	15,16
Cr_2O_3	0,27	0,10	0,17	0,17	0,12	0,08	0,19	0,16	0,10	0,08	0,24	0,77	0,25	0,12	0,07	0,09	0,09	0,13	0,15	0,12
MnO	0,17	0,23	0,19	0,21	0,21	0,16	0,24	0,22	0,21	0,16	0,07	0,07	0,07	0,14	0,04	0,06	0,08	0,08	0,08	0,12
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na ₂ O	0,16	0,13	0,12	0,14	0,14	0,09	0,18	0,07	0,14	0,17	0,13	0,15	0,18	0,14	0,15	0,15	0,07	0,06	0,06	0,15
K ₂ O	9,40	9,66	9,49	9,34	9,72	9,44	9,46	9,38	9,58	9,42	9,44	9,41	8,62	9,33	9,42	9,59	9,35	9,23	9,30	9,59
F	0,80	0,94	0,69	0,72	0,77	0,92	0,78	0,78	0,71	0,74	0,73	0,76	0,51	0,87	0,69	0,61	0,64	0,64	0,63	0,76
Cl	0,18	0,24	0,23	0,38	0,21	0,23	0,26	0,19	0,27	0,23	0,11	0,10	0,10	0,17	0,08	0,07	0,07	0,07	0,08	0,09
Сумма	97,33	97,93	97,27	96,48	97,77	97,01	97,19	96,36	96,53	96,90	97,05	95,76	92,23	97,30	96,60	96,63	96,66	95,82	95,48	97,37
Si	5,70	5,73	5,70	5,66	5,73	5,69	5,67	5,71	5,73	5,74	5,72	5,64	5,80	5,68	5,68	5,71	5,75	5,73	5,72	5,68
Al ^{IV}	2,30	2,27	2,30	2,34	2,27	2,31	2,33	2,29	2,27	2,26	2,28	2,36	2,20	2,32	2,32	2,29	2,25	2,27	2,28	2,32
Al ^{VI}	0,07	0,05	0,06	0,07	0,10	0,05	0,06	0,09	0,01	0,03	0,13	0,13	0,14	0,06	0,13	0,11	0,17	0,15	0,12	0,10
Ti	0,49	0,49	0,50	0,44	0,49	0,51	0,49	0,46	0,47	0,49	0,35	0,31	0,34	0,44	0,34	0,34	0,34	0,33	0,34	0,33
Fe ³⁺	0,06	0,06	0,06	0,17	0,01	0,07	0,09	0,10	0,12	0,09	0,24	0,29	0,18	0,19	0,30	0,27	0,23	0,27	0,28	0,33
Fe ²⁺	2,17	2,26	2,26	2,18	2,29	2,21	2,18	2,15	2,21	2,14	1,75	1,80	1,86	1,79	1,72	1,75	1,73	1,76	1,76	1,70
Mg	2,84	2,77	2,76	2,83	2,71	2,81	2,82	2,86	2,86	2,92	3,29	3,19	3,21	3,26	3,33	3,31	3,31	3,30	3,31	3,36
Cr	0,03	0,01	0,02	0,02	0,01	0,01	0,02	0,02	0,01	0,01	0,03	0,09	0,03	0,01	0,01	0,01	0,01	0,02	0,02	0,01
Mn	0,02	0,03	0,02	0,03	0,03	0,02	0,03	0,03	0,03	0,02	0,01	0,01	0,01	0,02	0,01	0,01	0,01	0,01	0,01	0,02
Ca	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na	0,05	0,04	0,03	0,04	0,04	0,02	0,05	0,02	0,04	0,05	0,04	0,04	0,05	0,04	0,04	0,04	0,02	0,02	0,02	0,04
K	1,80	1,85	1,82	1,81	1,86	1,82	1,82	1,81	1,86	1,81	1,79	1,82	1,71	1,77	1,79	1,83	1,77	1,77	1,79	1,82
F	0,38	0,45	0,33	0,35	0,37	0,44	0,37	0,37	0,34	0,35	0,34	0,36	0,25	0,41	0,33	0,29	0,30	0,30	0,30	0,36
Cl	0,04	0,06	0,06	0,10	0,05	0,06	0,07	0,05	0,07	0,06	0,03	0,03	0,03	0,04	0,02	0,02	0,02	0,02	0,02	0,02
OH	3,58	3,49	3,61	3,56	3,58	3,50	3,56	3,58	3,59	3,59	3,63	3,61	3,72	3,55	3,65	3,69	3,68	3,68	3,68	3,62
X_{Mg}	0,56	0,54	0,54	0,55	0,54	0,55	0,55	0,56	0,55	0,57	0,62	0,60	0,61	0,62	0,62	0,62	0,63	0,62	0,62	0,62
X _{Fe}	0,44	0,46	0,46	0,45	0,46	0,45	0,45	0,44	0,45	0,43	0,38	0,40	0,39	0,38	0,38	0,38	0,37	0,38	0,38	0,38
IV (F)	1,98	1,88	2,02	2,00	1,97	1,89	1,97	1,98	2,02	2,02	2,10	2,04	2,23	2,01	2,12	2,18	2,17	2,16	2,16	2,08
IV(F/Cl)	6,17	6,18	6,28	6,50	6,19	6,19	6,32	6,19	6,37	6,34	6,18	6,08	6,26	6,30	6,05	6,06	6,06	6,05	6,09	6,09
Т, ℃	744	739	742	728	740	747	741	735	737	744	714	694	708	744	710	712	710	703	707	704
log(X _{Mg} /X _{Fe})	0,10	0,07	0,07	0,08	0,07	0,09	0,09	0,10	0,09	0,12	0,22	0,18	0,20	0,21	0,22	0,21	0,23	0,21	0,21	0,22
log(X _F /X _{OH})	-0,98	-0,89	-1,04	-1,01	-0,99	-0,90	-0,98	-0,98	-1,02	-1,01	-1,02	-1,00	-1,17	-0,94	-1,05	-1,11	-1,09	-1,08	-1,09	-1,01
Df _{Mo}	-2,19	-2,13	-2,53	-1,55	-3,01	-1,80	-2,03	-1,92	-1,51	-1,56	-0,46	-0,35	-0,48	-0,10	-0,13	-0,36	-0,75	-0,42	-0,15	0,17
Df _{Cu}	-1,91	-2,18	-1,67	-0,07	-1,21	-2,71	-1,35	-1,47	-1,93	-1,92	0,44	0,42	0,45	-1,42	-0,08	0,03	1,03	0,49	-0,05	-0,20

№ точки	SLP3c11	SLP3c12	SLP3c13	SLP3c14	SLP3c15	SLP3c16	SLP3c17	SLP3c18	SLP3c19	SLP3c20	SLP3c21	SLP3c22	SLP3c23	SLP3c24	SLP3c25	SLP3c26	SLP3c27	SLP3c28	SLP3c29	SLP3c30
SiO ₂	37,92	38,08	38,41	37,91	37,97	38,08	36,83	38,19	37,82	37,83	38,20	38,32	38,44	38,10	37,91	38,13	38,29	38,30	37,82	37,88
Al ₂ O ₃	13,46	13,74	13,66	13,66	13,77	13,29	13,34	13,52	13,45	13,36	13,88	13,92	14,01	13,74	13,65	13,79	13,52	13,61	13,83	12,94
TiO ₂	4,34	4,06	4,05	3,90	3,87	4,29	4,40	4,02	4,06	4,06	3,67	3,45	3,57	3,35	3,50	3,38	3,40	3,38	3,31	3,05
FeO	17,01	17,09	17,45	17,77	17,71	17,10	16,82	17,79	17,96	18,16	16,64	16,69	17,00	16,28	16,28	16,16	16,18	16,10	16,36	16,89
MgO	13,01	13,08	13,83	13,17	13,15	12,98	13,06	12,83	12,98	12,70	14,46	14,75	14,79	15,07	14,85	15,04	15,12	15,06	15,17	13,22
Cr ₂ O ₃	0,13	0,13	0,08	0,13	0,16	0,11	0,31	0,19	0,12	0,17	0,17	0,16	0,12	0,14	0,17	0,14	0,16	0,18	0,15	0,09
MnO	0,24	0,28	0,29	0,25	0,22	0,24	0,21	0,21	0,27	0,24	0,09	0,08	0,10	0,08	0,10	0,09	0,09	0,14	0,09	0,74
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na ₂ O	0,09	0,08	0,04	0,09	0,12	0,08	0,14	0,10	0,14	0,14	0,11	0,12	0,12	0,18	0,16	0,21	0,23	0,16	0,17	0,22
K ₂ O	9,46	9,39	9,54	9,52	9,61	9,63	9,49	9,51	9,57	9,55	9,32	9,35	8,54	8,80	9,16	8,92	9,14	9,04	8,75	9,51
F	1,07	0,92	0,92	0,81	0,90	0,86	0,73	0,83	0,89	0,69	1,06	0,99	1,02	0,76	0,68	0,66	0,86	0,78	0,90	0,80
Cl	0,17	0,18	0,20	0,20	0,23	0,15	0,24	0,21	0,20	0,20	0,13	0,13	0,13	0,14	0,14	0,12	0,11	0,12	0,12	0,17
Сумма	96,88	97,02	98,46	97,40	97,71	96,81	95,56	97,40	97,44	97,11	97,72	97,98	97,84	96,64	96,59	96,63	97,09	96,87	96,66	95,51
Si	5,70	5,71	5,68	5,68	5,68	5,73	5,62	5,72	5,68	5,70	5,67	5,67	5,67	5,68	5,66	5,68	5,69	5,70	5,65	5,79
Al ^{IV}	2,30	2,29	2,32	2,32	2,32	2,27	2,38	2,28	2,32	2,30	2,33	2,33	2,33	2,32	2,34	2,32	2,31	2,30	2,35	2,21
Al ^{VI}	0,09	0,13	0,06	0,09	0,10	0,08	0,02	0,11	0,06	0,07	0,10	0,10	0,11	0,09	0,07	0,09	0,06	0,08	0,08	0,11
Ti	0,49	0,46	0,45	0,44	0,44	0,48	0,51	0,45	0,46	0,46	0,41	0,38	0,40	0,38	0,39	0,38	0,38	0,38	0,37	0,35
Fe ³⁺	0,05	0,08	0,17	0,16	0,14	0,05	0,12	0,08	0,14	0,12	0,22	0,26	0,27	0,29	0,27	0,28	0,28	0,27	0,33	0,18
Fe ²⁺	2,08	2,06	1,98	2,06	2,07	2,10	2,03	2,14	2,11	2,16	1,84	1,80	1,81	1,72	1,75	1,72	1,73	1,73	1,70	1,97
Mg	2,92	2,92	3,05	2,94	2,93	2,91	2,97	2,86	2,91	2,85	3,20	3,25	3,25	3,35	3,31	3,34	3,35	3,34	3,38	3,01
Cr	0,02	0,02	0,01	0,02	0,02	0,01	0,04	0,02	0,01	0,02	0,02	0,02	0,01	0,02	0,02	0,02	0,02	0,02	0,02	0,01
Mn	0,03	0,03	0,04	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,01	0,10
Ca	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na	0,02	0,02	0,01	0,02	0,04	0,02	0,04	0,03	0,04	0,04	0,03	0,04	0,04	0,05	0,05	0,06	0,07	0,05	0,05	0,06
K	1,81	1,79	1,80	1,82	1,83	1,85	1,85	1,82	1,83	1,83	1,76	1,76	1,61	1,67	1,75	1,69	1,73	1,72	1,67	1,85
F	0,51	0,44	0,43	0,38	0,43	0,41	0,35	0,39	0,42	0,33	0,50	0,46	0,48	0,36	0,32	0,31	0,40	0,37	0,42	0,39
Cl	0,04	0,04	0,05	0,05	0,06	0,04	0,06	0,05	0,05	0,05	0,03	0,03	0,03	0,03	0,04	0,03	0,03	0,03	0,03	0,04
OH	3,45	3,52	3,52	3,57	3,51	3,55	3,59	3,55	3,53	3,62	3,47	3,50	3,49	3,61	3,64	3,66	3,57	3,60	3,54	3,57
X_{Mg}	0,58	0,58	0,59	0,57	0,57	0,58	0,58	0,56	0,56	0,55	0,61	0,61	0,61	0,62	0,62	0,62	0,62	0,63	0,62	0,58
X _{Fe}	0,42	0,42	0,41	0,43	0,43	0,42	0,42	0,44	0,44	0,45	0,39	0,39	0,39	0,38	0,38	0,38	0,38	0,37	0,38	0,42
IV (F)	1,85	1,93	1,95	1,98	1,93	1,96	2,03	1,96	1,93	2,04	1,90	1,94	1,92	2,08	2,13	2,15	2,03	2,07	1,99	2,00
IV(F/Cl)	6,06	6,16	6,23	6,25	6,25	6,11	6,40	6,23	6,17	6,27	6,06	6,10	6,08	6,27	6,33	6,26	6,13	6,22	6,14	6,23
T , ℃	747	738	738	731	730	745	752	734	736	734	731	724	727	724	729	725	726	725	722	704
log(X _{Mg} /X _{Fe})	0,13	0,13	0,15	0,12	0,12	0,13	0,14	0,11	0,11	0,10	0,19	0,20	0,19	0,22	0,21	0,22	0,22	0,22	0,22	0,14
log(X _F /X _{OH})	-0,83	-0,91	-0,92	-0,97	-0,92	-0,94	-1,01	-0,96	-0,92	-1,04	-0,85	-0,88	-0,86	-1,00	-1,06	-1,07	-0,95	-0,99	-0,92	-0,96
Df _{Mo}	-1,49	-1,89	-1,09	-1,62	-1,60	-1,87	-0,97	-2,14	-1,50	-2,06	-0,24	-0,08	-0,10	0,22	0,02	-0,07	0,37	0,11	0,71	-1,18
Df _{Cu}	-2,36	-0,88	-1,66	-0,99	-0,75	-1,87	-2,07	-0,78	-2,00	-1,31	-1,70	-1,25	-1,70	-0,75	-0,81	-0,47	-1,37	-0,74	-1,59	0,58

№ точки	SLP3d1	SLP3d2	SLP3d3	SLP3d4	SLP3d5	SLP3d6	SLP3d7	SLP3d8	SLP3d9	SLP3d10	SLP4a1	SLP4a2	SLP4a3	SLP4a4	SLP4a5	SLP4a6	SLP4a7	SLP4a8	SLP4a9	SLP4a10
SiO ₂	37,62	38,27	37,99	37,74	38,36	38,17	38,53	37,85	37,84	38,44	38,50	38,32	38,31	38,08	37,85	37,81	38,11	39,13	37,76	39,16
Al ₂ O ₃	13,10	13,51	13,62	13,46	13,50	13,11	13,20	13,78	13,12	13,22	13,09	12,89	13,70	13,13	13,19	13,64	13,87	13,27	13,27	12,87
TiO ₂	3,98	3,00	3,98	4,53	4,35	4,19	4,18	3,98	3,26	4,38	3,46	3,42	3,53	3,44	3,35	3,51	3,45	3,54	3,34	3,20
FeO	18,38	17,58	17,59	18,36	17,76	18,21	17,83	17,82	17,68	17,84	14,90	15,44	16,18	15,80	16,03	16,66	15,85	15,58	14,79	14,94
MgO	12,96	14,22	13,42	12,53	12,98	12,24	12,93	12,85	13,37	13,06	15,07	15,12	15,58	15,12	15,45	14,90	14,97	15,53	15,50	16,57
Cr ₂ O ₃	0,10	0,14	0,17	0,11	0,17	0,15	0,11	0,15	0,23	0,15	0,23	0,57	0,13	0,07	0,15	0,11	0,11	0,28	0,13	0,05
MnO	0,21	0,21	0,13	0,17	0,24	0,18	0,20	0,23	0,21	0,24	0,18	0,20	0,18	0,13	0,18	0,19	0,17	0,20	0,12	0,16
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na ₂ O	0,18	0,11	0,13	0,08	0,11	0,16	0,14	0,07	0,12	0,18	0,19	0,29	0,20	0,12	0,18	0,13	0,11	0,19	0,21	0,11
K ₂ O	9,65	9,35	9,59	9,57	9,43	9,58	9,48	9,60	9,41	9,51	9,49	9,52	9,91	9,67	9,67	9,60	9,48	9,71	9,43	9,51
F	0,66	0,88	0,78	0,61	0,73	0,79	0,74	0,94	0,69	0,79	1,32	1,10	0,94	1,04	1,14	1,17	1,06	1,02	1,26	1,35
Cl	0,23	0,18	0,23	0,16	0,22	0,22	0,26	0,17	0,26	0,23	0,19	0,25	0,16	0,19	0,18	0,18	0,21	0,17	0,16	0,18
Сумма	97,06	97,47	97,64	97,32	97,83	96,98	97,60	97,44	96,19	98,04	96,63	97,13	98,82	96,76	97,38	97,89	97,39	98,62	95,96	98,09
Si	5,68	5,72	5,67	5,66	5,71	5,76	5,75	5,68	5,74	5,72	5,76	5,73	5,63	5,71	5,66	5,63	5,67	5,73	5,69	5,76
Al ^{IV}	2,32	2,28	2,33	2,34	2,29	2,24	2,25	2,32	2,26	2,28	2,24	2,27	2,37	2,29	2,32	2,37	2,33	2,27	2,31	2,23
Al ^{VI}	0,01	0,10	0,07	0,05	0,08	0,09	0,07	0,11	0,08	0,04	0,07	0,00	0,00	0,03	0,00	0,03	0,10	0,03	0,05	0,00
Ti	0,45	0,34	0,45	0,51	0,49	0,47	0,47	0,45	0,37	0,49	0,39	0,38	0,39	0,39	0,38	0,39	0,39	0,39	0,38	0,35
Fe ³⁺	0,18	0,30	0,16	0,09	0,07	0,02	0,06	0,12	0,21	0,08	0,17	0,23	0,33	0,27	0,35	0,32	0,25	0,22	0,27	0,32
Fe ²⁺	2,13	1,89	2,04	2,21	2,13	2,27	2,16	2,11	2,03	2,14	1,69	1,71	1,66	1,71	1,65	1,75	1,71	1,68	1,59	1,51
Mg	2,92	3,17	2,99	2,80	2,88	2,75	2,88	2,87	3,02	2,90	3,36	3,37	3,41	3,38	3,44	3,31	3,32	3,39	3,48	3,64
Cr	0,01	0,02	0,02	0,01	0,02	0,02	0,01	0,02	0,03	0,02	0,03	0,07	0,02	0,01	0,02	0,01	0,01	0,03	0,02	0,01
Mn	0,03	0,03	0,02	0,02	0,03	0,02	0,03	0,03	0,03	0,03	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,01	0,02
Ca	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na	0,05	0,03	0,04	0,02	0,03	0,05	0,04	0,02	0,04	0,05	0,06	0,08	0,06	0,03	0,05	0,04	0,03	0,05	0,06	0,03
K	1,86	1,78	1,83	1,83	1,79	1,84	1,81	1,84	1,82	1,81	1,81	1,81	1,86	1,85	1,84	1,82	1,80	1,82	1,81	1,79
F	0,32	0,42	0,37	0,29	0,34	0,38	0,35	0,44	0,33	0,37	0,62	0,52	0,44	0,49	0,54	0,55	0,50	0,47	0,60	0,63
CI	0,06	0,05	0,06	0,04	0,05	0,06	0,07	0,04	0,07	0,06	0,05	0,06	0,04	0,05	0,05	0,04	0,05	0,04	0,04	0,05
OH	3,63	3,54	3,57	3,67	3,60	3,57	3,59	3,51	3,61	3,57	3,33	3,42	3,52	3,46	3,41	3,40	3,45	3,48	3,36	3,32
X _{Mg}	0,56	0,59	0,58	0,55	0,57	0,55	0,56	0,56	0,57	0,57	0,64	0,64	0,63	0,63	0,63	0,61	0,63	0,64	0,65	0,66
X _{Fe}	0,44	0,41	0,42	0,45	0,43	0,45	0,44	0,44	0,43	0,43	0,36	0,36	0,37	0,37	0,37	0,39	0,37	0,36	0,35	0,34
IV (F)	2,06	1,97	2,00	2,09	2,03	1,97	2,02	1,90	2,06	2,00	1,83	1,92	1,99	1,94	1,89	1,86	1,92	1,97	1,86	1,85
	6,35	6,23	6,33	6,22	6,31	6,23	6,39	6,08	6,44	6,32	6,24	6,43	6,27	6,30	6,25	6,17	6,32	6,29	6,21	6,28
T, °C	733	700	735	747	0.12	737	739	733	7/10	745	734	730	731	730	727	728	729	733	733	7/28
$\log(X_{Mg}/X_{Fe})$	0,10	0,16	0,13	0,09	0,12	0,08	0,11	0,11	0,13	0,12	0,26	0,24	0,23	0,23	0,24	0,20	0,23	0,25	0,27	0,30
$\log(X_F/X_{OH})$	-1,06	-0,93	-0,98	-1,10	-1,02	-0,98	-1,01	-0,90	-1,04	-0,98	-0,73	-0,82	-0,91	-0,85	-0,80	-0,79	-0,84	-0,87	-0,75	-0,72
Df _{Mo}	-1,39	-0,37	-1,39	-2,45	-2,23	-2,58	-2,15	-1,89	-1,05	-1,90	1,00	1,17	0,99	1,10	1,86	1,03	0,46	0,60	1,88	2,58
Df _{Cu}	-1,88	-0,24	-0,98	-2,45	-1,14	-1,10	-0,55	-1,50	0,41	-1,61	-1,06	-0,75	-1,80	-1,57	-2,55	-2,52	-0,49	-0,89	-1,88	-2,00

№ точки	SLP4b1	SLP4b2	SLP4b3	SLP4b4	SLP4b5	SLP4b6	SLP4b7	SLP4b8	SLP4b9	SLP4b10	SLP4c1	SLP4c2	SLP4c3	SLP4c4	SLP4c5	SLP4c6	SLP4c7	SLP4c8	SLP4c9	SLP4c10
SiO ₂	39,35	39,18	38,06	38,35	38,02	38,38	39,26	37,75	37,63	37,84	39,14	37,66	37,83	38,07	37,96	37,74	38,79	38,43	38,79	38,57
Al ₂ O ₃	12,95	13,07	13,32	13,06	12,62	12,67	12,96	12,80	13,52	13,39	13,24	13,30	13,14	13,38	13,48	13,26	13,32	13,30	13,29	12,90
TiO ₂	3,34	3,70	3,40	3,48	3,43	3,82	3,69	3,60	3,02	3,46	3,41	3,64	3,26	3,13	3,18	3,20	3,34	3,54	3,48	3,44
FeO	14,38	14,71	14,90	14,63	14,52	14,25	14,18	13,62	14,47	14,24	15,28	15,31	15,02	14,99	15,09	14,98	14,93	15,06	15,40	14,60
MgO	16,61	16,34	16,27	16,14	15,76	15,96	16,26	16,31	18,05	16,02	16,08	15,50	15,93	16,03	15,90	15,82	16,76	15,81	16,01	15,87
Cr ₂ O ₃	0,15	0,19	0,13	0,17	0,14	0,25	0,28	0,24	0,31	0,24	0,06	0,12	0,18	0,15	0,14	0,19	0,15	0,12	0,11	0,09
MnO	0,09	0,11	0,05	0,09	0,10	0,10	0,08	0,09	0,15	0,12	0,13	0,14	0,14	0,13	0,18	0,18	0,09	0,18	0,15	0,06
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na ₂ O	0,16	0,08	0,13	0,06	0,18	0,19	0,12	0,13	0,16	0,15	0,14	0,22	0,16	0,23	0,25	0,18	0,14	0,16	0,14	0,16
K ₂ O	9,57	9,46	9,42	9,22	9,39	9,28	9,47	8,74	7,76	9,07	9,52	9,41	9,53	9,81	9,75	9,65	9,89	9,45	9,38	9,42
F	1,41	1,32	1,14	1,19	1,18	1,51	1,22	1,06	1,30	1,20	1,30	1,23	1,27	1,37	1,28	1,23	1,44	1,25	1,18	1,27
Cl	0,19	0,19	0,19	0,18	0,18	0,19	0,18	0,19	0,17	0,21	0,15	0,16	0,14	0,16	0,16	0,15	0,15	0,16	0,15	0,17
Сумма	98,21	98,33	97,00	96,56	95,51	96,60	97,70	94,52	96,54	95,93	98,44	96,67	96,61	97,45	97,35	96,56	98,99	97,46	98,08	96,54
Si	5,77	5,74	5,66	5,72	5,75	5,74	5,77	5,72	5,58	5,68	5,74	5,65	5,67	5,67	5,66	5,67	5,68	5,70	5,71	5,76
Al ^{IV}	2,23	2,26	2,34	2,28	2,25	2,23	2,23	2,28	2,36	2,32	2,26	2,35	2,32	2,33	2,34	2,33	2,30	2,30	2,29	2,24
Al ^{VI}	0,01	0,00	0,00	0,01	0,00	0,00	0,02	0,00	0,00	0,04	0,03	0,00	0,00	0,02	0,03	0,01	0,00	0,02	0,02	0,03
Ti	0,37	0,41	0,38	0,39	0,39	0,43	0,41	0,41	0,34	0,39	0,38	0,41	0,37	0,35	0,36	0,36	0,37	0,40	0,38	0,39
Fe ³⁺	0,26	0,24	0,34	0,29	0,26	0,21	0,19	0,27	0,57	0,29	0,27	0,30	0,34	0,34	0,34	0,34	0,36	0,27	0,29	0,23
Fe ²⁺	1,50	1,55	1,51	1,53	1,57	1,56	1,55	1,45	1,20	1,50	1,59	1,62	1,54	1,53	1,54	1,54	1,47	1,59	1,59	1,58
Mg	3,63	3,57	3,61	3,59	3,55	3,56	3,56	3,68	3,99	3,58	3,52	3,46	3,56	3,56	3,53	3,54	3,66	3,50	3,51	3,53
Cr	0,02	0,02	0,02	0,02	0,02	0,03	0,03	0,03	0,04	0,03	0,01	0,01	0,02	0,02	0,02	0,02	0,02	0,01	0,01	0,01
Mn	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,01	0,02	0,02	0,01
Ca	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na	0,05	0,02	0,04	0,02	0,05	0,06	0,03	0,04	0,04	0,04	0,04	0,06	0,05	0,06	0,07	0,05	0,04	0,04	0,04	0,05
K	1,79	1,77	1,79	1,75	1,81	1,77	1,78	1,69	1,47	1,73	1,78	1,80	1,82	1,86	1,85	1,85	1,85	1,79	1,76	1,79
F	0,65	0,61	0,54	0,56	0,56	0,71	0,57	0,51	0,61	0,57	0,60	0,58	0,60	0,64	0,60	0,58	0,67	0,59	0,55	0,60
Cl	0,05	0,05	0,05	0,04	0,05	0,05	0,04	0,05	0,04	0,05	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04
OH	3,30	3,34	3,42	3,39	3,39	3,24	3,39	3,45	3,35	3,38	3,36	3,38	3,36	3,32	3,36	3,38	3,30	3,37	3,41	3,36
X _{Mg}	0,67	0,66	0,66	0,66	0,66	0,67	0,67	0,68	0,69	0,67	0,65	0,64	0,65	0,66	0,65	0,65	0,67	0,65	0,65	0,66
X _{Fe}	0,33	0,34	0,34	0,34	0,34	0,33	0,33	0,32	0,31	0,33	0,35	0,36	0,35	0,34	0,35	0,35	0,33	0,35	0,35	0,34
IV (F)	1,85	1,87	1,93	1,91	1,90	1,79	1,92	1,98	1,89	1,90	1,86	1,86	1,86	1,83	1,86	1,88	1,83	1,87	1,90	1,87
IV(F/Cl)	6,30	6,31	6,35	6,32	6,32	6,26	6,34	6,45	6,35	6,40	6,17	6,18	6,15	6,19	6,21	6,19	6,18	6,21	6,21	6,26
<u> </u>	736	746	736	740	739	753	748	752	729	741	732	741	730	724	725	727	733	738	734	738
log(X _{Mg} /X _{Fe})	0,31	0,30	0,29	0,29	0,29	0,30	0,31	0,33	0,35	0,30	0,27	0,26	0,28	0,28	0,27	0,27	0,30	0,27	0,27	0,29
log(X _F /X _{OH})	-0,70	-0,74	-0,80	-0,78	-0,78	-0,66	-0,77	-0,83	-0,74	-0,77	-0,75	-0,76	-0,75	-0,71	-0,75	-0,76	-0,69	-0,76	-0,79	-0,75
Df _{Mo}	2,42	2,03	2,44	2,24	2,29	2,66	1,69	2,74	5,08	2,27	1,67	1,96	2,49	2,44	2,17	2,28	2,91	1,74	1,65	1,93
Df _{Cu}	-1,60	-2,17	-2,09	-2,05	-2,17	-3,42	-1,38	-2,01	-3,72	-1,37	-1,96	-3,09	-2,74	-2,09	-1,87	-2,19	-2,91	-2,20	-2,11	-1,85
Приложение 9. (продолжение)

№ точки	SLP4d1	SLP4d2	SLP4d3	SLP4d4	SLP4d5	SLP4d6	SLP4d7	SLP4d8	SLP4d9	SLP4d10	SLP5a1	SLP5a2	SLP5a3	SLP5a4	SLP5a5	SLP5a6	SLP5a7	SLP5a8	SLP5a9	SLP5a10
SiO ₂	38,88	38,60	38,93	37,29	39,02	38,32	39,19	38,26	39,17	38,66	38,09	38,27	38,25	38,15	37,66	37,88	38,03	37,74	37,83	38,42
Al ₂ O ₃	12,90	13,36	13,09	13,49	13,02	13,67	12,97	13,42	12,46	13,15	13,44	13,58	13,56	13,75	14,06	13,46	13,48	13,46	13,28	13,54
TiO ₂	3,41	3,59	3,32	3,35	3,37	3,57	3,07	3,47	2,73	3,39	3,51	3,54	3,56	3,45	3,58	3,40	3,52	3,47	3,39	3,51
FeO	14,97	15,13	15,35	14,62	14,93	15,37	14,12	15,57	14,16	15,63	16,16	16,35	16,21	16,26	15,69	16,34	16,28	16,12	16,04	16,50
MgO	15,84	16,16	16,50	15,92	16,16	15,79	17,31	15,88	17,16	15,84	14,92	14,90	15,13	14,83	14,85	15,02	14,94	14,62	14,69	14,80
Cr ₂ O ₃	0,14	0,18	0,15	0,16	0,14	0,14	0,10	0,19	0,04	0,14	0,11	0,15	0,18	0,20	0,11	0,15	0,16	0,11	0,17	0,10
MnO	0,12	0,10	0,12	0,18	0,09	0,11	0,09	0,09	0,11	0,12	0,17	0,16	0,17	0,15	0,17	0,16	0,17	0,13	0,11	0,19
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,10	0,00	0,00	0,00	0,01	0,00
Na ₂ O	0,21	0,11	0,11	0,11	0,11	0,18	0,13	0,23	0,08	0,14	0,16	0,23	0,22	0,20	0,12	0,34	0,24	0,32	0,34	0,23
K ₂ O	9,53	9,54	9,86	9,40	9,60	9,45	9,56	9,49	9,52	9,73	8,68	9,00	9,00	8,96	8,16	9,08	9,02	9,03	8,85	9,15
F	1,28	1,29	1,34	1,20	1,28	1,14	1,46	1,12	1,48	1,31	0,62	0,68	0,65	0,67	0,69	0,65	0,72	0,82	0,69	0,76
Cl	0,19	0,18	0,18	0,14	0,19	0,20	0,18	0,25	0,21	0,20	0,13	0,12	0,12	0,11	0,14	0,15	0,15	0,20	0,18	0,13
Сумма	97,47	98,23	98,94	95,84	97,91	97,95	98,17	97,97	97,13	98,29	96,00	96,98	97,05	96,73	95,34	96,63	96,71	96,01	95,59	97,33
Si	5,76	5,68	5,71	5,62	5,75	5,66	5,75	5,66	5,82	5,71	5,70	5,69	5,68	5,68	5,65	5,66	5,68	5,68	5,71	5,70
Al ^{IV}	2,24	2,32	2,26	2,38	2,25	2,34	2,24	2,34	2,18	2,29	2,30	2,31	2,32	2,32	2,35	2,34	2,32	2,32	2,29	2,30
Al ^{VI}	0,02	0,00	0,00	0,02	0,02	0,03	0,00	0,00	0,00	0,00	0,07	0,07	0,05	0,09	0,14	0,03	0,05	0,07	0,07	0,07
Ti	0,38	0,40	0,37	0,38	0,37	0,40	0,34	0,39	0,30	0,38	0,39	0,40	0,40	0,39	0,40	0,38	0,39	0,39	0,38	0,39
Fe ³⁺	0,24	0,30	0,35	0,35	0,27	0,29	0,36	0,32	0,36	0,30	0,26	0,26	0,28	0,26	0,24	0,31	0,28	0,25	0,25	0,25
Fe ²⁺	1,61	1,56	1,53	1,49	1,57	1,60	1,37	1,60	1,39	1,62	1,75	1,76	1,72	1,76	1,72	1,73	1,75	1,77	1,77	1,79
Mg	3,50	3,55	3,61	3,58	3,55	3,47	3,79	3,50	3,80	3,49	3,33	3,30	3,35	3,29	3,32	3,35	3,32	3,28	3,30	3,27
Cr	0,02	0,02	0,02	0,02	0,02	0,02	0,01	0,02	0,00	0,02	0,01	0,02	0,02	0,02	0,01	0,02	0,02	0,01	0,02	0,01
Mn	0,01	0,01	0,02	0,02	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,01	0,02
Ca	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,02	0,00	0,00	0,00	0,00	0,00
Na	0,06	0,03	0,03	0,03	0,03	0,05	0,04	0,07	0,02	0,04	0,05	0,07	0,06	0,06	0,03	0,10	0,07	0,09	0,10	0,07
K	1,80	1,79	1,84	1,81	1,81	1,78	1,79	1,79	1,80	1,83	1,66	1,71	1,70	1,70	1,56	1,73	1,72	1,73	1,70	1,73
F	0,60	0,60	0,62	0,57	0,60	0,53	0,68	0,52	0,70	0,61	0,30	0,32	0,31	0,32	0,33	0,31	0,34	0,39	0,33	0,36
Cl	0,05	0,05	0,05	0,04	0,05	0,05	0,04	0,06	0,05	0,05	0,03	0,03	0,03	0,03	0,04	0,04	0,04	0,05	0,05	0,03
OH	3,35	3,36	3,33	3,39	3,36	3,42	3,28	3,41	3,25	3,34	3,67	3,65	3,66	3,66	3,64	3,66	3,62	3,56	3,63	3,61
X_{Mg}	0,65	0,66	0,66	0,66	0,66	0,65	0,69	0,65	0,68	0,64	0,62	0,62	0,62	0,62	0,63	0,62	0,62	0,62	0,62	0,62
X _{Fe}	0,35	0,34	0,34	0,34	0,34	0,35	0,31	0,35	0,32	0,36	0,38	0,38	0,38	0,38	0,37	0,38	0,38	0,38	0,38	0,38
IV (F)	1,86	1,87	1,85	1,89	1,88	1,91	1,84	1,92	1,83	1,84	2,17	2,13	2,16	2,13	2,12	2,15	2,10	2,03	2,12	2,08
IV(F/Cl)	6,30	6,27	6,27	6,19	6,31	6,34	6,31	6,44	6,37	6,26	6,32	6,23	6,30	6,23	6,35	6,36	6,32	6,38	6,43	6,22
T, ℃	734	740	730	736	733	737	729	734	714	730	730	730	732	727	735	726	730	729	726	727
log(X _{Mg} /X _{Fe})	0,28	0,28	0,28	0,29	0,29	0,26	0,34	0,26	0,33	0,26	0,22	0,21	0,22	0,21	0,23	0,21	0,21	0,21	0,21	0,20
log(X _F /X _{OH})	-0,75	-0,75	-0,73	-0,77	-0,75	-0,81	-0,69	-0,81	-0,67	-0,74	-1,09	-1,06	-1,08	-1,06	-1,04	-1,08	-1,03	-0,96	-1,04	-1,01
Df _{Mo}	1,77	2,09	2,58	2,50	1,96	1,49	3,46	1,87	3,73	1,92	-0,02	-0,17	0,09	-0,31	-0,14	0,36	0,22	0,25	0,15	-0,24
Df _{Cu}	-1,57	-2,41	-2,50	-2,53	-1,56	-1,54	-1,94	-1,47	-1,40	-2,18	-0,84	-1,00	-1,07	-0,55	-0,25	-1,01	-1,12	-0,66	-0,36	-0,92

Приложение 9. (окончание)

№ точки	SLP5a11	SLP5a12	SLP5a13	SLP5a14	SLP5a15	SLP5a16	SLP5a17	SLP5a18	SLP5a19	SLP5a20	SLP5b1	SLP5b2	SLP5b3	SLP5b4	SLP5b5	SLP5b6	SLP5b7	SLP5b8	SLP5b9
SiO ₂	39,29	38,45	38,36	38,21	37,79	38,58	38,08	38,37	37,94	38,07	38,08	37,73	38,46	38,06	38,59	38,18	38,78	37,82	37,94
Al ₂ O ₃	13,19	12,92	12,83	12,93	12,90	13,24	13,27	12,93	13,01	13,19	13,68	13,68	13,52	13,52	13,77	13,49	13,57	13,19	13,18
TiO ₂	3,43	3,35	3,43	3,29	3,49	3,77	3,74	3,83	3,80	3,79	3,52	3,29	3,55	3,36	3,55	3,38	3,43	3,35	3,40
FeO	16,60	16,46	16,36	16,51	16,37	17,27	16,98	16,98	16,77	16,91	16,88	16,62	16,44	15,63	15,89	15,34	16,05	15,71	15,36
MgO	15,22	14,95	14,86	14,83	14,68	14,20	14,03	13,92	13,90	14,05	14,83	14,46	14,69	14,74	15,14	14,97	15,18	14,65	14,54
Cr ₂ O ₃	0,06	0,09	0,13	0,16	0,17	0,10	0,09	0,11	0,13	0,09	0,14	0,20	0,13	0,12	0,56	0,52	0,15	0,14	0,12
MnO	0,18	0,15	0,19	0,17	0,22	0,22	0,22	0,23	0,22	0,26	0,16	0,14	0,16	0,15	0,14	0,14	0,14	0,13	0,13
CaO	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,01	0,04	0,03	0,04
Na ₂ O	0,26	0,22	0,30	0,33	0,34	0,31	0,19	0,22	0,20	0,25	0,20	0,13	0,14	0,20	0,22	0,18	0,16	0,22	0,19
K ₂ O	9,73	9,82	9,66	9,43	9,60	9,66	9,46	9,70	9,58	9,60	9,21	8,38	8,97	9,24	8,02	7,99	8,24	8,18	8,16
F	0,68	0,84	0,57	0,56	0,65	0,62	0,65	0,54	0,65	0,60	0,71	0,84	0,68	0,76	0,60	0,80	0,80	0,83	0,77
Cl	0,18	0,13	0,16	0,20	0,20	0,20	0,12	0,11	0,11	0,11	0,11	0,14	0,15	0,13	0,13	0,14	0,12	0,11	0,13
Сумма	98,81	97,39	96,83	96,62	96,39	98,17	96,83	96,95	96,31	96,91	97,52	95,60	96,88	95,91	96,62	95,15	96,64	94,35	93,96
Si	5,75	5,73	5,74	5,73	5,69	5,71	5,70	5,74	5,72	5,70	5,65	5,69	5,72	5,72	5,70	5,74	5,75	5,75	5,78
Al ^{IV}	2,25	2,27	2,26	2,27	2,29	2,29	2,30	2,26	2,28	2,30	2,35	2,31	2,28	2,28	2,30	2,26	2,25	2,25	2,22
Al ^{VI}	0,03	0,00	0,00	0,01	0,00	0,02	0,05	0,02	0,03	0,03	0,04	0,12	0,09	0,11	0,10	0,12	0,11	0,11	0,14
Ti	0,38	0,38	0,39	0,37	0,39	0,42	0,42	0,43	0,43	0,43	0,39	0,37	0,40	0,38	0,39	0,38	0,38	0,38	0,39
Fe ³⁺	0,25	0,27	0,26	0,28	0,28	0,20	0,20	0,16	0,18	0,20	0,30	0,28	0,23	0,21	0,23	0,21	0,24	0,22	0,17
Fe ²⁺	1,78	1,78	1,79	1,79	1,79	1,93	1,92	1,96	1,93	1,92	1,79	1,81	1,81	1,74	1,72	1,71	1,74	1,76	1,77
Mg	3,32	3,32	3,31	3,31	3,30	3,13	3,13	3,11	3,12	3,14	3,28	3,25	3,26	3,30	3,34	3,35	3,35	3,32	3,30
Cr	0,01	0,01	0,01	0,02	0,02	0,01	0,01	0,01	0,02	0,01	0,02	0,02	0,02	0,01	0,07	0,06	0,02	0,02	0,01
Mn	0,02	0,02	0,02	0,02	0,03	0,03	0,03	0,03	0,03	0,03	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02
Ca	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,01	0,01
Na	0,07	0,06	0,09	0,10	0,10	0,09	0,06	0,06	0,06	0,07	0,06	0,04	0,04	0,06	0,06	0,05	0,04	0,07	0,06
K	1,82	1,87	1,84	1,80	1,84	1,82	1,81	1,85	1,84	1,83	1,74	1,61	1,70	1,77	1,51	1,53	1,56	1,59	1,58
F	0,31	0,39	0,27	0,26	0,31	0,29	0,31	0,26	0,31	0,28	0,33	0,40	0,32	0,36	0,28	0,38	0,37	0,40	0,37
Cl	0,04	0,03	0,04	0,05	0,05	0,05	0,03	0,03	0,03	0,03	0,03	0,04	0,04	0,03	0,03	0,03	0,03	0,03	0,03
OH	3,64	3,57	3,69	3,68	3,64	3,66	3,66	3,72	3,66	3,69	3,64	3,56	3,64	3,61	3,69	3,59	3,59	3,57	3,60
X _{Mg}	0,62	0,62	0,62	0,62	0,62	0,59	0,60	0,59	0,60	0,60	0,61	0,61	0,61	0,63	0,63	0,63	0,63	0,62	0,63
X _{Fe}	0,38	0,38	0,38	0,38	0,38	0,41	0,40	0,41	0,40	0,40	0,39	0,39	0,39	0,37	0,37	0,37	0,37	0,38	0,37
IV (F)	2,15	2,04	2,22	2,22	2,14	2,15	2,12	2,21	2,12	2,16	2,10	2,00	2,13	2,08	2,20	2,07	2,07	2,03	2,07
IV(F/Cl)	6,44	6,19	6,45	6,56	6,48	6,44	6,21	6,25	6,18	6,22	6,18	6,19	6,33	6,25	6,38	6,29	6,22	6,13	6,27
Т, ℃	724	723	726	720	728	731	732	735	735	734	726	719	729	726	732	729	727	727	730
log(X _{Mg} /X _{Fe})	0,21	0,21	0,21	0,20	0,20	0,17	0,17	0,16	0,17	0,17	0,19	0,19	0,20	0,23	0,23	0,24	0,23	0,22	0,23
log(X _F /X _{OH})	-1,07	-0,96	-1,14	-1,14	-1,07	-1,10	-1,08	-1,16	-1,07	-1,12	-1,04	-0,95	-1,06	-1,00	-1,12	-0,98	-0,98	-0,95	-0,99
Df _{Mo}	-0,21	0,46	0,08	0,17	0,44	-0,94	-0,86	-1,19	-0,80	-0,89	-0,05	-0,03	-0,51	-0,15	-0,43	0,08	-0,06	0,25	-0,10
Df _{Cu}	-0,07	-1,64	-0,74	-0,15	-1,09	-0,68	-1,44	-1,36	-1,73	-1,52	-1,58	-0,87	-0,41	-0,10	0,12	-0,04	-0,50	-1,08	-0,20