МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ СЕВЕРО-ВОСТОЧНЫЙ КОМПЛЕКСНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ им. Н.А. Шило ДАЛЬНЕВОСТОЧНОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК (СВКНИИ ДВО РАН)

На правах рукописи

Ползуненков Геннадий Олегович

ПЕТРОЛОГИЯ И ИЗОТОПНАЯ ГЕОХРОНОЛОГИЯ ВЕЛИТКЕНАЙСКОГО МОНЦОНИТ-ГРАНИТ-МИГМАТИТОВОГО КОМПЛЕКСА (АРКТИЧЕСКАЯ ЧУКОТКА)

Специальность 1.6.3. – петрология, вулканология

ДИССЕРТАЦИЯ на соискание ученой степени кандидата геолого-минералогических наук

Научный руководитель: доктор геол.-минер. наук, чл.-корр. РАН В.В. Акинин

Магадан - 2023

Оглавление

Список сокращений, используемых в работе	4
ВВЕДЕНИЕ	5
ГЛАВА 1. ГЕОЛОГИЯ И ГРАНИТОИДНЫЙ МАГМАТИЗМ ЧУКОТКИ	11
1.1. Гранитоидные комплексы Чукотки	16
1.2. Выводы	41
ГЛАВА 2. ГЕОЛОГИЯ КУУЛЬСКОГО ПОДНЯТИЯ (ЧУКОТСК	ЯΑ
СКЛАДЧАТАЯ ОБЛАСТЬ)	43
2.1. Главные геологические комплексы: строение, стратиграфия и состав	44
2.1.1. Велиткенайский монцонит-гранит-мигматитовый комплекс	48
2.2. Выводы	61
ГЛАВА 3. МЕТОДИКА ИССЛЕДОВАНИЙ	62
3.1. Петрографические и минералогические исследования	62
3.2. Термобарометрические исследования	63
3.3. Геохимические и изотопные исследования	64
ГЛАВА 4. ПЕТРОГРАФИЯ И МИНЕРАЛОГИЯ ВЕЛИТКЕНАЙСКО	ЮΠ
КОМПЛЕКСА	69
4.1. Деформированные порфировидные гранитоиды	69
4.2. Мелко-, среднезернистые биотитовые граниты и лейкограниты	75
4.3. Ортогнейсы и мигматиты.	77
4.3.1. Ортогнейсы	77
4.3.2. Мигматиты	86
4.4. Метаосадочные породы	87
4.5. Состав породообразующих минералов	89
4.5.1. Полевые шпаты	89
4.5.2. Амфиболы	91
4.5.3. Слюды	94
4.5.4. Гранаты	98
4.6. Выводы	102
ГЛАВА 5. МИНЕРАЛЬНАЯ ТЕРМОБАРОМЕТРИЯ ВЕЛИТКЕНАЙСКО	ГΟ
КОМПЛЕКСА	103
5.1. Амфибол-плагиоклазовый парагенезис	103
5.1.1. Ограничения химического состава амфиболов, накладываем	мые
фугитивностью кислорода	108
5.1.2. Результаты геотермобарометрических оценок	109
5.2. Биотит	112
5.3. Гранат	113
5.4. Циркон и сфен	114
5.5. Термобарогеохимия	117
5.6. Обсуждение результатов	121
5.7. Выводы	124
ГЛАВА 6. U-Pb SHRIMP ДАТИРОВАНИЕ, ПРИМЕСНЫЕ ЭЛЕМЕНТЫ	И
ИЗОТОПНЫЙ СОСТАВ НГ И О ЦИРКОНА ИЗ ГРАНИТОИДОВ	И
МИГМАТИТОВ ВЕЛИТКЕНАЙСКОГО КОМПЛЕКСА	126

6.1. Изотопный состав U, Th и Pb в цирконе (U-Pb SHRIMP датирование)	126
6.2. Изотопный состав Hf и O циркона	132
6.3. Примесные элементы в цирконе	135
6.3.1. Результаты	136
6.4. Выводы	145
ГЛАВА 7. ГЕОХИМИЯ И ПЕТРОГЕНЕЗИС ПОРОД ВЕЛИТКЕНАЙСК	ОПО
КОМПЛЕКСА	147
7.1. Геохимия главных и примесных элементов	147
7.2. Изотопно-геохимические характеристики пород	154
7.2.1. Sm-Nd изотопная система.	157
7.2.2. Изотопная система свинца	160
7.3. Выводы. Модель эволюции Велиткенайского комплекса	166
ЗАКЛЮЧЕНИЕ	170
Список литературы	172
Приложение А	206
Приложение Б	214
Приложение В	237

Список сокращений, используемых в работе

- REE редкоземельные элементы
- ААЧ террейн Арктическая Аляска-Чукотка
- ОЧВП Охотско-Чукотский вулканический пояс
- LILЕ крупноионные литофильные элементы
- HFSE высокозарядные элементы
- LREЕ легкие редкоземельные элементы
- MZ мезозойский период
- PZ палеозойский период
- РМ примитивная мантия
- DM деплетированная мантия
- НІМU, ЕМІ, ЕМІІ обогащенные мантийные источники
- NHRL референсная линия Северного полушария
- LC нижняя кора
- UC верхняя кора

введение

Актуальность исследования

корообразования, Вопросы реконструкции процессов механизмов транспорта коровых расплавов к поверхности, а также оценка временных рамок становления гигантских по объему гранитоидных плутонов в верхней коре являются фундаментальными и до сих пор привлекающими внимание многих петрологов. Особый интерес представляют исследования гранитоидных плутонов, где в обнажениях вскрыты мигматиты. Такие геологические комплексы отражают суммарную серию процессов от парциального плавления протолитов до деформаций в средне- и верхнекоровых условиях, позволяют оценить общую И способы формирования сложно построенных длительность гранитометаморфических комплексов [Sederholm, 1923; Коржинский, 1952; Brown et al., 1995; Sawer, 1996], изучать связи между метаморфизмом высокой степени, процессом частичного плавления и происхождением разнообразных гранитных тел [напр., Brown, 2001]. Большая часть отечественных работ в этом направлении посвящена исследованию архейских сильно метаморфизованных комплексов 1955; Мигматизация...,1985; [напр., Судовиков, Балтыбаев. 2012]. где реконструкция гранитоидных расплавов В ЭВОЛЮЦИИ силу наложенных преобразований осложнена. Исследование относительно молодых и слабо измененных комплексов является более перспективным [напр., Yakumchuk et al., Brown et al., 2016]. К такому типу относится слабоизученный 2015: Велиткенайский монцонит-гранит-мигматитовый комплекс (ВК), обнажающийся на арктическом побережье Чукотки, около м. Биллингса (в 100 км к востоку от пос. Певек) [Милов, Иванов, 1965]. Объект представляет уникальный пример масштабного проявления меловых мигматитов В тесной ассоциации С интрузивными кислыми и средними субщелочными породами. Структурно ВК относится Куульскому (рис. 1.1), расположенному к поднятию В литостратиграфическом террейне Арктическая Аляска - Чукотка (ААЧ) [Churkin et al., 1985; Miller et al., 2010], который объединяет российско-аляскинскую

континентальную окраину (п-ов Сьюард, хр. Брукса и Северный склон на Аляске, о-ва Де-Лонга, большую часть Чукотки от пос. Билибино до пос. Провидения, о-в. Врангеля) и прилегающие шельфы арктических морей (Чукотский бордерленд). Слабо исследованная неопротерозойская история формирования ААЧ террейна связанного имеет важное значение для фундаментального вопроса. С реконструкцией конфигурации суперконтинента Родиния, процесса ее распада, установления палеогеографических связей между крупными палеоконтинентальными массами, такими как Лаврентия, Балтика и Сибирь.

Актуальность работы определяется тем, что в Велиткенайском комплексе обнажаются породы фундамента террейна Арктическая Аляска - Чукотка и модифицирующие его разновозрастные магматические комплексы. Исследование объекта позволяет реконструировать ЭТОГО сложную историю развития ААЧ слабоизученного чукотского блока И ограничивать модели палеогеодинамических реконструкций на меловое время. Именно в этот период широко проявились важные тектоно-магматические и металлогенические события в стратегически важном арктическом регионе РФ.

Цель данной работы заключается в разработке петрогенетической модели формирования ВК с выделением этапов становления, оценке возраста и природы источников магм, реконструкции геодинамических условий.

Для достижения поставленной цели необходимо было решить следующие задачи:

- 1. Изучить петрографический и химический состав магматитов ВК.
- Изучить химический состав минеральных фаз магматических пород комплекса и оценить методами минеральной термобарометрии физикохимические условия кристаллизации.
- 3. Выполнить U-Pb SHRIMP датирование цирконов из пород BK, гранитоидов арктической части Чукотки и сопоставить полученные данные о возрасте.
- 4. Изучить Rb-Sr, Sm-Nd, U-Pb изотопные системы в породах и Lu-Hf, δ^{18} O в цирконе BK и оценить на этой основе состав источников магм.

Фактический материал и методы исследования

В основу работы положена авторская коллекция из 315 образцов, отобранная при проведении полевых работ в 2011 г. и дополненная образцами, собранными В.В. Акининым на восточной Чукотке в 1996 г. Петрографическая характеристика выполнена по 210 шлифам. Химический состав горных пород на главные и примесные элементы исследован в 125 образцах методом РФА на спектрометрах SRM-25 и VRA-30 в СВКНИИ ДВО РАН (г. Магадан, аналитики О.Н. Тюнин, Т.Д. Борходоева). Концентрации примесных элементов (70 образцов) выполнены методом ICP-MS в ЦКП ИТиГ ДВО РАН (г. Хабаровск). Составы минералов (20 образцов, более 1600 анализов) определены в СВКНИИ ДВО РАН методом рентгеноспектрального анализа на микрозондовом анализаторе Camebax (Сатеса, Франция), с энергодисперсионным спектрометром X-Max 50 (Oxford Instruments, Великобритания), (аналитики Г.О. Ползуненков и Е.М. Горячева). Измерения изотопного состава и концентраций Rb-Sr, Sm-Nd и Pb-Pb по валовому составу пород выполнены в ИГГД РАН (г. Санкт-Петербург, аналитик В.П. Ковач) на 8-коллекторном масс-спектрометре Triton TI в статическом режиме по стандартным методикам. Особый акцент в исследованиях сделан на изучение циркона, исключительно устойчивого акцессорного минерала, который несет в себе информацию длительной истории формирования И 0 эволюции магматической системы. U-Pb изотопные измерения циркона (30 образцов) in situ были проведены на SHRIMP-RG (чувствительный высокоразрешающий ионный микрозонд обратной геометрии) в микроаналитическом центре Стэнфордского университета, там же в отдельной сессии измеряли примесные элементы в хорошо охарактеризованный гомогенный цирконе, используя стандарт Мадагаскар Грин (MAD) [Barth, Wooden, 2010]. Изотопное отношение ${}^{18}O/{}^{16}O$ в цирконах из 11 образцов было проанализировано в Университете Лос-Анджелеса (UCLA) с помощью ионного микрозонда Cameca 1270 IMS, а Lu-Hf изотопные измерения в тех же образцах проведены в Вашингтонском университете с помощью метода LA-MC ICP-MS (лазер New Wave 213 nm Nd:YAG). Аналитические измерения U-Pb, Lu-Hf и ¹⁸O/¹⁶O выполнены В.В. Акининым.

Полученные геологические, геохимические и изотопно-геохронологические данные обрабатывались в среде Linux при помощи свободного программного обеспечения Libre Office, Qgis, Inkskape, Gedit, MICA+, статистического языка программирования R (пакеты IsoplotR и GCDkit), авторской программы PETRO [Ползуненков, Кондратьев, 2023] для обработки фотографий петрографических шлифов, написанной на языке программирования Python. Цирконы для изотопных исследований были выделены автором с использованием стандартной техники дробления, разделения в тяжелых жидкостях и электромагнитной сепарации.

Защищаемые положения

- Меловой Велиткенайский монцонит-гранит-мигматитовый комплекс локализован в неопротерозойских ортогнейсах (660–590 млн. лет) Куульского поднятия. Велиткенайский комплекс входит в состав альбской Чаунской провинции, выделяемой на всем протяжении арктического побережья Чукотки. (Главы 1, 6).
- 2. Ha раннем формирования Велиткенайского этапе монцонит-гранитмигматитового комплекса (ВК) произошло синдеформационное внедрение монцонитоидов при давлении Р ~ 4 кбар, которое завершилось мигматизацией неопротерозойских ортогнейсов около 103 ± 2 млн. лет назад. В поздний этап (102 - 100)МЛН. лет) образовался основной объем штоков И даек недеформированных лейкократовых ВК гранитоидов. Формирование происходило в условиях постколлизионного растяжения, что следует из субсинхронности внедрения монцонитоидов, региональных деформаций и мигматитообразования меловому метаморфизму В гранито-гнейсовых куполах Чукотки и не противоречит геохимическим характеристикам пород. (Главы 2, 5, 7).
- Протолитом для выплавления велиткенайских монцонитоидов и лейкогранитов являлись протерозойские породы фундамента блока Арктическая Аляска - Чукотка. Цирконы из лейкогранитов обнаруживают

унаследованные ядра (660–600 млн. лет) неопротерозойских ортогнейсов Куульского поднятия. (Главы 5–7).

Научная новизна

- На основании U-Pb геохронологических данных определен альбский (109–100 млн. лет) возраст гранитоидных массивов Чаунской провинции и расширена область ее распространения на всю территорию арктического побережья Чукотки.
- Для Велиткенайского комплекса определен альбский (108–100 млн. лет) возраст монцонитоидов, гранитов, мигматитов и ассоциирующих деформаций, оценена температура и давление кристаллизации монцонитоидов.
- Новыми U-Pb изотопными датировками по циркону впервые обоснован неопротерозойский (630–590 млн. лет) возраст мигматизированных ортогнейсов и обоснована их роль в качестве источника меловых лейкогранитов ВК.

Практическая значимость

Результаты U-Pb датирования гранитоидов и мигматитов могут быть задействованы при проведении геолого-съемочных и поисковых работ и при разработке схемы эволюции гранитоидного магматизма на территории Чукотки. Часть авторских образцов и опубликованные данные были использованы в отчетах для обоснования расширения континентального шельфа в Арктике [напр., Сергеев и др., 2014].

Соответствие результатов работы научным специальностям

Результаты работы соответствуют пунктам 1 (магматическая геология) и 2 (магматическая петрология) паспорта специальности 1.6.3.

Апробация работы и публикации

По теме диссертации опубликованы 14 работ, в том числе 4 статьи в рецензируемых журналах из списка ВАК. Результаты исследований были

представлены в виде устных и стендовых докладов на 7 российских, одной международной и трех зарубежных конференциях в Магадане (2011, 2012, 2013, 2020 гг.), Хабаровске (2013 г.), Владивостоке (2014 г.), Новосибирске (2022 г.), Фэрбенксе, США (2012 г.), Вене, Австрия (2012 г.).

Структура и объем диссертации

Диссертация состоит из введения, 7 глав, заключения, списка литературы. Работа объемом 267 страниц, включает в себя 67 рисунков, 17 таблиц, 3 приложения. Список литературы содержит 295 источников.

Благодарности

Автор выражает благодарность научному руководителю д.г.-м.н. В.В. Акинину за всестороннюю помощь, внимание и поддержку, за ценные советы и консультации. Автор благодарен к.г.-м.н. [М.Л. Гельману] за ценные советы и положительное влияние на исследовательскую деятельность автора. Отдельную благодарность соискатель выражает к.г.-м.н. [А.Г. Владимирову] за поддержку и помощь на ранних этапах выполнения работы. Автор признателен руководству и сотрудникам СВКНИИ ДВО РАН за совместную работу, дружескую помощь.

ГЛАВА 1. ГЕОЛОГИЯ И ГРАНИТОИДНЫЙ МАГМАТИЗМ ЧУКОТКИ

На большей части Чукотской мезозойской складчатой области обнажаются пермо-триасовые песчаники и алевролиты, в меньшей степени, юрские песчаноглинистые и аркозовые отложения, которые прорываются многочисленными силами и дайками триасовых габбродолеритов, а также интрузиями меловых гранитоидов [Геология СССР, 1970]. В фундаменте Чукотки установлены палеозойские карбонатные и терригенные породы, а также докембрийские метаморфические гнейсы, кристаллические сланцы и амфиболиты, обнажающиеся в серии поднятий и куполов.

На территории Чукотки известны многочисленные месторождения золота, олова, урана. Большинство из них либо напрямую связаны с гранитным магматизмом (вольфрам-оловоносные штоки месторождений Иультин, Валькумей и др.), либо пространственно с ними ассоциируют (орогенные золоторудные коренные месторождения Каральвеем, Совиное, Рывеемские россыпи).

B тектоническом плане территория Чукотки входит В состав микроплиты/террейна Арктическая Аляска – Чукотка (ААЧ) [Churkin et al., 1985; Miller et al., 2010], в качестве Чукотского блока. ААЧ расположен между Северо-Азиатским (Сибирским) И Северо-Американским кратонами, разделяет современные Тихий и Арктический океаны, географически включает российскоаляскинскую континентальную окраину (п-ов Сьюард, хр. Брукса и Северный склон на Аляске, о-ва Де-Лонга, о-в. Врангеля и большую часть Чукотки от пос. Билибино до пос. Провидения), а также прилегающие шельфы Восточно-Сибирского, Бофорта и Берингова морей (рис. 1.1) [Churkin, Trexler, 1980; Moore et al., 1994; Miller et al., 2006; Verzhbitsky et al., 2012; Pease et al., 2014; Prokopiev et al., 2018]. В последних работах [Лучицкая, Соколов, 2021] высказываются предположения о северной границе микроплиты, которая, по мнению авторов, может проходить по осевой зоне Канадского бассейна до впадины Макарова на западе Амеразийского бассейна. Южная граница микроплиты проходит по сутурным швам, на Чукотском полуострове это Южно-Анюйская шовная зона

Рис. 1.1. Данные изотопного U-Pb датирования гранитоидов Чукотки на схеме тектонического районирования. Складчатые комплексы: 1 – выступы и гранито-гнейсовые купола с протерозойским протолитом (верхняя амфиболитовая фация метаморфизма); 2 – палеозойские отложения (зеленосланцевая и нижняя амфиболитовая фации); 3 – мезозойские отложения (триасовые турбидиты, позднеюрские-раннемеловые песчаники и алевролиты). Интрузии (4-6): 4 – раннемеловые гранитоиды; 5 – позднемеловые гранитоиды ОЧВП; 6 – пермо-триасовые габбродолериты. 7 – вулканиты окраинно-континентального ОЧВП. Границы (8-10): 8 – крупных тектонических единиц (ЧУ – Чукотский кристаллический блок, ЮАЗ – Южно-Анюйская сутурная зона, ОЛ – Олойская зона, ЯР – Яракваамский океанический террейн, КО – Корякско-Камчатская аккреционная область); 9 – альбская гранитоидная Чаунская провинция; 10 – аптская гранитоидная Билибинская провинция. Цифрами показаны U-Pb датировки по циркону из гранитоидных массивов Чукотки: неопротерозойские (фиолетовые квадраты) [Natal'in et al., 1999; Akinin et al., 2011a; Акинин, Ползуненков, 2013; Amato et al., 2014; Gottlieb et al., 2018; Акинин и др., 2022]; девон-раннекарбоновые (светло-коричневые прямоугольники) [Natal'in et al., 1999; Ползуненков и др., 2011; Akinin et al., 2011a; Катков и др., 2013; Lane et al., 2015; Акинин и др., 2022]; позднеюрские (темно-фиолетовый квадрат) [Tikhomirov et al., 2008]; валанжин-готеривские (желтые квадраты) [Luchitskaya et al., 2012; Лучицкая и др., 2013; Shishkin et al., http://geochron.vsegei.ru – (2013–2022 гг.); Peace et al., 2018]; альбские (Чаунская провинция) [Ползуненков и др., 2011; Тихомиров и др., 2011; Akinin et al., 20116, 2012; Miller et al., 2009; Акинин и др., 2022]; аптские (Билибинская провинция) [Tikhomirov et al., 2008; Лучицкая и др., 20196; Shishkin et al., http://geochron.vsegei.ru – (2013–2022 гг.)]; туронконьякские (ОЧВП) [Тихомиров и др., 2006; Akinin et al., 2012]. Авторские данные показаны красной окантовкой и жирным шрифтом.

[Sokolov et al., 2009] а на Аляскинском п-ове зона Кобук-Ангаючам, маркируемая по выходам офиолитов. В сейсмических профилях [Trettin, 1991; Drachev, 2011; Pease et al., 2014] зафиксирована деформированная южная часть микроплиты. С севера граница деформаций проходит по фронтальному надвигу Врангеля-Геральда с его западным продолжением в Восточно-Сибирском море и фронту кайнозойских надвигов складчатой области хр. Брукса на Аляске. В работе [Рекант и др., 2020], используя компиляции картировочных данных, по деформированной южной части микроплиты, выделяют структуры о-ва Врангеля и шельфа вокруг него в ранг Врангелевско-Геральдской складчатой области. Выделяемая авторами область отличается от Чукотской складчатой области [мезозоиды по Тильман, Богданов, 1986] отсутствием проявлений мелового магматизма и северной вергентностью складчато-надвиговых парагенезов против северо-восточного направления вергентности на Чукотке. Судя по сейсмическим данным, складчатые области разделяются региональным разломом Биллингса предположительно право-сдвиговой кинематики, который сопоставляется с северной границей распространения раннемеловых гранитоидов Чукотской орогении, являясь, по мнению авторов, продолжением шовной зоны Кобук (Аляска).

Комплексы фундамента Чукотки вскрыты в гранитно-метаморфических куполах и поднятиях (наиболее крупные и хорошо изученные – Кооленьский и Сенявинский, см. рис. 1.1). Возраст протолита и высокоградного метаморфизма амфиболитовой фации для пород кристаллического фундамента сначала предполагался палеозойским [Гнибиденко, 1969], затем архейским [Шульдинер, Недомолкин, 1976; Жуланова, 1990]. Часть исследователей [Гельман, 1973; Натальин, 1979], акцентировали свое внимание на палеозойско-мезозойских этапах метаморфизма, не отрицая при этом существования пород более древнего возраста. Такое разнообразие мнений определялось, в первую очередь, отсутствием возможности установления точного возраста метаморфических пород и продуктов их высокоградного плавления. Выводы о возрастной принадлежности данных образований основывались главным образом на сходстве их с древними комплексами Сибири, частично возраст обосновывался Rb-Sr и К-Ar изотопными датировками по валу пород, надежность и корректность которых не вызывает особого доверия в силу неустойчивости систем к наложенным процессам.

Первые же систематические U-Pb датировки циркона и монацита из этих метаморфических пород выявили неопротерозойский и девонский возраст магматических протолитов, а также показали ведущее значение меловых событий в метаморфической кульминации и генезисе Кооленьского купола [Akinin et al., 1997; Natal'in et al., 1999; Akinin, Calvert, 2002; Amato et al., 2009; Akinin et al., 2011а]. Самые древние детритовые цирконы в парагнейсах ААЧ имеют U-Pb возраст около 1,8 млрд. лет, при этом наиболее надежные конкордантные оценки возраста самых молодых популяций, как правило, не моложе 540 млн. лет, что позволяет сделать заключение о протерозойском возрасте древнейших пород Аляски и Чукотки, а не архейском [Amato et al., 2009; Akinin et al., 2011а].

Палеозойский комплекс отложений Чукотки представлен терригеннокарбонатными толщами девонского и каменноугольного возрастов, полные разрезы которых наблюдаются в прибрежных обрывах Восточно-Сибирского моря [Рогозов, Васильева, 1968; Васильева, Соловьева, 1979; Lane et al., 2015] и в обрамлении гранито-метаморфических куполов на восточной Чукотке [Гельман, 1995; Akinin et al., 1997; Akinin, Calvert, 2002].

Мезозойский комплекс отложений наиболее широко распространен в пределах западной и центральной Чукотки. Разрез начинается с мощных флишоидных толщ триасового возраста сформировавшихся в условиях пассивной континентальной окраины [Тильман, 1980; Тучкова, 2011; Tuchkova et al., 2014]. Деформации отложений проходили в конце триаса – ранней юре и во время позднекиммерийской орогении в конце раннего мела [Miller, Verzhbitsky, 2009; Голионко и др., 2017].

В нижнетриасовых отложениях широко развиты силлы, штоки и дайки габбро и долеритов анюйского комплекса, которые обнажаются в ядрах антиклиналей [Журавлев, 2000]. Возраст пород анюйского комплекса по данными изотопного датирования U-Pb, ⁴⁰Ar/³⁹Ar и K-Ar методами определяется как пермотриасовый, от 252 до 230 млн. лет [Гельман, Шпетный, 1981; Леднева и др., 2021]. Формирование триасовых габбро по геохимическим данным происходило в остановках континентальных рифтов [Малышева и др., 2012]. Синхронность этих пород траппам Сибирской платформы позволила связать их образование с Сибирским суперплюмом [Леднева и др., 2021].

Верхнеюрско-нижнемеловые породы с угловым несогласием реже с тектоническим контактом залегают на триасовых турбидитах. Отложения участвуют в строении Мырговаамской, Раучуанской, Певекской и Верхне-Пегтымельской впадин, которые разделяются по времени формирования на оксфорд-кимериджские и волжско-валанжинские [Паракецов, Паракецова 1989]. Е.В. Ватрушкина с соавторами [Ватрушкина и др., 2019] в составе волжско-берриасских отложений, кроме осадочных, отмечают также продукты

синхронного вулканизма среднего и кислого состава. Возраст детритовых цирконов в самой молодой популяции из этих отложений составил 150–140 млн. лет, что позволяет считать Нутесынскую континентальную дугу и триасовые терригенные породы главными источниками сноса [Ватрушкина и др., 2019].

Верхнемеловые образования Чукотки представлены известково-щелочными вулканитами Охотско-Чукотского вулканогенного пояса турон-раннекампанского возраста (U-Pb, 93–81 млн. лет) [Moll-Stalcup et al., 1995; Kelley et al., 1999; Caxно и др., 2010; Акинин, Миллер, 2011; Shishkin et al., http://geochron.vsegei.ru – (2013– 2022 гг.); Ганелин и др., 2019; Полин и др., 2021; Тихомиров, 2020; Щепетов и др., 2020]. В пределах Чукотского блока вулканиты подразделяются на Центрально-Чукотский сегмент (ЦЧС) и Восточно-Чукотскую вулканическую зону (ВЧВЗ).

Вулканизм ЦЧС считается антидромным, в основании разрезов залегают игнимбриты кытапкайской свиты [Белый, 1977; Тихомиров и др., 2006]. В Пегтымельском прогибе устанавливается катастрофическое извержение большого объема известково-щелочных вулканитов за относительно короткий промежуток времени, в 2–5 млн. лет [Акинин, Ханчук, 2005; Тихомиров, 2018].

1.1. Гранитоидные комплексы Чукотки

Формирование и преобразование континентальной коры сопровождаются изменениями тектонических режимов, ответом на которые часто становится гранитоидный магматизм. Поэтому эволюция и характер преобразования континентальной коры региона могут быть прослежены в возрастных и изотопногеохимических параметрах гранитоидного магматизма.

С 1960 по 1977 гг., в результате геологосъемочных работ, получены наиболее полные данные о взаимоотношениях разновозрастных гранитоидных интрузий Чукотки с вмещающими толщами, изучена петрография и геохимия главных элементов, на основании которых интрузии подразделялись на среднеюрские, нижнемеловые и верхнемеловые [Загрузина, 1965, 1969; Лугов, 1962, 1974]. Подобное разделение сохранилось и при анализе неустойчивых к термальным наложенным процессам изотопных К-Аг и Rb-Sr возрастов.

Гранитообразование реконструировалось в два этапа – раннемеловой позднеорогенный и позднемеловой посторогенный [Загрузина, 1965; Милов, 1975]. Позднеорогенные гранитоиды связывались с коллизией Чукотки и Евразии [Зоненшайн и др., 1990; Nokleberg et al., 1998], а посторогенные – с началом формирования Охотско-Чукотского вулканогенного пояса [Ефремов и др., 2000].

В обобщающей работе по геологии Чукотки [Тибилов, Черепанова, 2001] выделяются три магматических комплекса – гранитоидный домезозойский (врангелевский), габбро-долеритовый раннемезозойский (анюйский) и позднемезозойские гранитоиды (чукотский, раучуанский, ичувеемский). Однако на различных геологических картах все гранитоиды оставались раннемеловыми, в составе двух комплексов: чукотском на западе и тауреранском на востоке Чукотки [Лучицкая и др., 2015]. В работах последних лет [Соколов и др., 2020; Лучицкая, Соколов, 2021] на основании, в том числе и данных соискателя описываются три основных этапа формирования континентальной коры – неопротерозойский (750–550 млн. лет), девонско-раннекаменоугольный (390–350 млн. лет) и раннемеловой (117–105 млн. лет).

Настоящая глава направлена на получение наиболее полных данных о возрасте и источниках магматизма Чукотки на основе литературных [Akinin et al., 1997; Катков и др., 2007, 2013; Tikhomirov et al., 2008; Miller et al., 2009; Тихомиров и др., 2011, 2020;Лучицкая и др., 2015, 2019a, б; Brumley et al., 2015; Артемьев, 2017; Gottlieb et al., 2018; Pease et al., 2018; Лучицкая, Соколов, 2021] и наших данных [Ползуненков и др., 2011; Akinin et al., 2011a, б, 2012, 2015, 2020; Акинин, Ползуненков, 2013; Акинин и др., 2022], которые отражают эволюцию и преобразование континентальной коры в этом регионе. Ниже приведено описание впервые выделяемых семи магматических этапов с акцентом на собственные данные.

Неопротерозойский этап (720–535 млн. лет). Неопротерозойские гранитоиды и ортогнейсы являются проявлением самого древнего в регионе магматизма (см. рис. 1.1). Впервые гранитоиды и риолиты данного возраста

надежно были датированы U-Pb ТИМС-методом на о-ве. Врангеля, во врангелевском комплексе (700–633 млн. лет), прорывающем отложения с микрофоссилиями среднерифейского и позднепротерозойско-раннекембрийского возраста [Cecile et al., 1991; Kos'ko et al., 1993]. Затем близкие U-Pb датировки (650–540 млн. лет) были получены для ортогнейсов Чукотского п-ова, вскрытых на периферии Кооленьского купола в районе р. Чегитунь [Natal'in et al., 1999].

геохронологическое изучение Планомерное U-Pb неопротерозойских гранитоидов Чукотки с применением локального SHRIMP-метода началось в 2011 гранитной лейкосомы ИЗ парагнейсов Г. Для эттельхвылеутской серии центральной части Кооленьского купола возраст составил 650 ± 34 млн. лет с в 101 МЛН. лет, нижним пересечением отражающим пик последнего метаморфизма; возраст ортогнейса из той же серии составил 574 ± 9 млн. лет (CKBO = 1,8) [Akinin et al., 2011а]. Возраст парагнейсов (табл. 1.1) варьирует от 625 ± 22 млн. лет (обр. g4) до 576 ± 7 млн. лет (обр. G30m). В работе [Amato et al., 2014] приведенные данные использованы для сопоставления с Аляскинской частью террейна ААЧ. Там же уточнен средневзвешенный возраст (²⁰⁶Pb/²³⁸U) ортогнейсов р. Чегитунь, значение которого составило 656 ± 6 млн. лет (СКВО = 0,8). Позднее был получен большой массив данных о неопротерозойском возрасте метаморфического комплекса на о. Врангеля, (см. табл. 1.1) [Luchitskaya et al., 2017; Gottlieb et al., 2018].

В Сенявинском куполе возраст гранито-гнейсов также показал неопротерозойскую дату (687–535 млн. лет, авторские данные, **рис. 1.2** д). На сегодня только породы Нешканского гранито-гнейсового купола не охвачены современными методами датирования.

Возраст ортогнейсов центральной части Велиткенайского комплекса определяется интервалом в 660–590 млн. лет [Akinin et al., 2011a; Gottlieb et al., 2018; Акинин и др., 2022]. Некоторые авторские данные приведены на **рис. 1.2 а**г. Примечательно, что неопротерозойские цирконы обнаружены в комплексе уникальных симплектитовых гранатовых габбро-амфиболитов, которые слагают

Рис. 1.2. Диаграммы с конкордией для цирконов из ортогнейсов Велиткенайского монцонитмигматитового комплекса (а–г) и Сенявинского купола (д–е) в представительных образцах (см. **табл. 1.1**). Черные точки – измеренные изотопные отношения в индивидуальных кристаллах циркона (SHRIMP-RG инструмент). Цветные области – плотность распределения точек с учетом погрешности измерений 2σ (алгоритм по [Sircombe, 2007]). Т – средневзвешенный конкордантный возраст, СКВО – среднеквадратичное взвешенное отклонение, р – вероятность.

вместе с аподунитовыми серпентинитами и гарцбургитами мегаксенолиты в

центральной части Велиткенайского гранит-мигматитового комплекса. Цирконы в габбро-амфиболите установлены in-situ в шлифах как продукты проградного метаморфизма и распада более ранних магматических и метаморфических минеральных ассоциаций [Акинин и др., 2022].

Дополнительными свидетельствами возраста фундамента Чукотского блока являются унаследованные ядра циркона и ксенокристы из даек гранитоидов. Например, в деформированной гранитной дайке около массива Кибер, кроме палеозойских кристаллов магматической популяции, отмечены унаследованное ядро и единичный ксенокристалл с 206 Pb/ 238 U возрастами 632 ± 44 млн. лет и $618 \pm$ 8,5 млн. лет, соответственно [Lane et al., 2015]. При этом верхнее пересечение по двум кристаллам оценивается в 680 ± 68 млн. лет. В районе пос. Певек (западная часть центральной Чукотки) позднедевонский ксенолит гнейсовидных плагиогранитов (379 ± 2 млн. лет) из меловой дайки монцогаббро содержит неопротерозойскую популяцию циркона (620 ± 10 млн. лет) [Лучицкая и др., 2019а, б]. На западе Чукотки, в наименее вскрытом Алярмаутском куполе, рядом с Люпвеемским массивом в дайке лейкогранитов среди магматических меловых кристаллов циркона обнаруживаются единичные унаследованные ядра с U-Pb возрастом 717 ± 12 млн. лет [Miller et al., 2009]. Приведенные факты наличия унаследованных кристаллов циркона в дайках позволяют предполагать для западной Чукотки наличие невскрытого неопротерозойского фундамента. Таким образом, практически всей площади Чукотки на устанавливается неопротерозойский фундамент. При этом отмечается, что на восточной Чукотке (Нешканский, Кооленьский, Сенявинский купола) на достаточно больших площадях вскрыты глубокие уровни фундамента, сложенного метаморфическими породами гранулитовой и амфиболитовой фаций. На западной Чукотке, напротив, метаморфические породы обнажаются лишь в Алярмаутском куполе. На погружение неопротерозойского основании ЭТОГО можно предполагать фундамента в Чукотском блоке с востока на запад.

Образец	Регион	Местоположение	Порода	Возраст	±2δ	СКВО	Метод	Источник	
HBB-86-4	о. Врангеля	Громовский комплекс	Мусковитовый лейкогранит	677	163	_	TIMS	Cecile et al., 1991	
HBB-86-3	о. Врангеля	Врангелевский комплекс	Деформированный гранит	699	2	_	TIMS	Cecile et al., 1991	
HBB-86-8	о. Врангеля	Врангелевский комплекс	Риолит	633	21	_	TIMS	Cecile et al., 1991	
_	о. Врангеля	_	Гранитогнейс	707	4	_	SHRIMP	Gottlieb et al., 2012	
_	о. Врангеля	_	Гранитогнейс	706	5	_	SHRIMP	Gottlieb et al., 2012	
W1-MA36	о. Врангеля	верховья р. Хищников	Метагранит	702	3	0.036	SHRIMP	Лучицкая и др., 2016	
W1-MA38	о. Врангеля	верховья р. Хищников	Метагранит	707	4	0.036	SHRIMP	Лучицкая и др., 2016	
W4-SS69	о. Врангеля	верховья р. Хищников	Метагранит	682	2	0.24	SHRIMP	Лучицкая и др., 2016	
14-012-03	о. Врангеля	верховья р. Хищников	Мусковитовый гранит	712	17	0.114	SHRIMP	Luchutskaya et al., 2017	
14-012-03	о. Врангеля	верховья р. Хищников	Мусковитовый гранит	677	26	1.4	SHRIMP	Luchutskaya et al., 2017	
14-040-01	о. Врангеля	верховья р. Хищников	Мусковитовый гранит	722	13	-	SHRIMP	Luchutskaya et al., 2017	
14-040-01	о. Врангеля	верховья р. Хищников	Мусковитовый гранит	511	13	-	SHRIMP	Luchutskaya et al., 2017	
14-012-01	о. Врангеля	верховья р. Хищников	Мусковитовый гранит	593	7	0.31	SHRIMP	Luchutskaya et al., 2017	
14-032-01	о. Врангеля	верховья р. Неизвестная	Риолит	594	7	0.38	SHRIMP	Luchutskaya et al., 2017	
14-033-01	о. Врангеля	верховья р. Неизвестная	Риолит	599	8	0.33	SHRIMP	Luchutskaya et al., 2017	
14-008-06	о. Врангеля	верховья р. Хищников	Гранит	691	3	0.086	LAICPMS	Luchutskaya et al., 2017	
VP06-35a	о. Врангеля	бассейн р. Хищников	Ксенолит гранита	711	4	1.1	SIMS	Gottlieb et al., 2018	
ELM06WR29	о. Врангеля	бассейн р. Хищников	Деформированный гранодиорит	703	5	1.1	SIMS	Gottlieb et al., 2018	
ELM06WR28	о. Врангеля	бассейн р. Хищников	Деформированный гранодиорит	697	5	1.7	SIMS	Gottlieb et al., 2018	
VP06-36b	о. Врангеля	бассейн р. Хищников	Гранитные гальки в конгломератах	673	4	1.1	SIMS	Gottlieb et al., 2018	
VP06-35b	о. Врангеля	бассейн р. Хищников	Гранитные гальки в конгломератах	620	6	2.5	SIMS	Gottlieb et al., 2018	
VP06-36a	о. Врангеля	бассейн р. Хищников	Кислые метавулканиты	702	4	1.3	SIMS	Gottlieb et al., 2018	
95-JT-4a	Восточная Чукотка	р. Чегитунь	Ортогнейс	644	10	0.5	SHRIMP	Natal'in et al., 1999	
95-JT-4a	Восточная Чукотка	р. Чегитунь	Ортогнейс	656	6	0.8	SHRIMP	Amato et al., 2014	
g-4	Восточная Чукотка	Кооленьский купол	Гнейс	625	22	1	SHRIMP	Akinin et al., 2011a	
G30g	Восточная Чукотка	Кооленьский купол	Гранит	666	5	0.34	SHRIMP	Amato et al., 2014	
G30m	Восточная Чукотка	Кооленьский купол	Мигматит	576	7	1	SHRIMP	Amato et al., 2014	
G31g,c	Восточная Чукотка	Кооленьский купол	Ортогнейс	574	9	1.8	SHRIMP	Amato et al., 2014	
401	Восточная Чукотка	Сенявинский купол	Гранитогнейс	687	8	0.18	SHRIMP	Неопублик. данные	
S-33-2	Восточная Чукотка	Сенявинский купол	Гранитогнейс	535	8	0.0005	SHRIMP	Неопублик. данные	
4719	Центральная Чукотка	Велиткенайский комплекс	Ортогнейс	600	13	0.52	SHRIMP	Акинин и др., 2022	
5100	Центральная Чукотка	Велиткенайский комплекс	Лейкогранит	587	15	1.2	SHRIMP	Акинин и др., 2022	
4504	Центральная Чукотка	Велиткенайский комплекс	Лейкогранит	608	45	1.9	SHRIMP	Акинин и др., 2022	
EGC21	Центральная Чукотка	Велиткенайский комплекс	Ортогнейс	661	11	1.3	SHRIMP	Gottlieb et al., 2018	
EGC30	Центральная Чукотка	Велиткенайский комплекс	Ортогнейс	629	20	1.6	SHRIMP	Miller et al., 2018	
EGC35A	Центральная Чукотка	Велиткенайский комплекс	Ортогнейс	629	23	0.7	SHRIMP	Miller et al., 2018	
EGC36	Центральная Чукотка	Велиткенайский комплекс	Ортогнейс	612	7	0.9	SHRIMP	Gottlieb et al., 2018	
ZH13	Новосибирские о-ва	о. Жохова	Плагиогранитогнейс	614	11	1.8	SHRIMP	Akinin et al., 2015	
ZH38	Новосибирские о-ва	о. Жохова	Гранитогнейс	628	8	3	SHRIMP	Akinin et al., 2015	

Таблица 1.1. Опубликованные и новые данные по возрасту гранитоидного магматизма фундамента Чукотского блока ААЧ

Кроме Чукотки, неопротерозойские магматические породы установлены и в других районах ААЧ. На о-ве Жохова (архипелаг Де-Лонга) ксенолиты плагиогранитогнейсов фундамента выносятся четвертичными щелочными базальтами. Возраст циркона из ксенолитов определен по 32 кристаллам в 650–630 млн. лет [Akinin et al., 2015]. Также для долеритов о-ва Генриетты (архипелаг Де-Лонга) по семи кристаллам циркона получен конкордантный U-Pb-возраст 655 ± 6 млн. лет [Кораго и др., 2014].

В драгированных породах Чукотского бордерленда древнейшие ортометаморфические породы описаны как кембрийско-ордовикские [O'Brien, Miller, 2014; Brumley et al., 2015]. Однако, судя по приведенным данным, в них широко распространены также конкордантные цирконы с возрастом до 600–660 млн. лет, что не исключает их неопротерозойский возраст.

Синтезируя все данные о возрасте древнейшего магматизма в Чукотском блоке ААЧ, мы заключаем о его проявлении в интервале от 720 до ~ 535 млн. лет.

Ниже приводится геохимическая краткая характеристика неопротерозойских гранитоидов. В ортогнейсах Кооленьского купола и о-ва Жохова содержания SiO₂ варьируют в пределах интервала 63-81 масс.% (табл. 1.2). Ортогнейсы Сенявинского купола по составу приближаются к диоритам (SiO₂ = 60-63 масс.%), а ортогнейсы Велиткенайского – к гранодиоритам и гранитам (SiO₂ = ~ 70 масс.%). Изученные ортогнейсы по содержанию щелочей согласно [Peccerillo, Taylor, 1976] в Кооленьском куполе $(K_2O = 1,11-5,69 \text{ масс.}), Na_2O = 0,42-2,14 \text{ масс.})$ относятся к шошонитовой, высоко-калиевой известково-щелочной и толеитовой сериям, в Велиткенайском комплексе ($K_2O = 4.89$ масс.%, $Na_2O = 4.05$ масс.%) к шошонитовой серии, в Сенявинском куполе ($K_2O = 0.97-1.61$ масс.%, $Na_2O = 2.56-4.25$ масс.%) и ксенолитах о-ва Жохова ($K_2O = 1,55-2,03$ масс.%, $Na_2O = 1,84-5,26$ масс.%) – к известково-щелочной серии (рис. 1.3 б). Наблюдается высокая насыщенность суммарным железом FeO^{общ} ортогнейсов Кооленьского (2,87–3,92 масс. %) и

Номер п.п.	1	2	3	4	5	6	7	8	9	10	11	12
SiO2	69.81	79.06	81.22	63.35	77.65	79.67	75.02	60.09	62.74	80.48	69.09	63.08
TiO2	0.21	0.66	0.41	0.98	0.6	0.43	0.4	1.18	2.9	0.65	0.17	0.15
Al2O3	16.37	8.78	8.35	17.3	10.23	13.26	11.62	16.78	15.26	7.67	17.05	20.8
FeOoбщ	1.41	3.92	2.87	5.13	3.81	3.13	3.44	5.19	9.99	2.66	0.9	1.26
MgO	0.54	1.85	1.13	2.75	1.43	0.36	0.43	3.73	1.68	1.79	0.61	1.12
MnO	0.02	0.09	0.05	0.19	0.08	0.03	0.02	0.05	0.04	0.05	0.01	0.02
CaO	1.54	1.5	1.07	0.92	2.55	0.12	0.58	5.33	0.83	1.76	4.48	6.56
Na2O	4.05	1.5	1.11	2.14	1.8	0.42	2.01	4.25	2.56	1.84	4.87	5.26
K2O	4.89	1.33	2.02	3.27	1.11	1.53	5.69	0.97	1.61	2.02	2.03	1.55
P2O5	0.04	0.05	0.05	0.11	0.06	0.04	0.04	0.06	0.25	0.14	0.04	0.04
П.п.п.	0.97	0.83	1.07	1.5	0.27	0.6	0.17	1.77	1.02	0.59	0.65	0
Сумма	99.85	99.57	99.35	97.64	99.59	99.59	99.42	99.4	98.88	99.65	99.9	99.84
Cr	7	30			38	16	14	122	109	47	7	38
Ni	4	17		_	20	4	6	55	56	36	5	19
Sc	4	8	100	1.50	10	5	6	20	13	-7	2	4
Kb C	188	62 5.9	100	159	88	>> 20	183	31	3/	5/	10	9
Cs Da	5.0 474	5.8 221	0.0	0.0	12.0	2.9	2.0	4.0	3.8 192	1.4	0.3	0.1
Ba Sa	4/4	221	382 70	480	33/ 115	280	1588	275 621	185	578 245	288	1/5
Sr Te	184	0.3	/0	20	0.5	14	80 0.5	021	44 2 2	243	0.4	149/
la Nh	0.5	0.5	4.0	2.0	11.0	11.2	10.1	12.1	2.2 6.7	13.6	2.8	0.2
IND Hf	1.1	4.0	7.0	17.0	11.0	11.2	10.1	12.1	0.7	13.0	5.6	5.5
III 7r	10		128	205	159	7	4	12	7	67	25	17
V V	11	5	120	43	6	17	4	23	24	14	23 4	2
Ph	26.6	60	10.0	7.0	94	4 2	20.0	10.8	12	67	97	47
Th	12.2	2.9	4.0	12.0	6.1	13.9	5.1	9.7	2.5	4.2	2.3	0.3
U	2.3	0.5	1.0	3.0	0.5	1.4	0.6	2.3	1.1	1.3	0.5	0.2
La	27.87	6.89	16.50	44.92	16.31	61.80	19.05	34.68	15.04	26.43	12.11	4.47
Ce	49.82	14.42	30.89	88.16	33.13	133.80	41.08	73.35	33.49	58.06	23.46	7.19
Pr	6.31	1.85	3.59	10.18	4.26	15.02	4.69	8.81	4.35	6.86	2.70	0.70
Nd	22.83	7.39	14.22	41.11	17.56	62.80	19.32	35.63	18.49	23.64	10.39	2.38
Sm	4.48	1.84	3.31	8.75	3.51	12.69	3.82	7.30	4.70	4.65	1.79	0.48
Eu	0.91	0.56	0.83	1.56	0.89	1.15	1.31	2.01	1.61	1.34	0.61	0.38
Gd	4.18	1.90	3.03	7.92	3.52	12.30	3.64	7.88	6.74	4.85	1.77	0.53
Tb	0.49	0.24	0.49	1.32	0.42	1.35	0.40	1.09	1.04	0.66	0.22	0.07
Dy	2.33	1.21	3.02	7.83	2.04	5.93	1.59	6.31	6.07	3.02	1.16	0.34
Ho	0.39	0.21	0.63	1.54	0.30	0.83	0.21	1.26	1.13	0.59	0.23	0.07
Er	1.04	0.61	1.78	4.42	0.72	2.04	0.44	3.61	2.95	1.45	0.62	0.17
Tm	0.12	0.08	0.26	0.66	0.08	0.21	0.04	0.51	0.38	0.21	0.08	0.02
Yb	0.74	0.56	1.61	4.13	0.52	1.33	0.26	3.17	2.31	1.21	0.49	0.14
Lu	0.10	0.08	0.25	0.64	0.06	0.18	0.04	0.46	0.32	0.19	0.08	0.02
K2O+Na2O	8.94	2.83	3.13	5.41	2.91	1.95	7.70	5.22	4.17	3.86	6.90	6.81
K2O/Na2O	1.21	0.89	1.82	1.53	0.62	3.64	2.83	0.23	0.63	1.10	0.42	0.29
Щелочность	Ш			В-КИ	Т	—	—	И	И	_	И	И
I линоземистость	121 (1	11	II 00.41	11	11	211.44	11	M		M	M	M
CYMMAKEE Th/II	121.61	57.84	80.41	223.14	85.52	511.44	95.89	180.07	98.62	133.16	33./I	10.96
In/U La/Sm	5.5	0.1 2.7	4.0	4.0	11.5	9.8	9.2	4.2	2.2	5.5	4.5	1.2
La/SIII La/Vh	0.2 27 7	3./ 12.2	5.U 10.2	5.1 10.0	4./ 21 /	4.9	5.U 72.2	4.8	5.2 6.5	3./ 21.0	0.8 24.7	9.3 21.0
Nb/Zr	0.8	12.5	0.1	0.1	0.1	40.5 1.6	2.6	10.9	1.0	21.0 0.2	24.7 0.2	0.2

Таблица 1.2. Составы неопротерозойских ортогнейсов фундамента ААЧ

Примечания. 1 – Велиткенайский комплекс (4719); 2–7 – Кооленьский купол (g-4, N39-94K, N54B-94K, G30m, G31g, G31c); 8–9 – Сенявинский купол (401, S-33-2); 10–12 – о-в Жохова (ZH13, ZH38, ZH38-1). И – известково-щелочная, В-К И – высоко-калиевая известковощелочная, Ш – шошонитовая. 3 – П – высокоглиноземистые, М – метаглиноземистые. Главные элементы в масс.% (XRF), примесные элементы в г/т (ICP-MS), прочерк – не определялось. Сенявинского (5,19–9,99 масс.%) куполов с повышенным содержанием TiO_2 от 1,18 до 2,9 масс.% для последнего. Содержание MgO и Al_2O_3 во всех ортогнейсах изменяется от низких (MgO = 0,36–0,54 масс.%, $Al_2O_3 = 7,67-8,35$ масс.%) до повышенных (MgO = 2,75–3,73 масс.%, $Al_2O_3 = 17,3-20,8$ масс.%) значений.

Согласно классификации по [Frost et al., 2001], изученные велиткенайские и жоховские образцы магнезиальные (Fe* = FeO^{oбщ}/(FeO^{oбщ} + MgO) = 0,53–0,73. В Кооленьском и Сенявинском куполах наряду с магнезиальными (0,58–0,68) присутствуют железистые разности с Fe* = (0,86–0,9) (**рис. 1.3 в**). По параметру MALI = Na₂O + K₂O – CaO образцы ортогнейсов относятся к известковым (о-ва Жохова, Коолень) известково-щелочным (Сенявинский купол) и щелочно-известковым (Велиткенай, Коолень) (**рис. 1.3 г**). По параметру ASI к перглиноземистым относятся Кооленьские, Велиткенайский (1,11–1,15) и часть Сенявинских (2,22) ортогнейсов а к метаглиноземистым ортогнейсы о. Жохова и Сенявина (0,93–0,95) (**рис. 1.3 д**).

Согласно составу примесных элементов (см. табл. 1.2), ортогнейсы характеризуются обогащением крупноионными литофильными элементами относительно высокозарядных, отрицательными Nb, Ta, Hf аномалиями, что интерпретируется часто как надсубдукционные характеристики. Величина єNd в ортогнейсах составляет от -3,8 до + 2,4. Эти данные указывают на присутствие в коровом источнике мантийного компонента. Для риолитов о-ва. Врангеля указывается принадлежность к А-типу, характеризующему обстановку растяжения [Лучицкая, Соколов, 2021].

Судя по изотопным меткам Hf и O в исследованных нами цирконах (єHf(i) от +13 до +3,4, при δ¹⁸O около 5,8, **рис. 1.4**), формирование неопротерозойских гранитоидов и ортогнейсов происходило из источника с существенной долей ювенильного компонента, вероятнее всего, на стадии раскола и растяжения террейна Арктическая Аляска – Чукотка [Акинин и др., 2022].

Рис. 1.3. Геохимические диаграммы для неопротерозойских гранитоидов: (a) – TAS по [Шарпенок и др., 2013]; (б) – Fetot/(Fetot + MgO) – SiO₂; (в) – Na₂O + K₂O – CaO – SiO₂; (г) – ASI – SiO₂ по [Frost et al., 2001]; (д) – Rb–Y+Nb по [Pearce et al., 1984]. Круг – (Кооленьский купол - зеленый, Велиткенайский комплекс – красный, Сенявинский купол – синий, ксенолиты базальтов о-ва. Жохова – розовый.

Рис. 1.4. Вариации єНf(i) и δ^{18} О в исследованных неопротерозойских цирконах Чукотки. Велиткенайский купол, Кооленьский купол, о-в Жохова – авторские данные. Остальные источники данных: [1] – Лучицкая и др., 2020. Примечательны ювенильные мантийные значения єНf в цирконах из ортогнейсов Кооленьского купола и Велиткенайского комплекса, ксенолитов фундамента о-ва. Жохова (архипелаг Де-Лонга), а также унаследованных ядрах в велиткенайских ортогнейсах, мигматитах и поздних лейкогранитах.

Девонско-раннекарбоновый (380–350 млн. лет) этап. Первые более или менее обоснованные сведения о возможном наличии палеозойских гранитов на Чукотке, в районе мыса Кибер были представлены на основе на геологических [Геологическая..., 1984] и проблемных Rb-Sr изохронных данных [Тибилов и др., 1986]. Первые надежные девонские U-Pb датировки по циркону получены по ортогнейсам из ядра Кооленьского купола на восточной Чукотке [Natal'in et al., 1999]. Для центральной Чукотки первые U-Pb даты были получены для ортогнейсов велиткенайского комплекса и Куэквуньского купола [Ползуненков и др., 2011; Akinin et al., 2011а]. Позднее в серии работ [Катков и др., 2013; Lane et al., 2015] было подтверждено наличие в пределах центральной Чукотки гранитоидного магматизма этого возраста.

Палеозойские гранитоиды установлены в ядрах крупных гранито-гнейсовых куполов вместе с неопротерозойскими (см. **рис. 1.1**).

Кооленьский купол. U-Pb изотопный (TIMS) возраст циркона ИЗ ортогнейсов ядра купола (этхвелеутская серия) составляет 370 ± 1 млн. лет (обр. F45/94K) и 375 ± 1 млн. лет (обр. М18/94K). Цирконы из обоих образцов дискордантны, возраста, получаемые по верхним пересечениям дискордии с пределах 375-376 конкордией лежат в МЛН. лет И соответствуют позднедевонскому возрасту [Natal'in et al., 1999].

Куэквуньский купол. В исследованном образце (KU-1) очкового гнейса из Куэквуньского массива цирконы оказались изменены метасоматическими процессами. Все полученные U-Pb даты нарушены и дискордантны, без корректировки точки группируются на диаграмме в линию с пересечением конкордии около 380 млн. лет. При более детальном анализе изотопных данных конкордантный возраст цирконов из ортогнейса Куэквуньского массива составил 367 ± 6 млн. лет (**рис. 1.6**). По геохимии для гранитогнейса характерны распределения Rb, Y, Yb, Nb и Ta, типичные для гранитоидов вулканических дуг [Ползуненков и др., 2011; Akinin et al., 2011а].

Велиткенайский комплекс. Мелко-, среднезернистый гранито-гнейс Велиткенайского комплекса (обр. 369) сложен ортоклазом, альбитом, кварцем, биотитом (Mg# = 24-51%) и акцессорными апатитом, гранатом и цирконом. В восьми датированных цирконах из этого образца каймы кристаллов имеют ²⁰⁶Pb/²³⁸U возраст кристаллизации около 105–100 млн. лет, в двух случаях в ядрах установлены древние захваченные домены с возрастом 373-367 ± 3 млн. лет (рис. 1.5) и более высоким Th/U отношением (0,6–0,9 против 0,03–0,2 в меловых кристаллах). Объединенные в общую совокупность даты демонстрируют дискордию с нижним пересечением около 101 млн. лет и верхним пересечением около 363 млн. лет (СКВО = 1,6). Для гранито-гнейса характерны повышенные концентрации Rb, что приводит на дискриминантных диаграммах Дж. Пирса к размещению точки состава в области синколлизионных гранитоидов [Ползуненков и др., 2011; Akinin et al., 2011а].

Рис. 1.5. Диаграмма Аренса-Везерила с конкордией для гранито-гнейса Велиткенайского монцонит-гранит-мигматитового комплекса.

Для гранито-гнейсов Велиткенайского комплекса и Куэквуньского купола, Nb-Ta негативная аномалия слабо выражена на спайдерграммах.

Ha примере изученных гранито-гнейсов показано, что кроме неопротерозойского протолита, установленного нами В Велиткенайском комплексе, существует протолит позднедевонского (U-Pb, SHRIMP-RG, 380-360 млн. лет) возраста, выделяемый в пределах Куэквуньского купола [Ползуненков и др., 2011; Akinin et al., 2011а].

Рис. 1.6. Результаты U-Pb SHRIMP-датирования циркона из гранито-гнейса Куэквуньского купола. Измерения по 1 и 2 кристаллам циркона не учитывались в расчете возраста по причине высокой концентрации обыкновенного Pb (график Б) и повышенного отношения U/Th (график А).

Позднее для кварцевых сиенитов Куэквуньского купола С.М. Катков с соавторами подтвердили его раннекаменноугольный возраст (U-Pb, ID-TIMS, 352 ± 6 млн. лет) [Катков и др., 2013].

Киберовский массив. Гранитоиды массива слагают одноименный мыс на арктическом побережье Чукотки, где в ядре большой Куульской антиклинали юго-восточного простирания интрузия прорывает метаморфизует И породы И терригенно-карбонатные девона. метатерригенные которые С несогласием перекрываются нижне-среднекаменноугольными отложениями. В каменноугольных конгломератах из основания разреза содержатся гальки гранодиоритов и гранитов, схожих с гранодиоритами Киберовского массива. Изотопный U-Pb возраст циркона из гранодиоритов Киберовского массива определен как раннекаменноугольный (ID-TIMS, 353 ± 5 млн. лет) [Катков и др., 2013]. Позднее для гранодиоритов методом ТИМС был воспроизведен раннекаменноугольный возраст (351,4 ± 5,6 млн. лет), а для деформированных гранитных даек впервые получен позднедевонский возраст ($363,7 \pm 5,7$ млн. лет) [Lane et al., 2015].

В районе пос. Певек позднедевонский возраст (379 ± 2 млн. лет) установлен для ксенолита гнейсовидных плагиогранитов, выносимых дайкой монцогаббро мелового возраста [Лучицкая и др., 20196].

На этот возрастной этап гранитоидного магматизма на южной окраине арктического континента Арктида [Зоненшайн, Натапов, 1987; Филатова, Хайн, 2009], представляющего фундамент террейна Арктическая Аляска – Чукотка, реконструируется окраинно-континентальная магматическая дуга [Natal'in et al., 1999]. Проявления девонско-раннекарбонового гранитоидного магматизма по возрасту сопоставляются с тектоническими событиями элсмирской орогении, отчетливо выраженной в структурах Аляски и Арктической Канады. Геодинамическая обстановка для этого этапа магматизма определяется как континентальная окраина андийского типа, формирующаяся при плавлении мантийного клина в надсубдукционных условиях [Amato et al., 2014; Лучицкая и др., 2019а, б].

Характеристика детритовых популяций из парагнейсов гранитогнейсовых куполов Чукотского блока. Для оценки возраста наиболее древних комплексов, вовлеченных в формирование и последующую деструкцию континентальной коры ААЧ проведено U-Pb датирование детритовых популяций циркона из парагнейсов Кооленьского купола (обр. N20, район оз. Коолень) и Куульского поднятия (в южном и юго-западном обрамлении Велиткенайского купола). В первом датирован 21 кристалл циркона, которые показали конкордантные возраста с кластерами около 1,7–1,6 млрд. лет, 1,3–1,2 млд лет и единичные даты неопротерозойского (547 ± 42 млн. лет) и девонского (370 ± 51 млн. лет) возраста (207 Pb/ 206 Pb возраст, SHRIMP-RG).

В Куульском поднятии цирконы из пяти биотит-кварц-полевошпатовых кристаллических сланцев показали три хорошо выделяющихся кластера возрастов (**рис. 1.7**): 1,8–1,3 млрд. лет, 1240–860 млн. лет и 700–370 млн. лет (481 кристалл, LA-ICP-MS). Три наиболее древних кристалла циркона имеют конкордантный возраст 2,77–2,74 млрд. лет. Неопротерозойско-девонский кластер наиболее представительный, в него входят 283 датированных кристалла циркона. Таким образом установлено, что источником размыва и переотложения являлись неопротерозойские магматические породы (ортогнейсы), которые надежно теперь установлены в комплексах гранито-метаморфических куполов Чукотки.

Судя по возрасту докембрийских цирконов в детритовых популяциях велиткенайских девонских парагнейсов, преобладающими являются мезопротерозойские кристаллы (от 1 до 1,6 млрд. лет); палеопротерозойские цирконы (1,6–1,8 млрд. лет), встречаются значительно реже. Учитывая, что популяции с возрастами от 1 до 1,6 млрд. лет характерны для Балтики [Safonova et al., 2010], а популяций, характерных для Сибири (1,8–2 млрд. лет), практически не обнаружено, наиболее подходящим источником сноса является Балтийский щит [напр., Miller et al., 2011, 2018]. В работе [Соколов и др., 2020] предлагается

Рис. 1.7. Гистограмма распределения U-Pb возраста детритовых цирконов из биотит-кварцполевошпатовых кристаллических сланцев Куульского поднятия

объяснять данные популяции цирконов локальными источниками сноса, которые формировались В течение различных эпох складчатости. Однако В фундаменте ААЧ пород древнее неопротерозойских кристаллическом не обнаружено. Находки единичных архейских и мезопротерозойских цирконов указывают лишь на возможность участия рециклированных кристаллов в петрогенезисе.

Ранее на основе K-Ar и Rb-Sr методов в составе чаунских гранитоидов (район пос. Певек) выделяли как альбские, так и берриас-барремские гранитные

интрузии [Милов, 1975; Дудкинский и др., 1997; Ефремов, 2009], всего выделялось до четырех магматических этапов, начиная со 147–140 млн. лет до 85– 78 млн. лет [Ефремов, 2012]. Однако более надежные и хорошо воспроизводимые датировки по циркону U-Pb методом в дальнейшем такую стадийность **в этом районе** не воспроизвели, среди наиболее древних были выявлены только альбские и аптские интрузии [Катков и др., 2007; Miller et al., 2009; Тихомиров и др., 2011; Akinin et al., 2012, 2020; Лучицкая и др., 2019б].

Позднеюрский (146–145 млн. лет). Позднеюрские гранитоиды и ассоциирующие риолиты задокументированы только в одном из участков центральной части Чукотки в районе Берложинской кальдеры, которая ранее относилась к ОЧВП [Tikhomirov et al., 2008]. Кристаллокластические риолитовые туфы Берложинской кальдеры прорываются малыми штоками порфировидных гранодиоритов.

Изотопный U-Pb (SIMS) возраст риолитовых туфов ($146 \pm 2,4$ млн. лет) и прорывающих их гранодиоритов ($145,5 \pm 2$ млн. лет) с учетом ошибок соответствует титон - берриасу. Изотопная и геохимическая характеристика вулканитов Берложьей кальдеры указывает на плавление корового субстрата и возможное участие в составе протолита древних островодужных комплексов. Геодинамическая обстановка формирования данной вулкано-плутонической ассоциации определяется как активная континентальная окраина [Tikhomirov et al., 2008].

После завершения позднеюрского интрузивного магматизма, на северозападе Южно-Анюйской сутуры, проявился позднеюрский вулканизм внутриокеанической зоны субдукции (Кульпольнейский комплекс), который рассекается дайками диоритов и плагиогранитов с U-Pb возрастом 143–140 ± 1 млн. лет [Моисеев и др., 2021]. Дайки несут следы поздних деформаций и предварительно определяют верхнюю возрастную границу Кульпольнейского комплекса берриасским веком. Валанжин-готеривские гранитоиды (136–131 млн. лет). На сегодняшний день гранитоидный магматизм этого возраста установлен в двух выходах на востоке (район пос. Провидения) и одном выходе в центральной части Чукотки.

Сиениты междуречья Амгуэма и Бол. Вельмай, согласно региональным геологическим картам, относятся к ранней фазе тауреранского комплекса. U-Pb (SHRIMP-II) возраст сиенитов составил 136 ± 1 млн. лет, тектоническая обстановка формирования интрузий интерпретируется как синколлизионная [Luchitskaya et al., 2012; Лучицкая и др., 2013].

Деформированные гранитоиды массива Долина в районе пос. Новое Чаплино на восточной Чукотке характеризуются интервалом U-Pb дат от 135 ± 2 млн. лет до 131 ± 1 млн. лет [Peace et al., 2018]. Отсутствующие геохимические данные не позволяют использовать дискриминационные диаграммы для установления геодинамической природы этих гранитоидов.

Готеривские (133 ± 1 млн. лет) гранодиориты правотелекайского комплекса слагают массив Каменный пик в междуречье Прав. Телекая и Мал. Телекая [Исаева, 2013ф; Shishkin et al., http://geochron.vsegei.ru – (2013–2022 гг.); Лебедев, 2016].

Рис. 1.8. Графики соотношения щелочей в гранитоидах Билибинской и Чаунской провинций. Слева – К₂О против Na₂O. Справа – гистограммы К₂O/Na₂O для гранитоидных провинций.

Наиболее объемные проявления гранитоидного магматизма в регионе проявились в апте и альбе. По преобладанию и пространственному положению автор выделяет две масштабно проявленные провинции гранитоидного магматизма Чукотки, которые различаются как по возрасту, так и по составу (ильменитовые, калиевые разности (**рис. 1.8**) с более «коровыми» изотопными метками Sr и Nd (**рис. 1.9**) в альбской Чаунской провинции, в отличие от аптской Билибинской провинции).

С аптскими и альбскими гранитоидами генетически и пространственно ассоциируют известные месторождения олова, вольфрама, золота. Гранитоиды принадлежат к Колымо-Чукотской минерагенической провинции [Прогнозноминерагеническая..., 2022], в которой они различаются по рудной специализации минерагенических зон (M3). Так, выделяемые на территории западной Чукотки, Анюйская и Малоанюйская МЗ специализированы только на золото, в отличие от минерагенических зон центральной Чукотки. Помимо Кувет-Рывеемской зоны с благороднометальной специализацией (Au), на центральной Чукотке различают территориально преобладающие Чаун-Чукотскую и Раучуанскую МЗ, которые преимущественно специализированы на цветные металлы (Sn, W, Hg). Таким образом, выделяемые автором гранитоидные провинции характеризуются благороднометалльная различной металлогенической специализацией: Билибинская и с благороднометалльно-цветнометалльная – Чаунская. Стоит отметить, что вулканиты и гранитоиды ОЧВП рассматриваются в составе одноименной минерагенической провинции, специализированной главным образом на благородные металлы.

Аптские гранитоиды (124–112 млн. лет) – Билибинская провинция. Аптские гранитоиды включают более 14 массивов, сложенных в основном метаглиноземистыми гранитами, гранодиоритами, кварцевыми диоритами и известково-щелочной серии І-типа, обнаженных в юго-западной части Чукотки (см. рис. 1.1, табл. 1.3). Возраст циркона из этих интрузий варьирует от 124 до

112 млн. лет [Катков и др., 2007; Miller et al., 2009; Лучицкая и др., 2010; Акинин и др., 2015; Сахно и др., 2019; Tompson et al., 2021].

Рис. 1.9. Графики изотопных параметров Sr и Nd для гранитоидов Билибинской, Чаунской провинций. Слева – εNd(t) против Sr(initial). Справа – гистограммы εNd(t) для Билибинской и Чаунской провинций.

В Тытыльвеемской впадине гранитоиды ассоциируют с вулканитами, для которых П.Л. Тихомировым были получены первые аптские даты от 122 до 118 млн. лет, и выделен самостоятельный аптский Тытыльвеемский вулкано-плутонический пояс [Тихомиров и др., 2006, 2009; Тихомиров, 2018, 2020]. Химический состав гранитоидов провинции обсуждается в главе 7, в сопоставлении с альбскими гранитоидами.

Позднее автором для трахиандезидацитов лавовых потоков и поздних риолитовых даек в восточной части Тытыльвеемской впадины получен U-Pb возраст 120 и 118 ± 1 млн. лет [Акинин и др., 2015]. Собственными U-Pb датировками по гранитоидам Билибинской провинции автор не располагает. Опубликованные данные сведены в табл. 1.3.

Пространственная локализация гранитоидных массивов аптского возраста наряду с их вытянутостью в виде субмеридиональной полосы к северу от Южно-Анюйской сутурной зоны, примерно параллельно ей, позволяет выделять нам на западе Чукотки отдельную гранитоидную Билибинскую провинцию (см. **рис. 1.1**). Данная провинция граничит на севере Чукотки с Чаунской, выделенной ранее на территории центральной Чукотки [Тихомиров, 2018] с использованием авторских геохронологических данных [Akinin et al., 2012].

Кроме интрузий в юго-западной части Чукотки, аптские гранитоиды установлены также в центральной и восточной частях Чукотки, (см. рис. 1.1) [Shishkin et al., http://geochron.vsegei.ru – (2013–2022 гг.); Pease et al., 2018]. Ha центральной Чукотке граница Билибинской провинции скрыта под вулканитами ОЧВП (см. рис. 1.1). Здесь предполагаемая граница провинции сильно смещается на север изменяя ориентировку до субширотной. Создается впечатление смещения Билибинской провинции по субмеридиональному разлому сдвиговой кинематики, который скрыт под вулканитами ОЧВП. Описываемая область приходится на границу Чукотского блока с Северо-Корякскими террейнами. Последние данным [Чехович, 2022] формировались по новым В Монголо-Охотского позднемезозойской восточной части океана И были перемещены в результате его закрытия во время коллизии Амурского блока Сино-Корейского кратона с Сибирским континентом.

Альбские гранитоиды (110–100 млн. лет) – Чаунская провинция. Альбские гранитоиды (метаглиноземистые монцонитоиды, кварцевые диориты, гранодиориты и граниты преимущественно калиевой серии с повышенными изотопными отношениями Sr и Nd) широко распространены по всей площади арктического побережья Чукотки и Аляски (см. рис. 1.1). Формирование этих гранитоидов связывается с обстановками постколлизионного растяжения [Акинин, Ползуненков, 2013; Лучицкая и др., 2019б; Акинин и др., 2022].
Таблица	1.3.	U-Pb	возраст	циркона	ИЗ	гранитоидов	Чаунской	И	Билибинской

провинций

Образец	Местоположение	Порода	Возраст	±2ð	СКВО	Источник							
Гранитоиды Чаунской субпровинции													
F19-94*	Кооленьский купол	Пегматит	104	_	_	[7]							
42-A-85	Эргувеемский массив	Гранит	107	1	_	[1]							
270	Валькарваамский массив	Гранит	104	1	0.08	[1]							
268	Валькарваамский массив	Гранит	104	1	0.08	[1]							
8500	Инрогинайский массив	Кварцевый монцонит	107	1.5	4	[1, 8]							
PV8	Лоотайпыньский массив	Гранодиорит	107	1	1	[1, 8]							
PV15	Яндрапаакский массив	Монцонит	105	1	3.6	[1]							
PV12	Яндрапаакский массив	Монцонит	108	1	4	[9]							
PV2	Янранайский массив	Монцонит	109	1	3.6	[1]							
EGS8	Куветский массив	Гранодиорит	105	2	1.3	[1, 8]							
EGS6	Пегтымельский массив	Монцонит	107	2	1.8	[1, 8]							
8700**	Инрогинайский массив	Лампрофир	108	1	1.7	[1]							
_	Велиткенайский	Монцонитоиды	108	1	_	[1]							
_	Велиткенайский	Лейкограниты	103-100	1		[1]							
_	Велиткенайский	Гранитогнейс	105	_		[6]							
_	Мольтыканский массив	_	107	_	_	[6]							
Kuk2	Кукенейский массив	Гранит	108.5	1	0.41	[2]							
КВ-80Е**	Майское рудное поле	Кварцевый диорит-порфи	o 108	1	0.95	[2]							
80-06**	Майское рудное поле	Гранодиорит-порфир	108	1	0.04	[2]							
Od-30**	Майское рудное поле	Гранит-порфир	108	1	0.04	[2]							
_	Пээкенейский массив	Гранодиорит	111.5	1	0.13	[4]							
_	Пээкенейский массив	Сиенит в гранодиорите	110	1	2.6	[4]							
_	Шелагский массив	Гранодиорит	107	1	1.8	[4]							
**		Микрогаббро	111	1	0.33	[4]							
**		Гранодиорит	108	1	0.14	[4]							
**	_	Гранодиорит	109	1	0.17	[4]							
**	_	Диорит	109	1	0.19	[4]							
**	_	Диорит	108	1	0.63	[4]							
**		Кварцевый монцодиорит	109	1	0.2	[4]							
159.01	Мыс Бол. Баранов	Гранит-порфир	107	1	1.4	[12]							
1173-01	Сухарнинский массив	Гранодиорит	110	1	0.21	[12]							
169.01	Ичаткинский массив	Лейкогранит	105	1	3.3	[12]							
4101	Сухарнинский комплекс	Граниодиорит-порфир	107.5	1	0.88	[12]							
576-01	Сухарнинский массив	Лейкогранит	110	1	0.051	[12]							
576-01***	Сухарнинский массив	Лейкогранит	124	2	1.6	[12]							
Гранитоиды Билибинской субпровинции													
CH-16-1	Люпвеемский массив	Гранит	112	2	0.48	[3, 10]							
СН16-2(049-03-П)	Люпвеемский массив	Кварцевый диорит	116	2	2.13	[3, 10]							
JT-14	Быстринский массив	Гранит	117	2.5	1.8	[3, 10]							
CH-12-1**	Быстринский массив	Лейкогранит	113	2	1.17	[3, 10]							
JT-46/K04-142	Кэлильвунский массив	Гранодиорит	115	2	0.75	[3, 10]							
JT-4/K04-ko(54)	Пырканайский массив	Гранит	112.5	2	0.032	[3, 10]							
1017-01	Тымкивеемский	Монцогранит	115	1	0.11	[12]							
503945	Илирнейский массив	Гранит	118	1	0.018	[5.11]							
1154-01	Тымкивеемский	Кварцевый диорит	114.5-123		—	[12]							
AB-572.01**	Филипповский комплекс	Диорит порфирит	112	1	0.15	[12]							
118-01	Тымкивеемский	Монцодиорит	122	1	0.08	[12]							
577-01	Тымкивеемский	Граносиенит	123	1	0.91	[12]							
582-01	Восточный массив	Кварцевый диорит	123.5	1.5	0.13	[12]							

Источники: [1] – Акинин и др., 2022; [2] – Артемьев, 2017; [3] – Катков и др., 2007; [4] – Лучицкая и др., 20196; [5] – Сахно и др., 2019; [6] – Тихомиров и др., 2011; [7] – Akinin et al., 1997; [8] – Akinin et al., 2012; [9] – Miller, Verzbitsky, 2009; [10] – Miller et al., 2009; [11] – Tomson et al., 2021 ; [12] – Shishkin et al., http://geochron.vsegei.ru – (2013–2022 гг.). * – измерения выполнены методом ТИМС, ** – дайковые тела, *** – возраст унаследованных кристаллов циркона.

Наши новые данные включают альбские датировки по 8 гранитоидным массивам – Певекскому, Инрогинайскому, Лоатайпыньскому, Пегтымельскому, Куветскому, Велиткенайскому, Эргувеемскому, Валькарваамскому.

Певекская группа плутонов прорывает верхнеюрские и нижнемеловые аргиллиты, алевролиты и песчаники. С юга на север выходы гранитоидов именуются как Певекский (~ 30 км²), Пээкенейский (~8 км²) и Янрапакский плутоны (~ 3 км²). U-Pb изотопный возраст (SHRIMP-RG) циркона из гранитоидов Певекского 105 ± 1 млн. лет, а Янрапакского плутона определен как 109 ± 1 млн. лет (**рис. 1.10**) [Akinin et al., 2012; Акинин и др., 2022]. В гранитах Певекского плутона локализовано Валькумейское месторождение олова, изотопный возраст касситерита из него составляет 108 ± 2 млн. лет [Neymark et al., 2021], указывая напрямую генетическую связь оруденения с магматизмом. Позднее для гранодиоритов основной фазы Пээкенейского плутона и сиенитовых включений в них были получены U-Pb даты 111,5 ± 1 млн. лет и 110 ± 1 млн. лет соответственно [Лучицкая и др., 20196].

Массивы Инрогинайский (~ 46 км²) и Лоотайпыньский (~ 26 км²) расположены в западной части центральной Чукотки недалеко от гранитоидов Певекской группы. Гранодиориты с U-Pb возрастом 107 ± 1 млн. лет (см. **табл. 1.3**) прорывают складчатые триасовые осадки. Близкий возраст приводится для гранодиорита самого северного Шелагского массива, а также различных по составу даек, локализованных в эндоконтактах крупных гранитных массивов [Лучицкая и др., 2019].

По данным геохронологического атласа ВСЕГЕИ [Shishkin et al., http://geochron.vsegei.ru – (2013–2022 гг.)] на территории западной Чукотки присутствуют плутоны альбского возраста. Так, возраст гранит-порфира мыса Большой (Баранов) оценен в 107 ± 1 млн. лет, а гранодиорит Сухарнинского массива – в 110 ± 1 млн. лет. Более молодая дата приведена для лейкогранитов Ичаткинского массива – 105 ± 1 млн. лет. Лейкограниты Сухаринского и гранит-порфиры интрузий Сухарнинского комплекса с возрастами 110 ± 1 и 107,5 ± 1

млн. лет обнаруживают популяции ксеногенного циркона с возрастом 120–124 ± 2 млн. лет. Данный факт и локализация этих интрузий позволяют предполагать развитие гранитоидной Чаунской провинции дальше на запад Чукотки. Здесь наблюдается небольшое наложение двух гранитоидных провинций (см. **рис. 1.1**).

На центральной Чукотке U-Pb возраст монцонита и циркона из Пегтымельского и Куветского массивов определен автором в 107–105 ± 2 млн. лет. В Велиткенайском комплексе автором датированы ранние монцонитоиды (108 млн. лет) и поздние лейкограниты (100 млн. лет). Более подробно геохронологические данные по комплексу рассмотрены в главе 6.

Возраст циркона из гранитов большой Мольтыканской интрузии 107 млн. лет [Тихомиров и др., 2011], а гранитов Кукенейского массива и контрастных по составу даек, локализованных в пределах Майского рудного поля, оценен в 108.5 ± 1 млн. лет [Артемьев, 2017].

Для восточной Чукотки U-Pb геохронологические данные по альбскому интрузивному магматизму были опубликованы только для пегматитов, выплавлявшихся на пике метаморфизма в Кооленьском куполе (104 млн. лет) [Akinin et al., 1997]. Новые авторские данные включают U-Pb датировки циркона из гранитов Валькарваамского (104 ± 1 млн. лет) и Эргувеемского массивов (107 ± 1 млн. лет), см. **табл. 1.3**, **рис. 1.1**. Таким образом, гранитоидная Чаунская провинция в соответствии с нашими новыми данными может быть продолжена на восточную Чукотку (**рис. 1.1**).

Результаты ⁴⁰Ar/³⁹Ar датирования дайковых тел, развитых на Центральной Чукотке, согласуются с данными U-Pb датирования гранитоидных интрузий [Ефремов, Травин, 2021]. Данный факт может указывать как на быструю эксгумацию гранитоидов так и на отсутствие нарушения аргоновой изотопной системы более поздними термальными событиями.

39

Рис. 1.10. Результаты U-Pb датирования циркона из гранитоидов Чаунской провинции (см. табл. 1.3).

Турон-коньякские гранитоиды ОЧВП (92-85 млн. лет). На большей части центральной и восточной Чукотки обнажаются сеноман-сантонские известково-щелочные вулканиты и магнетитовые гранитоиды (см. рис. 1.1) надсубдукционного окраинно-континентального Охотско-Чукотского вулканогенного пояса [Акинин, Миллер, 2011; Тихомиров и др., 2006; Тихомиров, 2020; Pease et al., 2018]. К северу от пос. Певек, вне области развития вулканических пород ОЧВП, обнажается серия позднемеловых гранитных интрузий (массивы Северный, Пырканайваамский, Майнырылканский), возраст которых обосновывался только данными K-Ar и Rb-Sr датирования [Ефремов и др., 2000]. Наши первые датировки циркона U-Pb методом из гранитоидов этих массивов показали ²⁰⁶Pb/²³⁸U даты от 92 до 88 ± 1 млн. лет [Akinin et al., 2012]. Позднее В.И. Алексеевым для циркона из лейкогранитов, монцонитов Северного массива были получены схожие датировки, а возраст поздних онгонитов оценен в 84 млн. лет [Алексеев, 2013]. Альбский и турон-коньякский этапы гранитоидного магматизма самые объемные и отражают максимальные темпы преобразования континентальной коры Чукотки. Такое заключение согласуется с выводом о глобальной модификации нижней и средней коры по данным изучения ксенолитов в щелочных базальтах Северо-Востока Азии [Акинин и др., 2013].

1.2. Выводы

В пределах Чукотского блока микроплиты Арктическая Аляска – Чукотка уверенно выделяются семь этапов гранитоидного магматизма, которые отражают эволюцию и рост континентальной коры в этом террейне: неопротерозойский (720–535 млн. лет), девонско-раннекарбоновый (380–350 млн. лет), позднеюрский (146–145 млн. лет), валанжин-готеривский (136–131 млн. лет), аптский (124–112 млн. лет), альбский (110–100 млн. лет), турон-коньякский (93–85 млн. лет).

Судя по составу пород и ювенильным меткам Hf в исследованных нами цирконах неопротерозойские гранитоиды и ортогнейсы формировались на стадии раскола и растяжения террейна Арктическая Аляска – Чукотка. Девонские граниты связаны с проявлениями различных фаз элсмирской орогении, широко

развитой в Арктическом регионе [Amato et al., 2014; Лучицкая, Соколов, 2021]. Позднеюрский этап магматизма проявлен локально и интерпретирован как окраинно-континентальный [Tikhomirov et al., 2008]. Аптский и альбский этапы монцонит-гранитного интрузивного магматизма связаны с постколлизионным растяжением [Miller, Verzhbitsky, 2009; Miller et al., 2009]. Турон-коньякские интрузии явно характеризуют совершенно иной этап геодинамического развития, связанный с формированием надсубдукционного Охотско-Чукотского вулканогенного пояса [Акинин, Миллер, 2011].

На территории Чукотки гранитоидные интрузии аптского, альбского и турон-коньякского возраста значимо преобладают, а их закономерное расположение в пространстве позволяет нам выделить в регионе три провинции – аптскую Билибинскую, альбскую Чаунскую и турон-коньякскую Охотско-Чукотскую. Эти меловые магматические события фиксируют максимальные темпы преобразования континентальной коры Чукотки.

ГЛАВА 2. ГЕОЛОГИЯ КУУЛЬСКОГО ПОДНЯТИЯ (ЧУКОТСКАЯ СКЛАДЧАТАЯ ОБЛАСТЬ)

Исследуемая территория относится к северо-восточной части Чаунской складчатой зоны, в пределах которой выделяется крупное Куульское поднятие, протягивающееся с запада на восток от мыса Кибер до мыса Шмидта (рис. 2.1). Центральная часть поднятия сложена ранне-среднедевонскими терригенными отложениями лонговской, позднедевонской пегтымельской свит (известковистые и аркозовые песчаники, углисто-кремнистые сланцы, алевролиты с линзами известняков) раннекаменноугольными известняками, конгломератами, И гравелитами и песчаниками юнонской свиты [Желтовский, 1980]. Возраст палеозойских отложений обосновывается плохо сохранившимися и редкими находками фауны в линзах известняков. Метаморфизованные в амфиболитовой и зеленосланцевой фациях отложения свит, смяты в крупные (ширина 1-5 км) линейные складки северо-восточного простирания, осложненные на крыльях изоклинально-чешуйчатой Суммарная складчатостью. мощность верхнепалеозойских отложений в Куульском поднятии оценивается в 4,2 км [Желтовский, 1980]. В краевых частях поднятия верхнепалеозойские отложения трансгрессивно перекрываются пермо-нижнетриасовыми углисто-глинистыми сланцами, алевролитами и известковистыми песчаниками гысмыткунской свиты и песчаниками с прослоями гравелитов, конгломератов геунтовской свиты раннего триаса (рис. 2.2).

В центральной части Куульского поднятия локализован Велиткенайский монцонит-гранит-мигматитовый комплекс. Входящие В состав комплекса монцонитоиды и гранитоиды прорывают и метаморфизуют мигматизированные верхнепалеозойские отложения на площади около 2000 км² [Милов, 1975]. На Чукотке подобные структуры рассматриваются как меловые гранитометаморфические купола (Кооленьский, Сенявинский и др.) [Гельман, 1996; Akinin et al., 1997].

Рис. 2.1. Куульское поднятие на геологической карте масштаба 1:2 500 000 по [https://openmap.mineral.ru/]. Условные обозначения. (1–3) – интрузивные образования: 1 – гранитный массив Кибер; 2 – гранитоиды Чукотского плутонического комплекса; 3 – габбродолериты анюйского плутонического комплекса. (4–7) – палеозойские отложения, метаморфизованные в зеленосланцевой и нижней амфиболитовой фации: 4 – терригенно-карбонатные породы нижнего и среднего девона; 5 – песчаники верхнего девона; 6, 7 – терригенно-карбонатные породы карбона; 8 – нерасчлененные отложения верхней перми – нижнего триаса. (9–11) – мезозойские отложения, метаморфизованные в зеленосланцевой фации: 9, 10 – песчаники и глинистые сланцы нижнего и среднего триаса; 11 – глинистые сланцы и известковистые песчаники верхнего триаса; 12 – вулканиты окраинно-континентального Охотско–Чукотского вулканогенного пояса; 13 – неоген-четвертичные отложения.

2.1. Главные геологические комплексы: строение, стратиграфия и состав

В строении поднятия участвуют метаморфизованные в разной степени отложения палеозоя (верхний девон – нижний карбон) и мезозоя (триас – мел).

Палеозойские комплексы представлены отложениями лонговской (нижний, средний девон), пегтымельской (верхний девон), уэринской и юнонской (нижний, средний карбон) свит.

Девонские отложения в Куульском поднятии развиты на территории междуречья Пегтымель-Рэвеем (см. **рис. 2.2**), где подразделены на четыре толщи – песчанико-сланцевую с горизонтами коралловых известняков (270 м), алевролитовую (430 м), песчанико-сланцевую с редкими и маломощными прослоями известняков (500 м), содержащих остатки брахиопод,

Рис. 2.2. Геологическая карта Куульского поднятия, масштаб 1:1 000 000 по [https://openmap.mineral.ru/].

кораллов, рыб и кварц-полевошпатовых песчаников (1200–130 м) с микрофауной верхнего девона. Таким образом, отложения девонского возраста в пределах Куульского поднятия представлены всеми отделами. Мощность этих отложений оценивается в 2600 м [Геология СССР, 1970].

Разрез нижнекаменноугольных отложений Куульского поднятия начинается пачкой гравелитов, конгломератов и песчаников, которая местами ложится на различные горизонты девона со стратиграфическим несогласием. Нижняя толща (500-600)M) представлена интенсивно пиритизированными сланцами И филлитами. В средней толще (1200–1400 м) присутствуют аркозовые песчаники, доломиты, кремнистые и известковые сланцы, а также конгломераты. Выше эти отложения сменяются мощной толщей пестроцветных алевролитов, песчаников, кремнистых и известковых сланцев с линзовидными (до 100 м) пластами известняков содержащих, остатки брахиопод, кораллов и криноидей. Верхняя толща (450–550 м) состоит из пиритизированных углистых песчаников алевролитов, слюдистых и глинистых сланцев.

Общая мощность среднепалеозойских отложений рассматриваемого поднятия около 4500 м [Геология СССР, 1970]. Возраст девонских отложений подтвержден нами по результатам U-Pb датирования детритовых цирконов (самая молодая популяция в пяти исследованных образцах имеет возраст 370 млн. лет).

Сложная внутренняя структура поднятия определяется надвигами, сбросами и складками различных порядков и разного поперечного профиля.

На большей части Куульского поднятия нижнепалеозойские отложения сменяются мезозойскими (нижний триас) через угловое несогласие в верховьях р. Кувет и стратиграфическое несогласие на мысе Кибер [Желтовский, 1980]. Верхнепалеозойские отложения установлены только на мысе Шмидта, где представлены терригенной толщей с остатками пермской флоры.

В центральной части поднятия терригенно-карбонатные комплексы девонкарбона прорываются и метаморфизуются гранитоидами массивов Кибер, Пыркатагын и Велиткенайскими магмами. По краям поднятия терригенные породы зеленосланцевой фации триасового возраста перекрываются верхнемеловыми вулканогенно-осадочными образованиями Охотско-Чукотского вулканогенного пояса. Возраст вулканитов с мыса Якан оценен по циркону из риолита кытапкайской (?) свиты в 87 ± 2 млн. лет [Moll-Stalcup et al., 1995]. Позднее U-Pb датировки дацитов и риолитов в юго-западной части Куульского поднятия показали возраст от 89 до 87 млн. лет [Miller et al., 2018].

В глубинном строении Куульского поднятия по данным сейсмических геофизических исследований [Сакулина и др., 2011] выделяются осадочный слой и слои консолидированной коры, также обособлен промежуточный супракрустальный комплекс и намечена граница раздела кора-мантия. Общая мощность коры, определяется в среднем в 34–37 км.

Толщина нижнего, базитового слоя земной коры составляет около 15 км. Состав слоя, исходя из интервальных скоростей (V = 6,5–6,8 км/с), характеризуется как гранулитовый.

Средний слой в разрезе Куульского поднятия достигает мощности 10 км, сильно сокращаясь на его периферии. По интервальной скорости прохождения сейсмических волн (V = 6,2-6,3 к/мс) состав пород соответствует кислым разностям гранулитов, а по высокой плотности (D = 2,77-2,88 г/см³) может указывать на габброиды.

Верхний слой консолидированной коры, мощностью около 4 км, выделяется не так отчетливо по значениям интервальных скоростей (V = 6,1–6,2 км/с) и величине плотности D = 2,73–2,78 г/см³) традиционно интерпретируется как гранито-метаморфический. Самый верхний супракрустальный мегакомплекс характеризуется промежуточными значениями скорости (V = 5,8–6,1 км/с) и плотности (D = 2,65–2,68 г/см³), которые плавно увеличиваются с глубиной. Т.С. Сакулина с соавторами полагают, что в составе мегакомплекса участвуют

изученные М.Е. Городинским на о-вах Врангеля и Геральда верхнерифейсковендские катаклазированные зеленые сланцы, кварциты, метавулканиты и интрузивные породы различного состава [Сакулина и др., 2011]. Мощность изменяется по простиранию от 7 км на юге поднятия до 5 км в его северной оконечности.

На большей части Куульского поднятия обнажается Велиткенайский монцонит-гранит-мигматитовый комплекс.

2.1.1. Велиткенайский монцонит-гранит-мигматитовый комплекс

Велиткенайский комплекс – это крупнейшее (площадь более 2000 км²) раннемеловое магматическое образование в Чукотской складчатой системе. Его особенностью, по данным геологического картирования [Милов, Иванов, 1965; Желтовский, 1980], является широкое развитие мигматитов амфиболитовой фации метаморфизма. Такая особенность уникальна для Чукотки и привлекает особое внимание исследователей.

Обзор литературных данных по геологии комплекса

Упоминание о Велиткенайском комплексе встречается в обобщающих работах [Загрузина, 1965; Геология СССР, 1970. Т. 30; Лугов, 1962, 1974; и др.], где он рассматривается в качестве массива. Первые данные о строении массива приводятся В.Г. Дитмаром [1938]. Им были выполнены три пересечения массива. от р. Кувет до мыса Якан. Он писал: «Южная часть этого водораздела сложена гнейсовидным порфировидным гранитом, <.....> являющимся активным интрузивным телом, в северной части дающим мигматиты». В.Г. Дитмар считал, что граниты слагают всю осевую часть Экиатапского нагорья, ОНИ метаморфизуют песчаники и сланцы, на границе с которыми проходит крупное тектоническое нарушение. По его мнению, процесс внедрения магмы в толщу осадочных пород начался во время складчатости, но закончился раньше окончания всех тектонических движений.

В 1942 г. М.Н. Злобин провел геологическую съемку правобережья pp. Кувет и Пегтымель в масштабе 1:500 000. Он построил стратиграфическую схему и в значительной мере дополнил материалы В.Г. Дитмара по Велиткенайскому массиву. Им выделены две главные разновидности гранитоидов с постепенными переходами между ними: 1) мелко-, среднезернистые нормальные биотитовые и роговообманковые граниты; 2) крупно- и среднезернистые порфировидные гранитоиды. М.Н. Злобин предполагал, что массив представляет собой сильно вытянутый в северо-западном направлении лополит. Шлиховым опробованием водотоков, дренирующих массив, была установлена знаковая оловоносность.

В 1952–1953 гг. Велиткенайский массив картируется в масштабе 1:100 000 геолого-поисковой партией под руководством И.М. Романова. В результате работ дано подробное петрографическое описание метаморфических, интрузивных, жильных и вулканических пород. И.М. Романов выделил те же фациальные разновидности гранитов, что и М.Н. Злобин, и указал на наличие особых пород, которые он охарактеризовал как гибридные. Их первая группа – диориты, кварцевые диориты, кварцевые монцониты и кварцевые сиениты, слагающие эндоконтактовые зоны интрузива. Их образование И.М. Романов связывает с ассимиляцией магматическим расплавом вмещающих пород. Вторая группа мигматиты; их происхождение связывается с гранитизацией, в меньшей мере, с ассимиляцией. Сланцеватые текстуры и катакластические структуры в гранитах, по мнению И.М. Романова, указывают на то, что в период кристаллизации и остывания тела интрузива имели место тангенциальные напряжения. Он предполагает, что при образовании массива кислая магма внедрялась по крупному разлому северо-западного простирания, о чем говорят удлиненная форма тел и соответствующая ориентация фенокристаллов в порфировидных гранитах. Шлиховым опробованием были выявлены три россыпных проявления олова и одна россыпь с незначительным содержанием монацита.

В 1953 г. в междуречье Яканваам – Рывеем, захватывая северо-восток Велиткенайского комплекса, М.Е. Городинский провел геолого-поисковые работы в масштабе 1:100 000. Он составил стратиграфическую схему района, представил палеонтологическое обоснование выделенных верхнедевонских отложений. Им

49

впервые была мысль 0 двухфазном батолита: высказана строении крупнозернистые порфировидные граниты И более молодые мелко-, среднезернистые. Внедрение магмы М.Е. Городинский связывал с разломами, а катаклаз и милонитизацию в гранитах – с последующими тектоническими процессами.

В 1954 г. под руководством А.М. Дискина, В.П. Полэ и Г.И. Левина в северной и центральной частях массива проводятся геологосъемочные и детальные геолого-поисковые работы. Высказано предположение о пластообразной форме массива, на крыльях которого развиты мигматиты.

В 1961 г. ставятся работы по составлению листа Государственной геологической карты масштаба 1: 200 000 (R-60-XXIX, -XXX, -XXIII, -XIV). Работы проводятся в южной части района под руководством В.П. Полэ. По его фаунистически данным. раннемеловой интрузив, прорывающий охарактеризованные нижнекарбоновые отложения, приурочен к региональному тектоническому шву субширотного направления. Работы сопровождались поисками месторождений золота. М.Л. Гельман, консультировавший эти работы, наблюдений в Малоанюйском золотоносном учетом своих регионе с впоследствии отметил: «в строении Велиткенайского гранитного массива <.....> можно было увидеть ядро купольной структуры и предположить, что здесь существует зональность золотоносности, аналогичная анюйской. Поиски привели к открытию крупных прибрежно-морских россыпей в Валькарваамской впадине и в долине р. Кувет» [Гельман, 2000].

Своеобразие условий залегания гранитоидов, их петрографические особенности привлекли внимание специалистов-петрографов СВКНИИ; А.П. Милов и В.С. Иванов в 1962 г. проводят в южной части массива тематические работы. По результатам работ подтвердилось двухфазовое строение массива и его пластообразная форма; обсуждается его металлогеническая специфика как оловоносного интрузива.

50

Исследование возобновилось спустя 12 интрузива лет. теперь геологосъемочные и поисковые работы проводятся в более крупных масштабах. В 1974–1977 гг. часть массива была закартирована в масштабе 1:50 000 под H.M. Саморукова. В центральной части Велиткенайского руководством комплекса среди выходов плойчатых мигматитов и гнейсов были обнаружены ультраосновные породы. О.С. Березнер – петрограф ЦКТЭ СВГУ провела петрографическое описание коллекции Н.М. Саморукова. Она подчеркивает черты сходства Велиткенайского массива с типичными гнейсовыми куполами: «Об ЭТОМ говорят его антиклинальное строение, слоистый характер с переслаиванием метаморфических и изверженных пород, обилие мигматитов» [Саморуков, 1977ф].

В 1991 г. И.В. Тибилов (Чаунское РайГРУ) при подготовке к постановке легенды Государственной геологической карты масштаба 1:50 000 собрал дополнительные материалы, касающиеся особенностей строения плутона. По мнению И.В. Тибилова, большая часть плутона заключена в палеонтологически «немых» толщах мырговаамской серии позднеюрско-валанжинского возраста, а не в палеозойских, как считалось ранее. Проведя анализ карт масштаба 1:50 000 и петрографические исследования, он не находит ни заметных следов раздвигания, воздымания или коробления вмещающих толщ, которые бы сопровождали становление массива, ни признаков механического воздействия на минералы гранитоидов. В отличие от всех предыдущих исследователей, гнейсоватые текстуры гранитоидов и мигматитов И.В. Тибилов считает ложным эффектом, объясняя их опережающими гранитообразование динамометаморфическими процессами в изначально литологически неоднородных толщах мырговаамской серии. В появившихся при этом зонах смятия и рассланцевания, по мнению И.В. Тибилова, при повышенном флюидонасыщении, возникающем при спаде давления, проявились процессы гранитизации – их следы встречены в породах мырговаамской серии. По представлениям И.В. Тибилова, «массивы как бы <>, замещают собой крупные участки геологических структур» [Тибилов, 2005]. Формирование мигматит-плутона произошло в интервале между завершением

осадконакопления в межгорных прогибах аптского времени (мырговаамская серия, по И.В. Тибилову) и позднеальбско-сеноманским орогенным вулканизмом.

Представления о возрасте пород Велиткенайского комплекса до недавнего времени основывались на геологических данных и геохронологических датировках К-Аг методом по валу. В базе данных ГЕОХРОН [Акинин, Котляр, 1997] для этого объекта имеется 17 К-Аг датировок из коллекций С.Ф. Лугова, М.Е. Городинского, А.П. Милова, В.Г. Романчука (1961–1962 гг.), с разбросом дат от 98 до 55 млн. лет. Первые определения возраста циркона U-Pb SHRIMPметодом показали значения от 105 до 100 млн. лет [Ползуненков и др., 2011; Тихомиров и др., 2011].

Геология Велиткенайского комплекса (авторские наблюдения)

Внутреннее строение Велиткенайского комплекса изучалось нами в трех коренных обнажениях в верховья ручьев Верховый, Белый, Пыркэчгойгын (**puc. 2.3**) и на мысе Энмытагын, где среди сложной композиции, мигматитов и магматических инъекций в кристаллических сланцах и гнейсах девона, карбона были документированы соотношения главных интрузивных фаз и их соотношения с палеозойскими толщами.

В целом, судя по полевым наблюдениям и данным геофизики, комплекс представляет собой структурный блок, круто наклоненный на север, северовосток. Наиболее глубинные участки вскрыты в его северо-восточной части.

Вдоль юго-западной границы Велиткенайского комплекса вмещающие парагнейсы, условно относимые к карбону и девону, круто падают на юго-запад (**рис. 2.4**). Линейность метаморфических минералов в палеозойских парагнейсах субгоризонтальна и в целом вытягивается вдоль простирания монцонитоидов, развитых на юго-западе Велиткенайского комплекса (см. **рис. 2.4**). Данный факт указывает на правостороннюю сдвиговую кинематику [Miller et al., 2018].

Рис. 2.3. Общий вид Велиткенайского монцонит-гранит-мигматитового комплекса в долине р. Верховый.

На северо-восточном и юго-восточном флангах комплекса, обнажаются более молодые (89–87 млн. лет) вулканические породы Охотско-Чукотского вулканического пояса, которые относительно монцонитоидов залегают гипсометрически ниже (см. **рис. 2.4**). Такие наблюдения указывают на сбросовый характер контакта ВК и вулканитов ОЧВП (врезка слева на **рис. 2.4**), что свидетельствует о возможном СВ-ЮЗ растяжении, следующим за формированием ОЧВП, уже в кампане - маастрихте.

В строении Велиткенайского комплекса мы различаем две большие группы пород – гранитоиды и мигматиты.

Среди гранитоидов различаются:

- ранние крупно- и гигантопорфировые (ортоклаз) роговообманковобиотитовые в разной степени деформированные кварцевые монцониты, монцониты, реже гранодиориты (рис. 2.5 а, б).
- поздние мелко-, среднезернистые биотитовые граниты и лейкограниты (рис. 2.5 в, г).

J°£.eð

54

Рис. 2.4. Геологическая карта юго-восточной части Велиткенайского комплекса. Составлена по [Желтовский, 1980], с изменениями, учитывающими полевые наблюдения и изотопногеохронологические данные автора. 1 _ девонские биотит-полевошпат-кварцевые кристаллические сланцы, парагнейсы (метаморфизованы в зеленосланцевой и нижней амфиболитовой фации). 2 – каменноугольные кристаллические сланцы. 3 – триасовые филлиты и песчаники. 4 – неразделенные неопротерозойские мигматизированные ортогнейсы и прорывающие их маломощные штоки лейкогранитов. 5 – зона развития инъекций ранних монцонитоидов. 6 – силлы пермо-триасовых габбродолеритов. 7–9 – верхнемеловые вулканические породы Охотско-Чукотского вулканогенного пояса. 10 – точки отбора образцов. 11 – пробы на U-Pb изотопное датирование. 12 – элементы залегания: а – сланцеватости; б – линейности (синим) метаморфических минералов. 13 – разломы: а – достоверные; б – предполагаемые. Фиолетовой пунктирной линией показаны будины ультрамафитов.

Эти разности ранее объединялись в виде двухфазного Велиткенайского гранитного массива [Милов, Иванов, 1963; Саморуков, 1977ф]. Однако, по нашим данным, ранние монцонитоиды и поздние лейкограниты имеют разные источники выплавления (см. главу 7), что не характерно для многофазных интрузий.

Монцонитоиды обнажаются главным образом в южной части Велиткенайского комплекса, где на участке в 60 км, от верховий р. Геунто-2 до среднего течения р. Экичугвеемкай, слагают простирающиеся в широтном направлении многочисленные скопления маломощных жилообразных И силлообразных, линзовидных инъекций (рис. 2.6 б). Ранее такие инъекции объединялись в единое тело [Милов, Иванов, 1965; Желтовский, 1980; Тибилов, 2005]. В южной части комплекса монцонитоиды образуют крупные и мелкие тела изометричной формы (рис. 2.6 а).

В северо-западной части комплекса монцонитоидов очень мало, встречены только в районе мыса Энматтагын. Наибольшим распространением здесь пользуются мигматизированные кристаллические сланцы и гнейсо-граниты. Последние характеризуются резко выраженным гнейсовидным обликом, создаваемым ориентированным расположением минералов и появлением бластических структур [Желтовский, 1980].

Рис. 2.5. Текстурные разности гранитоидов и мигматитов Велиткенайского комплекса: а–б – крупнопорфировые амфибол-биотитовые ранние монцонитоиды (темное), рассекаемые в,г – мелкозернистыми биотитовыми лейкогранитами (светлое); д,е – метатектиты [птигматиты, обр. 5600: неосома – (светлое); палеосома – (темное)] и диатектиты (обр. 4719).

Рис. 2.6. Взаимоотношения и характер внедрения гранитоидов и монцонитов Велиткенайского 20-метровый останец (координаты – 69,27306 N, 176,82639 комплекса. а _ E) амфибол-биотитовых ранних монцонитов (пятнистый крупнопорфировых фон с субгоризонтальной слоистостью, обр. 6001), рассекаемых поздними мелкозернистыми биотитовыми гранитами (светлый фон, обр. 6000); б – 5-метровый коренной выход инъекционных мигматитов (координаты – 69,22455 N, 177,13647 E), представленных кристаллическими сланцами девона, смятыми в изоклинальные складки (темный фон), пронизанных мелкозернистыми монцонитоидами (светлый фон, обр. 3600).

Более поздние недеформированные мелко-, среднезернистые биотитовые лейкограниты слагают штокообразные тела и дайки, которые тяготеют к центральной части изучаемого комплекса (см. **рис. 2.4**, **рис. 2.7**). Для пород характерны равномернозернистые структуры и постоянство минеральных соотношений кварца, калиевого полевого шпата и плагиоклаза (**рис. 2.5** г).

Кроме монцонитов и лейкогранитов, среди вмещающих палеозойских кристаллических парагнейсов встречаются маломощные просечки и микродайки высокоглиноземистых лейкогранитов с мусковитом, гранатом и турмалином.

Рис. 2.7. Взаимоотношения ранних монцонитоидов (темные, порфировидные) с поздними лейкогранитами (светлые дайки и линзы) в коренных обнажениях.

В Велиткенайского эндоконтактах комплекса предшественниками описывались оторочки разнообразных и сложных по генезису мигматитов. Несмотря на то, что мигматиты амфиболитовой фации метаморфизма были установлены здесь в 1953 г. И.М. Романовым, их подробное описание было выполнено в 1962 г. А.П. Миловым и В.С. Ивановым. Согласно [Милов, Иванов, 1965], процессы мигматизации тесно связаны с лейкогранитами, являясь их жильно-прожилковой фацией. Нами достоверно выделяются следующие морфологические разности (рис. 2.8):

- метатектиты (строматиты, послойные мигматиты, птигматиты);
- агматиты (глыбовые мигматиты);
- диатектиты (теневые мигматиты).

В диатектитах и мигматизированных ортогнейсах хорошо проявлена директивная структура (**рис. 2.8** д). Диатектиты традиционно относятся к индикаторам наиболее глубинных условий формирования, их выходы приурочены к северо-восточной части комплекса. Метатектиты (**рис. 2.8 а, б**) и менее развитые агматиты (**рис. 2.8 в, г**), напротив, локализованы в юго-западной части комплекса, где пространственно связаны с ранними гигантопорфировыми монцонитоидами.

В северо-восточной эндоконтактовой части Велиткенайского комплекса вскрыты наиболее глубинные горизонты гранит-мигматитового комплекса.

В поле развития диатектитов содержатся мегаксенолиты (будины) серпентинизированных гарцбургитов, дунитов и гранат-шпинель-анортитовых габброамфиболитов, представляющих фрагменты офиолитов (**рис. 2.9**). На местности блоки гарцбургитов вытягиваются в виде извилистых линейных зон, маркирующих, по-видимому, область надвига (см. **рис. 2.4**).

Рис. 2.8. Коренные обнажения мигматитов. а, б – метатектиты; в, г – агматиты; д, е – диатектиты.

Рис. 2.9. Будины (мегаксенолиты ?) офиолитов (блоки серпентинизированных гарцбургитов) в центральной части Велиткенайского комплекса.

2.2. Выводы

Таким образом, согласно полевым наблюдениям в Велиткенайском монцонит-гранит-мигматитовом комплексе наблюдаются магматические инъекции в кристаллических сланцах и гнейсах, девона и карбона: маломощных силлообразных и дайкообразных тел гранитоидов, монцонитов; сложная композиция мигматитов, насыщенных лейкогранитами, шлирами и анклавами (реликтовыми пластинами/блоками) мигматизированных ортогнейсов, которые формируют структуру типа сложного «слоистого пирога» на общей площади около 2000 км².

ГЛАВА 3. МЕТОДИКА ИССЛЕДОВАНИЙ

3.1. Петрографические и минералогические исследования

Велиткенайских Петрографическое описание пород выполнено по коллекции шлифов, изготовленной из образцов различных литологических групп, встречающихся в исследуемой области. Несколько шлифов каждой группы изучались для минеральной диагностики, а также для оценки процентного содержания каждого минерала в породе. Модальные составы определялись как в результате визуальной оценки процентного содержания минералов в шлифах и полировках, так и при помощи программно-аппаратного комплекса Qemscan (рис. 4.1 б) и компьютерной программы imageJ [Schindelin et al., 2012]. Фотографирование шлифов выполнялось при помощи программы PETRO [Ползуненков, Кондратьев, 2023]. В описание также включены данные по минеральной химии, подробно раскрытые в главе 4. Минеральные индексы, используемые в тексте, приведены по [Whitney, Evans, 2010].

Изучение химического состава породообразующих минералов проводилось методом электронно-зондового рентгеноспектрального анализа (ЭЗРА) с использованием микрозонда Камебакс Е.М. Горячевой, Т.В. Субботниковой. Измерения проводились при ускоряющем напряжении 20 кВ, токе зонда 30 нА, диаметре сфокусированного зонда 3 мкм. Время измерения аналитической линии - 3 с, фона - 2 с. Калибровка определяемых элементов проводилась по следующим эталонам. Альбит – Na, Оливин – Mg и Fe, Корунд – Al, Волластонит – Si и Ca, Ортоклаз – K, Пирофанит – Ti. Математическая обработка результатов измерений выполнялась встроенной программой CORREX, по алгоритму ZAF-коррекции. Для контроля измерений, совместно с перечисленными выше эталонами, анализировались минералы эталоны [Jarosewich et al., 1980].

Расчет формул минералов и их классификация выполнена при помощи следующих программных продуктов – Bioterm [Yavuz, Öztaş, 1997], Micaplus [Yavuz, 2003a, б], WinAmphical [Yavuz, 2007].

3.2. Термобарометрические исследования

Для соблюдения корректности расчетов РТ-условий, при проведении микрозондового анализа породообразующих минералов, предварительно выявлялись сосуществующие равновесные ассоциации – парагенезисы. Поиск парагенезисов составлял важную задачу, требующую четкого различия минералов относительно деформационных структурных элементов в образцах, шлифах. Главным образом к совместно сосуществующим (равновесным) минеральным ассоциациям мы относили контактирующие друг с другом кристаллы плагиоклаза и амфибола – не несущие признаков коррозии и замещения (**рис. 4.4 г**, **рис. 3.1**).

В дополнение к микроструктурным критериям равновесия пар использовались карты распределения элементов в амфиболе и плагиоклазе, что позволяло обнаруживать неоднородности в них (см. **рис. 3.1**), с последующей корректировкой участков для анализа и последующего термобарометрического расчета.

Рис. 3.1. Микрофотографии амфибол-плагиоклазового парагенезиса из изученных монцонитоидов в обратнорассеянных электронах (BSE) – два левых снимка. Правый снимок – карта в лучах элементов (натрий – темно-серый цвет, кальций – светло-серый, железо – серый). Pl – плагиоклаз, Hbl – амфибол, белые кружки – точки анализа. Черный квадрат – границы двух правых снимков.

Для целей минеральной термобарометрии мы использовали анализы только с корректными суммами и расчетными кристаллохимическими формулами: безводных минералах (плагиоклаз) сумма оксидов должна находиться в интервале 98,5–101,5 масс.%, отклонение в каждой структурной позиции от 0,04 до 0,01 формульных единиц (ф.е.). В водосодержащих амфиболах и биотитах дополнительно учитывалось расчетное содержание гидроксильной группы ОН.

Микро-термометрические исследования флюидных включений в кварце проводились с использованием измерительного комплекса на основе микротермокамеры THMSG-600 фирмы Linkam, ошибка определения температур составляет: ± 1,5 °C – для температур более 60 °C. Отнесение ФВ к генетическим типам, оценка температур гомогенизации, состава и концентрации растворов, плотностей газовых фаз и растворов, а также давления выполнялось в соответствии с известными методиками [Шмонов, Шмулович, 1975; Борисенко, 1977; Ермаков, Долгов, 1979; Мельников и др., 1987; Рёддер, 1987; Вischoff, 1991].

3.3. Геохимические и изотопные исследования

Рентгенофлюоресцентный анализ горных пород на главные и примесные элементы выполнен в СВКНИИ ДВО РАН (г. Магадан) на спектрометрах SRM-25 и VRA-30, используя рутинные процедуры анализа, при этом погрешности определения стандартов по главным элементам не превышали 0,4% для SiO₂ и 0,2% для остальных оксидов, для примесных элементов (Rb, Sr, Zr) погрешность не превышала 5-6%. ICP-MS анализ пород на примесные элементы выполнен в центре коллективного пользования ИТиГ ДВО PAH (г. Хабаровск). повторяющиеся измерения стандартов BHVO-1, AGV-1 и BIR-1 показали погрешности не более 5-10%.

Rb-Sr, Sm-Nd и U-Pb изотопные анализы в валовом составе пород и монофракции калиевого полевого шпата проведены в ИГГД РАН (г. Санкт-Петербург) на 8-коллекторном масс-спектрометре Triton TI в статическом режиме по стандартным методикам. Концентрации элементов определены с точностью $\pm 0,5$ отн.%. Погрешности значений (2σ) для ⁸⁷Rb/⁸⁶Sr и ¹⁴⁷Sm/¹⁴⁴Nd не превышают 0,5 отн. %, для ⁸⁷Sr/⁸⁶Sr и ¹⁴³Nd/¹⁴⁴Nd – 0.050 и 0.005 отн.%. Для U и Pb уровень холостого опыта составляет 0.005 нг и 0.1 нг, соответственно. Воспроизводимость содержаний Pb и U на основании повторяющихся анализов международного стандарта BCR-1 составляет 1 и 0,5% соответственно. Вариации главных и

примесных элементов, а также изотопных отношений изверженных пород в координатах времени представляют один из путей предметного обсуждения петрогенезиса, таких как вклад мантийных компонентов, природа взаимодействия коры и мантии, в конечном итоге реконструкция эволюции глубоких частей земной коры.

Особый акцент в исследованиях был сделан на изучении циркона, исключительно устойчивого акцессорного минерала, который несет в себе информацию о длительной истории формирования и эволюции магматической системы. Как показывают современные исследования циркона локальными методами, он часто бывает изотопно неоднородным, демонстрируя значительно более сложную историю, чем это представлялось ранее (пионерные исследования навесок циркона с помощью ТИМС). Циркон, кроме собственно магматического, может быть ксенокристовым или унаследованным перитектическим, отражающим возраст источника из которого выплавлялась магма, а также может быть «доинтрузивным» или интрателлурическим (antecrystic), отражающим интервал времени глубинной кристаллизации исходной магматической системы момента начала сегрегации, подъема и кристаллизации интрузий в ДО верхнекоровых камерах [Charlier et al., 2004]. Таким образом циркон, кроме реконструкции собственно магматической истории, может быть использован как микроксенолит, записывающий раннюю доинтрузивную историю пород. позволяет в конечном итоге реконструировать историю роста и модификации земной коры [напр., Charlier et al., 2004; Bryan, 2007].

Цирконы для U-Pb датирования и Lu-Hf-O изотопного исследования были выделены с использованием стандартной техники дробления, разделения в тяжелых жидкостях и электромагнитной сепарации. Перед анализом были получены изображения кристаллов в катодолюминесцентном излучении и обратнорассеянных электронах на сканирующем электронном микроскопе JEOL JSM 5600, что позволило выявить характер зональности и внутреннюю структуру до- и синмагматических доменов в кристаллах циркона, наметить точки анализа без дефектов и микровключений. Изотопный анализ цирконов исследован преимущественно в одних и тех же участках кристаллов в следующей последовательности: U-Pb датирование (SHRIMP-RG) – изотопный состав кислорода (SIMS) – Lu-Hf изотопный состав (LA-ICPMS).

U-Pb изотопные измерения in situ были проведены на SHRIMP-RG (чувствительный высокоразрешающий ионный микрозонд обратной геометрии) в микроаналитическом центре Стэнфордского университета [Williams, 1998]. Детали аналитических измерений можно найти в [Акинин, Миллер, 2011]. Для определения U-Pb возраста цирконов использовали стандарт R33 (кварцевый диорит комплекса Брэйнтри, Вермонт: Braintree complex, Vermont; [Black et al., возрастом 419 2004]) с принятым МЛН. лет. который анализировали систематически в течение аналитической сессии. Концентрации урана и тория калиброваны по стандарту CZ3 (550 г/т U), а Pb/U отношение в образце используя эмпирическое квадратическое соотношение между ²⁰⁶Pb⁺/U⁺ и UO⁺/U⁺ и нормализованное к ²⁰⁶Pb/U в стандарте. Обработку результатов измерений осуществляли с помощью программ Squid, Isoplot [Ludwig, 2003], IsoplotR [Vermeesch, 2018]. Традиционно для молодых цирконов опирались только на ²⁰⁶Pb/²³⁸U возраст. Полученные ²⁰⁶Pb/²³⁸U возрасты скорректированы на ²⁰⁷Pb [Williams, 1998], допуская, что небольшая дискордантность цирконов является простого смешения обыкновенного И радиогенного Pb. следствием Воспроизводимость SHRIMP-RG анализа для изотопного отношения ²³⁸U/²⁰⁶Pb в стандарте составляет около 1-2%, что эквивалентно расхождению фанерозойских дат на 1–3 млн. лет и меньше. В кристаллах циркона, практически в тех же точках, где производилось U-Pb датирование, в отдельной сессии (ток первичный ионов кислорода 1–2 nA, напряжение 10 kV, диаметр микрозонда около 15–17 µm) был измерен широкий круг примесных элементов (всего 37 масс от ⁷Li до ²⁵⁴UO₂), используя хорошо охарактеризованный гомогенный стандарт MAD-green (4196 г/ т U) [Barth, Wooden, 2010]. Все измерения были выполнены при разрешении масс M/DM = ~ 10500-11000 (10% высоты пика), что позволяет исключить интерференцию молекулярных частиц, особенно для ⁴⁵Sc, ⁴⁸Ti и REE. HREE

анализировались в оксидной форме, что позволило избежать неразрешимых изобарных интерференций для простых ионов металлов. Погрешность определения концентрации Ті оценена в 5%, на основе повторяющихся измерений стандарта «MAD–559» [Coble et al., 2018].

Изотопное отношение ¹⁸O/¹⁶O в цирконах было проанализировано в Университете Лос-Анджелеса (UCLA) с помощью ионного микрозонда Cameca 1270 IMS, по стандартной процедуре, принятой в лаборатории [Trail et al., 2007]. В качестве первичного использован стандарт циркона R33 [Black et al., 2004], в качестве вторичного – 91500 [Wiedenbeck et al., 2004]. Данные представлены в виде δ^{18} O (VSMOW) – отношения δ^{18} O/¹⁶O (±2 σ) относительно среднего состава морской воды [Valley, 2003]. В нашей аналитической сессии среднее значение δ^{18} O для 42 валидных измерений стандарта R33 составило +6,0 ± 0,2‰. Все результаты для наших образцов были скорректированы на величину 1,09 для достижения табличной средней величины стандарта R33 в +5,57‰ [Black et al., 2004]. Среднее значение для вторичного стандарта 91500 в нашей сессии составило +10,5 ± 0,3‰, что приближается к табличному +9,86 ± 0,11‰ [Wiedenbeck et al., 2004]. Точность для измеряемых образцов циркона рассчитана как геометрическое среднее стандартного воспроизведения и погрешности.

Lu-Hf изотопные измерения на цирконах выполнены в Вашингтонском университете с помощью метода LA-MC ICP-MS (лазер New Wave 213 nm Nd:YAG, диаметр пучка около 40 мкм). Измерения и обработка данных проведены в соответствии с принятым протоколом лаборатории [Fisher et al., 2014]. В качестве первичного стандарта использован стандарт циркона «Madtank» (¹⁷⁶Hf/¹⁷⁷Hf = 0,282507), в качестве вторичных – R33 и 91500. Изотопное отношение ¹⁷⁶Hf/¹⁷⁷Hf _a а также єHf_{initial} рассчитано используя измеренные U-Pb возраста, константу $\lambda = 1,867 \times 10^{-11}$ /yr⁻¹, современные отношения ¹⁷⁶Lu/¹⁷⁷Hf_{CHUR} = 0,0336 и ¹⁷⁶Hf/¹⁷⁷Hf_{CHUR} = 0,282785. Для измеренного отношения ¹⁷⁶Hf/¹⁷⁷Hf был использован коэффициент коррекции 1,00011248. Среднее значение єHf_{initial} в нашей аналитической сессии для стандарта R33 составило +7,1 ± 0,9, для

стандарта 91500 составило +6,3 \pm 1,3 (при табличном +8,0 \pm 0,7 и +6,9 \pm 0,4, соответственно [Fisher et al., 2014]).

ГЛАВА 4. ПЕТРОГРАФИЯ И МИНЕРАЛОГИЯ ВЕЛИТКЕНАЙСКОГО КОМПЛЕКСА

4.1. Деформированные порфировидные гранитоиды

В качестве характерного петрографического признака выступает сочетание структурно-текстурных особенностей, магматических (порфировидная текстура) и метаморфических пород (порфиро-, пойкило-, лепидо- и гетеробластовые структуры). Внутри группы породы разделены нами на подгруппы, несущие признаки существенно магматических (гранодиориты) и метаморфических пород (кварцевые диориты, кварцевые монцониты).

Рис. 4.1. Представительные образцы монцонитоидов. Штуф обр. 15 (а), микрофотография шлифа из обр. 4005 (в) и минеральной карты шлифа из обр. 15 (б), полученной при помощи программного комплекса Qemscan. Аббревиатура минералов по [Whitney, Evans, 2010].

Гранодиориты (Шл.-4001; 4301; EGC15.) варьируют по составу от пироксен-роговообманково-биотитовых (рис. 4.4, 5801) до роговообманковобиотитовых (рис. 4.2, рис. 4.4, 4301) с гипидиоморфнозернистой с элементами пойкилитовой и монцонитовой структурой основной массы. *Калиевый полевой ипат* представлен микроклином – 16–20%. *Плагиоклаз* занимает от 35 до 42%, порфировидные выделения представлены андезином (An₃₅₋₄₀, рис. 4.4, 4001). *Кварц* в пределах 18–20% со слабоволнистым, облачным, реже ровным погасанием слагает основную массу (рис. 4.2). Отмечаются блочные зерна с изрезанными границами блоков. *Биотит* в виде 5–10%. *Роговая обманка*: 8–10%. *Моноклинный пироксен* до 1%. Акцессорные (магнетит, апатит, сфен, циркон) не превышают 2%.

Рис. 4.2. Микрофотографии шлифов представительных образцов деформированных порфировидных гранодиоритов.

Кварцевые диориты, кварцевые монцониты (Шл.-11А; 19; 32А; 4002; 4004; 4403; 4400А; 7706; 3500; 3501; 4503; Vel-13; Vel-21) имеют неравномерно зернистое строение с крупными >1–5 см, гигантскими >5 см вкрапленниками Kfs реже Pl – не более 1 см. При этом породы характеризуются гранобластовой структурой, обусловленной погруженными округлыми линзовидными обломками Kfs – 50% и Pl – 25% (гранобластами), занимающими 80% всего объема породы во вмещающий Bi, Q – матрикс, составляющий 20% (рис. 4.3). Взаимоотношения

гранобластов и матрикса определяют линзовидно-полосчатую (гнейсовидную) текстуру породы.

Рис. 4.3. Микрофотографии шлифов представительных образцов кварцевых диоритов и монцонитов.

Калиевый полевой шпат представлен, главным образом, ортоклазовыми вкрапленниками (35-40%) белого цвета. Содержание альбитовой молекулы от 6 до 12%. Нередко у вкрапленников наблюдается отсутствие правильной кристаллографической формы, сопровождаемое стороны co вмещающего матрикса неровными извилистыми, бухтообразными границами. При этом форма разнообразная: прямоугольная, вкрапленников пятигранная, овальная, рис. 4.3). Характерная особенность вкрапленников линзовидная (см. Kfs заключается в наличии пойкилитовых вростков (тонких 0,05 мм и широких 0,25 Также участками как пластинок) биотита. в центральных MM так и в периферических слабозаметному частях обнаруживаются, по угасанию двойников, реликты кристаллов Pl до 0,4 мм. Изометричные выделения Bt 0,5 мм приурочены к приграничным частям трещин, рассекающих вкрапленники Kfs, и интерстициям основной массы.

На вмещающий матрикс приходится 20–60% всего объема породы. Матрикс представлен среднезернистым агрегатом следующих минералов, %: Q – 10; Pl – 20; Fsp – 25; Bt – 25; Hbl – 15 и Срх до 5. Часто преобладание идиоморфизма Pl над Kfs обусловливает монцонитовую структуру основной массы. В зависимости

от характера размещения Вt структура породы может рассматриваться как грано-, лепидобластовая, в случае изгибания чешуй Вt по границам вкрапленников овальной и линзовидной форм, и порфировидной при равномерном размещении агрегата темноцветных минералов по границам вкрапленников прямоугольной и шестигранной форм (**рис. 4.4**). В большинстве случаев агрегаты темноцветных минералов вытянуты в одном направлении и параллельны вкрапленникам, что придает породе гнейсовидную текстуру.

Рис. 4.4. Микрофотографии главных породообразующих минералов.

Кварц слогает мелко-, среднезернистые и мелко-, аллотриаморфнозернистые агрегаты гранобластового строения с волнистым
угасанием зерен. Последний развит в основной массе, в промежутках между вкрапленниками. Характер границ гранобластов кварца различен, помимо характерных плавных и неровных границ, нередко наблюдаются и зазубренные. В гранобластовом агрегате, по группе тонких трещинок, разделяющих его на части, в виде мелких изометричных образований развивается биотит. В участках раздува трещинок биотит имеет таблитчатую форму.

Плагиоклаз представлен как вкрапленниками 5%, 2–3,5 мм, так и интенсивно резорбированными пелитизированными таблицами, слагающими разноразмерные гранобласты до 1,5 мм. Пелитовый материал, содержащийся в плагиоклазе, не всегда позволяет наблюдать четкие полисинтетические двойники. Встречаются и более свежие таблицы. В целом плагиоклазы по большей части однородны и относятся к андезину An_(31–39).

Биотит в количестве до 15% образует субидиоморфные шестигранники, таблицы, чаще изометричные образования бурого цвета в срастаниях с роговой обманкой, преобладающие над самостоятельными, вытянутыми пластинками кремового цвета. В полях развития субидиоморфных выделений биотита встречаются единичные клиновидные зерна и мелкие цепочечные агрегаты сфена (**puc. 4.5, 4301**). В составе биотита содержатся примерно равные количества флогопитового и аннитового компонентов, а также около 8–21% мусковитовой компоненты. В виде широких чешуй и вытянутых таблиц коричневого, темнозеленого цветов, изогнутых в различной степени в периферийных частях гранобластов, участвует в строении вмещающего матрикса. Размер таблиц варьирует до 0,35 мм на 2,2 мм.

Роговая обманка (до 8%) представлена изометричными выделениями зеленовато-желтого до темно-зеленого цвета и идиоморфными таблицами, ромбовидными кристаллами с четко проявленной спайностью.

Пироксен (до 3%) представлен моноклинной разновидностью (диопсид), развивается в виде самостоятельных агрегатов (**рис. 4.4, 5801**) и реликтов в роговой обманке.

Акцессорные минералы представлены сфеном, цирконом, апатитом в редких случаях флюоритом и рудным минералом.

Рис. 4.5. Микрофотография выделений акцессорного сфена

Вторичные преобразования выразились в частичной хлоритизации биотита и разной интенсивности пелитизации полевых шпатов.

Описанные породы повсеместно деформированы и характеризуются порфировидными, монцонитовыми, грано- и лепидобластовыми структурами, непостоянством минеральных соотношений кварца, калиевого полевого шпата и плагиоклаза, повышенным содержанием сфена до 1,5%, наличием флюорита. Плагиоклазы в основном однородны и относятся к андезину An₃₁₋₃₉. Калиевые полевые шпаты представлены ортоклазами (с долей Ab₆₋₁₂). В составе биотита преобладают миналы флогопитового и аннитового компонентов. Амфиболы относятся к обыкновенным роговым обманкам.

Рис. 4.6. Модальная классификация Велиткенайских монцонитоидов. Поля по [Streckeisen, 1976]. Фигуративные точки нанесены по данным подсчета минерального состава с использованием сканирующего электронного микроскопа с системой Qemscan. Поля составов плутонических пород: 1а – кварцит, 1b – обогащенный кварцем гранит, 2 – щелочной полевошпатовый гранит, 3а – сиеногранит, 3b – монцогранит, 4 – гранодиорит, 5 – тоналит, 6 – щелочной полевошпатовый сиенит, 7 – сиенит, 6* – щелочной полевошпатовый сиенит, 7* – кварцевый сиенит, 8 – монцонит, 8* – кварцевый монцонит, 9 – монцодиорит/монцогаббро, 9* – кварцевый монцодиорит/кварцевое монцогаббро, 10 – габбродиорит/анортозит, 10* – кварцевый диорит/кварцевое габбро/кварцевый анортозит.

4.2. Мелко-, среднезернистые биотитовые граниты и лейкограниты

Биотитовые лейкограниты имеют розовато-серый цвет, с массивной нередко гнейсовидной текстурой и равнозернистой гипидиоморфнозернистой структурой (рис. 4.7). *Калиевый полевой шпат* (35–55%) развит в породе в виде выделений неправильной формы, сложенных микроклином. *Плагиоклаз* (20–25%) представлен олигоклазом (An_{18–20}), андезином (An_{28–33}). *Кварц* развит в виде мелкозернистого, реже среднезернистого агрегата, занимающего объем в 25–35%. *Биотит* (железистый флогопит, f = 60–64%), 2–5%, реже до 7% представлен субидиоморфными и идиоморфных кристаллами коричневато-бурого цвета. Главными акцессорными минералами являются апатит и циркон, редкими – сфен ортит (алланит), гранат, ильменит.

Некоторые разновидности гранитов с большим содержанием микроклина по химическому составу соответствуют щелочным гранитам.

Рис. 4.7. Микрофотографии шлифов представительных образцов биотитовых гранитов.

Лейкократовые граниты розовые массивные мелко- и среднезернистого сложения. Структура их гипидиоморфнозернистая (рис. 4.8). Состав пород: олигоклаз (An₁₅₋₂₀) – 30–35%, микроклин - 35–45% кварц – 30–35%, мусковит – 1– 2%. Акцессорные – апатит и циркон, редко гранат. Мусковит как и кварц, принимает участие в строении матрикса, в котором он представлен двумя разновидностями. Агрегатами средне-И мелкочешуйчатого строения. Мелкочешуйчатый мусковит развит в основной массе в виде единичных чешуй и центральных частях биотитовых чешуй. Среднечешуйчатый мусковит В развивается В центральной части матрикса, где представлен виде В мономинеральных полей (см. рис. 4.8).

Рис. 4.8. Микрофотографии шлифов представительных образцов лейкогранитов.

76

Лейкограниты, содержащие биотит, характеризуются равномернозернистыми структурами и постоянством минеральных соотношений кварца, калиевого полевого шпата и плагиоклаза, а также незначительными количествами граната и ортита. Высокоглиноземистые лейкограниты повсеместно содержат мусковит, гранат и турмалин.

4.3. Ортогнейсы и мигматиты

4.3.1. Ортогнейсы

Эта группа пород (обр. 5300, 4706d, 4708, 36, см. **рис. 4.9**) развита в центральной части Велиткенайского комплекса, в которой ортогнейсы не редко мигматизированны (обр. 4719, **рис. 4.15**).

Автором детально изучен минеральный состав трех образцов гнейсов (5300, 4706d, 4708). Макроскопически гнейсы представлены чередованием участков относительно лейкократового и мезократового облика. Лейкократовые участки представлены кварц- полевошпатовым агрегатом с небольшим количеством темноцветных минералов. В мезократовых участках повышается количество биотита до 15 процентов (**рис. 4.9**).

Рис. 4.9. Общий вид ортогнейсов из центральной части Велиткенайского комплекса. Верховья р. Верховый – (5300, 176°53'16", 69°18'11"). Водораздел р. Пыркечгойгын – Рывеем (4706d, 177°14'20", 69°12'45"; 4708, 77°14'48", 69°12'59").

В шлифах эти разнородные по составу участки различаются формами выделений полевых шпатов и развитием в лейкократовой области гранобластового кварца (**рис. 4.10**).

Рис. 4.10. Микроструктурные особенности изученных ортогнейсов Велиткенайского комплекса. (а) Обр. 5300. Слабозональные, субидиоморфные кристаллы плагиоклаза (до 0,8 мм) образуют каркасную структуру, а более мелкие изометричные кристаллы, кварца (0,5 мм) реже плагиоклаза (0,4 мм) заполняют интерстиции. Биотит ориентирован в одном направлении. (б) Обр. 4706d. Ксеноморфные кристаллы кварца и редко микроклина в интерстициях каркаса из субидиоморфных кристаллов плагиоклаза (до 0,9 мм). Ориентированные индивиды биотита подчеркивают диррективность. (в-г) Микроструктура «нитка бус» в гнейсах 4708 и 5300d. Кварц в этой богатой плагиоклазом области встречается либо в виде сравнительно крупных (0,12 мм) рассеянных изометричных кристаллов. Микроклин встречается в виде изометричных выделений, некоторые из которых содержат кварц в центре.

По составу полевые шпаты (**рис. 4.11**, **табл. 4.1**) представлены калиевой (ортоклазом, реже микроклином) и натрий-кальциевыми разновидностями (олигоклазом, реже альбитом и андезином).

Рис. 4.11. Гистограммы распределения содержаний ортоклазовой и анортитовой молекул в полевых шпатах из ортогнейсов Велиткенайского комплекса.

Темные слюды систематически содержат примеси титана (2,38–3,77 масс. % TiO_2) и марганца (0,46–0,82 масс. % MnO), характеризуются низкой глиноземистостью (1 = 19–24 %) и умеренной железистостью (f = 70–74 %) (табл. 4.2).

По составу слюды соответствуют сидерофиллитам (**рис. 4.12 a**), для точек составов намечается линейный тренд характеризующийся одновременным ростом железистости и суммарного количества алюминия. По соотношению магния и железа все слюды относятся к подгруппе железистых биотитов, магнезиально содержащим-сидерофиллитам (**рис. 4.12 б**).

Таблица 4.1. Химический	состав	плагиоклазов	ИЗ	ортогнейсов	Велиткенайского
-------------------------	--------	--------------	----	-------------	-----------------

комплекса

№ п.п.	SiO ₂	Al ₂ O ₃	CaO	Na ₂ O	K ₂ O	Сумма	Si	Al	Ca	Na	K	An	Ab	Or
						Обр	o. 4706E)						
1	62.22	23.37	4.75	8.66	0.47	99.5	2.77	1.23	0.23	0.75	0.03	0.226	0.747	0.027
2	63.06	23.93	4.89	8.91	0.42	101.2	2.76	1.24	0.23	0.76	0.02	0.227	0.749	0.023
3	63.77	23.69	3.97	9.12	0.55	101.1	2.79	1.22	0.19	0.77	0.03	0.188	0.781	0.031
4	64.97	21.99	2.39	9.81	-	99.2	2.87	1.15	0.11	0.84	0.00	0.119	0.881	-
5	62.58	23.57	4.95	8.94	-	100.1	2.77	1.23	0.24	0.77	0.00	0.234	0.766	-
6	62.32	23.66	4.69	8.87	-	99.6	2.77	1.24	0.22	0.76	0.00	0.226	0.774	-
7	62.7	22.87	4.2	9.14	-	98.9	2.80	1.20	0.20	0.79	0.00	0.203	0.797	-
8	62.96	23.6	4.66	9.17	-	100.4	2.78	1.23	0.22	0.78	0.00	0.219	0.781	-
9	62.72	23.61	4.65	9.23	-	100.2	2.77	1.23	0.22	0.79	0.00	0.218	0.782	-
10	63.9	22.39	3.79	9.53	0.37	100.0	2.83	1.17	0.18	0.82	0.02	0.176	0.803	0.021
11	63.73	22.92	4.11	9.41	0.38	100.6	2.81	1.19	0.19	0.80	0.02	0.19	0.789	0.021
12	66.5	20.83	1.7	10.78	-	99.8	2.92	1.08	0.08	0.92	0.00	0.08	0.92	-
13	61.39	23.62	4.75	8.82	-	98.6	2.76	1.25	0.23	0.77	0.00	0.229	0.771	-
14	62.82	23.48	4.77	8.86	0.43	100.4	2.77	1.22	0.23	0.76	0.02	0.224	0.752	0.024
15	68.59	20.26	0.69	11.59	-	101.1	2.97	1.03	0.03	0.97	0.00	0.032	0.968	-
						Об	p. 4708							
16	63.49	24.12	4.74	9.13	-	101.5	2.77	1.24	0.22	0.77	0.00	0.223	0.777	-
17	62.96	23.55	4.82	8.86	-	100.2	2.78	1.23	0.23	0.76	0.00	0.231	0.769	-
18	63.1	23.94	4.91	9.03	-	101.0	2.77	1.24	0.23	0.77	0.00	0.231	0.769	-
19	63.94	22.08	3.61	9.6	-	99.2	2.84	1.16	0.17	0.83	0.00	0.172	0.828	-
20	61.97	23.38	4.44	8.82	-	98.6	2.78	1.24	0.21	0.77	0.00	0.218	0.782	-
21	64.1	23.46	4.25	9.32	-	101.1	2.80	1.21	0.20	0.79	0.00	0.201	0.799	-
22	62.02	23.29	4.67	8.98	-	99.0	2.77	1.23	0.22	0.78	0.00	0.223	0.777	-
23	63.05	23.03	4.26	9.09	-	99.4	2.80	1.21	0.20	0.78	0.00	0.206	0.794	-
24	63.69	22.14	3.45	9.58	-	98.9	2.84	1.16	0.17	0.83	0.00	0.166	0.834	-
25	62.86	23.89	5	8.78	-	100.5	2.77	1.24	0.24	0.75	0.00	0.239	0.761	-
						Об	p. 5300							
26	62.68	23.46	4.69	8.96	-	99.8	2.78	1.23	0.22	0.77	0.00	0.224	0.776	-
27	63.21	23.82	4.75	9.21	-	101.0	2.77	1.23	0.22	0.78	0.00	0.222	0.778	-
28	63.01	24.09	4.99	9.05	-	101.1	2.76	1.24	0.23	0.77	0.00	0.234	0.766	-
29	64.6	22.63	3.62	9.56	-	100.4	2.83	1.17	0.17	0.81	0.00	0.173	0.827	-
30	63.5	22.67	3.9	9.38	-	99.5	2.82	1.19	0.19	0.81	0.00	0.187	0.813	-
31	62.41	23.34	4.71	8.77	-	99.2	2.78	1.23	0.23	0.76	0.00	0.229	0.771	-
32	61.5	22.88	6.09	8.9	-	99.4	2.76	1.21	0.29	0.77	0.00	0.274	0.726	-
33	62.01	23.48	4.18	8.7	0.54	98.9	2.78	1.24	0.20	0.76	0.03	0.203	0.765	0.031
34	62.06	23.39	4.81	8.63	0.37	99.3	2.77	1.23	0.23	0.75	0.02	0.231	0.748	0.021
35	62.02	23.46	4.2	8.89	0.49	99.1	2.77	1.24	0.20	0.77	0.03	0.201	0.771	0.028
36	62.23	23.1	4.17	9.1	-	98.6	2.79	1.22	0.20	0.79	0.00	0.202	0.798	-
37	64.71	22.35	1.36	9.69	1.42	99.5	2.87	1.17	0.07	0.83	0.08	0.066	0.852	0.082
38	61.93	23.1	4.59	8.88	-	98.5	2.78	1.22	0.22	0.77	0.00	0.222	0.778	-
39	62.05	23.01	4.59	8.91	-	98.6	2.78	1.22	0.22	0.78	0.00	0.222	0.778	-
40	63.1	23 76	4.91	9.04	-	100.8	2.77	1.23	0.23	0.77	0.00	0.231	0.769	-
41	62.88	23.8	5.02	8.71	_	100.4	2.77	1.24	0.24	0.74	0.00	0.242	0.758	_

▲ · · · · · · · · · · · · · · · · · · ·

№ п.п.	SiO ₂	TiO ₂	Al_2O_3	FeO	MnO	MgO	K ₂ O	Сумма	Si	$Al^{(IV)}$	Al ^(VI)	Ti	Fe^{3+}	Fe^{2+}	Fe ³⁺ (M)	Mn	Mg	K	1	f	T, ⁰C	Р, кбар.	fO
											5300)											
1	34.01	3.56	15.15	20.33	0.71	7.83	9.53	91.33	2.76	1.24	0.21	0.22	0.06	1.32	0.06	0.05	0.95	0.99	0.2	0.72	691	2.2	-17.1
2	34.38	3.37	14.82	20.59	0.63	8.07	9.85	92.03	2.78	1.22	0.19	0.21	0.02	1.37	0.02	0.04	0.97	1.02	0.19	0.72	675	2	-17.64
3	34.65	3.56	15.13	20.91	0.67	7.96	9.87	93.14	2.77	1.23	0.20	0.21	0.04	1.35	0.04	0.05	0.95	1.01	0.19	0.72	684	2.1	-17.33
4	34.86	3.74	15.42	20.78	0.54	7.77	9.94	93.50	2.77	1.23	0.22	0.22	0.01	1.38	0.01	0.04	0.92	1.01	0.2	0.73	689	2.2	-17.17
5	35.34	3.63	15.84	19.97	0.59	7.42	9.71	93.09	2.81	1.20	0.29	0.22	0.11	1.21	0.11	0.04	0.88	0.98	0.2	0.73	707	2.4	-16.58
6	34.91	3.44	15.25	21.39	0.64	8.18	10	94.31	2.76	1.24	0.19	0.21	0.06	1.36	0.06	0.04	0.97	1.01	0.19	0.72	676	2	-17.61
7	33.93	3.43	14.82	21.15	0.68	8.03	9.85	92.08	2.75	1.25	0.17	0.21	0.10	1.33	0.10	0.05	0.97	1.02	0.19	0.72	682	2	-17.4
8	33.69	3.33	14.9	21.04	0.69	7.7	9.59	91.06	2.76	1.25	0.19	0.21	0.08	1.36	0.08	0.05	0.94	1.00	0.19	0.73	676	2.1	-17.61
9	35.7	2.38	18.47	17.09	0.46	6.1	7.97	88.86	2.88	1.12	0.63	0.14	0.49	0.66	0.49	0.03	0.73	0.82	0.24	0.74	754	4	-15.13
10	35.74	3.66	15.61	21.12	0.73	8.5	9.93	96.00	2.77	1.23	0.20	0.21	0.07	1.30	0.07	0.05	0.98	0.98	0.19	0.71	691	2.1	-17.1
11	34.56	2.75	15.79	21.05	0.71	8.41	9.93	93.57	2.75	1.25	0.23	0.17	0.02	1.38	0.02	0.05	1.00	1.01	0.2	0.71	643	2.4	-18.78
											47066	1											
12	35.48	3.33	15.67	21.22	0.64	8.42	10.1	95.44	2.77	1.23	0.21	0.20	0.03	1.36	0.03	0.04	0.98	1.00	0.19	0.72	668	2.2	-17.88
13	36.05	3.43	15.95	21.56	0.55	8.8	10.3	97.40	2.76	1.24	0.20	0.20	0.05	1.33	0.05	0.04	1.01	1.00	0.19	0.71	674	2.1	-17.68
14	34.64	3.37	15.26	21.5	0.74	8.29	9.99	94.18	2.75	1.25	0.18	0.20	0.10	1.33	0.10	0.05	0.98	1.01	0.19	0.72	677	2.1	-17.57
15	36.03	3.32	15.64	21.4	0.66	8.25	10.2	96.26	2.79	1.21	0.22	0.19	0.03	1.36	0.03	0.04	0.95	1.01	0.19	0.72	667	2.1	-17.92
16	35.69	3.25	15.77	20.81	0.82	8.08	9.54	94.65	2.80	1.20	0.25	0.19	0.01	1.36	0.01	0.05	0.94	0.95	0.2	0.72	666	2.2	-17.95
17	36.92	3.61	15.97	21.79	0.64	8.7	10.3	98.94	2.79	1.21	0.21	0.21	0.03	1.35	0.03	0.04	0.98	0.99	0.19	0.71	678	2	-17.54
18	38.76	1.16	25.66	14.31	0	4.98	3.77	90.21	2.91	1.09	1.18	0.07	0.69	0.21	0.69	0.00	0.56	0.36	0.31	0.74	882	7.2	-11.79
											4708												
19	34.88	3.34	15.24	21.12	0.67	7.95	9.82	93.48	2.78	1.22	0.21	0.20	0.02	1.39	0.02	0.05	0.94	1.00	0.19	0.73	669	2.1	-17.85
20	34.94	3.41	16.17	21.81	0.68	8.43	9.58	95.50	2.72	1.28	0.21	0.20	0.17	1.25	0.17	0.05	0.98	0.95	0.2	0.72	686	2.4	-17.27
21	35.23	3.77	16.59	20.78	0.71	8.03	9.68	95.35	2.74	1.26	0.26	0.22	0.07	1.28	0.07	0.05	0.93	0.96	0.21	0.72	699	2.6	-16.84
22	35.84	2.81	17.86	20.74	0.72	7.96	9.2	95.86	2.75	1.25	0.37	0.16	0.04	1.29	0.04	0.05	0.91	0.90	0.22	0.72	649	3.2	-18.56
23	36.46	2.47	18.81	19.71	0.68	7.88	8.99	95.91	2.78	1.22	0.47	0.14	0.17	1.08	0.17	0.04	0.90	0.87	0.23	0.71	654	3.6	-18.38
24	35.57	3.34	15.4	21.02	0.56	8.37	10	94.96	2.79	1.21	0.21	0.20	0.01	1.37	0.01	0.04	0.98	1.00	0.19	0.72	668	2	-17.88

Примечание. Расчетные параметры кристаллизации биотита: Т – температура по [Luhr et al., 1984]; Р – давление по [Uchida et al., 2007]; fO – фугитивность кислорода по [Wones, 1989]. Формульные количества рассчитаны в программе Mica+ [Yavuz, 2003a].

Рис. 4.12. Классификационные диаграммы для темных слюд из ортогнейсов центральной части Велиткенайского комплекса. а – четырёхугольная диаграмма annite – siderophylite – phlogopite – eastonite (ASFE); б – диаграмма классификаций слюд mgli (Mg – Li) против feal (Fe^{tot} + Mn + Ti – Al^{VI}), по [Tischendorf et al., 2004]. Курсивом выделены названия, утвержденные IMA. Сплошные линии соединяют слюды в системе флогопит-аннит-сидерофиллит-полилитионит (PASP). Точки отражают средние составы разновидностей слюды по mgli и feal; в – диаграмма мольных долей [Beane, 1974]. Области первичных биотитов в гранитоидных породах и типичных гидротермальных биотитов по [Foster, 1960]; г – тройная диаграмма Altot против Mg, поля по [Nachit et al., 1985]; е – тройная дискриминационная диаграмма с дискриминацией по генезису и тектоническим обстановкам формирования по [Abdel-Rahman, 1994], синие линии разделяю поля для магматического и метаморфического биотита.

На рис. 4.12 в, характеризующем степень окисленности гранитоидных магм и различающем поля магматических и гидротермальных биотитов, точки составов темных слюд из изученных ортогнейсов (обр. 5300, 4706d, 4708) соответствуют буферу QFM и полю магматических биотитов. Так же к первично магматическим биотитам изученные слюды относятся и согласно распределению Ti, Fe, Mn и Mg (рис. 4.12 г).

B качестве различия типов щелочности, которых магм ПО ИЗ кристаллизовался биотит, используют диаграмму 10TiO₂ – (FeO+MnO) – MgO фигуративных (рис. 4.12 д). По положению точек составов ИЗ слюд велиткенайских ортогнейсов биотиты кристаллизовались из известково-щелочных Этот факт находит подтверждение на другой дискриминационной магм диаграмме MgO-FeO_t-Al₂O₃ (рис. 4.12 е), здесь изученные слюды соответствуют таковым, кристаллизующимся из магматических пород известково-щелочных серий орогенного происхождения.

Таблица 4.3. Расчеты температуры, давления и фугитивности кислорода при кристаллизации биотита в велиткенайских ортогнейсах

Образец	Параметры	Luhr et al., 1984 (T,°C)	Uchida et al., 2007 (Р, кбар)	Wones, 1989 (fO)
	Среднее	$690~\pm~25$	$2.3~\pm~0.6$	-17.1 ± 0.8
5300(n=10)	Макс	755	4.0	-15.1
. ,	Мин	675	2.0	-17.6
	Среднее	672 ± 5	2.1 ± 0.1	-17.9 ± 0.4
4706d(n=7)	Макс	680	2.2	-17.5
	Мин	640	2.0	-18.8
	Среднее	$670~\pm~20$	3 ± 0.6	-18.0 ± 0.7
4708(n=6)	Макс	700	3.6	-16.8
	Мин	650	2.0	-18.6

B кристаллах биотитах при микрозондовом изучении проявляется зональность состава, которая позволяет в первом приближении оценить вариации физико-химических параметров, отражающих процессы кристаллизации И диффузии (рис. 4.13). Повышенные при остывании значения давления, температуры

Рис. 4.13. Зарисовки представительных выделений биотитов с вынесенными по площади расчетными параметрами кристаллизации из табл. 4.3.

и фугитивности кислорода локально установлены в периферийных частях кристаллов биотита. Такие особенности, если не принимать во внимание погрешности оценок окси- и термобарометров, вероятно отражают наложенные процессы, связанные с внедрением монцонитоидных и гранитоидных магм. В частности, вариации могут быть обусловлены частичным замещением в краевых частях биотита хлоритом, которое сопровождается увеличением общего Al, влияющего на расчет давления.

Рис. 4.14. Минеральные включения в цирконах: а – цирконы из ранних монцонитоидов; б – цирконы из ортогнейсов центральной части ВК.

Изучение состава микровключений в цирконах из ортогнейсов показало, что среди них встречены только характерные для гранитных магм включения биотита и калиевого полевого шпата (**рис. 4.14**). Напротив, среди включений в цирконах из ранних монцонитоидов преобладают апатиты, но также встречаются и калиевые полевые шпаты. По составу биотит из включений также соответствует магнезиальному сидерофилиту.

Параметры кристаллизации изученных биотитов оценены по их составам и сведены в **табл. 4.2**, **табл. 4.3**. Значения давления кристаллизации биотита рассчитывались при помощи геобарометра Al-в-биотите [Uchida et al., 2007] по следующему уравнению: Р (кбар) = $3,03 * Al^{T}$ – $6,53 (\pm 0,33)$, где T Al – общее содержание в биотите в пересчете на O = 22. Расчетные давления составили 2–4 кбар, в среднем 2,35 кбар (**табл. 4.3**), для биотитов из включений в цирконе значения составили 2.3, 2.7 кбар (**рис. 4.14**). Температура рассчитана по геотермометру Ti-в-биотите используя уравнение из [Luhr et al., 1984] : T (°C) =

(838/(1.0337-(Ti/Fe²⁺))-273.15. Расчетные температуры составили 640–755 °С, в среднем 680 °С и 660, 610 °С для биотитов из включений в цирконе (**табл. 4.3**).

4.3.2. Мигматиты

Группа мигматитов (обр. 35А, 5600 и др.) представлены интенсивно мигматизированными, гранитизированными метаосадочными породами, в которых количество гранитного (полевошпат-кварцевого) материала превышает 50%. Среди них мы различаем две разновидности мигматитов: строматиты и агматиты. Также к мигматитам мы относим диатектиты образованные по ортогнейсам из центральной части Велиткенайского комплекса.

Строматиты представляют собой послойные мигматиты и птигматиты. В их строении различаются породы субстрата и жильного материала. Контакты между этими составными частями чаще всего резкие. Мощность жильного материала варьирует от 1 до 60 см, по составу он отвечает лейкократовым гранитам и кварц-полевошпатовым пегматитам. Последние характерны для птигматитов – мигматитов со складчатым строением жильного материала, мощность которых не превышает 10 см. Кристаллические сланцы, биотитовые и гранат-биотитовые гнейсы выступают в роли субстрата.

Агматиты – это глыбовые мигматиты, развивающиеся среди полей строматитов. В составе этих мигматитов так же, как и в строматитах, среди пород субстрата различаются жильные образования. Отличие агматитов от строматитов связано только с их структурными особенностями – брекчиевидным строением.

Диатектиты (или небулиты или теневые мигматиты) – это породы гранитного состава со структурно-текстурными особенностями гнейсов. Данные породы лейкократового облика с незначительной частью биотита, который повсеместно расположен в виде параллельных чешуек. Последнее придает породе гнейсовидный облик (см. рис. 4.15).

Рис. 4.15. Представительный образец диатектита по ортогнейсу из центральной части Велиткенайского комплекса (обр. 4719). Линзовидные лейкогранитные выплавки (красным) между разгнейсованными полевошпат-кварцевыми и клинопироксен-биотитовыми участками ортогнейса.

4.4. Метаосадочные породы

К этой группе пород отнесены образцы ELM11C2, ELM11C7, ELM11C8, EGC25, EGC27, 4501. Разделение метаосадочных пород на гнейсы и кристаллические сланцы проводится нами по пограничному содержанию биотита, равному 30%.

Биотитовые и гранат-биотитовые гнейсы сложены калишпат-плагиоклазкварцевым агрегатом тонко-, мелкозернистого строения (**рис. 4.16**).

87

Рис. 4.16. Тонкозернистая полосчатая основная масса гнейсов с редкими порфиробластами граната. Биотит в основной массе подчеркивает разгнейсованность породы, а в порфиробластах граната в виде пойкилитовых вростков совместно с магнетитом, трассирует зоны роста порфиробластов. а – обр. 25, б – обр. 12.

Кристаллические сланцы мелко- и среднезернистой структуры (0,2–2 мм) темно-серого цвета. Породы характеризуются полосчатой, линзовиднополосчатой текстурой (рис. 4.17). Мощность полос варьирует от 0,15 до 6–7 см. В гнейсовая, шлифах текстура сланцеватая, a структура реакционная, лепидогранобластовая, пойкилобластовая, реже порфиробластовая. Состав пород определяется непостоянным количеством плагиоклаза (An₃₅₋₄₀, реже An₄₅ в ядрах зональных кристаллов) и клинопироксена (диопсид), калишпат-кварцевым агрегатом и коричневато-бурым биотитом в ассоциации с зеленой роговой обманкой. Нередко отмечается уралитизация пироксена. Акцессорные минералы представлены апатитом, цирконом, алланитом, сфеном и рудным минералом.

Рис. 4.17. Сланцеватая текстура в полосчатых кристаллических сланцах. Чередование полевошпат-кварцевых полос с полосами сложенными биотитом и амфиболом. а – обр. 3604, б – обр. 3700, в – обр. 4800, г – обр. 4403-1.

4.5. Состав породообразующих минералов

4.5.1. Полевые шпаты

Составы плагиоклазов в большинстве случаев однородны и относятся к андезину An₂₉₋₄₀ (**рис. 4.18**). Калиевые полевые шпаты представлены ортоклазом с содержанием альбитового компонента от 6 до 16% (**табл. 4.4**, **табл. Б.3** приложение Б).

Образец	1	5	40	005	4400	77	/06	3.	3B
Минерал	пл	кпш	пл	кпш	пл	пл	кпш	пл	кпш
SiO2	56.90	56.34	58.81	63.36	59.01	58.87	63.81	57.09	64.71
Al2O3	26.64	22.89	25.59	19.31	26.30	25.66	18.63	25.14	18.58
CaO	7.62		6.94		7.17	6.99		6.89	
Na2O	7.75	2.04	7.18	1.03	6.28	7.57	1.11	8.62	1.60
K2O	0.38	16.54	0.46	15.52	0.31	0.33	15.49	0.43	15.05
BaO		1.60							
Сумма	99.29	99.41	98.98	99.22	99.07	99.42	99.04	98.17	99.94
Si	2.57	2.72	2.64	2.95	2.64	2.64	2.98	2.62	2.98
Al	1.42	1.30	1.36	1.06	1.39	1.36	1.02	1.36	1.01
Ca	0.37		0.33		0.34	0.34		0.34	
Na	0.68	0.19	0.63	0.09	0.54	0.66	0.10	0.77	0.14
К	0.02	1.02	0.03	0.92	0.02	0.02	0.92	0.03	0.89
Сумма, ф.е.	5.07	5.23	4.98	5.03	4.93	5.01	5.02	5.10	5.02
Aliv	1.43	1.28	1.36	1.05	1.36	2.64	2.98	2.64	2.99
Alvi	0.01	0.02	0.01	0.02	0.03				
An	34.40	1.14	33.71		37.98	33.24		29.94	
Ab	63.64	15.70	63.46	9.08	60.10	64.89	9.81	67.85	13.79
Or	2.02	84.02	2.83	93.19	1.93	1.87	90.19	2.21	86.21

Таблица 4.4. Средние составы полевых шпатов из гранитоидов Велиткенайского комплекса.

Рис. 4.18. Гистограмма содержания анортитовой (An) молекулы в изученных плагиоклазах из гранитоидов Велиткенайского комплекса. Красная линия по [Deer et al., 1992].

4.5.2. Амфиболы

Идеализированная структура амфиболов может быть представлена общей формулой:

$$A_{0-1} \cdot B_2 \cdot C_5 \cdot T_8 \cdot O_{22} \cdot OH_2. \tag{4.1}$$

Расчет минеральной формулы выполнялся на 23 атома кислорода со стандартизацией на 15 катионов (без Na и K). Заполнение кристаллографических позиций (форм. 4.1) мы проводили в соответствии с [Leake et al., 1997, 2004] : 1) в позиции Т кремний сначала дополняется Al, затем Ti; 2) в позицию С входит избыток Al и Ti из позиции T, затем последовательно добавляются Fe^{3+} , V, Cr, Mn^{3+} , Zr, Mg, Zn, Ni, Co, Fe^{2+} , Mn^{2+} ; 3) позиция В заполняется катионами, которые остаются в избытке позиции C в обратном порядке, указанном в пункте 2, в последнюю очередь добавляем Ca, Sr, Ba и Na; 4) избытки в позиции B добавляются к A в обратном порядке, указанном в пункте 3, в последнюю очередь Na и K. В конце полученную формулу (форм. 4.1) нормировали на усредненный стехиометрический критерий f^{AV} по [Holland, Blundy, 1994].

Микрозондовый анализ не разделяет Fe^{2+} и Fe^{3+} , общая сумма этих катионов была рассчитана методом средней точки, где среднее значение Fe^{3+} расположено между минимумом и максимумом возможного количества Fe^{3+} , входящего в формулу [Holland, Blundy, 1994; Leake et al., 1997].

Амфибол развит только в крупнопорфировых гранодиоритах, кварцевых монцонитах и монцонитах, в которых кристаллизуется, как и биотит, во время раннего этапа эволюции магмы (см. рис. 4.2). Амфиболы представлены 0,8 до 2 идиоморфными кристаллами размерами ОТ MM В длину, ассоциированными с биотитом и сфеном. Зеленые до зеленовато-коричневых кристаллы местами обнаруживают зональность (зеленовато-коричневые ядра и светло-зеленые края) и характерные трещины спайности (ромбы) и двойники по h1{100}. Циркон и апатит часто встречаются в виде включений в амфиболе. Вариации концентраций главных элементов в амфиболах приведены в табл. Б.1. приложение Б. Все изученные их разновидности попадают в поле кальциевых

амфиболов, типичных для гранитов I-типа [White, Chappell, 1983]. Их состав отвечает, главным образом, магнезиальной роговой обманке и эдениту (**рис. 4.19 a**, **б**), отношение Mg/(Mg + Fe) варьирует от 0,56 до 0,65, а глиноземистость (l) = $Al^t/(Al^t + Si + Mg + Fe)$ от 0,18 до 0,21 (**табл. 4.5**, **табл. Б.1. приложение Б**). Практически все составы амфиболов попадают в поле «магматических» амфиболов, располагаясь выше линии (Ca + Al^{IV}) = 2,5 (**рис. 4.19** г).

Таблица 4.5. Формульные количества катионов и параметры состава амфиболов из монцонитоидов Велиткенайского комплекса.

Образец	15	33A	4005	4400	4600A
Кол-во	2	11	18	3	11
Si	6.91 ± 0.21	6.71 ± 0.18	6.56 ± 0.18	6.88 ± 0.25	6.49 ± 0.19
Ti	0.09 ± 0.04	0.12 ± 0.03	0.13 ± 0.02	0.09 ± 0.02	0.17 ± 0.13
Al^{IV}	1.09 ± 0.21	1.29 ± 0.18	1.44 ± 0.18	1.12 ± 0.25	1.51 ± 0.19
Al^{VI}	0.34 ± 0.08	0.25 ± 0.09	0.29 ± 0.13	0.37 ± 0.08	0.31 ± 0.06
Mg	2.35 ± 0.2	2.33 ± 0.13	2.52 ± 0.13	2.33 ± 0.15	2.42 ± 0.15
Mn	0.05 ± 0.01	0.06 ± 0.01	0.04 ± 0.01	0.05 ± 0.01	0.08 ± 0.03
Fe ³⁺	1.84 ± 0.13	1.78 ± 0.12	1.51 ± 0.19	1.83 ± 0.23	1.49 ± 0.23
Fe ²⁺	0.32 ± 0.05	0.46 ± 0.09	0.5 ± 0.2	0.3 ± 0.21	0.53 ± 0.1
Fe	0.04 ± 0.05	0.02 ± 0.01	0.01 ± 0.03	0.04 ± 0.1	0.06 ± 0.03
вСа	1.83 ± 0.04	1.83 ± 0.03	1.87 ± 0.04	1.85 ± 0.09	1.69 ± 0.09
_в Na	0.13 ± 0.03	0.16 ± 0.03	0.11 ± 0.04	0.11 ± 0.05	0.25 ± 0.1
ANa	0.18 ± 0.08	0.25 ± 0.08	0.25 ± 0.11	0.19 ± 0.12	0.28 ± 0.07
Κ	0.21 ± 0.05	0.25 ± 0.05	0.27 ± 0.04	0.18 ± 0.05	0.29 ± 0.05
Al^t	1.43 ± 0.26	1.54 ± 0.23	1.73 ± 0.14	1.49 ± 0.24	1.82 ± 0.25
Ca ^t	1.84 ± 0.05	1.83 ± 0.04	1.89 ± 0.05	1.87 ± 0.1	1.7 ± 0.08
Fe ^t	2.2 ± 0.1	2.25 ± 0.05	2.02 ± 0.06	2.18 ± 0.08	2.08 ± 0.31
Fe#	0.49 ± 0.04	0.49 ± 0.01	0.44 ± 0.01	0.48 ± 0.01	0.48 ± 0.01
Fe ³⁺ /Fe ^t	0.32 ± 0.08	0.24 ± 0.05	0.33 ± 0.07	0.42 ± 0.35	0.35 ± 0.06
Mg#	0.56 ± 0.04	0.56 ± 0.02	0.65 ± 0.03	0.61 ± 0.04	0.59 ± 0.02
1	0.18 ± 0.02	0.2 ± 0.01	0.21 ± 0.01	0.19 ± 0.01	0.21 ± 0.01

Примечание. Магнезиальность (Mg#) = Mg/(Mg + Fe^t), глиноземистость (l) = Al^t/(Al^t + Si + Mg + Fe), (t) - сумма, (Fe#) = Fe^t/(Mg + Fe^t).

Проанализированные амфиболы по составу (табл. 4.5, табл. Б.1. приложение Б) относятся к обыкновенным роговым обманкам. Колебания магнезиальности (100*Mg/(Mg + Fe)) составляют 36–42%. Глиноземистость в амфиболах (100*Al/(Al + Si + Mg + Fe)) изменяется от 8 до 12,3%. Наиболее глиноземисты роговые обманки в сиените (Al^{IV} = 1,68–1,76), в кварцевых монцодиорите и монцоните (Al^{IV} = 1,19–1,49). Повышенные значения глиноземистости характерны для более высокотемпературных роговых обманок [Панеях, Федорова, 1973]. В роговых обманках сиенита концентрации TiO₂, Al₂O₃ и K₂O выше, чем в монцонитоидах (TiO₂ = 1,14–1,53%, Al₂O₃ = 10–10,7%, K₂O = 1,47–1,64% в сиените и TiO₂ = 0,59–0,58%, Al₂O₃ = 6,68–9,53%, K₂O = 0,78–1,17% в монцитоидах), **табл. Б.1. приложение Б**.

Рис. 4.19. Амфиболы из изученных ранних монцонитоидов Велиткенайского комплекса на классификационных диаграммах по [Leake et al., 1997]. Сокращения: Ed – эденит; Fe-Ed – ферроэденит; Prg – паргасит; Fe-Prg – ферропаргасит; Hst – гастингсит; Mg-Hst – магнезиогастингсит; Sad – саданагаит; Mg-Sad – магнезиосаданагаит; Tr – тремолит; Act – актинолит; Fe-Act – ферроактинолит; Mg-Hbl – магнезиальная роговая обманка; Fe-Hbl – железистая роговая обманка; Ts – чермакит; Fe-Ts – феррочермакит. Классификационная линия (Ca+Al^{IV}) = 2,5 по [Giret et al., 1980] разделяет поля «раннемагматических» амфиболов (I) от «позднемагматических» (II). Здесь и далее отражены только отфильтрованные составы амфиболов по критериям, рассмотренным в тексте.

4.5.3. Слюды

Биотит образует идиоморфные таблитчатые гранодиоритах В И призматические включения в калиевом полевом шпате, по границам калиевого полевого шпата и кварца распространены деформированные чешуи. Биотит повсеместно ассоциирует со сфеном и сульфидами Fe и содержит включения циркона, апатита, ортита. В биотитах изменяются концентрации TiO₂, FeO, MgO (табл. Б.2. приложение Б). При этом значимых различий в химическом составе между идиоморфными и деформированными биотитами не установлено. Надо отметить только повышенную титанистость и железистость идиоморфных включений в калиевом полевом шпате. В биотитах из монцонитоидов концентрации TiO₂ (2,48–3,60%), FeO (17,78–19,51%) ниже, а MgO (11,58–13,54%) выше, чем в роговообманково-биотитовом гранодиорите.

Магнезиальность биотитов варьирует от 35 до 42%. Биотиты так же, как и амфиболы, более магнезиальны в монцонитоидах.

Структурная формула биотита рассчитана на 24 атома кислорода при условной концентрации воды 2%. Al = Al^{IV} + Al^{VI} изменяется от 2,58 до 2,96 ф. е., Mg – от 1,93 до 3,21 ф. е., XFe = Fe²⁺/(Fe²⁺ + Mg) – от 42 до 60%, а XMg = (Mg/(Mg + Fe)) – от 40 до 58%. В биотитах из роговообманково-биотитового гранита Al составляет 2,73–2,96 ф. е., Al^{IV} – 1,98–2,23 ф. е., Al^{VI} – 0, 61–0,86 ф. е., Mg – 1,93–2,42 ф. е.), XFe – 52–60% а XMg – 40–48%. В биотитах из кварцевого монцонита Al от 2,61 до 2,74 ф. е., Al^{IV} – 1,98–2,14 ф. е., Al^{VI} – 0,55–0,67 ф. е., Mg – 2,68–3,04 ф. е., XFe – 44–48%. В биотитах из сиенита Al от 2,58 до 2,78 ф. е., Al^{IV} – 2,01–2,22 ф. е., Al^{VI} – 0,49–0,58 ф. е., Mg – 2,94–3,21 ф. е., XFe – 42–45%, **табл. Б.2. приложение Б**.

По соотношению XFe = Fe²⁺/(Fe²⁺ + Mg) и Al биотиты из роговообманковобиотитового гранита классифицируются как лепидомеланы, а биотиты из кварцевого монцонита и сиенита относятся к мероксенам [Дир и др., 1966]. Г. Тишендорф с соавторами [Tischendorf et al., 2004], используя соотношение mgli (Mg – Li) против feal (Fe^{tot} + Mn + Ti – Al^{VI}), привел диаграмму, отражающую все

Рис. 4.20. Составы биотитов из ранних монцонитоидов Велиткенайского комплекса на классификационных диаграммах. а – $Fe^{2+}/(Fe^{2+} + Mg)$ против Al по [Дир и др., 1966]; б – mgli (Mg – Li) против feal ($Fe^{tot} + Mn + Ti - Al^{VI}$) по [Tischendorf et al., 2004]; в – Al^{IV} против Al^{VI} по [Bea, 1980]; г – FeO + MnO, 10TiO₂, MgO [Nachit, 1986].

среднеарифметические составы слюд, рекомендуемые международной минералогической ассоциацией – IMA, 1998 (**рис. 4.20 б**). Согласно этой диаграмме все изученные биотиты отвечают полю I: Mg-Fe слюд. Так, биотиты из роговообманково-биотитового гранита относятся к железистой разновидности – магнийсодержащему сидерофиллиту, а биотиты из кварцевого монцонита и сиенита относятся к магнезиальной разновидности – железосодержащему флогопиту (**табл. Б.2. приложение Б**). При этом вариации мусковитового минала в биотитах гранитоидов умеренно-щелочного ряда (кварцевый монцонит, сиенит)

и роговообманково-биотитового гранодиорита нормально-щелочного ряда перекрываются. Четкое различие между ними наблюдается по содержанию аннитового и флогопитового миналов: Annit (38,5–43,3), Flog (35–41,7) для биотитов умеренно-щелочных и Annit (44,1–52,6), Flog (46,1–53,4) для биотитов гранитоидов нормально-щелочного ряда.

Рис. 4.21. Диаграммы щелочности гранитоидных серий по составу биотита. а – Si/Al против Mg + Fe/Al. I–V поля щелочности по [Маракушев, Тарарин, 1965]: I – низкой, II – пониженной, III – нормальной, IV – повышенной, V – высокой; б – FeO^{общ} против MgO против Al₂O₃ по [Abdel-Rahman, 1994].

На основании соотношения Al^{IV} и Al^{VI} [Bea, 1980] биотиты определяются как магматические (**рис. 4.20 в**). Однако, используя тройную диаграмму в координатах FeO + MnO, 10 TiO₂, MgO [Nachit, 1986], для некоторых биотитов в роговообманково-биотитовом граните определим их как первичные «primary biotites», прочие биотиты из той же породы и все биотиты из кварцевого монцонита соответствуют переуравновешенным «re-equilibrated primary biotites» (**рис. 4.20 г**).

Состав биотита также используется для определения щелочности гранитоидных серий [Маракушев, Тарарин, 1965; Abdel-Rahman, 1994]. На бинарной диаграмме Si/Al – Mg + Fe/Al и на тройной диаграмме FeO^{общ}, MgO, Al₂O₃ биотиты всех гранитоидов отвечают области известково-щелочной серии

рис. 4.21 а, б. Фигуративные точки биотитов в координатах Al₂O₃, MgO [Abdel-Rahman, 1994] также отвечают области известково-щелочной серии гранитоидов І-типа метаглиноземистого состава.

В изученных биотитах повышены значения индекса насыщения алюминием (alumina saturation index -ASI = Al/(Ca + Na + K)): от 1,25 до 1,49, максимум в биотитах из роговообманково-биотитового гранодиорита. Такие высокие значения характеризуют высокую активность Al в процессе кристаллизации магмы [Zen, 1986].

Согласно Г.Б. Ферштатеру и Н.С. Бородиной [1975], соотношение TiO₂ и Al₂O₃ в биотите отражает уровень давления в ходе кристаллизации гранитоидов. Составы всех биотитов в координатах TiO₂, Al₂O₃ соответствуют области кристаллизации гранитоидов в мезоабиссальных условиях (**рис. 4.22**).

Рис. 4.22. Диаграмма глубинных фации Al₂O₃ против TiO₂. Поля фаций по [Ферштатер, Бородина, 1975]: I – абиссальной, II – мезоабиссальной.

4.5.4. Гранаты

Состав гранатов изучен в (35А – диатектит, 41С – деформированный биотитовый 3300 Vel-1 гранит. гранат-мусковитовый аплит, деформированный биотитовый гранит, рис. 4.23 Б) и вмещающих его неопротерозойских породах (12 – метапелит, рис. 4.23 А). Пересчет составов на кристаллохимические формулы выполнен катионным методом. Минальный состав гранатов рассчитан из формульных коэффициентов.

Формирование гранатов может отражать два различных процесса эволюции пород: 1) региональный метаморфизм эпидот-амфиболитовой фации, проявленный во вмещающих неопротерозойских породах и диатектитах; 2) глубинную антекристовую магматическую кристаллизацию гранит-монцонитого расплава.

Традиционно принимается, что преобладание той или иной доли миналов в гранатах отражает в какой-то степени условия его образования. Так, в составе метаморфических гранатов (средние до высоких фаций метаморфизма) преобладает альмандиновый компонент. Связанные с процессами метаморфизма карбонатные породы И метасоматические образования характеризуются гроссуляром. Вариации температур и давлений при метаморфизме отражаются в содержании пиропового минала в гранатах, увеличение которого приводит к повышению температур (или) давлений. Низкотемпературные И фации метаморфизма характеризуются гранатами спессартинового состава.

По химическому составу исследованные гранаты представлены группой Mg-Fe гранатов (табл. 4.6). В образцах вмещающих пород гранаты представлены скелетными порфиробластами (рис. 4.23 A) с многочисленными включениями других минералов. Порфиробласты незональны – от ядер к краям не происходит значимых изменений Mg, Fe, Ca, Mn. В таких случаях, из-за отсутствия четких краевых и центральных частей у зерен граната, анализ зональности малоэффективен и нами не проводился.

98

Образец	12	35	41	Vel-1
SiO ₂	37.76 ± 0.14	38.36 ± 0.44	37.39 ± 0.27	36.33 ± 0.46
Al_2O_3	21.75 ± 0.39	21.99 ± 0.14	21.48 ± 0.2	20.89 ± 0.48
FeO	34.58 ± 0.87	26.42 ± 1.06	23.87 ± 0.52	31.38 ± 0.63
MgO	4.52 ± 0.31	4.43 ± 0.38	0.6 ± 0.09	1.35 ± 0.11
MnO	1.41 ± 0.08	8.41 ± 1.17	15.81 ± 0.62	8.84 ± 0.16
CaO	0.56 ± 0.04	1 ± 0.05	1.07 ± 0.08	0.86 ± 0.06
Сумма	100.65 ± 0.86	100.61 ± 0.6	100.22 ± 0.68	99.65 ± 0.66
Si	2.99 ± 0.03	3.02 ± 0.02	3.03 ± 0.01	2.98 ± 0.02
Al	2.03 ± 0.03	2.04 ± 0.02	2.05 ± 0.01	2.02 ± 0.03
Fe	2.29 ± 0.05	1.74 ± 0.07	1.62 ± 0.03	2.15 ± 0.05
Mn	0.1 ± 0	0.56 ± 0.08	1.08 ± 0.04	0.61 ± 0.01
Mg	0.53 ± 0.04	0.52 ± 0.04	0.07 ± 0.01	0.16 ± 0.01
Ca	0.05 ± 0	0.08 ± 0	0.09 ± 0.01	0.08 ± 0.01
Fe ²⁺	2.26 ± 0.01	1.75 ± 0.07	1.63 ± 0.03	2.11 ± 0.03
Fe ³⁺	0.03 ± 0.06	—	—	0.05 ± 0.04
Alm	76.98 ± 0.86	59.89 ± 2.12	56.4 ± 1.15	71.14 ± 0.82
Prp	18.18 ± 1.01	17.91 ± 1.48	2.51 ± 0.4	5.55 ± 0.49
Sps	3.23 ± 0.16	19.32 ± 2.74	37.85 ± 1.4	20.75 ± 0.44
Grs	1.36 ± 0.3	2.89 ± 0.16	3.24 ± 0.23	1.79 ± 0.77
Adr	0.26 ± 0.43	—	—	0.78 ± 0.62
Uv		—	—	

Таблица 4.6. Средние оценки химического состава гранатов

Примечания. Миналы рассчитаны по следующим формулам: Alm = Fe²⁺ / FMMC; Prp = Mg / FMMC; Sps = Mn / FMMC; Grs = grs' * Al' / Al' + F^{3C}; And = Fe³⁺ * grs' / Al' + F^{3C}; Uv = Cr * grs' / Al' + F^{3C}, где FMMC - 100(*Fe*²⁺ + *Mg* + *Mn* + *Ca*), *Al'* - *Al*-(*Fe*²⁺ + *Mn* + *Mg*) 2/3, grs' - Ca / FMMC, F^{3C} - Fe³⁺ + Cr.

Рис. 4.23. Микрофотографии выделений гранатов в шлифах: А – порфилобласт из метапелита обр. 12; Б – из поздних биотитовых гранитов.

По соотношению рассчитанных миналов (**рис. 4.24**) Mg-Fe гранаты представлены альмандинами подразделяющимися по содержанию пиропового минала на высоко - (обр. 12, 35A – Prp ~18%) и низкопиропистые (обр. 3300, 41C, Vel-1 – Prp менее 7%), **табл. 4.6**.

Рис. 4.24. Усредненный минальный состав гранатов по образцам. А –высокопиропистые гранаты. Б – низкопиропистые гранаты.

Согласно диаграмме А.И. Сизых [1987], составы Mg-Fe гранатов отвечают полю эпидот-амфиболитовой фации (**рис. 4.25**).

Рис. 4.25. Диаграмма метаморфических фаций по составу гранатов из А.И. Сизых [1987]. Поля составов граната для силлиманит-альмандин-ортоклазовой субфации (III), дистен-альмандин-мусковитовой и ставролит-дистен-альмандиновой субфации амфиболитовой фации (IV), эпидот-амфиболитовой фации (V).

Тип	Гранодиориты	Монцонитоиды	Биотитовые.граниты	Лейкограниты
Текстура и структура	Деформированные крупнопорфировые (Kfs до 8 см), сильное выстраивание мегакристаллов; местами наложены магматическая и тектоническая слоистость; гнейсовая текстура	Деформированные, гранобластовый, средне- крупнозернистый (Kfs до 2 см); тектоническая слоистость от слабой до сильной определяется ориентировкой роговой обманки, биотита, калиевого шпата	Мелко-, среднезернистые (до 1 см), обычно массивные, содержащие ксенолиты ранних монцонитоидов, присутствие даек позднего аплита, пегматита и кварца	Обычно мелкозернистый (~ 1.5 мм), от нерассланцованного до слаборассланцованного, наличие богатых турмалином участков
минеральный состав		50 (0.04.00.41 (10)		
К полевои шпат	16–20 (Or92–95, Ab8–5)	50 (Or94–88, Ab6–12)	35–55 (Or82–88, Ab18–12)	~ 35-45 (0r95-96)
Кварц	18-20	8-10	20-35	$\sim 30-35$
Плагиоклаз	53-42 (All $5-40$)	25 (AII51-59) 25 (YE ₂ : 0.6, 0.67)	~ 20 (All28-55), (All18-20)	~ 50-55 (AII15-20)
риотит	5-10 (X Fe. 0.6-0.7)	~ 23 (AFe. 0.0–0.07)	$\sim 2-3$ (AFC: 0.00–0.04)	—
Амфибол	8–10 от магнезио-гастингсита до	8–15 магнезио-гастингсита до	_	_
T	эденита	эденита		
Пироксен	~ 1 % диопсид	$\sim 1\%$ диопсид		
Мусковит	_	_	_	~ 3 (XFe: 0.52–0.82)
Гранат	_	_	_	1 (XFe: 0.99 Xmn: 0.46–0.56)
Акцессории				
Апатит	XX	XX	XX	х
Сфен	х	XX	XX	_
Аланит	х	x	x	_
Циркон	XX	XX	XX	х
Монацит	х	_	_	х
Ильменит	х	x	X	х
Магнетит	Х	x	x	_
Хлорит	S	S	S	S
Серицит	S	S	S	S
Эпидот	S	S	S	_

Таблица 4.7. Сводные данные петрографической характеристики гранитоидов, монцонитоидов Велиткенайского комплекса

Примечеание. Встречаемость: xx – часто, x – умеренно, s – редко, прочерк – не встречается.

4.6. Выводы

Основные петрографические минералогические характеристики И Велиткенайского табл. 4.7. гранитоидов комплекса приведены В Минералогический состав этих гранитоидов весьма близок, за исключением высокоглиноземистых лейкогранитов, в которых дополнительно присутствует турмалин, мусковит и реже гранат. В каждой группе пород кристаллизация минералов происходила в течение двух фаз эволюции: (1) магматической фазы, во время которой образовались основные минералы – калиевый полевой шпат, кварц, плагиоклаз, биотит, роговая обманка, мусковит, гранат и акцессорные минералы; и (2) позднемагматическая фаза, которая привела к преобразованию присутствующих минералов (например, магнетит и/или ильменит, сфен, биотит). Кроме наблюдается трансформация первично кристаллизованных того, минералов путем изменения, и такие минералы, как хлорит, серицит и эпидот, образовались за счет биотита, полевых шпатов, роговой обманки и алланита соответственно. Ликвидусные минералы представляют собой оксиды (магнетит и/ или ильменит) и апатиты, поскольку они входят в состав других минералов. Кварц и полевой шпат обычно кристаллизуются последними.

Изученные гнейсы в центральной части Велиткенайского комплекса ортопородам. Магматический относятся к генезис устанавливается ПО микроструктурным особенностям пород И составам биотитов, которые характеризуют изученные гнейсы как магматические породы известково щелочной орогенной серии, формировавшиеся при давлении 2-4 кбар и температуре 640-755 °C. В цирконах ортогнейсов повсеместно обнаруживаются включения калиевого полевого шпата и биотита, которые характерны для магматических пород гранитоидного ряда.

ГЛАВА 5. МИНЕРАЛЬНАЯ ТЕРМОБАРОМЕТРИЯ ВЕЛИТКЕНАЙСКОГО КОМПЛЕКСА

Установление термодинамических режимов плавления субстратов и кристаллизации гранитных расплавов является важной задачей петрологии. Гранитоиды арктической Чукотки изучены в этом направлении слабо. Первые систематические микрозондовые исследования составов породообразующих минералов чукотских гранитоидов, в целях минеральной термобарометрии, были проведены П.Л. Тихомировым, для Телекайского рудного района на Центральной Чукотке [Тихомиров, 1998; Тихомиров, Лучицкая, 2006]. Данные по гранитоидам арктического побережья Чукотки до недавнего времени [Алексеев, 2008; Ползуненков, 2012, 2018] отсутствовали. В целом количество публикаций, посвященных составу породообразующих минералов гранитоидов Чукотки и их минеральной термобарометрии, весьма ограничено.

Использование геотермобарометров на основе равновесий «кристалл – расплав» и «кристалл – кристалл» повсеместно применяется для реконструкции условий кристаллизации магм. В приложении к коровым кислым и субщелочным магмам известково-щелочной серии использование равновесий «кристалл – расплав» проблематично из-за сложности оценки первичного расплава и широко проявленных процессов контаминации и ассимиляции. Поэтому в нашем случае мы остановились на минеральных геотермобарометрах.

5.1. Амфибол-плагиоклазовый парагенезис

Амфибол используется для целей геотермобарометрии известковощелочных магм. Это обусловлено распространением минерала в известковощелочных магматических породах, независимо от их кремнекислотности, и его устойчивостью в широких Р-Т диапазонах: от 1 до 23 кбар и от 400 до 1150 °C [Anderson, 1997]. В эволюции магм важную роль играет окислительновосстановительный потенциал среды и активность воды в расплаве. Дж. Фабрис с соавторами [Fabries et al., 1984] вывели, что активные замещения в магматических амфиболах определяются вариациями физико-химических параметров (температура, давление, фугитивность кислорода и воды) при кристаллизации магмы. Применение большинства амфиболовых геобарометров основано на степени насыщения амфиболов алюминием. Так, барометр «Al в амфиболе» [Giret et al., 1980; Hollister et al., 1987; Johnson, Rutherford, 1989; Thomas, Ernst, 1990; Schmidt, 1992; Anderson, Smith, 1995; Mutch et al., 2016] контролируется суммарным содержанием алюминия в амфиболе. Амфибол-плагиоклазовый термометр [Holland, Blundy, 1994; Anderson, 1997] основан на количествах катионов Si и Al в тетраэдрической и Al в M2 позициях структуры амфиболов.

Определено, что концентрации алюминия в амфиболе контролируются не только давлением и температурой, но и фугитивностью кислорода, валовым составом породы и набором сосуществующих минеральных фаз [Fabries et al., 1984; Holtz et al., 2001]. Соответственно, при расчетах важно представлять ограничения, накладываемые на химические составы, в первую очередь амфибола.

Вариации составов амфиболов (см. рис. 4.19) регулируются физикохимическими параметрами кристаллизации, которые действуют в процессе их эволюции и определяют изоморфные схемы замещения (рис. 5.1, рис. 5.2). Так, изменения в составе амфиболов контролируются двумя механизмами замещения - простым изовалентным и гетеровалентным [Vyhnal et al., 1991]. Простое изовалентное замещение касается катионов с одинаковой валентностью, таких как $Fe^{2+} \leftrightarrow Mg^{2+}, [A]K \leftrightarrow [A]Na, Mn^{2+} \leftrightarrow Mg^{2+}$ и $Al^{VI} \leftrightarrow Fe^{3+};$ из них наиболее распространены в магматических амфиболах $Fe^{2+} \leftrightarrow Mg^{2+}$ и [A]K \leftrightarrow [A]Na [Gilbert et al., 1982]. Гетеровалентное замещение включает катионы с различной валентностью при сохранении баланса заряда. Принято считать, что основой для обменных реакций является идеализированная формула тремолита этих $Ca_2Mg_5Si_8O_{22}(OH)_2$, которой ИЗ можно вывести девять главных типов гетеровалентных замещений (табл. 5.1) [Vyhnal et al., 1991].

104

Механизмы замещения	Название	Конечные члены
$A^{\Box} + Si^{IV} = A^{IV} A + Al^{IV}$	Эденит	NaCa2Mg5Si7AlO22(OH)2
$Si_2^{IV} + Mg_2^{VI} = Al_2^{IV} + Al_2^{VI}$	АІ-Чермакит	Ca2(Mg3Al2)Si6Al2O22(OH)2
$Si_2^{IV} + Mg_2^{VI} = Al_2^{IV} + Fe_2^{3+,VI}$	Fe-Чермакит	Ca2(Mg3Fe23+)Si6Al2O22(OH)2
$Si_2^{IV} + Mg^{VI} = Al_2^{IV} + Ti^{VI}$	Ті-Чермакит	Ca2(Mg4Ti)Si6Al2O22(OH)2
$A\Box + M4Ca = ANa + M4Na$	Рихтерит	Na(CaNa)Mg5Si8O22(OH)2
$_{M4}Ca_2 + Mg_2^{VI} = _{M4}Na_2 + Fe_2^{3+,VI}$	Рибекит	□Na2(Fe32+Fe23+)Si8Al2O22(OH)2
$_{M4}Ca_2 + Mg_2^{VI} = _{M4}Na_2 + Al_2^{VI}$	Глаукофан	□Na ₂ (Mg ₃ Al ₂)Si ₈ O ₂₂ (OH) ₂
$_{A}\Box + Mg^{VI} + Si_{2}^{IV} = _{A}Na + Al_{2}^{IV} + Al^{VI}$	Гастингсит	NaCa2(Fe42+Fe3+)Si6Al2O22(OH)2
$_{A}\Box + Mg^{VI} + Si_{2}^{IV} = _{A}Na + Al_{2}^{IV} + Fe^{3+,VI}$	Паргасит	NaCa2(Mg4Al)Si6Al2O22(OH)2

Таблица 5.1. Главные типы гетеровалентных замещений в амфиболах на основании идеализированной формулы тремолита Ca₂Mg₅Si₈O₂₂(OH)₂

Примечание. _A□ – указывает на наличие вакансии в серии A; _ANa – структурная позиция элемента; Fe³⁺ – надстрочный индекс означает валентность элемента; Si₆ – подстрочный индекс указывает число атомов соответствующего элемента в структурной формуле минерала; AI^{IV} – надстрочный индекс обозначает координационное число элемента в минерала.

Реакция чермакитового замещения Si + $R^{2+} = Al^{IV} + Al^{VI}$ чувствительна к давлению [Hollister et al., 1987]. С увеличением содержания Al в амфиболе (с ростом давления) увеличивается его пространственная решетка. Другие реакции, такие как эденитовое замещение Si + [A] = $Al^{IV} + A$ и реакции, включающие Ti (Ti + $R^{2+} = 2Al^{VI}$ и Ti + $Al^{IV} = Al^{VI} + Si$), больше контролируются температурой, нежели давлением [Anderson, Smith, 1995]. С повышением температуры эденитовая реакция замещения становится более эффективной, что в свою очередь приводит к увеличению концентрации Al в роговой обманке.

Эденитовый, чермакитовый, паргаситовый и гастингситовый типы изоморфного замещения, наблюдаемые в амфиболах гранитоидов, были признаны типичными в кальциевых амфиболах из известково-щелочных гранитоидных плутонов [Fabries et al., 1984; Vyhnal et al., 1991]. Граничное содержание Ca > 1,5 ф. е. в кальциевых амфиболах делает глаукофановый, рибекитовый и рихтеритовый механизмы замещения, при которых в позиции M4 Ca замещается на Na, малозначимыми или незначимыми вовсе.

Линейные корреляции, наблюдаемые между Si и Al^{IV} + A и Si + (Fe, Mg)²⁺ и Al^{IV} + Al^{VI} (**рис. 5.1 а, б**), указывают на активные эденитовый и чермакитовый механизмы изоморфного замещения в амфиболах из монцонитоидов Велиткенайского комплекса. На диаграмме A против Al^{IV} (**рис. 5.1 в**) составы проанализированных амфиболов определяют тренд, близкий к линии,

соединяющей тремолитовый с паргаситовым и гастингситовым механизмами замещения. На диаграммах Fe³⁺ – Al^{IV}, Ті против Al^{IV} составы амфиболов обнаруживают положительные корреляции, показывая одновременное проявление двух типов чермакитового замещения (Fe-чермакит, Ti-чермакит) (**рис. 5.1 г, е**).

Рис. 5.1. Вариации чермакитового и эденитового механизмов изоморфных замещений в амфиболах из монцонитоидов Велиткенайского комплекса. a) Si – [M4]Al + [A](Na + K), б) Si + (Fe³⁺ +Mg) – Al^{IV} + Al^{VI}, в) [A](Na + K) – Al^{IV}, г) Fe³⁺ – Al^{IV}, д) Al^{VI} – Al^{IV}, е) Ti – Al^{IV}. Конечные составы амфиболов: эденит (Ed), глаукофан (Gl), гастингсит (Hst), паргасит (Prg), рихтерит (**Rih, Rc**), рибекит (**Re**), тремолит (**Tr**). Все компоненты - в формульных единицах.

Отсутствие какой-либо корреляции на диаграмме Al^{VI}-Al^{IV} указывает на несостоятельность замещения в Al-чермаките (рис. 5.1 д). Отсутствие корреляции между A – [M4] Na (рис. 5.2 a), Fe^{3+} – [M4] Na (рис. 5.2 б) и Ti – [B]Na (рис. 5.2 г) указывает, что рихтеритовый, рибекитовый и глаукофановый типы изоморфных замещений не проявлены в амфиболах из монцонитоидов Велиткенайского комплекса. Это особо подчеркивает, что эденитовый и чермакитовый типы замещения доминируют над другими типами замещений в процессе эволюции амфиболов (рис. 5.2 проанализированных в). Отклонение ОТ линейной зависимости (рис. 5.2 г) позволяет предполагать, что чермакитовое изоморфное замещение может протекать совместно с глаукофановым, при котором Ca и Al в позиции M4 замещаются Na и Ti [Vyhnal et al., 1991].

Рис. 5.2. Вариационные диаграммы механизмов изоморфного замещения в амфиболах из монцонитоидов Велиткенайского комплекса: а) – [A](Na +K) – [M4]Na, б) – Fe³⁺ – [M4]Na, в) – [A] + 2Ti + Fe³⁺ + Al^{VI} – Al^{IV} и г) – Ti⁶⁺ – [M4]Na. Все компоненты – в формульных единицах.

И чермакитовая, и эденитовая схемы замещения широко проявлены в амфиболах монцонитоидов Велиткенайского комплекса, качественно указывая на изменения давления и температуры при кристаллизации магмы.

5.1.1. Ограничения химического состава амфиболов, накладываемые фугитивностью кислорода

Фугитивность кислорода (fO_2) играет важную роль в механизмах изоморфных замещений с участием Al в амфиболах, поскольку она контролирует суммарную железистость (Fe# = Fe^t/(Mg + Fe^t)) и отношение Fe³⁺/(Fe²⁺ + Fe³⁺). Чем ниже fO_2 , тем больше в амфиболе Fe²⁺. В некоторых работах были предложены граничные значения суммарной железистости для разного уровня fO_2 : 1) высокий (Fe# = 0–0,6); 2) средний (Fe# = 0,6–0,8); 3) низкий (Fe# = 0,8–1) [Spear, 1981; Anderson, Smith, 1995].

Низкий уровень фугитивности кислорода способствует вхождению Fe²⁺ в решетку амфиболов и повышает отношения Fe²⁺/Fe³⁺, приводит к увеличению содержания Al путем замещения Mg на Al по чермакитовой схеме. Поэтому для целей геобарометрии рекомендуется использовать только роговые обманки с Fe# менее 0,65 [Anderson, 1997]. Однако высокая фугитивность кислорода приводит к замещению $Fe^{3+} \rightarrow Al^{3+}$ и падению содержания суммарного Al. В связи с этим для целей барометрии рекомендуют использовать амфиболы с $Fe^{3+}/(Fe^{2+} + Fe^{3+}) > 0.25$, в крайнем случае, больше 0,2 [Anderson, Smith, 1995]. Общим недостатком изложенного подхода является отсутствие возможностей прямого измерения Fe³⁺ и Fe²⁺ при микрозондовых исследованиях. Однако расчет концентраций трех- и двухвалентного железа по стехиометрии, на наш ВЗГЛЯД, позволяет удовлетворительно применять обсуждаемые ограничения.

Важным критерием окислительно-восстановительных условий служит наличие акцессорных магнетита (как указания на высокую фугитивность кислорода) или ильменита (при низкой фугитивности кислорода) [Ishihara, 1977]. Обилие сфена дополнительно указывает на высокую фугитивность кислорода. Более надежные результаты геотермобарометрии могут быть получены для
роговых обманок, кристаллизующихся при высоких значениях fO_2 [Anderson, Smith, 1995; Stein, Dietl, 2001].

Другими важными ограничениями корректного применения обсуждаемых термобарометров являются следующие: 1) в амфиболе Si \leq 7,5 ф. е. (свыше 7,5 ф. е. кремния содержат амфиболы тремолит-актинолитового ряда) [Stein, Dietl, 2001]; 2) в амфиболе Ca \geq 1,6 ф. е. [Giret et al., 1980]; 3) амфибол сосуществует с кварцем и /или калиевым полевым шпатом, потому что их активность влияет на содержание Al в амфиболе [Giret et al., 1980; Stein, Dietl, 2001]; 4) водонасыщенность магматической системы [Anderson, Smith, 1995]; 5) амфибол сосуществует с плагиоклазом (An₂₅₋₃₅) [Stein, Dietl, 2001]; 6) амфибол кристаллизуется вблизи гранитного солидуса; 7) оценка давления может быть проведена для магм, кристаллизующихся в диапазоне от 1 до 13 кбар.

Большинство амфиболов из исследованных образцов пород Велиткенайского комплекса имеют величины Fe# не более 0,65 и Fe³⁺/(Fe2⁺ + Fe³⁺) > 0,2 (**табл. 5.2**), удовлетворяя ограничениям [Anderson, Smith, 1995; Anderson, 1997]. Остальные анализы, показывающие слишком низкие отношения Fe³⁺ /(Fe²⁺ + Fe³⁺), из термобарометрических расчетов были исключены.

5.1.2. Результаты геотермобарометрических оценок

В настоящее время существует большое количество версий геотермобарометров, применяемых для гранитоидов [Anderson, 1997]. Наиболее надежными остаются плагиоклаз-амфиболовый термометр и амфиболовый барометр, единственно обоснованные экспериментально [Holland, Blundy, 1994; Anderson, Smith, 1995]. Результаты оценок по термобарометрам приведены в **табл. 5.2**.

Дж. Андерсоном и Д. Смитом [Anderson, Smith, 1995] предложена зависимая от температуры калибровка амфиболового барометра, при которой оценка давления корректируется на температурный эффект. Температура при этом должна быть рассчитана по амфибол-плагиоклазовому термометру [Blundy, Holland, 1990; Holland, Blundy, 1994]. Барометр калиброван для температур 675– 760 °C. Авторы барометра [Anderson, Smith, 1995; Anderson, 1997] признали, что новое выражение, вероятно, не следует применять к плутонам с температурами кристаллизации свыше 800 °C, поскольку такие условия выходят далеко за рамки экспериментальной калибровки.

$$P(\pm 0.6 \quad \kappa \, \delta \, a \, p) = -3.01 \quad + \quad 4.76 \quad \sum A \, l; \quad r^2 = 0.99 \tag{5.1}$$

Амфибол-плагиоклазовые версии термометров [Blundy, Holland, 1990; Holland, Blundy, 1994] основаны на следующих обменных реакциях: 4 кварца + эденит = альбит + тремолит (1), эденит + альбит = рихтерит + анортит (2).

Термометр калиброван для температур от 500 до 1100 °С и применим только к кварцсодержащим средним и кислым магматическим породам с ограниченными составами плагиоклаза (An $\leq 0,90$) и амфибола (Si = 6,0–7,7 ф. е., [A]Na > 0,02, AlVI < 1,8). Он требует независимой предварительной оценки давления, поэтому была использована экспериментальная калибровка барометра (форм. 5.1) с наименьшей погрешностью ±0,6 кбар. Минимальная погрешность расчетных температур для амфибол-плагиоклазовых термометров, основанная на оценке систематических ошибок в петрологических экспериментах, определена в ±50°C (2 σ) [Powell, Holland, 2008]. С учетом рассмотренных ограничений расчетные интервалы значений давления и температуры составили от 2,2 до 4,2 кбар и 680–820 °C, по версии термометра (1) (табл. 5.2).

Дополнительно оценки давления и температуры были рассчитаны по новым версиям роговообманкового термобарометра [Ridolfi et al., 2009; Ridolfi, Renzulli, 2012]. Практически все проанализированные амфиболы соответствуют ограничениям состава, выдвигаемым для данных термобарометров: $Al\# = Al^{VI}/(Al^{VI} + Al^{IV}) \le 0.21$, Mg/(Mg + Fe²⁺) > 0.5. Хотя метод рекомендован для вулканических пород, с определенной степенью осторожности он может быть применим и для известково-щелочных плутонических серий [Turnbull et al., 2012]. Сравнение экспериментальных и расчетных значений температуры показывает близкие результаты. Значения давления, напротив, существенно разнятся, что не позволяет применять такие барометрические оценки [Erdmann et al., 2014].

Поэтому из данных калибровок мы использовали только расчетную температуру, значения давления приведены лишь в целях сравнения. Кроме этого, в работе [Ridolfi et al., 2009] предложена версия оксибарометра, позволившая рассчитать фугитивность кислорода в монцонитоидах Велиткенайского комплекса; значения ее варьируют от +0.2 до +0.7 Δ NNO (табл. 5.2).

Новый, экспериментально откалиброванный, амфиболовый барометр Е. Матча и др. [Mutch et al., 2016] применим для широкого диапазона состава амфиболов при условии, что содержание анортитового компонента в плагиоклазе изменяется от 15 до 80%, а температура по амфибол-плагиоклазовому термометру составляет 725 ± 75 °C [Mutch et al., 2016]. Оценки давления по этому барометру составили от 3,3 до 4,2 кбар (**табл. 5.2**).

Таблица 5.2. Параметры состава амфиболов и плагиоклазов с расчетными характеристиками физико-химических условий кристаллизации.

					1	
Образец	15	33A	4005	4400	4600A	Вариации по всем обр.
Кол-во	2	7	4	3	1	17
Xan	0.38 ± 0.03	0.31 ± 0.01	0.38 ± 0.01	0.35 ± 0.01	0.27	0.27-0.40
_{T1} XSi	0.72 ± 0.04	0.66 ± 0.01	0.64 ± 0.02	0.66 ± 0.05	0.65	0.61 - 0.74
_{T1} XA1	0.28 ± 0.04	0.34 ± 0.01	0.36 ± 0.02	0.34 ± 0.05	0.35	0.26-0.39
_{M2} XA1	0.2 ± 0.03	0.15 ± 0.02	0.16 ± 0.07	0.14 ± 0.04	0.16	0.11-0.25
AXK	0.21 ± 0.06	0.27 ± 0.02	0.27 ± 0.01	0.2 ± 0.01	0.31	0.17-0.31
$_{A}X\square$	0.69 ± 0.07	0.51 ± 0.02	0.56 ± 0.06	0.66 ± 0.01	0.53	0.48 - 0.74
AXNa	0.1 ± 0.02	0.22 ± 0.03	0.17 ± 0.06	0.14 ± 0.01	0.16	0.09-0.28
_{M4} XNa	0.06 ± 0.01	0.08 ± 0.01	0.05 ± 0.01	0.06 ± 0.01	0.09	0.04 - 0.09
_{M4} XCa	0.9 ± 0	0.91 ± 0.01	0.94 ± 0.02	0.9 ± 0.09	0.87	0.8 - 0.97
Si ^{R10}	8.14 ± 0.13	7.91 ± 0.04	7.72 ± 0.07	7.89 ± 0.24	7.86	7.61-8.23
Mg^{R10}	2.77 ± 0.27	2.58 ± 0.07	2.81 ± 0.06	2.85 ± 0.25	2.63	2.46-3.13
T^{HB94}	684 ± 1	827 ± 18	788 ± 75	780 ± 41	823	680-850
T^{RR12}	714 ± 29	768 ± 21	756 ± 18	758 ± 72	846	693-846
P ⁸⁹²	4.2 ± 1	4.8 ± 0.3	5.4 ± 0.2	4.7 ± 0.6	5.2	3.5-5.7
P^{AS95}	4.2 ± 0.9	1.8 ± 0.7	3.1 ± 1.9	2.8 ± 0.8	2.2	0.7-5.7
\mathbf{P}^{M16}	3.3 ± 0.7	3.7 ± 0.2	4.2 ± 0.2	3.7 ± 0.5	4	2.8-4.5
ΔNNO^{R09}	$\pm 0.5 \pm 0.4$	$+0.2 \pm 0.1$	$+0.6 \pm 0.1$	$+0.7\pm0.4$	+0.3	+0.2-1.1
$H_2O(L)^{R09}$	6.4 ± 0.2	5.2 ± 0.1	5.7 ± 0.8	6.2 ± 0.6	5.1	4.9-6.9

Примечание. ($_{T1}X$) – доля элемента в структурной позиции T1. Расчетные температуры (T°C) и давления (Р, кбар) по следующим термобарометрам: P⁸⁹² – [Shmidt, 1992], T^{HB94}– [Holland, Blundy, 1994], P^{A895}– [Anderson, Smith, 1995], T^{RR12}– [Ridolfi, Renzulli, 2012], P^{M16} – [Mutch et al., 2016]. Фугитивность кислорода относительно буфера Ni-NiO (Δ NNO^{R09}) по оксометру [Ridolfi et al., 2009]. Расчетная концентрация воды в расплаве, масс% (H₂O (L)) по гигрометру [Ridolfi et al., 2009]. Результаты расчетов приведены только для анализов, отфильтрованных в соответствии со следующим условием T^{HB94} < 800 ± 50°C. Погрешность термометра (T^{HB94}) составляет ± 50°C [Powell, Holland, 2008].

Используя суммарное содержание АІ в роговой обманке и распределение Са

между равновесными плагиоклазом и роговой обманкой (версии геотермобарометров), мы установили, что расчетные интервалы значений

давления и температуры кристаллизации для всех образцов гранитоидов Велиткенайского комплекса составили от 2,2 до 4,2 кбар и 680–820 °С (табл. 5.2).

Поскольку амфиболовый и амфибол-плагиоклазовый геотермобарометры Дж. Андерсона и Д. Смита, Т. Холланда–Д. Пауэлла–Дж. Бланди являются единственно экспериментально откалиброванными и взаимосогласованными, результаты, полученные по ним, были приняты за основу при суждении о физикохимических параметрах кристаллизации монцонитоидов Велиткенайского комплекса.

5.2. Биотит

Известно, что содержания Ті в биотите, ассоциирующем со сфеном, ильменитом, рутилом, контролируется температурой кристаллизации [Nachit, 1986; Patino-Douce, 1993]. Д.Ж. Генри [Henry et al., 2005], предложил минеральный термометр для давлений от 4 до 6 кбар, основанный на концентрации Ті в биотите. Применение термометра для биотитов изученных гранитоидов затрудняется тем, что по содержанию TiO_2 и Al_2O_3 их составы соответствуют области кристаллизации гранитоидов в мезоабиссальных условиях (см. **рис. 4.22**), которые определяются обычно давлением от 0,9 до 2,1 кбар [Ферштатер, Бородина, 1975]. Однако рассчитанное давление по Al в амфиболе для изученных гранитоидов достигает 4,5 кбар [Ползуненков, 2012, 2018].

Для оценки температуры кристаллизации гранитоидов мы использовали термометр Д. Ж. Генри (форм. 5.2) в следующем виде:

$$T(\pm 12 \circ C) = [ln(Ti)*a*c*(XMg)*3] / b*0.333,$$
(5.2)

где XMg = Mg/(Mg + Fe), a = 2,3594, b = 4,6482 * 10⁻⁹, c = 1,7283 – расчетные коэффициенты для давления 4–6 кбар. Вариации Ti, XMg в биотитах составили: Ti – 0,33–0,42 ф. е., XMg – 52–56% для кварцевого монцонита, что соответствует 690–725 °C; Ti – 0,29–0,35 ф. е., XMg – 55–58% для сиенита, 675–710 °C; Ti – 0,32–0,52 ф. е., a XMg – 40–48% для роговообманково-биотитового гранита, 665–740 °C. Погрешность термометра составляет ± 12 °C.

Рис. 5.3. Диаграммы условий кристаллизации биотитов из монцонитоидов и гранитоидов Велиткенайского монцонит-гранит-мигматитового комплекса. а – Ті против Mg/(Mg + Fe^{общ}) по [Henry et al., 2005]; б – µH₂O против µK₂O по [Иванов, 1970].

Биотиты (магнийсодержащие сидерофиллиты и железосодержащие флогопиты), кристаллизация которых протекала при температурах 630–780 ± 12 °C (**рис. 5.3**), главным образом в условиях мезоабиссальной фации глубинности при повышенном давлении около 4 кбар и высокой активности Al.

5.3. Гранат

Согласно минеральным термобарометрическим расчетам, вмещающие неопротерозойские породы претерпели метаморфизм эпидот-амфиболитовой стадии при температуре 530–740 °С (гранат-биотитовый термометр [Перчук и др.,

1983]), и давлениях около 3,7 кбар (барометр GASP [Holdaway, 2001], обр. 12). Антекристовая кристаллизация граната в гранитоидах Велиткенайского комплекса происходила при температуре не ниже 700 °C.

5.4. Циркон и сфен

Циркон, кроме определения изотопного возраста активно используется для определения температур кристаллизации минерала. По составу циркона существуют два геотермометра – по содержанию Ti [Watson, Harrison, 2005; Ferry, Watson, 2007] и по содержанию Zr и Hf с распределением между минералом и магматическим расплавом [Аранович, Бортников, 2018; Аранович и др., 2020].

Термометрия по содержанию в цирконе Ті – один из самых распространенных методов оценки температуры кристаллизации циркона. В 2005 г. Б. Ватсон и М. Харрисон предложили экспериментально откалиброванную температурную зависимость содержаний Ті в цирконе в равновесии с кварцем и рутилом, которая была описана следующей реакцией (форм. 5.3):

$$Ru(TiO_2) + Zrn(ZrSiO_4) = Ti - Zrn(ZrTiO_4) + \beta - Qtz(SiO_2).$$
(5.3)

Позже Дж. Ферри и Б. Ватсон [Ferry, Watson, 2007] провели ревизию экспериментальных данных [Watson, Harrison, 2005] и отметили, что концентрация Ті (г/т) в цирконе, который находится в равновесии с кварцем и рутилом, зависима от температуры (форм. 5.4):

lg(Ti[r/m]) = 5.711 - 4800 / T[K]. (5.4)

Отсутствие рутила и кварца при обменной реакции (форм. 5.3) приводит к пониженным значениям активности αTiO_2 и αSiO_2 , за которые необходимо вводить поправку ($\Delta \alpha$) [Ferry, Watson, 2007; Силантьев и др., 2010; Аранович и др., 2013]. Также необходимо учитывать поправку за давление (ΔP), так как изучение растворимости Ті в цирконе проводилось при давлении 10 кбар, а объемный эффект(ΔV) обменной реакции (форм. 5.3) в интервале давлений от 1 атм до 10 кбар равен – 1,3 Дж/(бар·моль) [Tailby et al., 2011] притом, что большая часть пород формируется при более низких значениях давления. Таким образом, учитывая данные поправки в форм. 5.4 получаем следующее выражение (форм. 5.5):

 $lg(Ti[z/m]) = 5.711 - 4800 + (\Delta P) / T[K] - (\Delta \alpha).$ (5.5)

, где ($\Delta \alpha$) – поправка за пониженную активность оксидов TiO₂ и SiO₂ (– lg(α SiO₂/ α TiO₂)), а (Δ P) – поправка за давление (68 · P[кбар -10]).

Из этой формулы вытекает, что изменения отношения [$\alpha SiO_2/\alpha TiO_2$] в расплаве относительно насыщения рутилом и кварцем (αTiO_2 , $\alpha SiO_2 = 1$) при постоянных значениях Т и Р, концентрации Ті в цирконе могут значительно колебаться. Такие вариации содержаний в пределах зерен циркона находят свое подтверждение в ряде работ [Bin Fu et al., 2008; Ickert et al., 2011].

В работе Л.Я. Арановича с соавторами [Аранович и др., 2020] показана важность корректного учета переменного отношения αSiO₂/αTiO₂. По мнению авторов, использование геотермометра на основе концентрации Ti в цирконе должно проводиться с осторожностью, так как вариации отношения αSiO₂/αTiO₂ могут быть обусловлены не только температурой, но и другими факторами, особенно в случаях, когда минеральные включения в цирконе указывают на резкую смену условий его роста (растворения) [Аранович и др., 2020].

По результатам изучения включений в цирконе гранитоидов ИЗ Велиткенайского комплекса нам известно, ЧТО В цирконах ИЗ ранних монцонитоидов преимущественно содержится апатит, а цирконы из поздних мигматитов и гранитоидов содержат биотит, калиевый полевой шпат и Наличие плагиоклаз. такого спектра включений В цирконах пород Велиткенайского комплекса заставляет с осторожностью использовать данный термометр.

Учитывая присутствие кварца и отсутствие рутила в парагенезисе, активности кремния (α SiO₂) и титана (α TiO₂) в расплаве для термометра [Ferry, Watson, 2007] были приняты за 1 и 0,7 соответственно. Концентрации элементов в цирконе были выполнены на ионном зонде SHRIMP-RG для трех образцов ранних монцонитоидов (обр. 3500, 4600gm, 4600Kfs) и трех образцов поздних лейкогранитов (обр. 4504, 6000, 3300). В 55 исследованных кристаллах циркона для монцонитов концентрации титана варьируют от 30 до 4 г/т, а расчетная температура кристаллизации по данному геотермометру изменяется от 850 до 700 °C (медианы для трех образцов – 830, 780, 750 °C). Для лейкогранитов, напротив, концентрации Ті в цирконе существенно меньше (от 8 до 3 г/т), соответственно расчетные температуры кристаллизации составили от 760 до 670 °C.

Термометрия по распределению Zr и Hf между цирконом и расплавом была предложена Л.Я. Арановичем и Н.С. Бортниковым [Аранович, Бортников, 2018], авторы при анализе многочисленных экспериментальных данных установили взаимосвязь температуры образования магматического циркона и содержащей его породы и коэффициента распределения циркония и гафния в минерале и породе (форм. 5.6).

$$T[K] = \frac{1531}{\ln(Kd + 0.883)}, Kd = \frac{X^{\frac{z}{Zr}} * X^{\frac{m}{Hf}}}{X^{\frac{m}{Zr}} * X^{\frac{z}{Hf}}},$$
(5.6)

где Kd – коэффициент распределения Zr и Hf между цирконом (z) и расплавом (m), T[K] – температура, Кельвин, XZr m, X m Hf – содержание Zr и Hf в расплаве, масс.%, XZr z , XHf z – содержание Zr и Hf в цирконе, масс.%. Концентрация Zr в цирконе при расчете Zr/Hf отношения принимается постоянной, [Zr] = 480000 г/т.

Преимущества данной версии термометра перед термометром [Ferry, Watson, 2007] заключается в отсутствии зависимости от состава расплава и корректных оценок активности кремния (αSiO₂) и титана (αTiO₂) в нем. А реконструкция трендов фракционирования Zr и Hf в ходе кристаллизации циркона из гранитоидных расплавов позволяет оценивать температуры отделения более дифференцированных порций расплава [Аранович, Бортников, 2018; Аранович и др., 2020].

Используя содержания циркония и гафния в породах и акцессорном цирконе для монцонитоидов и лейкогранитов Велиткенайского комплекса в геотермометре Арановича–Бортникова (форм. 5.6), удалось установить

температурные диапазоны их образования. По данным геотермометра, температурный диапазон для монцонитоидов находится в пределах 763–867 °C и в среднем составляет 822 °C. Для высокоглиноземистых лейкогранитов вариации температур составили: от 490 до 591 °C при среднем значении 532 °C. Температурные оценки биотитовых лейкогранитов сильно выбиваются из общей эволюции, сильно превышая значения в 1000 °C, варьируя от 1734 до 1808 °C при среднем значении 1776 °C (табл. 5.3).

Сфен, напротив, демонстрирует довольно узкий интервал кристаллизации на поздних стадиях эволюции при T = 690–710 °C, что следует из расчетов по геотермометру «Zr-в сфене» [Hayden et al., 2008] при принятой активности SiO₂ и TiO₂ в расплаве 1 и 0,5 соответственно.

5.5. Термобарогеохимия

Термометрические исследования флюидных включений (ФВ) проведены в кварце ранних монцонитоидов Велиткенайского комплекса. Для исследований были отобраны три образца монцонитоидов: кварцевые монцониты (обр. 4001, Vel-0) и монцониты с преобладающим во вкрапленниках калиевым полевым шпатом (обр. 4600А).

Наблюдаемые ФВ в кварцах перечисленных выше образцов распределены неравномерно отдельными группами. Нередко отмеченные группы ФВ, вытягиваясь в цепочки, локализуются как в центрах, так и на периферии кристаллов кварца. При этом формы ФВ характеризуются как равновесные, редко округлые с размерами от 5 до 21 µm.

Таблица 5.3. Результаты Zr-Hf-геотермометрии для монцонитоидов и гранитоидов Велиткенайского комплекса

No	Конц											
	в цир	оконе	впо	T,°C								
Зерна	Zr z	Hf z	Zr m	Zr m								
Ранние леформированные моннонитоилы												
7706												
5.1	48.19	1.03	8.64	0.3414	747							
6.1	48.19	1.03	8.64	0.3414	748							
1.2	48.19	1.06	8.64	0.3414	770							
8.1	48.19	1.08	8.64	0.3414	780							

No	Конц												
2000	в цир	коне	впс	T,°C									
зерна	Zr z	Hf z	Zr m	Zr m									
2.2RI	48.19	1.09	8.64	0.3414	787								
7.1	48.19	1.10	8.64	0.3414	796								
9.1	48.19	1.11	8.64	0.3414	800								
3.1	48.19	1.17	8.64	0.3414	845								
4.1	48.19	1.18	8.64	0.3414	850								
2.1	48.19	1.45	8.64	0.3414	1053								
		3	500GM										
1.1	48.19	1.07	19.97	0.8243	743								
3.1	48.19	1.24	19.97	0.8243	856								
2.1	48.19	1.31	19.97	0.8243	901								
4600A-GM													
2.1	48.20	0.89	24.37	0.9478	668								
4.1	48.19	0.93	24.37	0.9478	693								
5.1 10.1	48.19	0.95	24.37	0.9478	/10								
10.1	48.19	1.04	24.37	0.9478	/68								
1.1 0.1	48.19	1.05	24.37	0.9478	774								
8.1	48.19	1.05	24.37	0.9478	//6								
2.2	48.18	1.12	24.37	0.9478	820								
9.1	48.19	1.26	24.37	0.9478	920								
6.1	48.19	1.27	24.37	0.9478	928								
5.1 7.1	48.19	1.34	24.37	0.9478	985								
/.1	48.18	1.30 Поэтин	24.37	0.9478	1000								
		поздни	<u>, пранитоиды</u> 6000										
2.1	48 19	1 25	83 64	2 1749	1454								
5.1	48.19	1.37	83.64	2.1749	1652								
1.1	48.19	1.41	83.64	2.1749	1733								
6.2	48.19	1.41	83.64	2.1749	1735								
1.2	48.20	1.42	83.64	2.1749	1748								
4.1	48.19	1.43	83.64	2.1749	1771								
7.1	48.19	1.44	83.64	2.1749	1778								
7.2	48.19	1.44	83.64	2.1749	1788								
6.1	48.19	1.46	83.64	2.1749	1829								
5.2	48.19	1.54	83.64	2.1749	1986								
3.1	48.18	1.57	83.64	2.1749	2065								
			3300										
4.1	48.19	0.90	17.91	1.3262	403								
2.1	48.19	0.99	17.91	1.3262	435								
1.1	48.19	1.32	17.91	1.3262	544								
5.1	48.20	1.51	17.91	1.3262	605								
3.1	48.19	1.54	17.91	1.3262	614								
			7701										
2.1	48.19	1.35	13.32	0.9940	549								
1.1	48.19	1.43	13.32	0.9940	576								

Используя подходы к классификациям флюидных включений по фазовому составу [Ермаков, Долгов, 1979; Рёддер, 1987; Мельников и др., 2008], все ФВ подразделяются на два типа (**рис. 5.4**): L-типа (газово-жидкие) и LC-типа (углекислотно-водные).

Рис. 5.4. Типы флюидных включений в кварце гранитоидов Велиткенайского комплекса. А-Б – флюидные включения L-типа (газово-жидкие): A – Tr. = 266 °C, Тэвт. = -80 °C, C = 10,36 масс. % экв. NaCl; Б – Tr. = 256 °C, Тэвт. = -81,3 °C, C = 6,59 масс. % экв. NaCl; В-Г – флюидные включения LC-типа (углекислотно-водные): B – T г. = 331 °C, Тпл.CO₂ = -57 °C; Γ – Tr. = 368 °C, Тпл.CO₂ = -56,6 °C; Tr.CO₂ = 23,5 °C.

Тип 1. Температуры гомогенизации (Тг) изменяются от 345 до 190 ±35 °C с максимальным и минимальным значениями в кварцевом монцоните (обр. Vel-0) и сиените соответственно. Фазовый состав солевой системы определяли по температурам эвтектик (Тэвт.), используя экспериментальные данные [Борисенко, 1977]. Согласно измеренным температурам эвтектик (Тэвт. = -36 ... -20 °C), состав солевой системы характеризуется как близкий к NaCl с небольшой примесью ионов Mg и Fe, однако в некоторых газово-жидких ФВ состав соответствует CaBr₂ (Тэвт. = -83,1 ... -80 °C).

Оценка концентрации растворов проводилась по температурам плавления последнего кристаллика льда (Тпл. льда) [Bischoff, 1991; Bodnar, Vityk, 1994].

Вариации значений концентраций составили 10,36–0,53 масс.% эквивалентных NaCl (**рис. 5.5 A**, **табл. 5.4**). Расчетная плотность водно-солевого флюида колеблется от 0,68 до 0,9 г/см³.

Тип 2. Интервал температур гомогенизации ФВ LC-типа составляет 368– 240 ± 40 °C, максимальное значение приходится на кварцевый монцонит (обр. 4001). Замерзание CO₂ происходит при T = -93,2 ... -96,8 °C, плавление при T = -57,0 ... -53,4 °C, что вполне соответствует температуре плавления чистой CO₂ = -56,6 °C, а гомогенизация при -4,6 ... +30 °C (см. **табл. 5.4**). Расчетная плотность CO₂ составила 0,75–0,59 г/см³ [Шмонов, Шмулович, 1975].

Рис. 5.5. Диаграммы: А – фазового состава солевой системы в координатах – температуры гомогенизации (Тг) против температуры эвтектики (Тэвт.); В – гистограмма распределения измеренных Тг.

Температурный диапазон гомогенизации ФВ в кварце представленных образцов охватывает интервал 368-190 °C. Максимальными значениями Тг характеризуются ФВ из обр. 4001 и Vel-0 – 368 °C и 360 °C, минимальными ФВ из обр. 4600A и Vel-0 – 190 °C и 214 °C. Среднеарифметические значения Тг для обр. 4001, Vel-0, 4600A составили 265 ± 8 , 283 ± 37 и 245 ± 43 °C соответственно. В целом Тг характеризуются нормальным распределением, с пиком в интервале 240-280 °C (n = 16) (**рис. 5.5 В**).

Таблица 5.4. Результаты термо- и криометрических исследований индивидуальных флюидных включений в кварце гранитоидов Велиткенайского комплекса

Тип.	Тг.	Тэвт.	Тпл. ^{льда}	Тпл. ^{Со²}	Тг. ^{со²}	Ссолей	р ^{общая}	ρ^{CO^2}						
Кварцевый монцонит (обр.4001)														
LC	368-266	Н	7.3	- 56,6	23.5			0.75						
L	279-272	-30	-0.3	Н	Н	0.53	0.75							
L	266-256	-81,380	-6,94,1	Н	Н	6,59-10,36	0,88-0,85							
L	260	-36	-41,0	Н	Н	6,45-1,74	0,85-0,79							
	Кварцевый монцонит (обр.Vel-0)													
LC	360-350	Н	18,3-12,6	- 57,0	27-6			0.67						
LC	331-300	Н	н	- 57,0	30.1	_		0.59						
LC	240	Н	н	- 56,9	Н									
L	345-300	-25	-6,32,0	Н	Н	9,6-3,39	0,82-0,68							
L	296	-83	1.7	Н	Н	2.9	0.74							
L	276-214	-23,02,4	-3,02,0	Н	Н	4,96-3,39	0,87-0,8							
			Сие	нит (обр.46	00A)									
LC	320	-22.3	-0.1	- 53,4	Н		_							
LC	292	-83.1		Н	-4.6		_							
L	293	-81	-5	Н	Н	7.86	0.81							
L	276	-33	-2	Н	Н	3.39	0,9-0,78							
L	238-190	-20	-2,00,7	Н	Н	3,39-1,22	0,9-0,83							

Примечания. Каждая строчка в таблице характеризует группу включений (не менее 3) с близкими РТХ-параметрами, присутствующими в одном или нескольких образцах; н – соответствующий фазовый переход отсутствует или неясно выражен; Т – температура (г. – гомогенизации, эвт. – эвтектики, пл. – плавления); С – концентрация; р – плотность; прочерк – не измерено. Тип флюидных включений: LC – углекислотно-водные, L – газово-жидкие.

5.6. Обсуждение результатов

Оценки давления и температуры минеральных равновесий проводились по амфибол-плагиоклазовому термобарометру [Blundy, Holland, 1990; Anderson, Smith, 1995], а также термометру Ti-в цирконе [Ferry, Watson, 2007]. Интенсивно проявленные чермакитовая и эденитовая схемы замещения в амфиболах монцонитоидов Велиткенайского комплекса качественно указывают на изменения давления и температуры при кристаллизации магмы.

Оценки температур кристаллизации монцонитоидов Велиткенайского комплекса (680–820 °C) близки к субсолидусным значениям для «водных» кислых и средних магм. При этом для велиткенайских монцонитоидов содержание воды в расплаве, согласно [Holtz et al., 2001], составляло от 2,5 до 4 масс.%, редко

(обр.15) достигая 7,5 масс.% (**рис. 5.6**). Расчеты по другому типу гигрометра [Ridolfi et al., 2009] дают более высокие значения: от 5,1 до 6,4 масс.% H₂O.

Судя по термометрии Ті-в цирконе, температура кристаллизации расплава ранних монцонитоидов была определенно выше, чем расплава поздних лейкогранитов, что может объяснять сохранность унаследованных древних ядер в цирконах последних (см. главу 6).

В отличие от температурных оценок по содержанию Ті в цирконе, значения полученные геотермометром Арановича–Бортникова, для лейкогранитов (пород с повышенным содержанием SiO₂), сильно завышенны и не использованны нами.

Температуры гомогенизации флюидных включений не отражают истинных температур минералообразования, так как для их оценки необходимо учитывать температурную поправку (△T) на давление. Эта поправка должна быть определена при помощи независимого геобарометра [Пизнюр, 1976; Рёддер, 1987].

В практике петрологических исследований флюидные включения, содержащие углекислоту, используются для оценки давления в расплавах, однако не все типы включений пригодны для этого [Мельников и др., 2008], а оценки давления не всегда сходятся и отражают условия протекания природных процессов [Кряжев, 2010]. Корректным будет давление, оцененное при помощи минерального термобарометра. Для этого мы использовали результаты оценок давления (4 ± 1 кбар) по амфибол-плагиоклазовому термобарометру [Holland, Blundy, 1994].

Основываясь на этих значениях и средней плотности водно-солевого флюида (0,85 ± 0,025 г/см³), используя диаграммы зависимости «поправок на давление» [Рёддер, 1987], для всех ФВ L-типа в кварце изученных образцов, мы рассчитали $\Delta T = 449 \pm 45$ °C. С учетом этой поправки, температуры кристаллизации расплава составили от 733 ± 60 °C для кварцевого монцонита (обр. 4001) до 695 ± 60 °C для сиенита (обр. 4600А). Сопоставление полученных по флюидным включениям значений температур с оценками по минеральному термобарометру (амфиболплагиоклазовая пара) и термометру (Ті-в биотите) [Ползуненков, 2012, 2013], показывает хорошую сходимость.

Рис. 5.6. Диаграмма Р-Т условий кристаллизации монцонитоидов Велиткенайского комплекса. Линии: 1 – гранитный солидус (Ps = PH₂O), по [Holtz et al., 2001]; 2 – концентрация воды в расплаве, по [Holtz et al., 2001]; 3 – линии геотермического градиента для плотности коры 2,7 г/см³. Оценки давления и температуры приведены по геотермобарометрам [Blundy, Holland, 1990; Anderson, Smith, 1995; Anderson, 1997].

Величины давления, при которых формировались монцонитоиды Велиткенайского комплекса, как указано выше, колебались в пределах 2,2–4,2 кбар. Используя нормальный геобарический градиент 0,27 кбар/км, оценка глубины становления плутона составит от 7 до 14 км [Ползуненков, 2018]. Однако суммарная реконструируемая мощность перекрывающих комплекс доальбских метаморфических и осадочных толщ в Куульском поднятии и прилегающих

123

структурах Чаунской складчатой зоны оценивается приблизительно в 8 км [Желтовский, 1980, Бычков, 1994]. Простое литостатическое давление толщ такой мощности не соответствует верхней барометрической оценке и более чем вдвое занижено относительно нижней по глубине оценки. Одним из объяснений может быть утонение континентальной коры в результате коллапса орогена и постколлизионного растяжения кристаллического блока Арктическая Аляска – Чукотка [Akinin et al., 1997; Akinin et al., 20116]. По представлениям О.М. Розена и В.С. Федоровского [Розен, Федоровский, 2001], на определенной стадии гранитообразования коллизионном орогене 10 - 15В на глубине км поднимающийся кислый расплав достигает изостатического равновесия и субгоризонтального накапливается В зоне срыва, заполненного легко проницаемыми тектонизированными покровными комплексами. Здесь возникают, по-видимому, гранито-гнейсовые поля и ореолы мигматитов. На этом уровне возможно также и прямое плавление корового вещества, однако расплав не может удалиться вверх и валовый состав в этом случае остается практически без изменений [Розен, Федоровский, 2001]. Поэтому следующее за коллизионным сжатием постколлизионное растяжение обусловило проникновение в верхние горизонты коры мафических магм и привело к их смешению с образовавшимися ранее коровыми очагами. Дальнейшие процессы AFC (см. главу 7) привели к формированию монцонитоидов Велиткенайского комплекса.

5.7. Выводы

Корректное применение амфиболового барометра Дж. Андерсона и Д. Смита и плагиоклаз-амфиболового термометра Т. Холланда, Дж. Пауэла и Дж. Бланди ограничено составами анализируемого амфибола (Ca > 1.6 ф. e., Si \leq 7,5 ф. e., Fe# < 0,65, Fe³⁺/(Fe²⁺ + Fe³⁺) > 0,2) и плагиоклаза (An 25–35%).

Интервалы температуры и давления кристаллизации ранних монцонитоидов Велиткенайского комплекса согласно амфибол-плагиоклазовому парагенезису составили 820–680 ± 12 °C и 2,2–4,2 кбар, при фугитивности кислорода в магме

относительно буфера NNO от +0,2 до +0,7 и содержании воды в расплаве от 2,5 до 7 масс.%.

Изучение ФВ в кварце показало, что на поздней стадии становления синкинематических монцонитоидов формирование гранитоидов Велиткенайского монцонит-гранит-мигматитового комплекса происходило при участии гетерогенного углекислотно-водно-солевого флюида. Оценочные параметры флюида составили: плотность 0,68–0,9 г/см³, состав Na-Mg-Fe-Cl, концентрация солей не более 10 масс.% экв. NaCl, наличие CO₂ с плотностью 0,59–0,75 г/см³.

В целом рассчитанные давления и температуры соответствуют условиям амфиболитовой фации метаморфизма, проявленным в гнейсах и кристаллических сланцах чукотских гранито-метаморфических куполов [Гельман, 1995, 1996; Akinin, Calvert, 2002]. Монцонитоиды І-типа известково-щелочной серии, ассоциирующие с ними лейкограниты и мигматиты Велиткенайского комплекса, совместно с вмещающими палеозойскими кристаллическими сланцами и неопротерозойскими ортогнейсами, мигматизированными также могут представлять собой гранитно-метаморфический купол, который предлагаем «Велиткенайским». Выплавление называть чукотских гранитоидов И монцонитоидов связывается с этапом постколлизионного растяжения [Miller et al., 2009], что, вероятно, применимо и к велиткенайским магмам.

ГЛАВА 6. U-Pb SHRIMP ДАТИРОВАНИЕ, ПРИМЕСНЫЕ ЭЛЕМЕНТЫ И ИЗОТОПНЫЙ СОСТАВ Hf И О ЦИРКОНА ИЗ ГРАНИТОИДОВ И МИГМАТИТОВ ВЕЛИТКЕНАЙСКОГО КОМПЛЕКСА

Низкая растворимость циркона в кислых расплавах наряду с устойчивостью к химическому и физическому выветриванию [Watson, Harrison, 1983; Corfu et al., 2003; Gao et al., 2004; Hawkesworth, Kemp, 2006] позволяет ему сохранять химический и изотопный состав глубинной коры при различных эпизодах осадочного и магматического рециклинга, метаморфизма и субдукции земной коры [Gao et al., 2004]. Такая уникальная особенность циркона сохраняется в различных агрессивных обстановках позволяет применять его в петрохронологических исследованиях.

6.1. Изотопный состав U, Th и Pb в цирконе (U-Pb SHRIMP датирование)

Изотопный состав циркона был исследован в 22 образцах Велиткенайского комплекса (из них 15 образцов – наши новые данные) и 15 образцах гранитоидов из различных массивов чаунской провинции арктической Чукотки, включая 13 образцов из авторской коллекции (табл. 6.1, табл. В.1. приложение В). В девяти исследованных нами гранитоидных массивах арктической Чукотки ²⁰⁶Pb/²³⁸U возраст циркона варьирует от 109 до 104 (± 1-2) млн. лет (рис. 6.1, табл. 6.1). отметить, что такой альбский возрастной интервал Важно гранитоидов обнаженных северной характерен для массивов, В прибрежной именно арктической части Чукотки, в юго-западной части Чукотки возраст гранитоидов аптский с датами от 123 до 112 млн. лет (см. рис. 1.1). Это обстоятельство позволяет нам выделять среди чукотских гранитоидов две провинции – альбскую Чаунскую и аптскую Билибинскую. Следует отметить, что по авторским опубликованным данным П.Л. Тихомиров в своей докторской работе впервые предложил на территории центральной Чукотки выделять Чаунскую провинцию [Тихомиров, 2018]. Автором по собственным [Akinin et al., 20116; Ползуненков, Акинин, 2013; Акинин и др., 2022] и опубликованным данным [Лучицкая и др.,

Рис. 6.1. U-Pb возраст циркона из гранитоидов Чаунской провинции Чукотки. Номера проб соответствуют приведенным в **табл. 6.1** возрастам. Возраст унаследованных ядер в цирконе показан внизу соответствующим для породных групп цветом.

В 15 датированных образцах гранитоидов и мигматитов Велиткенайского комплекса средневзвешенные ²⁰⁶Pb/²³⁸U возраста циркона магматической стадии кристаллизации варьируют от 106 до 100 (± 1-2) млн. лет, в общей датированной популяции из 300 кристаллов (табл. 6.1, табл. В.1. приложение В). При этом выявилось характерное различие возраста ранних монцонитоидов и поздних U-Pb средневзвешенные гранитоидов: даты цирконов В монцонитах И гранодиоритах первой фазы варьируют от 106 до 103 (± 1-2) млн. лет, без признаков древних унаследованных ядер в кристаллах (табл. 6.1, рис. 6.1, 6.2, 6.4). В цирконах второй фазы лейкогранитов, а также высокоглиноземистых U-Pb гранитах, напротив, даты моложе

30					U-Pb					M	\$180					Источник
JN≌	Порода	Группа	Широта	Долгота	возраст,	$\pm 2\sigma$	СКВО	р	Ν	метод	o U,	$\pm 2\sigma$	εHf(i)	$\pm 2\sigma$	Генезис	
образца					млн лет					оценки	% 0					
	Велиткенайский монцонит-гранит-мигматитовый комплекс															
3500	ГД	1	69.2164	177.1186	106.0	0.5	0.21	0.6	12/12	Κ			—		Магм.	[3]
4005	MO	1	69.1960	177.1920	105.0	1.0	1.10	0.2	15/15	Κ	—				Магм.	[3]
4600b	MO	1	69.2092	177.1919	105.0	1.0	0.20	0.8	3/5	206Pb/238U	—				Магм.	[3]
4600gm	MO-gm	1	69.2092	177.1919	103.0	1.0	0.13	0.7	11/11	Κ					Магм.	[3]
4600Kfs	MO-Kfs	1	69.2092	177.1919	104.0	1.0	0.06	0.8	8/10	Κ	—				Магм.	[3]
7706	MO	1	69.6980	176.6140	105.0	1.5	1.10	0.3	9/11	Κ					Магм.	[3]
EGC11	ДИ	1	69.1847	177.2147	106.0	1.0	0.37	0.5	9/10	Κ	9.40	0.1	-9.30	1.1	Магм.	[1]
EGC15	MO	1	69.1854	177.2247	105.0	1.0	3.80	0.0	15/16	Κ	8.70	0.2	-8.50	1.1	Магм.	[1]
EGC33	ДИ	1	69.2534	176.9423	106.0	1.5	0.23	0.6	12/12	Κ		_	-8.50	1.0	Магм.	[1]
EGC40a	MO	1	69.6990	176.6196	104.0	1.0	4.50	0.0	9/10	Κ			-5.00	1.8	Магм.	[3]
369-500	MO	1	69.1983	177.2061	102.5	2.0		_		206Pb/238U		_			Магм.	[3]
369-500	MO	1	69.1983	177.2061	364.0	44.	1.60			U					Унаслед	[3]
4504	ΓР	2	69.2083	177.1889	100.0	8.5	1.90		6/10	L	7.50	0.6	-3.80	1.0	Магм.	[3]
4504	ГР	2	69.2083	177.1889	608.0	45.	1.90		1/10	U	5.80	0.2	13.00	1.0	Унаслед	[3]
6000	ΓР	2	69.2731	176.8303	103.0	1.0	0.81	_	9/11	СН					Магм.	[3]
EGC33B	ГР	2	69.2534	176.9423	101.0	4.0	1.40		19/21	L					Магм.	[3]
EGC33B	ΓР	2	69.2534	176.9423	591.0	32.	1.40	_	19/22	U					Унаслед	[3]
5100*	ΓР	2	69.2730	176.9120	587.0	15.	1.20		14/14	U					Унаслед	[3]
5100*	ΓР	2	69.2730	176.9120	101.0	2.0	1.20		14/14	L			_		Магм.	[3]
EGC31	ГА	2	69.2243	177.1524	100.0	1.0	0.73	0.3	11/13	K	6.00	0.4	-2.90	0.4	Магм.	[1]
3300	ΓР	Al	69.2131	177.1161	102.0	0.5	0.83	0.4	3/5	206Pb/238U			_		Магм.	[3]
7701	ΓР	Al	69.6990	176.6197	101.0	1.0	0.15	0.7	3/6	206Pb/238U					Магм.	[3]
EGC30	ГР	Al	69.1655	177.2628	102.5	1.0	0.41	0.5	20/25	Κ	8.30	0.4	-2.40	1.8	Магм.	[1]
EGC30	ГР	Al	69.1655	177.2628	629.0	20.	1.60		1/25	U	6.20	0.1	11.30	1.0	Унаслед	[1]
4719#	МИ	МИ	69.2310	177.2980	108.0	2.0			1/20	206Pb/238U			—		Магм.	[3]
4719#	МИ	МИ	69.2310	177.2980	600.0	13.	0.52	0.4	8/20	Κ					Унаслед	[3]

Таблица 6.1. Возраст (U-Pb метод, SHRIMP-RG) и изотопный состав Hf и O циркона из горных пород Велиткенайского комплекса и гранитоидов Чаунской провинции Чукотки

20					U-Pb				м	s180	δ ¹⁸ O, ±2σ					
Nº ofnesue	Порода	Группа	Широта	Долгота	возраст,	±2σ CKBO	р	Ν	Метод	o U,		εHf(i)	$\pm 2\sigma$	Генезис	Источник	
ооразца					млн лет					оценки	/00					
5601	МИ	МИ	69.3094	176.8597	102.5	2.5	2.00		2/10	К		_			Магм.	[3]
EGC35	МИ	МИ	69.2635	177.0409	103.0	1.5	0.97		8/12	СН		_	_		Магм.	[1]
EGC35	МИ	МИ	69.2635	177.0409	629.0	23.	0.70		10/10	U		_	_		Унаслед	[1]
EGC21	ΟΓ	ВΠ	69.2307	177.2225	661.0	11.	1.30			U	5.80	0.6	4.60	0.6	Магм.	[2]
EGC36	ОГ	ВΠ	69.2831	176.9151	612.0	7.0	0.90	0.4	16/20	206Pb/238U	5.10	0.5	8.10	1.0	Магм.	[2]
Гранитоидные массивы чаунской провинции Чукотки																
EGC6	MO	Peg	69.0069	175.1932	107.0	2.0	1.80		11	СН		_			Магм.	[1]
EGC8	ГД	Kuv	69.1721	175.8172	105.0	2.0	1.30		8	СН		_	_		Магм.	[1]
8500	MO	Inro	69.8937	171.4218	107.0	1.5	4.00		9/10	206Pb/238U		_	_	_	Магм.	[3]
PV2	MO	Pev	69.6867	170.3997	109.0	1.0	3.60	0.0	7/13	206Pb/238U		_	_	_	Магм.	[3]
PV15	MO	Pev	69.6058	170.2058	105.0	1.0	3.50		5/13	206Pb/238U		_	_	_	Магм.	[3]
PV8	ГД	Loo	69.6597	170.9519	107.0	0.5	1.00	0.4	9/11	206Pb/238U		_	_	_	Магм.	[3]
8700	ЛА	dike	69.9519	171.3825	108.0	1.0	1.70	0.0	9/10	206Pb/238U		_	_	_	Магм.	[3]
42\A85	ГР	Erg	65.8364	-176.2336	107.0	1.0			2/4	206Pb/238U		_	_	_	Магм.	[3]
268	ГР	Val	64.6917	-173.6960	104.0	1.0	0.08	0.7	10/10	K		_	_	_	Магм.	[3]
KU-1	ГР	Kue	68.5997	178.8000	324.0	5.0	0.23	0.6	6/8	Κ.	6.80	0.2	0.90	1.0	Магм.	[3]
			Гранитоид	цные массив	ы Охотско-	Чукот	гского ву	лкано	генного по	ояса (центрально	-чукотс	кий сеі	тмент)			
8300	ГР	Pyr	69.7450	171.5530	92.0	1.0	1.10	0.3	10/10	Κ		_	_		Магм.	[3]
8800	ГР	Yan	69.9653	171.3774	91.4	0.5	0.02	0.9	4/7	206Pb*/238U			—		Магм.	[3]
8100	ГР	Sev	69.7610	171.6341	88.0	1.0	0.39	0.5	7/9	К	-2.00	0.5	7.90	0.2	Магм.	[3]

Примечание. Обозначение горных пород и групп, как и в табл. 1, 2: ГР – гранит, ГД – гранодиорит, МО – кварцевый монцонит, ДИ – диорит, МИ – мигматит, ЛА – лампрофир, ОГ – неопротерозойские ортогнейсы , Kfs – калиевый полевой шпат, gm – основная масса крупнопорфировых разностей. Группа: 1 – ранняя интрузивная фаза, 2 – поздняя интрузивная фаза, МИ – мигматиты, 2-Al – высокоглиноземистые жильные фации. Датирование выполнено на SHRIMP-RG в микроаналитическом центре Стэнфордского университета-USGS (США), за исключением образцов, помеченных *, – анализы выполнены на SHRIMP-II в ЦИИ ВСЕГЕИ (Санкт-Петербург). Литературный источник: [1] – [Miller et al., 2018]; [2] – [Gottlieb et al., 2018]; [3] – данные автора [Акинин и др., 2022]. Даты и погрешности округлены до целых. Метод оценки возраста: К – средневзвешенный конкордантный ²⁰⁷Pb/²³⁵U и ²⁰⁶Pb/²³⁸U возраст, U – верхнее пересечение дискордии, L – нижнее пересечение дискордии, CH – U-Pb возраст по хорде к обыкновенному свинцу, ²⁰⁶Pb/²³⁸U – средневзвешенный ²⁰⁶Pb/²³⁸U возраст. δ^{18} O и єНf(i) – средневзвешенные значения, прочерк – не измерено. – около 99–101 млн. лет, а в ядрах кристаллов циркона систематически устанавливаются древние унаследованные домены с возрастом около 630–608 млн. лет (табл. 6.1, рис. 6.1, 6.2, 6.4, табл. В.1. приложение В). Таким образом, судя по разнице возраста автокристов и антекристов циркона, характеризующих магматическую стадию сегрегации и кристаллизации, «время жизни» магм Велиткенайского монцонит-гранит-мигматитового комплекса можно оценить в 6– 7 млн. лет, близкий интервал намечается и для датированных нами массивов гранитоидов Чаунской провинции (табл. 6.1).

В велиткенайских мигматитах обнаружены цирконы также c неопротерозойскими унаследованными ядрами, для неосомы характерно преобладание цирконов с альбским возрастом, а для меланосомы – с неопротерозойским (табл. 6.1, табл. В.1. приложение В, рис. 6.1, 6.2, 6.4). Неопротерозойские U-Pb даты (660-612 млн. лет) установлены также в цирконах ортогнейсов, встречающихся в виде ксенолитов в поздних лейкогранитах Велиткенайского комплекса (табл. 6.1, рис. 6.2). Это обстоятельство позволяет заключить, что такие ортогнейсы могут выступать в качестве протолита для выплавления велиткенайских магм. Примечательно, что неопротерозойские цирконы обнаружены в комплексе уникальных симплектитовых гранатовых габбро-амфиболитов, которые слагают вместе с аподунитовыми серпентинитами и гарцбургитами мегаксенолиты в центральной части Велиткенайского монцонитгранит-мигматитового комплекса (рис. 2.9, табл. 6.1, табл. В.1 приложение В). Цирконы в габбро-амфиболите (обр. 5310) установлены in-situ, в шлифах, как продукты проградного метаморфизма и распада более ранних магматических и метаморфических минеральных ассоциаций.

Исследованные цирконы большей частью показывают нарушенные U-Pb изотопные отношения, формируя дискордию с неопротерозойским U-Pb возрастом для верхнего пересечения (около 670–560 млн. лет), нижнее пересечение устанавливается только по одному кристаллу циркона, для которого

Рис. 6.2. Диаграммы с конкордией для цирконов Велиткенайского монцонит-гранитмигматитового комплекса в представительных образцах (см. табл. 6.1). Черные точки – измеренные изотопные отношения в индивидуальных кристаллах циркона (SHRIMP-RG инструмент). Цветные области – плотности распределения точек с учетом погрешности измерений 2 сигма [алгоритм по Sircombe, 2007]. Т – средневзвешенный конкордантный возраст, СКВО – среднеквадратичное взвешенное отклонение, р – вероятность.

131

 206 Pb/ 238 U возраст составил 103 ± 4 млн. лет.

Вмещающие парагнейсы биотит-кварц-полевошпатовые или кристаллические сланцы, судя по наиболее молодым детритовым популяциям циркона в них, имеют девонский и карбоновый возраст, что хорошо согласуется с геологическими данными [Желтовский, 1980]. Девонские даты установлены также в ортогнейсах Куэквуньского массива, обнажающегося недалеко от Велиткеная в Куульском поднятии (см. рис. 1.1, табл. 6.1, табл. В.1. приложение **В** – обр. KU-1). Эдиакарские и девонские даты были надежно установлены в ортогнейсах Кооленьского, Нешканского. Сенявинского И Куульского метаморфических куполов и поднятий [Akinin et al., 1997; Natal'in et al., 1999; Акинин, 2012; Лучицкая и др., 2015], все вместе позволяет надежно выделять инициальные байкальские и каледонские магматические и метаморфические события в фундаменте террейна Арктическая Аляска – Чукотка.

6.2. Изотопный состав Hf и O циркона

Вариации изотопного состава гафния (¹⁷⁶Hf/¹⁷⁷Hf) и кислорода (δ¹⁸O) были исследованы в цирконах из 3 образцов ранних монцонитоидов, 3 образцов поздних лейкогранитов и высокоглиноземистых гранитов (**табл. 6.1, табл. В.1.** приложение В), а также 2 образцов ортогнейсов из фундамента Куульского поднятия [последние из работы Gottlieb et al., 2018]. Для каждого из образцов изотопные характеристики измерены не менее чем в 7–10 индивидуальных кристаллах циркона.

Для целей сравнения и исследования источников велиткенайских магм изучены изотопные характеристики цирконов также в трех образцах ортогнейсов Кооленьского купола и Куэквуньского поднятия (Приложение В). Значение параметра ε Hf(i) в велиткенайских монцонитоидах варьирует от -11 до -7,4, а δ^{18} O от 9,9 до 8,4 (табл. 6.1, табл. В.2., В.3. приложение В, рис. 6.3), указывая

Рис. 6.3. Вариации єНf(i) и δ¹⁸О в исследованных цирконах Чукотки. Велиткенайский комплекс, Кооленьский купол и Куэквуньский ортогнейс – данные настоящей работы. Остальные источники данных: [1] – Akinin et al., 2015; [2] – Akinin et al., 2020; [3] – Gottlieb et al., 2018; [4] – Лучицкая и др., 2019 а. Примечательны ювенильные мантийные значения єНf в цирконах из ортогнейсов Кооленьского купола и Велиткенайского комплекса, ксенолитов фундамента о-ва Жохова (архипелаг Де-Лонга), а также унаследованных ядрах в велиткенайских ортогнейсах, мигматитах и лейкогранитах.

133

Рис. 6.4. Изображение кристаллов велиткенайских цирконов в катодолюминесцентном излучении для каждой из выделенных породных групп, представительные примеры. Кружками разного цвета показаны области анализа и значения U-Pb возраста (206 Pb/ 238 U дата, скорректированная на 207 Pb), величины єHf(i) и δ^{18} O. Примечательны ювенильные мантийные значения изотопных отношений Hf и O в унаследованных ядрах циркона из мигматизированных ортогнейсов и лейкогранитов.

на существенную долю зрелого корового материала в источнике магм. Модельные Hf возраста циркона для этих пород составляют от 1,2 до 1,1 млрд. лет. В лейкогранитах и монцоните второй фазы, напротив, эти значения отличаются, демонстрируя тренд в направлении более ювенильных мантийных значений (ϵ Hf(i) от -4,7 до -1,5; δ^{18} O от 8,7 до 5,8; **табл. В.2., В.3. приложение В**, **рис. 6.3**), при модельных Hf возрастах главным образом в интервале от 900 до 800 млн. лет. Примечательно, что неопротерозойские унаследованные ядра в цирконе велиткенайских гранитоидов, а также цирконы из ортогнейсов Кооленьского купола, Куульского поднятия и фундамента о-ва Жохова [Akinin et al., 2015] имеют самые высокие, «мантийные», изотопные метки, достигающие величин ϵ Hf(i) +11 и +13, при δ^{18} O от 4,9 до 6,2 (см. **рис. 6.3**). Расчетные Hf модельные возрасты при таких параметрах достигают 2,1–1,4 млрд. лет.

6.3. Примесные элементы в цирконе

Вариации концентраций микроэлементов в цирконе могут быть использованы для реконструкции состава источников и эволюции магм [Watson et al., 2005, 2006; Wooden et al., 2006; Claiborne et al., 2010; Gagnevin et al., 2010; Dilles et al., 2015; Lee et al., 2017], включая физико-химические параметры кристаллизации, а также для обсуждения геодинамических условий их проявления. Так, например, содержание Hf увеличивается в кристаллизующемся расплаве из-за его несовместимости, соответственно в кристаллизующемся цирконе отношение Zr/Hf выше, чем в расплаве.

В целом входящие в состав циркона примесные элементы (REE, Y, Hf, Th, U, Ti, Nb, Sc) активно используются при установлении:

- типа исходной породы в детритовых популяциях циркона [Hoskin, Ireland, 2000; Hoskin et al., 2000; Belousova et al., 2002; Hoskin, Schaltegger, 2003; Trail et al., 2012; Sakyi et al., 2019];
- 2. состава исходных расплавов, используя коэффициенты распределения кристалл раплав [Hinton, Upton, 1991; Rubatto, 2002; Hoskin, 2005];

- тектонических обстановок формирования магм [Hawkesworth, Kemp, 2006; Grimes et al., 2007, 2009, 2015; Yang et al., 2012];
- температуры кристаллизации магмы [термометр Ті и Нf в цирконе Watson et al., 2006; Ferry, Watson, 2007; Harrison et al., 2007; Fu et al., 2009; Аранович, Бортников, 2018; Аранович и др., 2020].

Первые данные по геохимии примесных элементов в цирконе из нижнекоровых ксенолитов и гранитоидов Чукотки были приведены в работах [Акинин, Готтлиб, 2012; Акинин и др., 2013; Alexeev, Alexeev, 2020]. Если в первых двух работах локальный SIMS-анализ проведен в чистых, без включений участках кристаллах циркона, то в последней работе указывается, что анализировались, в том числе, редкометаллические наросты и минеральные микровключения, а также трещиноватые и пористые участки, отражающие рекристаллизацию и «метасоматические изменения» [Alexeev, Alexeev, 2020]. По этой причине последние данные вряд ли подходят для надежной оценки источников и условий кристаллизации магм.

6.3.1. Результаты

Концентрации примесных элементов в цирконах из Велиткенайского комплекса и Чукотских гранитоидов представлены в табл. В.4. приложение В. Всего были проанализированы 52 зерна циркона из пород Велиткенайского комплекса (7 образцов) и 41 зерно из Чукотских гранитоидов (4 образца из массивов Янранай, Инрогинай, Северный и Пыркаваам). Перед ионным микроанализом были тщательно выбраны чистые участки кристаллов циркона без включений и трещин. Тем не менее в некоторых анализах были установлены аномальные повышенные концентрации ряда элементов и эти данные были исключены из дальнейшего рассмотрения. В качестве критериев фильтрации были использованы такие параметры, как наклон и уплощенный спектр в области легких редкоземельных элементов по индексу LREE-I = Dy/Nd + Dy/Sm, с помощью которого можно количественно отличать измененный циркон (LREE-

I<50) от неизмененного (LREE-I>50–60) [Bell et al., 2019]. Отфильтрованные таким образом наши данные показаны на **рис. 6.5 а**.

Рис. 6.5. Диаграммы содержаний примесных элементов в цирконе гранитоидов Чукотки. а – сумма REE против индекса LREE-i [Bell et al., 2019], б – Ff (Фактор фракционирования) против Т (Температура) [Kirkland et al., 2015], в – Fe против K/(Na + Al), примечательна разница в составе цирконов из монцонитоидов Велиткенайского комплекса от цирконов из других гранитоидных массивов Чукотки. г – Th против U. Условные обозначения: 1–4 – Чукотские гранитоиды (1 – Пыркаваамский массив, 2 – Инрогинайский массив, 3 – Янранайский массив, 4 – Северный массив); 5–8 – Велиткенайский комплекс (5 – монцонитоиды, 6 – лейкограниты, 7 – высокоглиноземистые лейкограниты, 8 – унаследованные неопротерозойские ядра).

Наиболее выразительно дискриминационные возможности для изученных гранитоидов проявляются на диаграмме Fe против K/(Na + Al), где устанавливаются наиболее низкие значения этих параметров для Чукотских

гранитных массивов в сравнении с Велиткенайскими, для которых K/(Na + Al) = 0,615-1,25; Fe = 0,5-5,5 г/т (табл. В.4. приложение В, рис. 6.5 в).

Зависимость отношения U/Th между цирконом и расплавом от температуры кристаллизации позволяет разделять равновесный расплаву циркон OT неравновесного (ксеногенного) [Kirkland et al., 2015]. Авторы предложили диаграмму (рис. 6.5 б), которая помогает отличить мезостазисный рост циркона от кумулятивного роста в менее фракционированной магме. Все наши изученные цирконы находятся ниже линии равновесной кристаллизации, кроме унаследованных неопротерозойских ядер из высокоглиноземистых лейкогранитов Велиткенайского комплекса (рис. 6.5 б). Точки для каждого гранитоидного массива на диаграмме формируют тренды, отражающие ход фракционной кристаллизации.

В целом доверительные интервалы содержания Hf для пород Велиткенайского комплекса варьируют от 12 701 до 14 862, в цирконах из других массивов Чукотки интервалы Hf изменяются от 10 171 до 11 414 г/т. Такое отличие в величинах доверительных интервалов демонстрирует обогащение Hf цирконов в породах Велиткенайского комплекса в сравнении с цирконами из Чукотских гранитоидов и, следовательно, отражает их кристаллизацию из более фракционированного расплава [Hoskin, Schaltegger, 2003].

Содержание Nb во всех проанализированных зернах циркона находится в пределах нормы для неизмененного магматического циркона (Nb \leq 62 г/т [Hoskin, Schaltegger, 2003], за исключением двух анализов лейкогранитов в обр. 6000 (точки 4,1 и 6,2) с высоким значением (138,17 и 72,46 г/т, табл. В.4. приложение **B**). Обычные содержания Nb В изученных образцах велиткенайских лейкогранитов (медианные значения варьируют от 11,3 г/т в обр. 4504 до 40 г/т в обр. 6000) выше, чем в монцонитоидах (от 7,17 г/т до 8,45 г/т) и гранитоидов других чукотских массивов (от 3,11 г/т в массиве Пырканай до 5,84 г/т в массиве Инрогинай).

По Ti цирконы содержанию Велиткенайских магм отличаются пониженными в 2-3 раза значениями, в сравнении с цирконами из гранитоидов других массивов Певекской группы. Максимальные значения содержаний Ті в цирконе установлены для Инрогинайского и Северного массивов, от 33,11 до 27,3 г/т. соответственно. Эти значения не превышают нормального содержания Ті в цирконе (< 75 г/т) [Hoskin, Schaltegger, 2003]. Более высокие значения скорее всего отражают захват микровключений при анализе. Тем не менее один анализ циркона из лейкогранита (обр. 6000) показал повышенное значение Ті = 78,6 г/т, данное значение с учетом погрешности в определении Ті принимается как магматическое.

(рис. 6.6) REE Нормированные хондриту спектры цирконов ПО характеризуются типичным обогащением тяжелыми редкоземельными элементами (HREE) по сравнению с легкими редкоземельными элементами (LREE) и отчетливыми положительными аномалиями Ce, отрицательными аномалиями Eu (Ce/Ce* = Ce_N/(La_N* Pr_N)^{0,5}, Eu/Eu* = Eu_N/(Sm_N*Gd_N)^{0,5}). Эти особенности типичны для неизмененных магматических цирконов [Claiborne et al., 2010; Belousova et al., 2002; Hoskin, Schaltegger, 2003; El-Bialy, Ali, 2013]. Аномалии Се в Пырканайском и Янранайском гранитоидах варьируют от 22,51 до 313,2, в монцонитоидах Велиткенайского комплекса от 40,66 до 1497 (обр. 4600А, AKS и AGM соответственно), в лейкогранитах от 17,45 до 480 (обр. 6000 и 4504). Наиболее сильно отрицательная аномалия Еи проявляется в цирконе из велиткенайских монцонитоидов (медианное значение - 0,37 против 0,03-0,08 для других чукотских массивов) табл. В.4. приложение В. Соотношение аномалий Се и Еи характеризует также степень окисления магм [Claiborne et al., 2010; El-Bialy, Ali, 2013; Li et al., 2014; Sakyi et al., 2019], которая для изученных

Рис. 6.6. Спектры распределения редкоземельных элементов в цирконах из гранитоидов Чаунской провинции: а–г – Велиткенайский комплекс (а – монцонитоиды, б – лейкограниты, в – высокоглиноземистые лейкограниты, г – унаследованные неопротерозойские ядра в лейкогранитах); д, е – гранитоиды Певекской группы (д – Инрогинайский и Янранайский, е – Северный и Пыркаваамский). Состав хондрита по [McDonough, Sun 1995]. Отфильтрованные данные измененного циркона (LREE-I < 50, залитые области спектров).

нами объектов определенно окисленная. Сумма REE во всех изученных цирконах составляет от 292 до 1533 г/т, за одним исключением (велиткенайский лейкогранит, обр. 6000, 362–4345 г/т, медиана – 1990). Индивидуальные спектры РЗЭ цирконов из каждого образца породы почти параллельны. Эта особенность выявляет важное сходство между составами изученных цирконов.

Магматические цирконы, как правило, имеют схожие спектры распределения REE [напр., Geisler et al., 2003; Hoskin, 2005], в то время как гидротермальные цирконы обычно имеют сглаженный спектр со слабо выраженной аномалией Ce [Hoskin, 2000; Hoskin, Schaltegger, 2003; Wang et al., 2012]. Однако некоторые исследования показали, что химический состав магматических цирконов может быть похож на гидротермальный [Schaltegger, 2007; Fu et al., 2009].

Для цирконов разного генезиса также предлагается использовать отношение Th/U [Hidaka et al., 2002; Rubatto, 2002; Hoskin, Schaltegger, 2003; Xiang et al., 2011]. В цирконе магматических пород Th/U отношение варьирует обычно от 0,32 превышая 0,5, ЛО 0.70. часто тогда как цирконы, образованные В метаморфических условиях, обладают значительно более низкими значениями (~ 0,1). В гидротермальных цирконах, как правило, Th/U варьирует от 0,1 до 0,3 [Hoskin, Schaltegger, 2003; Hu et al., 2012]. В изученных нами чукотских кристаллах циркона Th/U отношение (рис. 6.5 г, табл. В.4. приложение В) изменяется от 0.3 ЛО 1.1. Примечательно, что И В унаследованных неопротерозойских ядрах (обр. 3300) Th/U > 0,6, что указывает на их магматический генезис. В лейкогранитах Велиткенайского комплекса, напротив, большая часть значений находится в области неопределенности (Th/U = 0,17-0.26). отражают Мы полагаем, что такие низкие значения изменения температурного

141

Рис. 6.7. Дискриминационные диаграммы для разделения цирконов разного генезиса: а – по [Hoskin, Schaltegger, 2003], серым – поле магматического циркона; б, в – по [Hoskin, 2005] (I – циркон континентальной коры, II – циркон океанической коры); г – по [Grimes et al., 2015] (I – циркон магматических дуг, II – циркон океанической коры); д, е – по [Grimes et al., 2007] (I – магматический циркон, II – гидротермальный циркон). Обозначения как на **рис. 6.5**.

режима кристаллизации. Согласно [Bolhar et al., 2008], отношение Th/U чрезвычайно чувствительно к изменениям температуры. Понижение температуры магмы приводит к повышению содержаний U по сравнению с Th, что обусловливает более низкие Th/U отношения для циркона, кристаллизующегося при более низких температурах магмы [Xiang et al., 2011].

Дискриминация циркона на гидротермальный и магматический была предложена в работах [Hoskin, Schaltegger, 2003; Hoskin, 2005]. Согласно классификационным полям на **рис. 6.7 а-в** фигуративные точки большинства цирконов соответствуют магматическим, за редким исключением располагаются вблизи полей магматического циркона.

Для определения источников магмы широко используются отношения U/Yb, Nb/Yb и содержания Hf, Y в цирконах [Kelemen et al., 2003; Grimes et al., 2007, 2015; El-Bialy, Ali, 2013; Deng et al., 2019; Sakyi et al., 2019 и ссылки в этих работах]. Эти параметры позволяют различать цирконы, образовавшиеся в мантийной или коровой магме [Grimes et al., 2007].

Все изученные цирконы попадают в поля цирконов коровых магм (**рис. 6.7** д, е). По соотношению U/Yb против Nb/Yb все цирконы соответствуют цирконам магматических дуг (**рис. 6.7** г).

Примесные элементы в цирконе ряд исследователей используют также для реконструкции тектонических обстановок формирования магм [Hawkesworth, Kemp, 2006; Yang et al., 2012; Grimes et al., 2015]. Для внутриплитных магм характерно обогащение Nb по сравнению с магмами, образованными в дуговых обстановках, которые имеют более низкие отношения Nb/Hf и более высокие отношения Th/Nb при сравнимой степени магматического фракционирования [Sun, McDonough, 1989]. На этом основании был предложен ряд диаграмм для циркона (**рис. 6.8 а, б**), для различия внутриплитных и дуговых обстановок (анорогенных).

Чукотские цирконы в целом на диаграмме Th/U – Nb/Hf попадают во все выделенные дискриминационные поля (**рис. 6.8 a**). На диаграмме Th/Nb против Hf/Th практически все фигуративные точки попадают в поле орогенных обстановок (**рис. 6.8 б**). Цирконы из лейкогранитов и часть древних ядер, напротив, размещаются на диаграммах в выделенных полях анорогенного, внутриплитного магматизма (**рис. 6.8 а, б**).

Рис. 6.8. Дискриминационные геодинамические диаграммы для циркона. а – по [Hawkesworth, Kemp, 2006] и б – по [Yang et al., 2012]. Поле I – внутриплитная анорогенная обстановка, II – магматические дуги.

Размещение точек состава изученных цирконов на рис. 6.8 a (3a исключением лейкогранитов) может быть интерпретировано как свидетельство их формирования на стадии постколлизионного растяжения. Это наблюдение согласуется с геохимическими и геохронологическими результатами по валовому составу пород, характеризующихся обогащением LILE, истощением HREE и HFSE и отчетливой отрицательной аномалией Nb-Ta, которые типичны для субдукцией, условий, связанных с но отражать условия могут И постколлизионного растяжения [Акинин и др., 2022].
6.4. Выводы

Изученные цирконы различаются по концентрациям неструктурных элементов K/(Na + Al) и Fe. Для дискриминации предлагается использовать диаграмму K/(Na + Al) против Fe (граничные значения 0,6 и 6 соответственно), которая позволяет различать лейкограниты от монцонитоидов и гранодиоритов. По расчетным доверительным интервалам содержаний гафния цирконы из магматических пород Велиткенайского комплекса в сравнении с другими гранитоидными массивами Чукотки демонстрируют обогащение гафнием (Hf = 12 701–14 862 г/т и Hf = 10 171–11 414 г/т соответственно) и обеднение титаном приблизительно в 2 раза (медианные значения 7,1 против 14,2 г/т), что отражает более высокую степень магматической эволюции [Hoskin, Schaltegger, 2003] и относительно низкую температуру кристаллизации (680–760 °C и 720–830 °C).

Ядра цирконов неопротерозойских ортогнейсов из лейкогранитов Велиткенайского комплекса более железистые, титанистые, высокотемпературные содержат максимальные количества Fe, Al, Eu, Sm, Gd, Tb,Dy, Ho, Er, Tm, Yb и пониженные значения Hf, чем все изученные цирконы. По Th/U отношению (> 0,5) цирконы относятся к магматическому [Hoskin, Schaltegger, 2003; Hu et al., 2012].

Лейкограниты и часть неопротерозойских ядер цирконов из них определяются (см. **рис. 6.8 а, б**) анорогенным полем внутриплитного магматизма. Повышенные концентрации Fe в цирконах из этих гранитов могут указывать на их принадлежность к A-типу, что характерно для неопротерозойских ортогнейсов Аляски [Amato et al., 2014]. Магматические (Th/U > 0,5) унаследованные неопротерозойские ядра велиткенайских цирконов более железистые, титанистые, высокотемпературные, содержат относительно высокие концентрации Fe, Al, Eu, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb и пониженные значения Hf.

Геохимия циркона из чукотских гранитоидов и монцонитоидов позволяет реконструировать постколлизионную геодинамическую обстановку, связывать формирование этих пород со стадией постколлизионного растяжения. Лейкограниты и неопротерозойские ортогнейсы, судя по геохимии циркона, формировались в условиях растяжения, близких к внутриплитной обстановке. Повышенные концентрации Fe в этих цирконах могут указывать на магмы Aтипа, что отмечалось также и для неопротерозойских ортогнейсов Аляски [Amato et al., 2014].

Результаты согласуются с моделью геодинамической коллизии микроконтинента Арктическая Аляска – Чукотка и Сибирского континента, при которой происходит утолщение земной коры, а затем расслаивание подкоровой литосферной мантии, способствующее растяжению и нижнекоровому андерплейтингу.

ГЛАВА 7. ГЕОХИМИЯ И ПЕТРОГЕНЕЗИС ПОРОД ВЕЛИТКЕНАЙСКОГО КОМПЛЕКСА

Вариации главных и примесных элементов, а также изотопных отношений в изверженных породах в координатах времени представляют один из путей предметного обсуждения вопросов петрогенезиса, таких как вклад мантийных компонентов, природа взаимодействия коры и мантии, в конечном итоге используемых для реконструкции эволюции глубоких частей земной коры.

7.1. Геохимия главных и примесных элементов

Гранитоиды Велиткенайского комплекса характеризуются широкими вариациями главных и примесных элементов. По содержанию SiO₂ амфиболбиотитовые монцонитоиды (53,2–66,4 масс.%) заметно отличаются от биотитовых (73,2–79,1 масс.%) и гранат-мусковитовых гранитоидов (74,5–75,6 масс.%) (**рис. 7.1**). По соотношению SiO₂ и K₂O большая часть ранних амфиболбиотитовых монцонитоидов и гранодиоритов относятся к шошонитовой серии, остальные вместе с гранат-мусковитовыми гранитоидами отвечают высококалиевой известково-щелочной серии (**рис. 7.2**, **табл. 7.1**).

На диаграммах Б.Р. Фроста с соавторами [Frost et al., 2001] амфиболбиотитовые монцонитоиды (кроме обр. 11А) относятся к магнезиальным (Fe# = $FeO_{ofut}/FeO_{ofut} + MgO) = 0,53-0,79$), преимущественно щелочным, щелочноизвестковым и метаглиноземистым образованиям (индекс глиноземистости ASI < 1.0) (**рис. 7.2**). Для части образцов (с повышенным количеством порфировых вкрапленников) индекс глиноземистости ASI > 1,0 (умеренноглиноземистые), но не превышает значения 1,1, кроме обр. 40А. Биотитовые гранитоиды преимущественно относятся к магнезиальным (Fe# = 0,60-0,91), щелочным, щелочно-известковым, высокоглиноземистым образованиям (индекс глиноземистости ASI > 1,0, **рис. 7.2**). Гранат-мусковитовые гранитоиды (кроме обр. 3903)

Таблица	7.1.	Представительные	составы	горных	пород	Велиткенайского

комплекса

Группа	1	1	1	1	1	1	1	2	2	2
Образец	EGC11	EGC15	4005	4600A	4600Ag	EGC33	3500	EGC33	4504	5100
Порода ¹	МО	MO	MO	MO	ГД	ДИ	ГД	Г	Г	Г
SiO ₂	58.05	62.11	53.18	57.79	63.33	61.19	63.75	70.67	70.51	76.49
TiO ₂	1.01	0.83	1.02	0.62	0.61	0.81	0.58	0.4	0.26	0.06
Al_2O_3	16.31	16.15	16.99	18.37	17.4	16.03	15.68	14.64	15.36	12.67
FeOoбщ	13.99	4.42	7.02	4.67	3.57	5.51	3.96	1.71	1.85	1.08
MgO	3.69	2.55	4.65	2.21	2.07	3.08	2.12	0.76	0.48	0.13
MnO	0.1	0.06	0.11	0.09	0.07	0.1	0.08	0.02	0.03	0.01
CaO	6.06	3.97	6	3.21	3.98	4.97	3.91	1.27	1.68	0.59
Na ₂ O	3.34	3	2.99	3.6	4.58	3.72	3.65	2.39	3.77	2.59
K_2O	2.42	5.46	5.35	6.9	2.49	2.97	2.73	7.15	5.28	6.09
P_2O_5	0.31	0.27	0.6	0.4	0.24	0.29	0.23	0.09	0.1	0.01
П.п.п.	0.84	0.5	1	1	1.15	0.63	2.76	0.5	0.35	0.08
Сумма	99.97	99.99	99.98	99.96	99.96	99.98	99.97	99.96	99.99	100
Cr	66	38	40	10	33	48	40	8		4
Ni	32	14	13	10	29	20	15	3		7
Sc	14	9	20	10	10	17	8	2		1
Rb	179	292	204	322	278	233	181	314		163
Cs	21	21.1	6.9	4.3	7.7	16.6	15.2	8.5		2
Ba	624	1560	2979	2486	589	530	695	1442		779
Sr	480	688	1403	1231	967	555	480	610		78
	17	2.8	1.2	2	2.7	3.5	3.5	2.9	14	0.2
	1/	l / 1	18	19	10	19	19	14	14	/
HI 7	244	1	2	250	102	1	1	2	210	l 115
Zr	344 40	298 41	298 42	339	192	233 75	234 40	522	210	115
I Dh	40	41 51 1	45 51.2	40	41	22.0	40	62.2		227
r v Th	52	53 /	24.5	02.8	56.5 55.1	52.9 40.0	50.2	157.1		52.7 17
TI TI	5.2	65	24.J 5 2	95.5	4 7	40.9 5 5	10.7	69		07
U La	5.2 88.8	113.8	92.6	2877	103.6	94.8	95	332		11.9
Ce	157.7	233.7	232.6	507.6	340	196 7	1954	587.4		35
Pr		24.9	24 02	56 87	40.48	21 42	19 69	67.15		3 54
Nd	64.6	91	92.4	191.8	143.6	80.4	69.2	227		14.2
Sm	_	16.06	17.4	28.57	22.88	16.01	11.4	36.64		3.36
Eu		2.27	3.22	4.66	3.14	1.93	1.42	2.42		0.45
Gd	_	16.32	17.34	26.52	20	17.79	12.3	35.8		3.2
Tb		1.81	1.93	2.37	2.1	2.42	1.45	3.52		0.41
Dv	—	8.83	9.35	10.19	10.56	13.67	7.62	15.12		2.08
Но	—	1.53	1.7	1.57	1.79	2.63	1.39	2.32		0.38
Er	—	4.45	4.68	4.9	5.52	7.93	4.37	6.45		1.06
Tm	—	0.58	0.61	0.55	0.74	1.09	0.61	0.71		0.14
Yb	—	3.76	3.83	3.97	5.28	7.38	4.35	4.6		0.88
Lu		0.5	0.54	0.53	0.73	1.01	0.61	0.55		0.13
1			Pa	счетные і	параметры	[
Щелочность ²	В-КИ	Ш	Ш	Ш	В-КИ	в-ки	В-КИ	Ш	Ш	Ш
Глиноземистость"	M	M	M	M	M	M	M 2 72	11	11	
K ₂ U/Na ₂ U	2.42	5.46	5.35	0.9 1129	2.49	2.97	2.13	/.15	5.28	6.09
UYMMAKEE Th/II		519	503	1128	/90	405	423	1522		// 2/ 1
1 II/U La/Sm		ð.2 7.00	4./	10	11.0	/.4	4./3	22.7		24.1 2.5
La/SIII La/Vh	_	20.2	5.5 24.2	72.5	0.J 26 7	5.9 12 9	0.34 21.0	7.1 72 1		5.5 12.6
La/ 1 U Nh/7r	0.05	50.5 0.06	24.2 0.06	12.3	50.7 0.09	12.0	21.9 0.07	12.1	0.07	13.0
	0.05	0.00	0.00	0.05	0.00	0.00	0.07	0.04	0.07	0.00

Окончание таблицы 7.1

Г	2	2	2	2 41	2 4 1	2 4 1	MI	N /TT	MI	N/III
1 руппа	2	2	2	2-Al	2-AI	2-Al	МИ	МИ	МИ	МИ
Образец	5600	6000	EGC36	EGC30	3300	7701	EGC31	EGC35	4719	5601
Порода ¹	Γ	Γ	Γ	Γ	Γ	Γ	МИ	МИ	МИ	МИ
SiO ₂	73.44	73.87	75.92	74.33	75	74.01	51.48	67.05	69.81	76.73
TiO ₂	0.1	0.13	0.17	0.11	0.04	0.02	0.9	0.66	0.21	0.17
Al ₂ O ₃	15.18	14.01	12.68	14.01	14.07	15.12	17.65	14.68	16.37	11.29
FeOoб ш	1.13	0.76	1.79	1.15	0.65	0.93	7.38	5.18	1.41	2.68
MgO	0.31	0.47	0.3	0.16	0.09	0.11	3.81	2.09	0.54	0.8
MnO	0.02	0.01	0.03	0.06	0.12	0.15	0.11	0.1	0.02	0.04
CaO	2.25	0.75	1.13	0.63	0.47	0.46	5.7	1.58	1.54	0.95
Na ₂ O	5.7	2.13	3.83	3.72	3.5	4.9	2.49	3.34	4.05	2.8
K ₂ O	1.27	7.25	3.55	4.98	5.7	3.7	6.39	3.91	4.89	3.86
P ₂ O ₅	0.02	0.07	0.03	0.03	0	0.2	1.03	0.07	0.04	0.02
П.п.п.	0.42	0.34	0.29	0.66	0	0	1.75	0.69	0.97	0.31
Сумма	99.99	99.98	99.96	99.99	100.01	100	99.95	99.99	100.01	100
Cr	4	5	4	2	6	17	3	60	7	6
Ni	2	2	1	0	1	1	1.5	20	4	16
Sc	2	1	3	5	6	2	15	16	4	6 102
Rh	5.5	387	157	498	454	342	198	284	188	19.3
	1.5	9.3	4	40.5	12.1	65 20	.5.4	11	5.6	120
Ba S-	140	1109	61Z	164	103	29	4272	441	4/4	438
Sr Te	249	496	/4	0U 7 0	29	1.5	0.5	142	184	0.2
1a Nh	0.5	0.4 Q	0	7.9	22	4.5	0.5	2.4	0.5	0.5
IND TIF	0	2 2	9	21		1	14 2	20	0	0
Tr Zr	93	136	157	117	68	34	77	178	10	256
V	5	9	49	16	64	5	38	7	11	6
Pb	19.6	87.5	191	48 7	92.1	217	64	29.5	26.6	287
Th	77	64.1	14.6	41.8	12.6	2.4	10.9	12.1	12.3	10.1
U	0.8	3.9	2.2	10.5	32.2	1.9	1.3	3.3	2.3	0.7
La	14.4	53.8	41.3	27.8	7.7	2.02	143.4	25.3	27.9	24.1
Се	32	219.7	94.6	62.2	13.4	4.46	327	54.6	49.8	52.4
Pr	3.53	14.19	9.56	6.8	1.46	0.54	40.94	5.98	6.31	5.81
Nd	13.9	48.96	38.03	25.47	6.2	2.08	169.94	23.59	22.83	23.32
Sm	2.84	8.24	8.96	5.96	2.86	0.78	28.4	4.62	4.48	4.66
Eu	0.64	1.84	0.91	0.4	0.18	0.06	5.82	1.01	0.91	0.71
Gd	3	7.33	10.87	5.97	5.17	0.86	25.59	4.96	4.18	4.81
Tb	0.34	0.65	1.67	0.79	1.3	0.17	2.27	0.55	0.49	0.51
Dv	1.49	2.95	10.24	4.04	10.03	1.08	9.84	2.32	2.33	2.04
Ho	0.22	0.46	1.95	0.69	2.34	0.17	1.38	0.31	0.39	0.28
Er	0.51	1.37	5.6	2.03	8.54	0.52	4.18	0.38	1.04	0.6
l'm Vl	0.06	0.17	0.72	0.28	12.70	0.09	0.4	0.07	0.12	0.05
YD Lu	0.42	1.2	4.44	1.97	12.70	0.74	2.65	0.52	0.74	0.39
1.10	0.0.5	0.18	<u> </u>	0.27	1.80	0.09	0.54	0.07	<u>U.</u> 1	0.0.5
	И	III		счетные п р и и	adametdi 111	ы рии	III	рии	III	рии
пелочность Глинозамистости ³		ш	р-у Ц	р-у ц	ш	р-у Ц	Ш	р-у ц	ш	р-к и П
	1 27	7 25	3 55	1 98	57	37	6 30	3 01	1 80	3 86
CvmmaRFF	73	361	2.55	145	75	14	762	124	122	120
Th/II	92	16.6	66	39	04	1 31	8 58	3 68	53	14 84
La/Sm	5.1	6 53	4 61	47	2 71	2.6	5.05	5.5	6.2	5.2
La/Yb	34.1	44 8	93	14.13	0.61	2.72	54 2	48.4	37.4	61.62
Nb/Zr	0.06	0.06	0.06	0.18	0.48	0.32	0.18	0.11	0.29	0.04

Примечания. 1 – Г – гранит, ГД – гранодиорит, М-монцонит, КМ – кварцевый монцонит, ДИ – диорит, МД – монцодиорит, МИ – мигматит. 2 – И – известково-щелочная, В-К И – высококалиевая известково-щелочная, Ш – шошонитовая. 3 – П – высокоглиноземистые, М – метаглиноземистые. Главные элементы в масс.% (XRF), примесные элементы в г/т (ICP-MS), прочерк – не определялось. характеризуются как железистые, щелочно-известковые и высокоглиноземистые образования.

Вариации главных элементов в зависимости от SiO_2 (диаграммы Харкера, **рис. 7.1**) демонстрируют более или менее хорошо выраженные тренды с обратной зависимостью, обычные для гранитоидов известково-щелочных серий и отражающие изменяющиеся пропорции фракционирующих породообразующих минералов и разную долю ассимиляции в породах (процесс AFC). Поведение большинства главных элементов, а также Rb, Sr и Sc согласуется главным образом с фракционированием полевых шпатов, магнетита и амфибола (**рис. 7.1**).

Для мигматитов характерны широкие вариации состава, однако примечательным является намечаемое сходство с составами именно поздних лейкогранитов, что предполагает их генетическую связь. Вариации примесных элементов в целом не такие ясные, из наиболее примечательных можно отметить относительно широкие вариации Rb в поздних биотитовых лейкогранитах (**рис. 7.1**).

Широкие вариации главных элементов находят свое отражение и в поведении примесных некогерентных элементов. Большинство монцонитоидов первой фазы отличаются самыми высокими суммарными концентрациями примесных элементов в целом и Th и REE, в частности, обогащены LREE, в них наблюдаются четко выраженные отрицательные аномалии Nb, Ta, Eu и Hf (REEcym. = 285-790 г/т; (La/Lu)N = 9,7-46,7; (La/Sm)N = 3,3-6,6; (Gd/Lu)N = 2,2-5,4; Eu/Eu# = 0,35-0,63; **рис. 7.3, рис. 7.4**).

В них также отмечаются повышенные концентрации Со, Ni, Cr, V, в сравнении с поздними лейкогранитами (**табл. 7.1**). Собственно биотитовые лейкограниты, напротив, характеризуются более низкими суммарными концентрациями примесных элементов, в них наблюдаются более широкие вариации элементов, глубокие негативные аномалии Ta, Hf и Ti (**рис. 7.4**).

Рис. 7.1. Вариации главных и примесных элементов относительно SiO₂ в горных породах Велиткенайского комплекса. 1 – ранние монцонитоиды, 2 – поздние граниты и лейкограниты, 3 – глиноземистые лейкограниты с мусковитом и гранатом, 4 – мигматиты, 5 – вмещающие девонские кристаллические сланцы, парагнейсы. Оксиды – в масс.%, Rb, Sr, Sc – в г/т. Стрелками показаны генеральные тренды эволюции остаточного расплава при фракционировании минералов из монцонитов (Pl – плагиоклаз, Kfs – калиевый полевой шпат, Am – амфибол, Bt – биотит, Mag – магнетит, Cpx – клинопироксен). Длина стрелок отражает приблизительный вклад минерала в коэффициент распределения кристалл – расплав.

Рис. 7.2. Химический состав пород Велиткенайского монцонит-гранит-мигматитового комплекса на классификационных и дискриминантных диаграммах. А –[Streckeisen, Le Maitre, 1979], Б – [Peccerillo, Taylor,1976], В, Г – [Frost et al., 2001], Д – [Pearce et al., 1984], Е – [Batchelor, Bowden, 1985]. Для сравнения поля составов гранитоидов территории Чукотки показаны пунктирными цветными линиями: фиолетовая – Чаунская субпровинция [Дудкинский и др., 1993; Tikhomirov et al., 2009; Акинин и др., 2022]; зеленая – Билибинская субпровинция [Лучицкая и др., 2010]; серая – о-в Врангеля [Luchitskaya et al., 2017]. Цифры на рис. (A): 2 – целочно-полевошпатовый гранит, 3а/3b – гранит, 4 – гранодиорит, 5а/3b – тоналит, 6 – щелочно-полевошпатовый сиенит, 7 – сиенит, 8 – монцонит, 9 – (а) монцодиорит/(b) монцогаббро, 10 – (а) диорит/(b)габбро, *кварцевый (ое).

Рис. 7.3. Распределение редкоземельных элементов в горных породах Велиткенайского комплекса. Нормализовано к РМ – примитивной мантии по [McDonough, Sun, 1995]. Серым фоном показан интервал составов всех гранитоидов и ортогнейсов Чукотского п-ова и о-ва Врангеля.

Для гранат-мусковитовых лейкогранитов на нормализованных спайдерграммах характерны глубокие минимумы по Ba, Sr, LREE и Ti, высокие положительные аномалии Cs, Rb, K, Ta (**рис. 7.4**). Мигматиты выделяются в целом сильно дифференцированным спектром распределения примесных некогерентных элементов, с хорошо проявленными негативными аномалиями Ta и Hf, большими вариациями суммарных концентраций HREE (**рис. 7.3**, **рис. 7.4**). Гранитоиды в остальных изученных массивах Чаунской провинции по характеру распределения редкоземельных элементов в целом сходны с поздними велиткенайскими лейкогранитами (**рис. 7.3**).

В целом химический состав изученных монцонитоидов и гранитоидов отличают повышенная калиевость, монцонитоидные тренды и слабо выраженные негативные Nb-Ta троги на спайдерграммах. На дискриминантных диаграммах

153

Дж. Пирса точки состава попадают в область около границы синколлизионных и внутриплитных гранитоидов. Напротив, на диаграмме 3. Батчелора и П. Боудена [Batchelor, Bowden, 1985] фигуративные точки монцонитоидов занимают область постколлизионных и позднеорогенных гранитоидов, а лейкограниты – посторогенных гранитоидов (**рис. 7.2 е**). Такие геохимические характеристики позволяют предполагать их формирование в условиях постколлизионного растяжения.

Рис. 7.4. Распределение примесных некогерентных элементов в горных породах Велиткенайского комплекса. Нормализовано к модельному составу верхней континентальной коры – UC, по [Taylor, McLennan, 1995]. Серым фоном показан интервал составов всех гранитоидов и ортогнейсов Чукотского п-ова и о-ва Врангеля.

7.2. Изотопно-геохимические характеристики пород

Концентрации и вариации изотопов в валовом составе пород позволяют дополнительно различать группы гранитоидов Велиткенайского комплекса. Изотопный состав получен для 23 образцов, из которых на Sr, Nd и Pb были проанализированы 22 и 19 образцов соответственно (табл. 7.2).

Образец	Порода	Группа		Сод	цержание	лементов	, г/т		Изотопные отношения							
			U	Pb	Rb	Sr	Sm	Nd	²³⁸ U/ ²⁰⁴ Pb	²³⁵ U/ ²⁰⁴ Pb	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁶ Pb ±2σ	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb ±2σ	²⁰⁸ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb ±2σ
31	ГБ		_	_	194.96	3063.6	30.01	184.18	_	_	_	_	_	_	_	_
11A	ДИ	1	—	—	161.02	440.4	10.97	64.25	—	—	—	_	—	_	—	_
15	MO	1		—	282.27	651.2	15.78	89.21	—	—	—		—	—	—	—
4002	MO	1		—	212.85	1391.9	16.97	95.16	—	—	—		—	—	—	—
3500	ГД	1	9.07	27.5	172	452	10.43	61.29	21.12	0.153	19.189	0.065	15.65	0.073	39.433	0.092
4600 Agm	MO	1	3.41	26	201	906	14.3	86.61	8.37	0.061	18.885	0.068	15.631	0.076	39.425	0.096
4600 Kfs	MO	1	0.66	83.6	457	1086	6.33	35.88	0.5	0.004	18.712	0.085	15.621	0.095	38.914	0.12
11EGC33	ДИ	1	5.07	29.3	216	517	16.65	82.48	11.06	0.08	19.061	0.067	15.644	0.075	39.376	0.095
5600	ГР	2	0.69	18.2	50	229	2.84	13.53	2.43	0.018	19.004	0.063	15.645	0.07	39.177	0.089
6000	ГР	2	3.6	65.7	278	471	6.61	38.6	3.49	0.025	18.882	0.085	15.636	0.095	39.212	0.12
11EGC33B	ГР	2	6.32	50.2	292	567	38.85	240.8	8.07	0.059	18.931	0.073	15.636	0.082	39.8	0.103
7701	ГР	Al	1.5	18.2	339	13	0.85	2.28	5.21	0.038	18.965	0.064	15.638	0.071	38.789	0.09
5601	МИ	МИ	0.76	26.9	181	101	5.09	23.6	1.79	0.013	18.99	0.066	15.642	0.073	39.199	0.093
4719 A	МИ	МИ	2.31	26.6	184	177	7.75	43.8	—	_	19.0476	0.0002	15.6136	0.0002	39.3338	0.0005
4719 Б	МИ	МИ	2.31	26.6	236	170	2.39	11.2	—	—	19.0755	0.0002	15.6133	0.0002	39.0226	0.0006
11EGC25	ΠГ	ВП	2.07	20.6	118	227	6.64	36.77	6.53	0.047	19.092	0.063	15.671	0.071	38.78	0.09
11EGC27	ПГ	ВП	2.69	27.4	91	85	9.69	57.84	6.21	0.045	18.798	0.067	15.623	0.074	38.921	0.094
ELM11C2	ПГ	ВΠ	2.01	13.1	141	157	5.93	28.88	9.78	0.071	19.027	0.063	15.653	0.07	39.179	0.089
ELM11C7	ΠГ	ВП	1.53	9.4	83	170	4.53	22.92	10.5	0.076	19.31	0.063	15.665	0.07	39.399	0.089
ELM11C8	ΠГ	ВП	2.23	11.5	171	250	7.52	40.33	12.33	0.089	19.074	0.064	15.657	0.071	39.326	0.09
3101	Tr	ВП	2.41	26.1	179	31.3	7.06	39.93	5.83	0.042	18.712	0.067	15.622	0.075	38.682	0.095
3301	Tr	ВΠ	1.35	16.9	132	118	7.61	41.26	5.06	0.037	18.97	0.064	15.651	0.071	39.172	0.09
36 Kfs	МИ	МИ		_	_		_	_	—	—	19.009	0.039	15.455	0.048	39.054	0.052

Таблица 7.2. Изотопный состав горных пород Велиткенайского комплекса

Окончание таблицы 7.2

		И	зотоп	ные отно	шения				Рассчетные параметры								
Образец	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr	±2σ	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	±2σ	δ ¹⁸ O	Возраст млн. лет	⁸⁷ Sr/ ⁸⁶ Sr(i)	εSr(t)	εNd(i)	εNd(t)	TNd(DM)	TNd(C)	²⁰⁶ Pb/ ²⁰⁴ Pb(i)	²⁰⁷ Pb/ ²⁰⁴ Pb(i)	²⁰⁸ Pb/ ²⁰⁴ Pb(i)
31	0.1842	0.711655	4	0.0985	0.512286	4	0.9	100	0.7113	100	-6.9	-5.6	1146	1385	_		_
11A	1.0585	0.714618	4	0.1032	0.512198	6		108	0.7130	123	-8.6	-7.3	1316	1531	—	—	—
15	1.2552	0.716782	3	0.1069	0.512159	4	8.9	108	0.7148	149	-9.3	-8.1	1418	1600	_	—	—
4002	0.4425	0.710471	4	0.1078	0.512246	2		108	0.7098	77	-7.6	-6.4	1304	1459	—	—	
3500	1.098	0.716799	3	0.1029	0.512167	3	3.9	106	0.7151	153	-9.2	-7.9	1356	1583	18.839	15.650	39.433
4600 Agm	0.6414	0.714344	4	0.0998	0.512291	2	3.2	103	0.7134	128	-6.8	-5.5	1153	1379	18.750	15.631	39.425
4600 Kfs	1.2186	0.715435	4	0.1066	0.512277	4		104	0.7136	132	-7	-5.9	1246	1409	18.704	15.621	38.914
11EGC33	1.2091	0.716623	4	0.122	0.512214	3	9.3	106	0.7148	148	-8.3	-7.3	1559	1528	18.878	15.644	39.376
5600	0.6347	0.715842	4	0.1267	0.512396	3	8	101	0.7149	150	-4.7	-3.8	1325	1238	18.966	15.645	39.177
6000	1.7087	0.717289	5	0.1035	0.512237	1	9	103	0.7148	148	-7.8	-6.6	1267	1471	18.826	15.636	39.212
11EGC33B	1.493	0.717137	4	0.0975	0.512229	1	10	101	0.7150	151	-8	-6.7	1212	1478	18.804	15.636	39.800
7701	76.497	0.826827	4	0.2255	0.512354	4	6.5	101	0.7188	205	-5.5	-5.9		1412	18.883	15.638	38.789
5601	5.1927	0.723799	3	0.1303	0.512501	6	7.6	103	0.7163	169	-2.7	-1.8	1191	1071	18.961	15.642	39.199
4719 A	3.0169	0.725383	5	0.1068	0.512206	2	_	550	0.7021	_	-8.4	-2.1	1351	1462	18.499	15.581	39.334
4719 Б	4.0086	0.726632	4	0.1285	0.512302	3	_	108	0.7205	230	-6.6	-5.6	1521	1393	18.971	15.608	39.023
11EGC25	1.5011	0.72362	4	0.1091	0.512128	1	1.4	360	0.7160	170	-9.9	-5.9	1493	1624	18.717	15.671	38.780
11EGC27	3.0825	0.73481	4	0.1013	0.512065	2	10.2	360	0.7192	216	-11.2	-6.8	1475	1696	18.441	15.623	38.921
ELM11C2	2.5966	0.734651	4	0.1241	0.512126	1		360	0.7215	248	-10	-6.7	1744	1684	18.465	15.653	39.179
ELM11C7	1.4123	0.718893	2	0.1194	0.512048	1		360	0.7117	109	-11.5	-8	1783	1792	18.707	15.665	39,399
ELM11C8	1.9803	0.721798	4	0.1127	0.512042	3	11.4	360	0.7118	110	-11.6	-7.8	1675	1777	18.366	15.657	39.326
3101	16.687	0.78698	1	0.107	0.512092	1	6.8	245	0.7297	363	-10.7	-7.9	1515	169	18.486	15.622	38.682
3301	3.243	0.727691	0	0.1115	0.512104	1	-6.6	245	0.7165	175	-10.4	-7.8	1563	1682	18.774	15.651	39.172
36 Kfs							6.5	612									

Примечания. Обозначения пород: ГР – гранит, ГД – гранодиорит, МО – монцонит, ДИ – диорит, МИ – мигматит, Тг – триасовые песчаники и алевролиты, ПГ – девонские парагнейсы, Kfs – калиевый полевой шпат, gm – основная масса крупно порфировых разностей монцонитов. Группа: 1 – монцонитоиды, 2 – лейкограниты, МИ – мигматиты, Al – высокоглиноземистые жильные фации, BП – вмещающие породы. Егг – погрешность определения отношения в последних знаках или в процентах (Егг, %). Изотопные параметры Sr(i), Nd(i), εNd(t) и TDM - пересчитаны на исходный возраст пород (T, млн. лет).

7.2.1. Sm-Nd изотопная система

Самарий (Sm) и неодим (Nd) относятся к легким редкоземельным элементам. Из пяти изотопов Sm радиоактивным является только изотоп 147 Sm. Среди семи изотопов Nd более распространен изотоп 144 Nd. Радиогенный 147 Sm превращается в 143 Nd с периодом полураспада 1,06 х 10¹¹ лет, процесс описывается уравнением [Lugmair, Marti, 1978]:

$$(143 N d/144 N d)_m = (143 N d/144 N d)_{initial} + (147 S m/144 N d)_m (e^{\lambda t} - 1), \qquad (7.1)$$

где

- $(143 N d/144 N d)_m, (147 Sm/144 N d)_m =$ измеренные современные изотопные отношения в породах;
- $(143 N d/144 N d)_{initial}$ = первичное отношение на время образования породы;
- $\lambda = \kappa o \mu c \tau a \mu a c \pi a a a^{147} Sm 6,54 x 10^{-12} y^{-1}$ [Lugmair, Marti, 1978];
- t = возраст пород.

Определение возраста Sm-Nd методом обычно осуществляется путем анализа отдельных минералов или когенетичных комплексов пород, отношения Sm/Nd которых варьируются в достаточной степени, чтобы определить наклон изохроны в координатах 143 Nd/ 144 Nd и 147 Sm/ 144 Nd. Расчет Sm-Nd возраста гранитоидов и его статистическая оценка проводилась в программе IsoplotR [Vermeesch, 2018] по алгоритмам [Ludwig, 2003].

Эволюция отношения ¹⁴³Nd/¹⁴⁴Nd на Земле относится к модели, называемой хондритовым однородным резервуаром [CHUR: DePaolo, Wasserburg, 1976]. Эта модель предполагает, что общий земной Nd образовался в однородном резервуаре, где отношение Sm/Nd равно соотношению в хондритовых метеоритах. CHUR имеет современное значение отношения ¹⁴³Nd/¹⁴⁴Nd, равное 0,512638, с поправкой на отношение ¹⁴⁶Nd/¹⁴⁴Nd, равное 0,7219, а текущее отношение ¹⁴⁷Sm/¹⁴⁴Nd в CHUR составляет 0,1967 [Jacobsen, Wasserburg, 1980; Faure, 1986]. Расчет отношения ¹⁴³Nd/¹⁴⁴Nd в CHUR на определенный момент времени (t) в прошлом, и линейное изменение содержания неодима в CHUR определяется уравнением форм. 7.2.

 $(143 N d/144 N d)_{C HUR}^{t} = (143 N d/144 N d)_{C HUR}^{0} - (147 S m/144 N d)_{C HUR}^{0} * (e^{\lambda t} - 1)(7.2)$ где

- $(143 N d/144 N d)_{CHUR}^{t}$ = изотопное отношение в заданный момент времени (возраст пород);
- $(143 N d/144 N d)^{0}_{CHUR}$ = современное изотопное отношение, равное 0.512638 [Jacobsen, Wasserburg, 1980];
- $(147 Sm/144 Nd)^{0}_{CHUR}$ = современное отношение в CHUR, равное 0.1967 [Jacobsen, Wasserburg, 1980];
- $\lambda = \text{постоянная распада}^{147}$ Sm равная 6.54 * 10⁻¹² y⁻¹ [Lugmair, Marti, 1978];
- t = возраст пород.

Отношения ¹⁴⁷Sm/¹⁴⁴Nd в проанализированных наших образцах в целом укладываются в типичный диапазон для земной коры [Taylor, McLennan, 1985; Samson et al., 1990] со значениями от 0.088 до 0.126. Однако образец высокоглиноземистого лейкогранита имеет нереально высокие отношения ¹⁴⁷Sm/¹⁴⁴Nd (обр. 7701 = 0.2255), исключен из дальнейшего рассмотрения.

Как показано на диаграмме ¹⁴³Nd/¹⁴⁴Nd против ¹⁴⁷Sm/¹⁴⁴Nd (**рис. 7.5**), данные по исследуемым гранитоидам демонстрируют большой разброс фигуративных точек, что исключает расчет изохронного возраста. Однако, используя крайние нижние фигуративные точки (обр. 15, 33A) получаем расчетный эрохронный возраст около 556 млн. лет (первичное отношение 0,511769). Расчет по крайним верхним точкам (обр. 31, 5600) показывает значение в 590 млн. лет (первичное отношение 0,511906). При этом в центральной части по двум точкам (лейкосома и меланосома из образца мигматизированного ортогнейса 4719) расчетный возраст определяется значением 677 млн лет (первичное отношение 0,511732). Таким образом, несмотря на то, что расчет корректной изохроны невозможен, полученные оценки эрохронного возраста по крайним и средним значениям демонстируют похожие оценки возраст с таковыми для унаследованных древних ядер в цирконах гранитоидов (см. главу 6). Sm-Nd изотопные данные могут отражать гипотетический возраст протолита гранитоидов и монцонитоидов Велиткенайского комплекса.

Рис. 7.5. Диаграмма ¹⁴³Nd/¹⁴⁴Nd против ¹⁴⁷Sm/¹⁴⁴Nd для магматических пород Велиткенайского комплекса. Пунктирными линиями показаны эрохроны с протерозойским возрастом от 677–550 млн. лет.

Параметр эпсилон Nd и модельный возраст обедненной мантии

Д. ДеПаоло и Г. Вассербург [1976] ввели параметр эпсилон Nd (εNd) для сравнения различий между отношением ¹⁴³Nd/¹⁴⁴Nd в породах и хондритовом однородном резервуаре (CHUR), а также для получения информации о генезисе горных пород. Значения εNd определяются следующим образом:

$$\varepsilon^{t} N d = [(143 N d/144 N d)_{rock}^{i} / (143 N d/144 N d)_{CHUR}^{t} - 1] * 10^{4}; (7.3)$$

 $\varepsilon^{0} N d = [(143 N d/144 N d)_{rock}^{m} / (143 N d/144 N d)_{CHUR}^{0} - 1] * 10^{4}, (7.4)$
где

• $\varepsilon^t N d$ = начальное значение эпсилон в момент времени t (обычно t – это U-Pb возраст кристаллизации породы);

- $(143 N d/144 N d)_{rock}^{i}$ = первичное отношение в породе на момент времени t;
- $(143 N d/144 N d)_{CHUR}^{t}$ = изотопное отношение CHUR, рассчитанное на момент времени t;
- $\varepsilon^0 N d =$ современное значение эпсилон;
- $(143 N d/144 N d)_{rock}^{m}$ = измеренное изотопное отношение в породе;
- $(143 N d/144 N d)^{0}_{CHUR}$ = современное изотопное отношение в CHUR, равное 0.512638 [Jacobsen, Wasserburg, 1980].

Для гранитоидов Велиткенайского комплекса значение єNd(t) рассчитано для времени t, равного U-Pb изотопному возрасту (табл. 7.2). Мигматиты имеют самые высокие значения єNd(t) (меланосома от -1,8 до -2,1; лейкосома -5,6) в сравнении с лейкогранитами (от -3,8 до -6,7) и монцонитоидами (от -5,5 до -8,1). Такой большой диапазон изменений єNd(t) обычно характерен для магм, в источнике которых варьируют доли мантийного и корового компонентов с итоговым более низким отношением Sm/Nd, по сравнению с CHUR [Clarke et al., 1981; Rollinson, 1993].

7.2.2. Изотопная система свинца

На диаграмме в координатах ²⁰⁶Pb/²⁰⁴Pb – ²⁰⁷Pb/²⁰⁴Pb (**рис. 7.7 в**) точки составов велиткенайских магматических пород находятся между полями кооленьских и киберовских гранитоидов, формируют линейный тренд, который вытягивается вдоль модельной изохроны с возрастом около 660 млн. лет (**рис. 7.7 в**). Несмотря на то, что фигуративные точки велиткенайских пород на диаграмме аппроксимируются изохроной такого возраста с большой погрешностью, эта дата примечательна тем, что совпадает с возрастом унаследованных древних ядер в цирконах гранитоидов (см. главу 6) и Sm-Nd возрастом магматических пород Велиткенайского комплекса, отражая гипотетический возраст протолита.

Двухкомпонентное смешение и AFC

Д. ДеПаоло и Г. Вассербург [1976] продемонстрировали, что изотопные отношения ¹⁴³Nd/¹⁴⁴Nd и ⁸⁷Sr/⁸⁶Sr в молодых океанических базальтах (вдоль

срединно-океанических хребтов или на океанических островах) образуют тренд устойчивой корреляции, так называемый – «мантийный тренд». Изотопное отношение ⁸⁷Sr/⁸⁶Sr в истории Земли описывается как эволюция единого резервуара (Uniform Reservoir – UR) [DePaolo, Wasserburg, 1976], с современным значением 0,7045 [Faure, 1986]. Параметр эпсилон (ɛSr), аналогичный параметру, определенному для Nd, выражается следующим образом:

$$\varepsilon^{t}Sr = [(87 Sr/86 Sr)^{i}rock / (87 Sr/86 Sr)^{t}UR - 1] \times 10^{4};$$
 (7.5)

$$\varepsilon^{0}Sr = [(87Sr/86Sr)^{m}rock / (87Sr/86Sr)^{0}UR - 1] x 10^{4}, (7.6)$$
где

- ε^tSr = начальное значение эпсилон в момент времени t (обычно t это U-Pb возраст кристаллизации породы);
- $(87 Sr/86 Sr)^{i} rock =$ первичное отношение в породе на момент времени t;
- $(87 Sr/86 Sr)^t UR =$ изотопное отношение UR рассчитанное на момент времени t;
- $\varepsilon^0 Sr =$ современное значение эпсилон;
- $(87 Sr/86 Sr)^m rock =$ измеренное изотопное отношение в породе;
- $(87 Sr/86 Sr)^0 UR$ = современное изотопное отношение в UR равное 0,7045 [Faure, 1986].

Магматические Велиткенайского породы И мигматиты комплекса характеризуются достаточно существенными вариациями изотопных отношений Sr, Nd и Pb (табл. 7.2, рис. 7.7). В сравнении с другими гранитными плутонами Чукотки (Чаунская Билибинская провинции, Кибер) И граниты мыса велиткенайские магматические породы (за исключением мигматита 5601 табл. 7.2) характеризуются чуть более радиогенным составом Sr. Изотопные отношения (⁸⁷Sr/⁸⁶Sr)i, пересчитанные на U-Pb возраст в монцонитоидах, лейкогранитах и мигматитах комплекса в целом варьируют от 0,70980 до 0,71880, при єNd(t) от -1,8 до -8,1 и модельных двухстадийных возрастах от 1070 до 1600 млн. лет. Мезопротерозойские модельные Nd возраста хорошо согласуются с

возрастом древнейших пород в фундаменте террейна Арктическая Аляска – Чукотка [Akinin et al., 2011a; Amato et al., 2014].

Рис. 7.6. Диаграммы, демонстрирующие соотношение роли процессов коровой ассимиляции и кристаллизационной дифференциации для велиткенайских магм. Обозначение векторов процессов: А – ассимиляция, AFC – комбинация ассимиляции и фракционной кристаллизации, FC – фракционная кристаллизация.

Такие изотопные метки характерны для коровых магм с достаточно высокой долей ассимиляции, значительно отличаются от таковых для вмещающих девонских парагнейсов и триасовых песчаников и филлитов (87 Sr/ 86 Sr(t) = 0,71177–0,72156; єNd(t) = от -5,9 до -8,0, T_{DM-2} = 1620–1780 млн. лет), которые интрузии прорывают. Двухстадийный Nd модельный возраст характеризует возраст, при котором изотопный состав образца предположительно был идентичен модельному резервуару CHUR или деплетированной мантии и компенсирует

эффект возможного вторичного Sm/Nd фракционирования как результат корового парциального плавления [Liew, Hofmann, 1988].

Параметр єSr(t) для Велиткенайских магматические пород имеет положительные значения в диапазоне 148–205 для лейкогранитов и 77–153 для монцонитоидов (табл. 7.2). В магматических породах положительное значение єSr(t) от умеренного до высокого указывает на обогащенный мантийный или коровый источник магмы, с более высоким Rb/Sr, чем в UR [Rollinson, 1993].

Типичные породы континентальной коры имеют более низкое отношение Sm/Nd и отрицательные значения ɛNd. Радиогенный Nd отражает состав источников гранитоидных магм, что делает его пригодным для оценки вклада корового компонента в составе магм Велиткенайского комплекса.

Конкурирующие процессы ассимиляции в комбинации с фракционной кристаллизацией (AFC процесс) являются главным петрогенетическим процессом, описывающим вариации состава известково-щелочных магм [DePaolo, 1981; Roberts. Clemens, 1995]. рис. 7.6 Диаграммы на a, В демонстрируют принадлежность составов изученных гранитоидов к AFC процессу, что выражается в положительных корреляциях параметров Nd(i) и Sr(i)против SiO₂.

В качестве гипотетических мантийных компонентов смешения на этих кривых взяты составы раннемеловых габброидов Телекайского района Чукотки [Ефремов, 2012] и средний состав нижнекоровых ксенолитов континентального обрамления Северо-Востока Азии [Акинин и др., 2013], а в качестве коровых компонентов смешения – неопротерозойские ортогнейсы Кооленьского купола (КО на **рис. 7.7**) и Велиткенайского (ВО) комплекса [Акинин, 2012; Rowe, 1998], а также девонские парагнейсы Куульского поднятия (РZ), которые являются вмещающими породами для велиткенайских монцонитоидов (**рис. 7.7**).

Рис. 7.7. Вариации изотопного состава: a) Nd, Sr, Pb в монцонитоидах, лейкогранитах, мигматитах и кристаллических сланцах Велиткенайского комплекса в сравнении с апт-

альбскими гранитоилами Билибинской. Чаунской провинций и девон-раннекаменноугольными массивами Кибер, Куэквунь. Примечание: изотопные отношения и величина єNd пересчитаны на возраст 108 млн. лет. LC – средний состав нижней коры Северо-Востока РФ по данным изучения глубинных ксенолитов в щелочных базальтах (Sr i 0,704000, ϵ Nd = +4,7, Sr = 613, Nd = 8,7) [Акинин и др., 2013]. Поля составов горных пород для сравнения: Кооленьский гранитогнейсовый купол, Восточная Чукотка [Rowe, 1998; данные Г.О. Ползуненкова и В.В. Акинина, 2011 г], альбская Чаунская провинция гранитоидов [Ефремов, 2012; Акинин и др., 2022], аптская Билибинская провинция гранитоидов [Лучицкая и др., 2010], девонские гранитоиды мыса Кибер и Куэквуньского поднятия [Лучицкая и др., 2017]. Кривые с бергштрихами модельные кривые AFC (r = 0,25) между средним составом нижней коры (Sr i 0,704000, ϵ Nd = +4,7, Sr = 613, Nd = 8,7) [Акинин и др., 2013], нижнемелового габбро Чукотки (Е – обр. Ч-2227, Sr i 0,70293, εNd = +8.5, Sr = 860, Nd = 30) по [Ефремов, 2012] и протерозойского ортогнейса из фундамента Кооленьского купола (КО – обр. N39-94K, Sr i 0,740438, εNd = -7,7, Sr = 74, Nd = 15,33). Омолонский палеопротерозойский ортогнейс (данные Г.О. Ползуненкова и В.В. Акинина, 2015 г., обр. OM111 – Sr i = 0,7210, ϵ Nd= -28); б) ϵ Hf(i) и δ^{18} O в исследованных Чукотки магматических поясах Северо-Востока цирконах И Азии. Примечания: Велиткенайский комплекс, Кооленьский купол и Куэквуньский ортогнейс – данные Г.О. Ползуненкова и В.В. Акинина, 2011 г. Остальные источники данных: [1] – Akinin et al., 2015; [2] - Akinin et al., 2020; [3] - Gottlieb et al., 2018; [4] - Лучицкая и др., 2017. Примечательны ювенильные мантийные значения EHf в цирконах из ортогнейсов Кооленьского купола и Велиткенайского комплекса, ксенолитов фундамента о-ва Жохова (архипелаг Де-Лонга), а также унаследованных ядрах в велиткенайских ортогнейсах, мигматитах и лейкогранитах поздней фазы.

На рис. 7.7 б средние составы монцонитоидов (MO) и лейкогранитов (LG) находятся на линиях смешения девонских парагнейсов (PZ) и продуктов смешения Е–ВО в разных пропорциях (точки пересечения синих и красных линий с кривой Е–ВО с долей мантийного компонента 60 и 15% соответственно). Судя по модельным расчетам, в составе источника велиткенайских монцонитоидов выявляется 16,5% компонента Е, 11% компонента ВО и 72,5% компонента РZ. В лейкогранитах эти пропорции составляют 10,5; 59,5 и 30%, соответственно (рис. 7.7 б, врезка). В лейкогранитах доля корового компонента BO больше, чем в монцонитоидах, на 48,5%, а доля PZ меньше на 42,5%. Отчасти это согласуется с наличием в цирконе лейкогранитов унаследованных неопротерозойских ядер.

Примечательно, что изотопный состав гранитоидов Чаунской провинции (массивы Певекский, Лоотайпыньский, Янранайский) на диаграмме ⁸⁷Sr/⁸⁶Sr – єNd формирует слабо выраженный тренд в направлении компонента EMII и состава палеопротерозойского ортогнейса Омолонского массива (**рис. 7.7 а**), что позволяет предполагать наличие древнего фундамента в коре певекского блока Чукотки.

Таким образом, на основании анализа проведенных расчетов можно сделать вывод о мантийно-коровой природе магматитов Велиткенайского комплекса в целом, при этом мантийного компонента было больше в монцонитоидах.

7.3. Выводы. Модель эволюции Велиткенайского комплекса

Полученные данные позволяют нам выделять в центральной части Куульского поднятия Велиткенайский монцонит-гранит-мигматитовый комплекс, эволюция которого может быть прослежена в характеристике следующих геологических комплексов (рис. 7.8). В центральной части комплекса обнажаются мигматизированные неопротерозойские ортогнейсы, U-Pb возраст циркона в меланосоме которых составляет от 660 до 550 млн. лет (ENd от -1,8 до -3,8), а в неосоме – около 103 ± 2 млн. лет. Циркон ортогнейсов характеризуется ювенильными изотопными характеристиками (ϵ Hf(i) от +11 до +8,5, при δ^{18} O от 6,4 до 5,9, табл. В.2, В.3 приложение В, рис. 6.3), указывая на существенную мантийной компоненты в протолите. Ортомагматическая долю природа мигматизированных гнейсов подчеркивается относительно узким интервалом возрастов циркона, что нехарактерно для парагнейсов, для которых следовало бы ожидать наличия детритовых популяций циркона с обширным интервалом возрастов от архея и моложе. Такие детритовые популяции с возрастами от 2,7 млрд. лет до 370 млн. лет мы установили для цирконов из девонских парагнейсов, которые обнажаются на крыльях Велиткенайского комплекса и характеризуются «коровыми» изотопными характеристиками Nd и наиболее древними модельными возрастами (єNd от -1,8 до -3,8; Т_{DM-2} =1,6–1,7 млрд. лет, **рис. 7.8**).

В составе комплекса неопротерозойских мигматизированных ортогнейсов закартированы мегаксенолиты или будины офиолитов (выходы апогарцбургитовых серпентинитов и гранат-амфиболовых метагаббро), возраст которых также неопротерозойский. Учитывая, что эти породы обнажаются в виде серии небольших выходов (первые десятки метров) вдоль узкой полосы, не исключено, что они были выведены на поверхность в виде будин по зоне надвига или глубинного разлома (**рис. 7.8**).

Ранние монцонитоиды Велиткенайского комплекса внедрились на ранних стадиях подъема комплекса, приблизительно в интервале от 106 до 103 ±1 млн. лет назад. Выплавлялись эти породы из относительно зрелого корового субстрата (в породах єNd от -5,5 до -7,9; Т_{DM-2} =1,4–1,6 млд лет, в цирконах єHf(i) от -11 до -7, при δ^{18} О от 10 до 8,4, **табл. В.2, В.3 приложение В**). Примечательным является отсутствие унаследованных древних доменов в ядрах циркона монцонитоидов. Это обстоятельство наталкивает на мысль, что, вероятно, древний протолит был уже переплавлен полностью в мелу при андерплейтинге базитовых магм в нижней коре. Такой сценарий не является уникальным: меловой состав нижней коры на континентальных окраинах Северо-Востока Азии был установлен по результатам изучения циркона из нижнекоровых ксенолитов в поздненеогеновых щелочных базальтах [Акинин и др., 2013]. Вариации главных и примесных элементов в ранних монцонитоидах согласуются с моделью фракционной кристаллизации (флотации) полевых шпатов, магнетита и амфибола, привнос калия флюидами играл, по-видимому, также важную роль в их петрогенезисе. Учитывая, что монцонитоиды нередко имеют гнейсоватую и директивную структуру, мы заключаем, что их внедрение происходило в условиях правосторонних сдвиговых деформаций.

Поздние лейкограниты (102–101 ±1 млн. лет), напротив, отличаются тем, что систематически содержат цирконы с унаследованными древними доменами в ядрах (630–308 млн. лет), которые к тому же характеризуются мантийными метками Hf и O (ϵ Hf(i) от +11 до +13, при δ^{18} O около 5,8, **табл. В.2, В.3** приложение B) такими же, как и в неопротерозойских ортогнейсах. Это однозначно указывает на то, что последние являются протолитом для выплавления поздних лейкогранитов. Сохранность древних унаследованных ядер циркона в лейкогранитах связана с более низкотемпературным и, вероятно, сухим характером этих магм в отличие от ранних монцонитоидов. В отличие от монцонитоидов, в лейкогранитах устанавливаются более низкие значения ϵ Nd от - 3,8 до -6,7 и расчетные модельные двухстадийные возраста ($T_{DM-2} = 1,2-1,4$ млрд.

лет). Такие же тенденции выявлены и для изотопного состава Hf и O в цирконах (**рис. 7.8**).

Неопротерозойский возраст протолита велиткенайских магм установленный по унаследованным древним ядрам в цирконах изученных гранитоидов дополнительно находит свое отражение в изотопных систематиках Sm–Nd и Pb по валу пород (~ 550–680 млн. лет).

Выведение комплексов Велиткенайского комплекса на поверхность завершилось до 93 млн. лет, судя по возрасту перекрывающих вулканических пород Охотско-Чукотского вулканогенного комплекса (**рис. 7.8**). Этому не противоречат данные по ⁴⁰Ar/³⁹Ar датированию биотита и амфибола в гранитоидах и мигматите, которые составили от 100 до 95 млн. лет [Miller et al., 2018].

Велиткенайский комплекс был сформирован в геодинамических условиях постколлизионного растяжения и региональных правосторонних сдвиговых деформаций. Такой вывод согласуется, с одной стороны, с результатами структурных наблюдений в регионе [Miller, Verzhbitsky, 2009], с другой подтверждается нашими полевыми наблюдениями, однозначно указывающими на сдвиговый характер южной границы Велиткенайского комплекса (**рис. 2.4**). Геохимические характеристики изученных гранитоидов с применением дискриминационных геодинамических диаграмм не противоречат такому выводу (**рис. 7.2 е**).

Рис. 7.8. Модельный разрез через Велиткенайский комплекс, арктическая Чукотка. Обобщенные параметры возраста и изотопных меток показаны для каждой из исследованных породных групп. Возраст и изотопные параметры для ортогнейсов включают, кроме велиткенайских, данные по Кооленьскому куполу. МАSH – предполагаемая область плавления, ассимиляции, сегрегации и гомогенизации магм.

ЗАКЛЮЧЕНИЕ

В центральной части Куульского поднятия выделен Велиткенайский монцонит-гранит-мигматитовый комплекс, в ядре которого обнажаются мигматизированные неопротерозойские ортогнейсы. Ортомагматическая природа мигматизированных гнейсов подчеркивается относительно узким интервалом возрастов циркона, что нехарактерно для парагнейсов, в которых следовало бы ожидать наличия детритовых популяций циркона с обширным интервалом возрастов от архея и моложе.

Монцонитоиды внедрились на ранних стадиях (от 106 до 103 ± 1 млн. лет) подъема Велиткенайского комплекса. Монцонитоиды нередко имеют гнейсовую и директивную структуру, что указывает на ИХ внедрение в условиях деформационного стресса (правые сдвиги). Примечательным является отсутствие унаследованных древних доменов в ядрах циркона монцонитоидов. Это обстоятельство наталкивает на мысль о том, что, вероятно, древний протолит был уже переплавлен полностью в мелу при андерплейтинге базитовых магм в нижней коре. Такой сценарий не является уникальным: меловой возраст нижней коры на континентальных окраинах Северо-Востока Азии был установлен по результатам изучения циркона из нижнекоровых ксенолитов в поздненеогеновых щелочных базальтах [Акинин и др., 2013].

(101 - 99)Более молодые лейкограниты ± 1 МЛН. лет). напротив, систематически содержат цирконы с унаследованными неопротерозойскими доменами в ядрах, которые характеризуются ювенильными метками Hf и O, как и в неопротерозойских ортогнейсах. Это однозначно указывает на то, что последние являются протолитом для выплавления поздних лейкогранитов. Сохранность древних унаследованных ядер циркона в лейкогранитах связана с более низкотемпературным и, вероятно, сухим характером этих магм в отличие от ранних монцонитоидов. В отличие от монцонитоидов, в лейкогранитах выявлены более низкие значения δ^{18} О и повышенные значения єНf в цирконах.

Велиткенайский комплекс был сформирован в геодинамических условиях постколлизионного растяжения и региональных правосторонних сдвиговых деформаций. Такой вывод согласуется, с одной стороны, с результатами структурных наблюдений в регионе [Miller, Verzhbitsky, 2009; Miller et al., 2018], с другой – подтверждается субсинхронностью возраста формирования ВК (108–100 млн. лет) с альбским пиком метаморфизма в гранито-гнейсовых куполах Чукотки [Akinin et al., 1997; Akinin, Calvert, 2002]. Геохимические характеристики изученных гранитоидов с применением дискриминантных геодинамических диаграмм не противоречат такому выводу.

Новые данные позволили надежно обосновать альбский возраст формирования монцонит-гранит-мигматитового комплекса в целом, разделить интервалы кристаллизации монцонитоидов И лейкогранитов, выявить неопротерозойский возраст протолита, предметно обсудить место и время формирования мигматитов и сопутствующих деформаций в приложении к тектоно-магматической эволюции Чукотского блока террейна Арктическая Аляска – Чукотка.

Список литературы

- Акинин В.В. Позднемезозойский и кайнозойский магматизм и преобразование нижней коры в северном обрамлении Пацифики: дис. ... д-ра геол.-минер. наук. Магадан : СВКНИИ ДВО РАН, 2012. 320 с.
- Акинин В.В., Андроников А.В., Мукаса С.Б., Миллер Э.Л. Меловая нижняя кора континентального обрамления северной Пацифики: петрологогеохронологические данные по нижне-среднекоровым ксенолитам // Петрология. 2013. Т. 21. № 1. С. 34–73.
- 3. Акинин В.В., Готтлиб Э. U-Pb датирование и геохимия циркона и сфена: эксперименты по высокотемпературной химической абразии (CA-SHRIMP) и приложение к реконструкции эволюции // Геохронометрические изотопные системы, методы их изучения, хронология геологических процессов. Материалы V Российской конференции по изотопной геохронологии. 4–6 июня 2012 г. М.: ИГЕМ РАН, 2012. С. 23–24.
- Акинин В.В., Котляр И.Н. ГЕОХРОН компьютерная база данных изотопного датирования минералов, горных пород и руд Северо-Востока России // Магматизм и оруденение Северо-Востока России / Ред. С.Г. Бялобжеский. Магадан : СВКНИИ ДВО РАН, 1997. С. 313–318.
- 5. Акинин В.В., Миллер Э.Л. Эволюция известково-щелочных магм Охотско-Чукотского вулканогенного пояса // Петрология. 2011. Т. 19. № 3. С. 249–290.
- 6. Акинин В.В., Ползуненков Г.О. Состав и возраст Велиткенайского гранитмигматитового массива (террейн Арктическая Аляска – Чукотка): синхронизация с тектоно-магматическими событиями в Амеразийском бассейне Арктики // Тектоника, глубинное строение и минерагения Востока Азии. VIII Косыгинские чтения: Материалы Всероссийской конференции (Хабаровск, 17–20 сентября 2013 г.). Владивосток : Дальнаука, 2013. С. 6–9.
- Акинин В.В., Томсон Б., Ползуненков Г.О. U-Pb и ⁴⁰Ar/³⁹Ar датирование магматизма и минерализации на золоторудных месторождениях Купол и Двойное // Изотопное датирование геологических процессов: новые

результаты, подходы и перспективы. Материалы VI Российской конференции по изотопной геохронологии. СПб : ИГГД РАН, 2015. С. 19–21.

- Акинин В.В., Ползуненков Г.О., Готтлиб Э.Ш., Миллер Э.Л. Меловой монцонит-гранит-мигматитовый Велиткенайский комплекс: петрология, геохимия пород и циркона (U-Pb, Hf и O) в приложении к реконструкции эволюции магматизма и континентальной коры в блоке Арктическая Аляска Чукотка // Петрология. 2022. Т. 30. № 3. С. 227–259.
- Акинин В.В., Ханчук А.И. Охотско-Чукотский вулканогенный пояс: ревизия возраста на основе новых ⁴⁰Ar/³⁹Ar и U-Pb изотопных данных // Доклады Академии наук. 2005. Т. 404. № 5. С. 654–658.
- Алексеев В.И. Термобарические условия кристаллизации гранитов Северного массива (Чукотка) по данным изучения полевых шпатов // Записки Горн. инта. 2008. Т. 174. С. 32–34.
- Алексеев В.И. Позднемеловой возраст онгонитов Дальнего Востока (результаты U-Pb-датирования цирконов) // Доклады Академии наук. 2013. Т. 453. № 4. С. 420–423.
- 12. Аранович Л.Я., Бортников Н.С. Новый Zr-Hf геотермометр для магматических цирконов // Петрология. 2018. Т. 26. № 2. С. 109–115.
- Аранович Л.Я., Бортников Н.С., Борисов А.А. Океанический циркон как петрогенетический индикатор // Геология и геофизика. 2020. Т. 61. № 5–6. С. 685–685.
- Аранович Л.Я., Зингер Т.Ф., Бортников Н.С., Шарков Е.В., Антонов А.В. Циркон из габброидов осевой зоны Срединно-Атлантического хребта (впадина Маркова, 6° с. ш.): Корреляция геохимических особенностей с петрогенетическими процессами // Петрология. 2013. Т. 21. № 1. С. 4–19.
- 15. Артемьев Д.С. Гранитоиды Майского золоторудного узла (Центральная Чукотка) // Региональная геология и металогения. 2017. № 69. С. 107–121.
- 16. Балтыбаев Ш.К. Мигматитообразование в калиевой зоне Северного Приладожья: термодинамические режимы плавления и кристаллизации, геохимическое моделирование перераспределения химических элементов в

системе субстрат – расплав // Труды Карельского научного центра РАН. Серия «Геология докембрия». 2012. С. 1–16.

- Белый В.Ф. Стратиграфия и структуры Охотско-Чукотского вулканического пояса. М. : Наука, 1977. 171 с.
- 18. Борисенко А.С. Изучение солевого состава газово-жидких включений в минералах методом криометрии // Геология и геофизика. 1977. № 8. С. 16–27.
- Бычков Ю.М. Структурно-фациальная зональность и биостратиграфия триаса Чукотки. Магадан: СВНЦ ДВО РАН, 1994. 53 с.
- 20. Васильева Н.М., Соловьева М.Ф. Стратиграфия каменноугольных отложений Чукотки и острова Врангеля: Восьмой Международный конгресс по стратиграфии и геологии карбона «Региональная биостратиграфия карбона современных континентов». М. : Наука, 1979. С. 128–132.
- Ватрушкина Е.В., Тучкова М.И., Соколов С.Д. Позднеюрский-раннемеловой надсубдукционный вулканизм Чукотского террейна (Арктический регион, Россия) // Геотектоника. 2019. № 6. С. 1–14.
- 22. Ганелин А.В., Ватрушкина Е.В., Лучицкая М.В. Новые данные о вулканизме Центрально-Чукотского сегмента Охотско-Чукотского вулканогенного пояса // Доклады Российской академии наук. 2019. Т. 485. № 3. С. 326–330.
- Гельман М.Л. Основные особенности послепротерозойского метаморфизма на Северо-Востоке СССР // Метаморфические комплексы Дальнего Востока. Владивосток : ДВНЦ АН СССР, 1973. С. 161–180.
- 24. Гельман М.Л. Фанерозойские гранитно-метаморфические купола на Северо-Востоке Сибири. Статья. 1. Геологическая история палеозойских и мезозойских куполов // Тихоокеанская геология. 1995. Т. 14. № 4. С. 102–115.
- 25. Гельман М.Л. Фанерозойские гранитно-метаморфические купола на Северо-Востоке Сибири. Статья 2. Магматизм, метаморфизм и мигматизация в позднемезозойских куполах // Тихоокеанская геология. 1996. Т. 15. № 1. С. 84–93.
- 26. Гельман М.Л. Геолого-петрологические аспекты связи золотого оруденения и магматизма в гранитоидных провинциях: Северо-Востока Азии в сравнении с

Кордильерами Северной Америки, с Западной Австралией // Золотое оруденение и гранитоидный магматизм Северной Пацифики: в 2-х томах. Т. 2. Рудная минерализация и петрогенезис. Магадан : СВКНИИ ДВО РАН, 2000. С. 5–79.

- Гельман М.Л., Шпетный А.П. Магматизм Верхояно-Чукотской складчатой области // Магматизм складчатых и платформенных регионов СССР. Л. : Недра, 1981.
- Геология СССР / Гл. ред. А.В. Сидоренко. Т. 30. Северо-Восток СССР. Геологическое описание / Ред. тома И.Е. Драбкин. М. : Недра, 1970. Кн. 1. – 548 с.; Кн. 2. – 536 с.
- 29. Гнибиденко Г.С. Метаморфические комплексы в структурах северо-западного сектора Тихоокеанского подвижного пояса. М. : Недра, 1969. 135 с.
- 30. Голионко Б.Г., Ватрушкина Е.В., Вержбицкий В.Е. Структурная эволюция мезозойских комплексов Западной Чукотки // Доклады Академии наук. 2017. Т. 475. № 1. С. 53–56.
- Государственная геологическая карта м-ба 1:200 000. Лист R-59-XXIII, XXIV. Серия Анюйско-Чаунская. Объяснительная записка / Ред. Н.М. Саморуков, В.Т. Матвеенко. М. : Мингео СССР, 1984. 77 с.
- Дир У.А, Хауи Р.А., Зусман Дж. Породообразующие минералы. Т. 3. Листовые силикаты. М. : Мир, 1966. 482 с.
- 33. Дудкинский Д.В., Ефремов С.В., Козлов В.Д. Геохимические черты мезозойских гранитоидов повышенной основности восточного побережья Чаунской губы (Чукотка) // Тихоокеанская геология. 1993. № 6. С. 74.
- 34. Дудкинский Д.В., Козлов В.Д., Ефремов С.В. Петролого-геохимические особенности и геодинамические условия формирования рудоносных гранитоидов Чукотки // Геология и геофизика. 1997. Т. 38. № 7. С. 1202–1215.
- 35. Ермаков Н.П., Долгов Ю.А. Термобарогеохимия. М. : Недра, 1979. 271 с.
- 36. Ефремов С.В. Геохимия и генезис ультракалиевых и калиевых магматитов восточного побережья Чаунской гуды (Чукотка), их роль в металлогенической

специализации оловоносных гранитоидов // Тихоокеанская геология. 2009. Т. 28. С. 84–95.

- 37. Ефремов С.В. Редкометалльные гранитоиды Чукотки. Геохимия, источники вещества, модели образования : Автореферат дис. ... д-ра геол.-минер. наук. Иркутск, 2012. 40 с.
- 38. Ефремов С.В., Козлов В.Д., Сандимирова Г.П. Rb/Sr возраст гранитоидов Центральной Чукотки – новый взгляд на историю геологического развития региона // Доклады Академии наук. 2000. Т. 375. № 6. С. 816–819.
- З9. Ефремов С.В., Травин А.В. Изотопный возраст и палеогеодинамическая позиция ультракалиевого магматизма Центральной Чукотки // Геодинамика и тектонофизика. 2021. Т.12. № 1. С.76–83.
- Желтовский В.Г. Государственная геологическая карта СССР. М-б 1:200 000 (1-е издание). Серия Анюйско-Чаунская. Лист R-60-XXVII, XXVIII. Объяснительная записка. Магадан : ЦКТЭ СВТГУ, 1980. 82 с.
- 41. Жуланова И.Л. Земная кора Северо-Востока Азии в докембрии и фанерозое.М. : Наука, 1990. 304 с.
- Журавлев Г.Ф. Государственная геологическая карта Российской Федерации. Масштаб 1:200 000 (издание 2-е). Лист Q-59-I, II. Серия Анюйско-Чаунская. Объяснительная записка. 2000.
- 43. Загрузина И.А. Позднемезозойские гранитоиды восточного побережья Чаунской губы (Западная Чукотка) // Позднемезозойские гранитоиды Чукотки. 1965. Вып. 12. С. 4–40.
- 44. Загрузина И.А. Некоторые особенности петрологии магматических и метаморфических образований Восточной Чукотки // Петрология магматических образований Чукотки. 1969. Вып. 18. С. 7–95.
- 45. Зоненшайн Л.П., Натапов Л.М. Тектоническая история Арктики // Актуальные проблемы геотектоники. М. : Наука, 1987. С. 31–57.
- 46. Зоненшайн Л.П., Кузьмин М.И., Натапов Л.М. Тектоника литосферных плит территории СССР. М. : Наука, 1990. Кн. 1 328 с.; Кн. 2. 334 с.

- 47. Иванов В.С. О влиянии температуры и химической активности калия на состав биотита в гранитоидах // Известия АН СССР. Геол. сер. 1970. С. 20–30.
- 48. Исаева Е. П. Отчет о результатах работ «Создание комплекта современной геологической основы масштаба 1 : 1 000 000 листа Q-60 – Анадырь» в рамках объекта ФГУП «ВСЕГЕИ». Чукотский ТГФ. 2013ф.
- 49. Катков С.М., Стриклэнд А., Миллер Э.Л., Торо Дж. О возрасте гранитных интрузий Анюйско-Чукотской складчатой системы // Доклады Академии наук. 2007. Т. 414. № 2. С. 1–4.
- Катков С.М., Лучицкая М.В., Котов А.Б., Сальникова Е.Б., Яковлева С.З. Позднепалеозойские гранитоиды Центральной Чукотки: структурное положение и обоснование возраста // Доклады Академии наук. 2013. Т. 450. № 2. С. 193–198.
- 51. Кораго Е.А., Верниковский В.А., Соболев Н.Н., Ларионов А.Н., Сергеев С.А., Столбов Н.М., Проскурнин В.Ф., Соболев П.С., Метелкин Д.В., Матушкин Н.Ю., Травин А.В. Возраст фундамента островов Де-Лонга (архипелаг Новосибирские острова): новые геохронологические данные // Доклады Академии наук. 2014. Т. 457. № 3. С. 315–322.
- 52. Коржинский Д.С. Гранитизация как магматическое замещение // Известия АН СССР. Сер. геол. 1952. № 2. С. 56–69.
- 53. Кряжев С.Г. Современные проблемы теории и практики термобарогеохимии // Руды и металлы. 2010. № 2. С. 38–45.
- 54. Лебедев В.В. Государственная геологическая карта Российской Федерации. Третье поколение. Чукотская серия. Масштаб 1:1 000 000. ФГБУ «ВСЕГЕИ». 2016 г.
- 55. Леднева Г.В., Базылев Б.А., Соколов С.Д., Беляцкий Б.В. Пермско-триасовый внутриплитный магматизм Чукотской складчатой системы: региональные вариации состава и геодинамическая интерпретация. Петрология и геодинамика геологических процессов. Материалы XIII Всероссийского петрографического совещания. Иркутск : СО РАН. 2021. Т. 2. С. 107–109.

- 56. Лугов С.Ф. Основные черты геологического строения и металлоносности Чукотки. М., 1962. 226 с.
- 57. Лугов С.Ф. Оловоносность Охотско-Чукотского вулканогенного пояса (Геологическое районирование и закономерности размещения оруденения).
 М., 1974. 184 с.
- 58. Лучицкая М.В., Соколов С.Д., Бондаренко Г.Е., Катков С.М. Состав и геодинамическая обстановка гранитоидного магматизма Алярмаутского поднятия (Западная Чукотка) // Геохимия. 2010. № 9. С. 946–971.
- Лучицкая М.В., Соколов С.Д., Моисеев А.В. Этапы позднемезозойского гранитоидного магматизма Чукотки // Доклады Академии наук. 2013. Т. 450. № 1. С. 1–6.
- 60. Лучицкая М.В., Соколов С.Д., Котов А.Б., Натапов Л.М., Белоусова Е.А., Катков С.М. Позднепалеозойские гранитоиды Чукотки: особенности состава и положение в структуре Арктического региона России // Геотектоника. 2015. № 4. С. 3–29.
- 61. Лучицкая М.В., Беляцкий Б.В., Белоусова Е.А., Натапов Л.М. Изотопный Sr-Nd-Pb-Hf-состав позднепалеозойских гранитоидов центральной Чукотки // Доклады Российской Академии наук. 2019а. Т. 485. № 1. С. 58–62.
- 62. Лучицкая М.В., Соколов С.Д., Вержбицкий В.Е., Ватрушкина Е.В., Ганелин А.В., Голионко Б.Г. Постколлизионные гранитоиды и апт-альбское растяжение в тектонической эволюции чукотских мезозоид, Северо-Восток России // Доклады Российской Академии наук. 2019б. Т. 484. № 3. С. 329–334.
- 63. Лучицкая М.В., Соколов С.Д. Этапы гранитоидного магматизма и формирование континентальной коры Восточной Арктики // Геотектоника. 2021. № 5. С. 73–97.
- 64. Малышева Г.М., Исаева Е.П., Тихомиров Ю.Б., Вяткин Б.В. Государственная геологическая карта Российской Федерации. Масштаб 1:1 000 000 (третье поколение). Серия Чукотская. Лист Q-59 – Марково. Объяснительная записка. СПб. : Картографическая фабрика ВСЕГЕИ, 2012. 226 с. + 1 вкл.

- 65. Маракушев А.А., Тарарин И.А. О минералогических критериях щелочности гранитоидов // Известия АН СССР. Сер. геол. 1965. № 3. С. 20–38.
- 66. Мельников Ф.П., Прокофьев В.Ю., Шатагин Н.Н. Термобарогеохимия. М. : Академический Проект, 2008. 222 с.
- 67. Мигматизация и гранитообразование в различных термодинамических режимах. Л. : Наука, 1985. 310 с.
- 68. Милов А.П. Позднемезозойские гранитоидные формации Центральной Чукотки. Новосибирск : СО РАН, 1975. 134 с. (Труды СВКНИИ; Вып. 53).
- 69. Милов А.П., Иванов В.С. Петрографо-геохимические особенности Велиткенайского гранитоидного интрузива Центральной Чукотки. Магадан, 1963 (Труды СВКНИИ; Вып. 11).
- Милов А.П., Иванов В.С. Позднемезозойские гранитоиды Центральной Чукотки. Магадан, 1965. С. 141–187. (Труды СВКНИИ; Вып. 12).
- 71. Моисеев А.В., Маскаев М.В., Ульянов Д.К., Соколов С.Д., Беляцкий Б.В. Купольнейский вулканический комплекс Южно-Анюйской структуры (Западная Чукотка): состав, возраст и палеотектонические интерпретации // Доклады Академии наук. 2021. Т. 499. №. 1. С. 42–48.
- 72. Натальин Б.А. Тектоническая природа метаморфического комплекса Чукотского полуострова // Геология и геофизика. 1979. № 6. С. 31–38.
- 73. Панеях Н.Е., Федорова М.Е. Равновесие роговая обманка биотит в гранитоидах // Вестник МГУ. Сер. геол. 1973. № 4. С. 94–98.
- 74. Паракецов К.В., Паракецова Г.И. Стратиграфия и фауна верхнеюрских и нижнемеловых отложений Северо-Востока СССР. М. : Недра, 1989. 298 с.
- 75. Перчук Л.Л., Лаврентьева И.В., Аранович Л.Я. и др. Биотит-гранаткордиеритовые равновесия и эволюция метаморфизма. М.: Наука, 1983. 197 с.
- 76. Пизнюр А.В. Основы термобарогеохимии. Львов, 1976. 240 с.
- 77. Ползуненков Г.О. Оценка температур и давлений образования гранитоидов Велиткенайского гранит-мигматитового массива (арктическая Чукотка) // Научная молодежь – Северо-Востоку России: Материалы IV межрегиональной конференции молодых ученых, приуроченной к 35-летию

Музея естественной истории СВКНИИ ДВО РАН (Магадан, 24–25 мая 2012 г.). Магадан : ООО «Новая полиграфия», 2012. Вып. 4. С. 18–21.

- 78. Ползуненков Г.О. Состав биотита в гранитоидах первой фазы Велиткенайского гранит-мигматитового массива как показатель условий их формирования // Чтения памяти академика К.В. Симакова : Материалы докладов Всероссийской научной конференции (Магадан, 26–28 ноября 2013 г.). Магадан: СВНЦ ДВО РАН, 2013. С. 65–67.
- 79. Ползуненков Г.О. Оценка Р-Т и Ю условий кристаллизации монцонитоидов Велиткенайского гранит-мигматитового массива (арктическая Чукотка) по данным минеральной термобаро- и оксибарометрии // Тихоокеанская геология. 2018. Т. 37. № 5. С. 97–111.
- 80. Ползуненков Г.О., Акинин В.В., Черепанова И.Ю. Новые данные о возрасте и составе Велиткенайского и Куэквуньского гранито-гнейсовых массивов (арктическая Чукотка): приложение к разработке моделей гранитогенного оруденения // Золото северного обрамления Пацифики: II Международный горно-геологический форум: Магадан : СВКНИИ ДВО РАН, 2011. С. 170–171.
- Ползуненков Г.О., Кондратьев М.Н. РЕТКО: Программа для получения и обработки микрофотографий шлифов с использованием Android-смартфона // Вестник СВНЦ ДВО РАН, 2023. № 1. С. 28–32. doi: 10.34078/1814-0998-2023-1-28-32.
- Полин В.Ф., Тихомиров П.Л., Ханчук А.И., Травин А.В. Первые данные U/Pbи ⁴⁰Ar/³⁹Ar-датирования Предджугджурских вулканитов – новое свидетельство разновременности формирования отдельных звеньев Охотско-Чукотского вулканогенного пояса // Доклады Российской академии наук // 2021. Т. 497. № 2. С. 107–115.
- 83. Прогнозно-минерагеническая карта территории РФ и ее континентального шельфа масштаба 1:2 500 000: Федеральное государственное бюджетное учреждение «Всероссийский научно-исследовательский геологический институт им. А.П. Карпинского» (ФГБУ «ВСЕГЕИ»): офиц. сайт. – URL: https://www.vsegei.ru/ru/info/atlas/prog-min/ (дата обращения: 25.05.2022).
- 84. Рекант П.В., Петров О.В., Прищепенко Д.В. Формирование складчатонадвиговой структуры южной части шельфа Восточно-Сибирского моря по результатам структурного анализа сейсмических материалов // Региональная геология и металлогения. 2020. № 82. С. 35–59.
- 85. Рёддер Э. Флюидные включения в минералах. М. : Мир, 1987. Т. 1. 360 с.
- 86. Рогозов Ю.Г., Васильева Н.М. Девонские отложения побережья пролива Лонга (Центральная Чукотка) // Ученые записки НИИГА. Серия региональная геология. 1968. № 13. С. 151–157.
- 87. Розен О.М., Федоровский В.С. Коллизионные гранитоиды и расслоение земной коры. М. : Науч. мир, 2001. 188 с. (Тр. ГИН РАН; вып. 545).
- 88. Сакулина Т.С., Верба М.Л., Кашубина Т.В., Крупнова Н.А., Табырца С.Н., Иванов Г.И. Комплексные геолого-геофизические исследования на опорном профиле 5-АР в Восточно-Сибирском море // Разведка и охрана недр. 2011. № 10. С. 17–23.
- Саморуков Н.М. Отчет о работе Кувет-Кусьвеемского геолого-съемочного отряда за 1974–1977 гг. Фонды ЧГГП, 1977. (Рукопись).
- 90. Сахно В.Г., Цурикова Л.С., Максимов С.О. Геохронология и петрогеохимические особенности генезиса магматических комплексов золотосеребряных рудоносных систем Чукотского сектора Арктического побережья России // Литосфера. 2019. Т. 19. № 6. С. 861–888.
- 91. Сахно В.Г., Полин В.Ф., Акинин В.В., Сергеев С.А., Аленичева А.А., Тихомиров П. Л., Молл-Столкап Е. Дж. Разновременность формирования Амгуэмо-Канчаланского и Энмываамского вулканических полей ОЧВП по данным изотопного датирования // Доклады Российской академии наук. 2010. Т. 434. № 2. С. 365–371.
- 92. Сергеев С.А. и др. Отчет о результатах работ по объекту № 15.1.8 «Изотопногеохимическая и геохронологическая характеристика геологических комплексов внутрибассейновых Арктических поднятий, Восточно-Сибирского шельфа и материковой окраины Северной Евразии с целью

обоснования ВГКШ». Государственный контракт № АМ-02-34/57. Т. 4. СПб. : ВСЕГЕИ, 2014.

- 93. Сизых А.И. Докембрий Бирюсинского метаморфического пояса. Иркутск : Иркутский университет, 1987. 240 с.
- 94. Силантьев С.А., Аранович Л.Я., Бортников Н.С. Океанические плагиограниты: результат взаимодействия магматической и гидротермальной систем в медленно-спрединговых срединно-океанических хребтах // Петрология. 2010. Т. 18. № 4. С. 387–402.
- 95. Соколов С.Д., Лучицкая М.В., Моисеев А.В. Тектоническая позиция и геодинамические обстановки неопротерозойского гранитоидного магматизма Восточной Арктики // ДАН РАН. 2020. Т. 493. № 2. С. 5–10.
- 96. Судовиков Н.Г. Мигматиты, их генезис и методика изучения // Материалы исследований в Карелии. Тр. ЛАГЕД АН СССР. 1955. Вып. 5. С. 97–174.
- 97. Тибилов И.В. Особенности геологического развития Севера Чукотки с позиций термодинамической парадигмы эндогенных процессов. Магадан : СВКНИИ ДВО РАН, 2005. 302 с.
- 98. Тибилов И.В., Черепанова И.Ю. Геология Севера Чукотки. М., : ГЕОС, 2001.
 94 с.
- 99. Тибилов И.В., Милов А.П., Давыдов И.А. О проявлении домезозойского гранитоидного магматизма на Чукотке // Тихоокеанская геология. 1986. № 4. С. 95–98.
- 100. Тильман С.М. Сравнительная тектоника мезозоид севера Тихоокеанского кольца. М. : Наука, 1980, 285 с.
- 101. Тильман С.М., Богданов Н.А. Тектоническая карта Северо-Востока Азии. Масштаб 1:2 000 000. М. : ГУГК. 1992.
- 102. Тихомиров П.Л. Петрология гранитоидов Телекайского рудного района (Центральная Чукотка): автореферат дисс. ... канд. геол.-минер. наук. СПб., 1998. 24 с.
- 103. Тихомиров П.Л. Меловой окраинно-континентальный магматизм Северо-Востока Азии и вопросы генезиса крупнейших фанерозойских провинций

кремнекислого вулканизма: автореферат дис. ... д-ра. геол.-минер. наук. М., 2018. 43 с.

- 104. Тихомиров П.Л. Меловой окраинно-континентальный магматизм Северо-Востока Азии и вопросы генезиса крупнейших фанерозойских провинций кремнекислого вулканизма // М. : ГЕОС, 2020. 376 с.
- 105. Тихомиров П.Л., Лучицкая М.В. Меловые гранитоиды Северо-Востока Азии. Статья 2. Состав минералов и условия кристаллизации // Вестник МГУ. Серия 4. Геология. 2006. № 6. С. 9–15.
- 106. Тихомиров П.Л., Лучицкая М.В., Шац А.Л. Возраст гранитоидных плутонов северной Чукотки: состояние проблемы и новые SHRIMP U-Pb датировки цирконов // Доклады Академии наук. 2011. Т. 440. № 4. С. 1–4.
- 107. Тихомиров П.Л., Калинина Е.А., Кобаяши К., Накамура Э. Тытыльвеемский вулканоплутонический пояс — раннемеловая магматическая провинция Северо-Восточной Азии // Геология полярных областей Земли: Материалы 42-го Тектонического совещания. М. : ГЕОС, 2009. Т. 2. С. 239–241.
- 108. Тихомиров П.Л., Акинин В.В., Исполатов В.О., Александер П., Черепанова И.Ю., Загоскин В.В. Возраст северной части Охотско-Чукотского вулканогенного пояса: новые данные Ar-Ar и U-Pb геохронологии // Стратиграфия. Геологическая корреляция. 2006. Т. 14. № 5. С. 67–81.
- 109. Тихомиров П.Л., Прокофьев В.Ю., Калько И.А., Аплеталин А.В., Николаев Ю.Н., Кобаяси К., Накамура Э. Постколлизионный магматизм Западной Чукотки и раннемеловая тектоническая перестройка Северо-Востока Азии // Геотектоника. 2017. № 2. С. 32–54.
- 110. Тучкова М.И. Терригенные породы древних континентальных окраин (Большой Кавказ и Северо-Восток России). М. : LAP, 2011. 365 с. (Труды ГИН РАН: Вып. 600).
- 111. Ферштатер Г.Б., Бородина Н.С. Петрология магматических гранитоидов (на примере Урала). М. : Наука, 1975. 288 с.
- 112. Филатова Н.И., Хайн В.Е. Структуры центральной Арктики и их связь с мезозойским арктическим плюмом // Геотектоника. 2009. № 6, С. 24–51.

- 113. Чехович В.Д. Становление позднемеловой субдукции на Северо-Востоке азиатского континента // Геотектоника. 2022. №4. С. 35–55.
- 114. Шарпенок Л.И., Костин А.Е., Кухаренко Е.А. ТАЅ-диаграмма сумма щелочей – кремнезем для химической классификации и диагностики плутонических пород // Регион. геология и металлогения. 2013. № 56. С. 40– 50.
- 115. Шмонов В.М., Шмулович К.И. Мольные объемы и уравнения состояния СО₂ в интервале 100–1000°С и 2000–10000 бар // Доклады Академии наук СССР. 1975. Т. 217. № 4. С. 935–938.
- 116. Шульдинер В.И., Недомолкин В.Ф. Кристаллический фундамент Эскимосского массива // Советская геология. 1976. № 10. С. 33–47.
- 117. Щепетов С.В., Герман А.Б., Тихомиров П.Л., Моисеев А.В., Соколов С.Д., Хаясака Я. О возрасте буор-кемюсской флоры Северо-Востока Азии на основе материала из неморского мела Восточной Чукотки // Стратиграфия. Геологическая корреляция. 2020. Т. 28. № 4. С. 125–141.
- 118. Abdel-Rahman A. Nature of Biotites from Alkaline, Calcalkaline, and Peraluminous Magmas // Journal of petrology. 1994. Vol. 35(2). P. 525–541.
- Akinin V.V., Calvert A.T. Cretaceous mid-crustal metamorphism and exhumation of the Koolen gneiss dome, Chukotka Peninsula, northeastern Russia / E.L. Miller, A. Grantz, S. Klemperer (eds.) // Geol. Soc. Am. 2002. P. 147–165.
- 120. Akinin V.V., Amato J.M., Miller E.L., Gottlieb E.S., Polzunenkov G.O. New geochronological data on pre-Mesozoic rocks (Neoproterozoic to Devonian) of Arctic Chukotka // International Conference on Arctic margins VI. (31 May–2 June, Fairbanks, USA). Fairbanks : University of Alaska, 2011a. Vol. VI. P. 6–6.
- 121. Akinin V.V., Gelman M.L., Sedov B.M., Amato J.M., Elizabeth M.L., Toro J., Calvert A.T., Fantini R.M., Wright J.E., Natal'in B.A. Koolen metamorphic complex, NE Russia: Implications for the tectonic evolution of the Bering Strait region // Tectonics. 1997. Vol. 6. P. 713–729.
- 122. Akinin V.V., Gottlieb E.S., Miller E.L., Polzunenkov G.O., Stolbov N.M., Sobolev N.N. Age and composition of basement beneath the De Long archipelago,

Arctic Russia, based on zircon U-Pb geochronology and O-Hf isotopic systematics from crustal xenoliths in basalts of Zhokhov Island // Arktos (The Journal of Arctic geosciences). 2015. Vol. 1. No 1. P. 1–10. doi: 10.1007/s41063-015-0016-6.

- 123. Akinin V.V., Miller E.L., Gottlieb E.S., Polzunenkov G.O. Cretaceous magmatism in the Russian sector of the Arctic Alaska-Chukotka Microplate (AACHM) // AGU Fall Meeting. 20116. Abstract id. T23B-2379.
- 124. Akinin V.V., Miller E.L., Gottlieb E., Polzunenkov G. Geochronology and geochemistry of Cretaceous magmatic rocks of Arctic Chukotka: An update of GEOCHRON-2.0 // Geophys. Res. Abstr. 2012. Vol. 14. EGU20123876.
- 125. Akinin V.V., Miller E.L., Toro J., Prokopiev A.V., Gottlieb E.S., Pearcey S., Polzunenkov G.O., Trunilina V.A. Episodicity and the dance of late Mesozoic magmatism and deformation along the northern Circum-Pacific margin: NE Russia to the Cordillera // Earth-Sci. Rev. 2020. Vol. 208. Article 103272.
- 126. Alekseev V.I., Alekseev I.V. Zircon as a Mineral Indicating the Stage of Granitoid Magmatism at Northern Chukotka, Russia // Geosciences. 2020. Vol. 10. P. 194–215. https://doi.org/10.3390/geosciences10050194.
- 127. Amato J.M., Toro J., Miller E.L., Gehrels G.E., Farmer G. L., Gottlieb E.S., Till A.B. Late Proterozoic-Paleozoic evolution of the Arctic Alaska Chukotka terrane based on U-Pb igneous and detrital zircon ages: Implications for Neoproterozoic paleogeographic reconstructions // Geological Society of America Bulletin, 2009. Vol. 121. P. 1219–1235.
- 128. Amato J.M., Aleinikoff J.N., Akinin V.V., McClelland W.C., Toro J. Age, chemistry, and correlations of Neoproterozoic–Devonian igneous rocks of the Arctic Alaska-Chukotka terrane: An overview with new U-Pb age. In: Dumoulin, J.A., Till, A.B., eds., Reconstruction of a Late Proterozoic to Devonian Continental Margin Sequence, Northern Alaska, Its Paleogeographic Significance, and Contained Base-Metal Sulfide Deposits // Geological Society of America Special Paper. 2014. No 506. P. 29–57. doi:10.1130/2014.2506(02).
- Anderson J.L. Status of thermobarometry in granitic batholiths // Trans Roy Soc Edinb Earth Sci. 1997. Vol. 87. P. 125–138.

- 130. Anderson J.L., Smith D.R. The effects of temperature and fO2 on the Al-inhornblende barometer // America Minerals 1995. Vol. 80. No 5–6. P. 549–559.
- 131. Barth A.P., Wooden J.L. Coupled elemental and isotopic analyses of polygenetic zircons from granitic rocks by ion microprobe, with implications for melt evolution and the sources of granitic magmas // Chemical Geology. 2010. Vol. 277. P. 149– 159.
- 132. Batchelor R.A., Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters // Chemical Geology. 1985. Vol. 48. P. 43–55.
- Bea F. Geochemistry of biotites in an assimilation process. An approach to recognition of metamorphic biotites from magmatic occurrence // Krystalinikum. 1980. Vol. 15. P. 103–124.
- Beane R.E. Biotite stability in porphyry copper environment // Economic Geologic. 1974. V. 69. P. 241–256.
- Bell E.A., Boehnke P., Barboni M., Harrison T.M., Tracking chemical alteration in magmatic zircon using rare earth element abundances // Chemical Geology. 2019. Vol. 510. P. 56–71. https://doi.org/10.1016/j.chemgeo.2019.02.027.
- 136. Belousova E.A., Griffin E.W.L., O'Reilly S.Y., Fischer N.I. Igneous zircon: Trace element composition as an indicator of source rock type // Contributions to Mineralogy and Petrology. 2002. Vol. 143. P. 602–622.
- 137. Bin Fu F., Page F.Z., Cavosie A.J., Fournelle J, Kita N.T., Lackey J.S., Wilde S.A., Valley J. W. Ti-in-zircon thermometry: applications and limitations // Contributions to Mineralogy and Petrology. 2008. Vol. 156. P. 197–215.
- Bischoff J.L. Densities of liquids and vapors in boiling NaCl-H₂O solutions: a PVTX summary from 300 °C to 500 °C // American Journal of Science. 1991. Vol. 291. April. P. 309–338.
- 139. Black L.P., Kamo S.L., Allen C.M., Davis D.W., Aleinikoff J. N., Valley J.W., Mundil R., Campbell I.H., Korsch R.J., Williams I.S., Foudoulis C. Improved ²⁰⁶Pb/ ²³⁸U microprobe geochronology by the monitoring of a trace element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards // Chemical Geology. 2004. Vol. 205. P. 115–140.

- 140. Blundy J.D., Holland T.J. Calcic amphibole equilibria and a new amphibole– plagioclase geothermometer // Contributions to Mineralogy and Petrology. 1990. Vol. 104(2). P. 208–224.
- 141. Bodnar R.J., Vityk M.O. Interpretation of microterhrmometric data for H2O-NaCl fluid inclusions // Fluid inclusions in minerals: methods and application. Ed. by: Benedetto De Vivo, Maria Luce Frezzotti. Pontignsno-Siena. 1994. P. 117–130.
- 142. Bolhar R., Weaver S.D., Palin J.M., Cole J.W., Paterson L.A. Systematics of zircon crystallisation in the Cretaceous Separation Point Suite, New Zealand, using U-Pb isotopes, REE and Ti geothermometry // Contributions to Mineralogy and Petrology. 2008. Vol. 156. P. 133–160.
- 143. Brown C.R., Yakymchuk C., Brown M., Fanning C.M., Korhonen F.J., Piccoli P.M., Siddoway S. C. From Source to Sink: Petrogenesis of Cretaceous Anatectic Granites from the Fosdick Migmatite-Granite Complex, West Antarctica // Journal of Petrology. 2016. Vol. 57(7). P. 1241–1278.
- 144. Brown M., Averkin Y.A., McLellan E.L., Sawyer E.W. Melt segregation in migmatites // Journal of Geophysical Research. 1995. Vol. 100. P. 15655–15679.
- 145. Brown M. Crustal melting and granite magmatism: key issues // Phys. Chem. Earth. 2001. Vol. 26. P. 201–212. doi:10.1016/S1464-1895(01)00047-3.
- 146. Brumley K., Miller E.L., Konstantinou A., Grove M., Meisling K., Mayer L.A. First bedrock samples dredged from submarine outcrops in the Chukchi Borderland, Arctic Ocean // Geosphere. 2015. Vol. 11. No 1. P. 76–92. https://doi.org/10.1130/ GESO10.44.1.
- 147. Bryan S. Silicic large igneous provinces // Episodes. 2007. Vol. 30. P. 20-31.
- 148. Cecile M.P., Harrison J.C., Kos'ko M.K., Parrish R. Precambrian U-Pb ages of igneous rocks, Wrangel Island Complex, Wrangel Island, U.S.S.R // Canadian Journal of Earth Sciences. 1991. Vol. 28. P. 1340–1348.
- 149. Coble M.A., Vazquez J.A., Barth A.P., Wooden J., Burns D., Kylander-Clark A., Jackson S., Vennari C.E. Trace Element Characterisation of MAD-559 Zircon Reference Material for Ion Microprobe Analysis // Geostandards and Geoanalytical Research. 2018. Vol. 42. P. 481–497. https://doi.org/10.1111/ggr.12238.

- 150. Corfu F., Hanchar J.M., Hoskin P.W.O., Kinny P. Atlas of zircon textures. In: Hanchar J.M., Hoskin P.W.O., eds. Zircon // Reviews in Mineralogy and Geochemistry. 2003. Vol. 53. P. 469–500.
- 151. Claiborne L.L., Miller C., Wooden J. Trace element composition of igneous zircon: A thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada // Contributions to Mineralogy and Petrology. 2010. Vol. 160. P. 511–531.
- 152. Clarke D.B. The mineralogy of peraluminous granites: a review // Canadian Mineralogist. 1981. Vol. 19. P. 3–17.
- Clemens J.D., Droop G.T.R. Fluids, P-T paths and the fates of anatectic melts in the Earth's crust // Lithos. 1998. Vol. 44. P. 21–36. doi: 10.1016/S0024-4937(98)00020-6.
- 154. Charlier B.L.A., Peate D.W., Wilson C.J.N., Lowenstern J.B., Storey M., Brown S.J.A. Crystallisation ages in coeval silicic magma bodies: U-Th disequilibrium evidence from the Rotoiti and Earthquake Flat eruption deposits, Taupo Volcanic Zone, New Zealand // Earth and Planetary Science Letters. 2004. V. 206. P. 441–457.
- 155. Churkin M., Trexler I. Circum-Arctic plate accretion–isolating part of a Pacific plate to form the nucleus of the Arctic basin // Earth and Planetary Science Letters. 1980. Vol. 48. P. 356–362.
- 156. Churkin M., Jr., Whitney J. W., Rogers J. F. The North American–Siberian connection, a mosaic of craton fragments in a matrix of oceanic terranes // in Howell, D. G., ed., Tectonostratigraphic Terranes of the Circum-Pacific Region, Earth Science Series 1: Houston, TX, Circum-Pacific Council for Energy and Mineral Resources. 1985. P. 79–84.
- 157. Deer W.A., Howie R.A., Zussman J. An Introduction to the Rock-Forming Minerals // Longman. London, 1992. P. 696.
- 158. Deng C., Sun G., Sun D., Han J., Yang D., Tang Z. Morphology, trace elements, and geochronology of zircons from monzogranite in the Northeast Xing'an Block, northeastern China: Constraints on the genesis of the host magma // Mineralogy and

Petrology. 2019. Vol. 113. P. 651–666. https://doi.org/10.1007/s00710-019-00669-9.

- 159. DePaolo D.J. Trace element and isotopic effects of combined wall-rock assimilation and fractional crystallisation // Earth and Planetary Science Letters. 1981. Vol. 53. P. 189–202.
- DePaolo D.J., Wasserburg G.J. Nd isotopic variations and petrogenetic models // Geophysical Research Letters. 1976. Vol. 3. P. 249–252.
- 161. Dilles J.H., Kent A.J.R., Wooden J.L., Tosdal R.M., Koleszar A., Lee R.G., Farmer L.P. Zircon compositional evidence for sulfur-degassing from ore-forming arc magmas // Economic Geology. 2015. Vol. 110. P. 241–251.
- 162. Drachev S.S. Tectonic setting, structure and petroleum geology of the Siberian Arctic offshore sedimentary basins // Geol. Soc. Lond. Mem. 2011. Vol. 35. P. 369–394.
- 163. El-Bialy M.Z., Ali K.A. Zircon trace element geochemical constraints on the evolution of the Ediacaran (600–614 Ma) postcollisional Dokhan volcanics and younger granites of SE Sinai, NE Arabian-Nubian shield // Chemical Geology. 2013. Vol. 360. P. 54–73.
- 164. Erdmann S., Martel C., Pichavant M., Kushnir A. Amphibole as an archivist of magmatic crystallization conditions: problems, potential, and implications for inferring magma storage prior to the paroxysmal 2010 eruption of Mount Merapi, Indonesia // Contributions to Mineralogy and Petrology. 2014. Vol. 167. P. 1016– 1038.
- 165. Fabries J., Conquere F., Arnaud G. The mafic silicates in the Saint quay-Portrieux gabbro-diorite intrusion: crystallization conditions of a calc-alkaline pluton // Bull. de Mineralogie.1984. Vol. 107. P. 715–736.
- Faure G. Principles of isotope geology (second edition). John Wiley, Sons. New York. 1986. 589 p.
- 167. Ferry J.M., Watson E.B. New thermodynamic models and revised calibrations for the Ti in zircon and Zr in rutile thermometers // Contributions to Mineralogy and Petrology. 2007. Vol. 154. P. 429–437.

- 168. Fisher C.M., Vervoort J.D., DuFrane S.A. Accurate Hf isotope determinations of complex zircons using the "laser ablation split stream" method // Geochem Geophys Geosystem. 2014. Vol. 15. P. 121–139. doi.org/10.1002/2013GC004962.
- Foster M.D. Interpretation of the composition of trioctahedral micas // US. Geological. Survey. 1960. Proffesor. Paper 354-B. P. 146.
- Frost B.R., Arculus R.J., Barnes C.G., Collins W. J., Ellis D. J., Frost C.D. A geochemical classification of granitic rocks // Journal of Petrology. 2001. Vol. 42.
 P. 2033–2048.
- 171. Fu B., Mernagh T.P., Kita N.T., Kemp A.I.S., Valley J.W. Distinguishing magmatic zircon from hydrothermal zircon: A case study from the Gidginbung high sulphidation Au-Ag-(Cu) deposit, SE Australia // Chemical Geology. 2009. Vol. 259. P. 131–142.
- 172. Gagnevin D., Daly J.S., Kronz A. Zircon texture and chemical composition as a guide to magmatic processes and mixing in a granitic environment and coeval volcanic system // Contributions to Mineralogy and Petrology. 2010. Vol. 159. P. 579–596.
- 173. Gao S., Rudnick R.L., Yuan H.L., Liu X.M., Liu Y.S., Xu W.L., Wang Q.H. Recycling lower continental crust in the North China Craton // Nature. 2004. Vol. 432. P. 892–897.
- Geisler T., Rashwan A.A., Rahn M.K.W., Poller U., Zwingmann H., Pidgeon R. T., Tomaschek F. Low temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert, Egypt // Mineralogy Magazine. 2003. Vol. 67. P. 485–508.
- 175. Gilbert M.C., Helz R.T., Popp R.K. et. al. Experimental studies of amphibole stability / D.R. Veblen, P.H. Ribbe (eds.), Amphiboles: Petrology and experimental phase relations // Minerals Society American, Rev. in Mineralogy. 1982. Vol. 9B. P. 229–353.
- Giret A., Bonin B., Leger J.M. Amphibole compositional trends in oversaturated alkaline plutonic ring-complexes // The Canadian Mineralogist. 1980. Vol. 18. P. 481–495.

- 177. Grimes C.B., Wooden J.L., Cheadle M.J., John B.E. "Fingerprinting" tectonomagmatic provenance using trace elements in igneous zircon // Contributions to Mineralogy and Petrology. 2015. Vol. 170. P. 1–26.
- 178. Grimes C.B., John B.E., Cheadle M.J., Mazdab F.K., Wooden J.L., Swapp S., Schwartz J.J. On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere // Contributions to Mineralogy and Petrology. 2009. Vol. 158. P. 757–783.
- 179. Grimes C.B., John B.E., Kelemen P.B., Mazdab F.K., Wooden J.L., Cheadle M.J., Schwartz J.J. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance // Geology. 2007. Vol. 35. P. 643–646.
- 180. Gottlieb E.S., Pease V., Miller E.L., Akinin V.V. Neoproterozoic basement history of Wrangel Island and Arctic Chukotka: integrated insights from zircon U– Pb, O and Hf isotopic studies // Geol. Soc. Lond. Spec. Publ. № 460. 2018. P. 183– 206.
- 181. Hayden L., Watson E., Wark D. A thermobarometer for sphene (titanite) // Contributions to Mineralogy and Petrology. 2008. Vol. 155. P. 529–540.
- 182. Harrison T.M., Watson E.B., Aikman A.B. Temperature Spectra of Zircon Crystallization in Plutonic Rocks // Geology. 2007. Vol. 35. P. 635–638.
- Hawkesworth C.J., Kemp A.I.S. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution // Chemical Geology. 2006. V. 226. P. 144– 162.
- 184. Henry D., Guidotti C., Thomson J. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms // American Mineralogist. 2005. Vol. 90. P. 316–328.
- 185. Holdaway M. J. Recalibration of the GASP geobarometer in light of recent garnet and plagioclase activity models and versions of the garnet-biotite geothermometer // American Mineralogist. 2001. Vol. 86. P. 1117–1129.

- 186. Holland T., Blundy J. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry // Contributions to Mineralogy and Petrology. 1994. Vol. 116. P. 433–447.
- 187. Hollister L.S., Grissom G.C., Peters E.K. et. al. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons // American Mineralogist. 1987. Vol. 72(3–4). P. 231–239.
- 188. Holtz F., Johannes W., Tamic N. et al. Maximum and minimum water contents of granitic melts generated in the crust: a reevaluation and implications // Lithos. 2001. Vol. 56. P. 1–14.
- 189. Hoskin P.W.O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia // Geochimica et Cosmochimica Acta. 2005. Vol. 69. P. 637–648.
- 190. Hoskin P.W.O., Ireland T.R. Rare earth element chemistry of zircon and its use as a provenance indicator // Geology. 2000. Vol. 28. P. 627–630.
- Hoskin P.W.O., Schaltegger U. The composition of zircon in igneous and metamorphic petrogenesis // Review of Mineralogy and Geochemistry. 2003. Vol. 53. P. 27–62.
- 192. Hoskin P.W.O., Kinny P.D., Wyborn D., Chappell B. W. Identifying accessory mineral saturation during differentiation in granitoid magmas: An integrated approach // Journal of Petrology. 2000. Vol. 41. P. 1365–1396.
- 193. Hidaka H., Shimizu H., Adachi M. U-Pb geochronology and REE geochemistry of zircons from Palaeoproterozoic paragneiss clasts in the Mesozoic Kamiaso conglomerate, central Japan: Evidence for an Archean provenance // Chemical Geology. 2002. Vol. 187. P. 279-293.
- 194. Hinton R.W., Upton B.G.J. The chemistry of zircon: Variations within and between large crystals from syenite and alkali basalt xenoliths // Geochimica et Cosmochimica Acta. 1991. Vol. 55. P. 3287–3302.
- 195. Hu Z.L., Wang X.W., Qin Z.P. Basic Characteristics of zircon trace elements and t5heir genetic significances in Jiama Copper Polymetallic Deposit // Nonferrous Metals (Min. Sect.). 2012. Vol. 64 P. 58–63.

- 196. Ickert R.B., Williams I.S., Wyborn D. Ti in zircon from the Boggy Plain zoned pluton: implications for zircon petrology and Hadean tectonics // Contributions to Mineralogy and Petrology. 2011. Vol. 162. P. 447–461.
- 197. Ishihara S. The magnetite-series and ilmenite-series granitic rocks // Mining Geol. 1977. Vol. 27. P. 293–305.
- 198. Jarosewich E., Nelson J.A., Norbers J.A. Reference samples for electron microprobe analysis // Geostandards Newsletter. 1980. Vol. 4. P. 43–47.
- 199. Jacobsen S.B., Wasserburg G.J. Sm-Nd isotopic systematics of chondrites and achondrites // Meteoritics. 1980. Vol. 15. P. 307–308.
- 200. Johnson M.C., Rutherford M.J. Experimental calibration of the aluminum in hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks // Geology. 1989. Vol. 17(9). P. 837–841.
- 201. Kelemen P. B., Hanghoj, K., & Greene, A. R. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In: Rudnick RL (ed.) the crust // Holland HD, Turekian KK (Eds.) // Treatise on geochemistry. London, 2003. V. 3. P. 593–659.
- 202. Kelley S.P., Spicer R.A., Herman A.B. New ⁴⁰Ar/³⁹Ar dates for Cretaceous Chauna Group tephra, northeastern Russia, and their implication for the geologic history and floral evolution of the North Pacific region // Cretaceous research. 1999. Vol. 20. No 1. P. 97–106.
- 203. Kirkland C.L., Smithies R.H., Taylor R.J.M., Evans N. Zircon Th/U ratios in magmatic environs // Lithos. 2015. P. 212–215. doi: 10.1016/j.lithos.2014.11.021.
- 204. Kos'ko M.K., Cecile M.P., Harrison J.C., Ganelin V. G., Khandoshko N., Lopatin B. G. Geology of Wrangel Island, between Chukchi and East Siberian seas, northeastern Russia // Geological Survey Canada Bulletin. 1993. Vol. 461. 101 p.
- 205. Lane L.S., Cecile M.P., Gehrels G.E., Kos'ko M.K., Layer P.W., Parrish R.R. Geochronology and structural setting of latest Devonian Early Carboniferous magmatic rocks, Cape Kiber, northeast Russia // Canadian Journal Earth Science. 2015. Vol. 52. P. 147–160.

- 206. Leake B.E., Woolley A.R., Arps C.E., Birch W.D., Gilbert M.C., Grice J.D., Hawthorne F.C., Kato A., Kisch H.J., Krivovichev V.G. Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International mineralogical association commission on new minerals and mineral names // Mineralogical Magazine. 1997. Vol. 61. No 2. P. 295–321.
- 207. Leake B.E., Woolley A.R., Birch et al. Nomenclature of amphiboles: Additions and revisions to the International Mineralogical Association's amphibole nomenclature // American Mineralogist. 2004. Vol. 89. P. 883–887.
- 208. Lee R.G., Dilles J.H, Tosdal R.M., et al. Magmatic evolution of granodiorite intrusions at the El Salvador porphyry copper deposit, Chile, based on trace element composition and U/Pb age of zircons // Economic Geology. 2017. V.112. P. 245– 273.
- 209. Li H., Watanabe K., Yonezu K. Zircon morphology, geochronology and trace element geochemistry of the granites from the Huangshaping polymetallic deposit, South China: Implications for the magmatic evolution and mineralization processes // Ore Geology Reviews. 2014. Vol. 6. P. 14–35.
- 210. Liew T.C., Hofmann A.W. Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe: Indications from a Nd and Sr isotopic study // Contributions to Mineralogy and Petrology. 1988. Vol. 98. P. 129–138.
- 211. Luchitskaya M.V., Moiseev A.V., Sokolov S.D., Tuchkova M. I., Sergeev S. A., O'Sullivan P. B., Verzhbitsky V. E., Malyshev N. A. Neoproterozoic granitoids and rhyolites of Wrangel Island: Geochemical affinity and geodynamic setting in the Eastern Arctic region // Lithos. 2017. Vol. 292–293. P. 15–33.
- Luchitskaya M.V., Sokolov S.D., Moiseev A.V.Stages of Late Mesozoic granitoid magmatism of Chukotka (NE Russia) Geophysical Research Abstracts. 2012. Vol. 14. EGU2012-2322.
- 213. Ludwig K.R. User's manual for Isoplot 3.00: a geochronological toolkit for Microsoft Excel // Berkeley Geochronology Center Special Publication. 2003. No 4.

- Lugmair, G.W., Marti, K. Lunar initial ¹⁴³Nd/¹⁴⁴Nd: differential evolution of the lunar crust and mantle // Earth and Planetary Science Letters. 1978. V. 39. P. 349– 357. doi: 10.1016/0012-821X(78)90021-3.
- 215. Luhr J.F., Carmichael I.S.E, Varekamp J.C. The 1982 eruptions of El Chicón Volcano, Chiapas, Mexico: mineralogy and petrology of the anhydrite-bearing pumices // J Volcanol Geotherm. 1984. V. 23. P. 69–108.
- McDonough W.F., Sun S.S. The Composition of the Earth // Chemical Geology. 1995. Vol. 120. P. 223–253.
- 217. Miller E.L., Verzhbitsky V.E. Structural studies near Pevek, Russia: implications for formation of the East Siberian Shelf and Makarov Basin of the Arctic Ocean // Geology and Tectonic Origins of Northeast Russia: A Tribute to Leonid Parfenov. Stephan Mueller Spec. Publ. 2009. Vol. 4. P. 223–241.
- 218. Miller E.L., Akinin V.V., Dumitru T.A., Gottlieb E.S., Grove M., Meisling K., Seward G. Deformational history and thermochronology of Wrangel Island, East Siberian Shelf and coastal Chukotka, Arctic Russia // Geological Society London Special. Publication. 2018. No 460. P. 207–238. https://doi.org/10.1144/SP460.7.
- 219. Miller E. L., Gehrels G. E., Pease V., Sokolov S. Stratigraphy and U-Pb detrital zircon geochronology of Wrangel Island, Russia: Implications for Arctic paleogeography // American Association of Petroleum Geologists Bulletin, 2010. Vol. 94. P. 665–692.
- 220. Miller E.L., Katkov S.M., Strickland A., Toro J., Akinin V.V., Dumitru T.A. Geochronology and thermochronology of Cretaceous plutons and metamorphic country rocks, Anyui-Chukotka fold belt, North-East Arctic Russia // Stephan Mueller Special Publication Series. V. 4. "Geology, geophysics and tectonics of Northeastern Russia: a tribute to Leonid Parfenov". 2009. P. 157–175.
- 221. Miller E.L., Kuznetsov N., Soboleva A., Udoratina O., Grove M.J., Gehlers G. Baltica in the Cordillera? // Geology. 2011. Vol. 39 (8). P. 791–794.
- 222. Miller E.L., Toro J., Gehrels G., Amato J.M., Prokopiev A., Tuchkova M.I., Akinin V., Dumitru T.A., Moore T.E., Cecile M.P. New insights into Arctic

paleogeography and tectonics from U-Pb detrital zircon geochronology // Tectonics. 2006. Vol. 25. Is. 3. P. TC3013.

- 223. Milord I., Sawyer E. W., Brown M. Formation of diatexite migmatite and granite magma during anatexis of semi-pelitic metasedimentary rocks: an example from St. Malo, France // Journal of Petrology, 2001. V. 42. P. 487–505.
- 224. Moll-Stalcup E.J., Lane L.S., Cecile M.P., Gorodinsky M.E. Geochemistry and U-Pb geochronology of arc-related magmatic rocks, Northeastern Russia: Abstr. Geol. Soc. Am. 91st Annual Cordilleran Section. 1995. Vol. 27. No 5. P. 65.
- 225. Moore T.E., Wallace W.K., Bird K.J., Karl S.M., Mull C.G., Dillon J.T. Geology of northern Alaska. In: The Geology of North America. Vol. G-1. The Geology of Alaska. Ed. by G. Plafker, H.C. Berg // GSA Spec. Publ. 1994. P. 49–140.
- 226. Mutch E., Blundy J., Tattitch B. et al. An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al in hornblende geobarometer // Contributions to Mineralogy and Petrology. 2016. Vol. 85. P. 27.
- 227. Nachit H. Contribution lietude analytique et experimental des biotites des granitoides. Applications typologiques: These de Doctorat. Universit de Bretagne Occidental, Brest, France. 1986. 238 p.
- 228. Nachit, H., Razafimahefa, N., Stussi, J.M., Carron, J.P., 1985. Composition chimique des biotites et typologie magmatique des granitoides // Comptes Rendus Academie des Sciences (Paris). 1985. V. 301. P. 813–818.
- 229. Natal'in B.A., Amato J.M., Toro J., Wright J.E. Paleozoic rocks of northern Chukotka Peninsula, Russian Far East: Implications for the tectonics of the Arctic region // Tectonics. 1999. Vol. 18. P. 977–1003.
- 230. Neymark, L.A., Larin, A.M., Moscati R.J. Pb-Pb and U-Pb Dating of Cassiterite by In Situ LA-ICPMS: Examples Spanning ~1.85 Ga to ~100 Ma in Russia and Implications for Dating Proterozoic to Phanerozoic Tin Deposits // Minerals 2021, 11, 1166. https://doi.org/ 10.3390/min1111166.
- 231. Nokleberg W.J., Parfenov L.M., Monger J.W.H., Norton I.O., Khanchuk A.I., Stone D.B., Scholl D.W., Fujita K. Phanerozoic tectonic evolution of the circumnorth Pacific. U.S. // Geological Survey Open-File Report. 1998. 125 p.

- 232. O'Brien T.M., Miller E.L. Continuous zircon growth during long-lived granulite facies metamorphism: a microtextural, U-Pb, Lu-Hf and trace element study of Caledonian rocks from the Arctic // Contributions to Mineralogy and Petrology. 2014. V.168(4). P. 1071–1090.
- 233. Patino-Douce A.E. Titanium substitution in biotite: an empirical model with applications to thermometry, O₂ and H₂O barometries, and consequences for biotite stability // Chemical Geology. 1993. Vol. 108. P. 133–162.
- Pearce J.A., Harris N.W. Tindle A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks // Journal of Petrology. 1984. Vol. 25. P. 956–983.
- 235. Peace A.L., McCaffrey K.J.W., Imber J., Van Hunen J., Hobbs R., Wilson R. The role of pre-existing structures during rifting, continental breakup and transform system development, offshore West Greenland Basin Res. 2018. Vol. 30. P. 373– 394, 10.1111/bre.12257.
- 236. Pease V., Drachev S., Stephenson R., Zhang X. Arctic lithosphere a review // Tectonophysics. 2014. Vol. 625. P. 1–25.
- 237. Peccerillo R., Taylor S.R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey // Contributions to Mineralogy and Petrology. 1976. Vol. 58. P. 63–81.
- Powell R., Holland T.J.B. On thermobarometry // J. Metamorphic Geol. 2008.
 Vol. 26. P. 155–179.
- 239. Prokopiev A.V., Ershova V.B., Anfinson O., Stockli D., Powell J., Khudoley A.K., Vasiliev D.A., Sobolev N.N., Petrov E.O. Tectonics of New Siberian Islands archipelago: Structural styles and low-temperature thermochronology // Journal Geodynam. 2018. Vol. 121. P. 155–184.
- 240. Ridolfi F., Renzulli A. Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1130°C and 2.2 GPa // Contributions to Mineralogy and Petrology. 2012. Vol. 163. P. 877–895.
- 241. Ridolfi F., Renzulli A., Puerini M. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: An overview, new thermobarometric

formulations and application to subduction-related volcanoes // Contributions to Mineralogy and Petrology. 2009. Vol. 160. P. 45–66.

- 242. Roberts M.P., Clemens J.D. Feasibility of AFC models for the petrogenesis of calc-alkaline magmas series // Contributions to Mineralogy and Petrology. 1995. Vol. 121. P. 139–147.
- 243. Rollinson H.R. Using Geochemical Data: evaluation, presentation, interpretation Longman Scientific and Technical. Essex, 1993. 352 p.
- 244. Rowe H. Petrogenesis of plutons and hypabyssal rocks of the Bering Strait Region, Chukotka, Russia (MS thesis). Rice University, Houston, Texas, 1998.
- 245. Rubatto D. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism // Chemical Geology. 2002. Vol. 184. P. 123–138.
- 246. Safonova I., Maruyama S., Hirata T., Kon Y., Rino S. LA ICP MS U-Pb ages of detrital zircons from Russia largest rivers: implications for major granitoid events in Eurasia and global episodes of supercontinent formation // Journal of Geodynamics 2010. Vol. 50. P. 134–153.
- 247. Sakyi P.A., Su B.X., Kwayisi D. Zircon trace element constraints on the evolution of the paleoproterozoic Birimian granitoids of the West African Craton (Ghana) // Journal of Earth Science. 2019. Vol. 29. P. 43–56.
- 248. Samson S.C., Patchett P.J., McClelland W.C., Gehrels G.E. Nd isotopic characterisation of metamorphic rocks in he Coast Mountains, Alaskan and Canadian Cordillera: ancient crust bounded by juvenile terranes // Tectonics. 1990. Vol. 10. P. 770–780.
- 249. Sawer E.W. Melt-segregation and magma flow in migmatites: implicatons for the generation of granite magmas // Transactions of the Royal Society of Edinburgh: Earth Sciences. 1996. Vol. 87. P. 85–94.
- 250. Schaltegger U. Hydrothermal zircon // Elements. 2007. Vol. 3. P. 51–79.
- 251. Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J., Hartenstein V., Eliceiri K.,

Tomancak P., Cardona A. Fiji – an open source platform for biological image // Nature Methods. 2012 Vol. 9. P. 676–682.

- 252. Schmidt M.W. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer // Contributions to Mineralogy and Petrology. 1992. Vol. 110 (2–3). P. 304–310.
- 253. Sederholm J.J. On migmatites and associated Precambnan rocks of southwestern Finland. I. The Pellinge region // Bulletin de la Commission geologique de Finlande. 1923. No. 58.
- 254. Shishkin M.A., Sinkova E.A., Sergeev S.A. et al. Electronic Geochronological Annual Bulletin of VSEGEI (2013–2021) / O.V. Petrov (Head Ed.) // Atlas-guide on Geochronology of main lithotectonic complexes of Russia. St.-Petersburg, VSEGEI. (In Russian). http://geochron.vsegei.ru – (2015–2022 гг.).
- 255. Sircombe K.N. Mountains in the shadows of time: three-dimensional density distribution mapping of U-Pb isotopic data as a visualization aid for geochronological information in concordia diagrams // Geochemistry, Geophysics, Geosystems. 2007. Vol. 7. Q07013. https://doi.org/10.1029/2005GC001052.
- 256. Sokolov S.D., Bondarenko G.Ye., Layer P.W., Kravchenko-Berezhnoy I.R. South Anyui suture: tectonostratigraphy, deformations, and principal tectonic events // in D.B. Stone, K. Fujita, P.W. Layer, and E.L. Miller, A.V. Prokopiev, and J. Toro (eds.) / Geology, geophysics and tectonics of Northeastern Russia: a tribute to Leonid Parfenov, European Geosciences Union, Stephan Mueller Publication Series. 2009. Vol. 4. P. 201–221.
- Spear F.S. Amphibole-plagioclase equilibria: an empirical model for the reaction albite tremolite edenite. 4 quartz // Contributions to Mineralogy and Petrology. 1981. Vol. 77. P. 355–364.
- 258. Stein E., Dietl C. Hornblende thermobarometry of granitoids from the Central Odenwald (Germany) and their implications for the geotectonic development of the Odenwald // Minerals and Petrology. 2001. Vol. 72. P. 185–207.

- 259. Stevens G., Clemens J.D. Fluid-absent melting and the roles of fluids in the lithosphere: A slanted summary? // Chemical Geology. 1993. Vol. 108. P. 1–17. doi: 10.1016/0009-2541(93)90314-9.
- 260. Streckeisen A.L., Le Maitre R.W. A Chemical Approximation to the Modal QAPF Classification of the Igneous Rocks // Neues Jahrbuch fur Mineralogie. Abhandlungen. 1979. Vol. 136. P. 169–206.
- 261. Sun S.S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: Implication for mantle composition and processes / In A.D. Saunders, M.J. Norry (Eds.) // Magmatism in ocean basins. London. 1989. Vol. 42. P. 313–345.
- 262. Tailby N.D., Walker A.M., Berry A.J., Hermann J., Evans K.A., Mavrogenes J.A., O'Neill H.St.C., Rodina I.S., Soldatov A.V., Rubatto D., Sutton S.R. Ti site occupancy in zircon // Geochimica Cosmochimica Acta. 2011. Vol. 75. P. 905–921.
- 263. Taylor S.R., McLennan S.M. The geochemical evolution of the continental crust // Review Geophysics. 1995. Vol. 33. P. 241–265. doi10.1029/95RG00262.
- 264. Thomas W., Ernst W.G. The aluminum content of hornblende in calcalkaline granitic rocks; a mineralogic barometer calibrated experimentally to 12 kbars / R.J. Spencer, I-M Chou (eds.). Fluid-mineral interactions: a tribute to H.P. Eugster // Geochem. Soc. Spec. Publ. 1990. Vol. 2. P. 59–63.
- 265. Tikhomirov P., Luchitskaya M.R., Kravchenko-Berezhnoy I.J. Comparison of Cretaceous granitoids of the Chaun tectonic zone to those of the Taigonos Peninsula, NE Asia: rock chemistry, composition of rock forming minerals, and conditions of formation // Stephan Mueller Special Publication Series. 2009. Vol. 4.
- 266. Tikhomirov P.L., Kalinina E.A., Kobayashi K., Nakamura E. Late Mesozoic silicic magmatism of the North Chukotka area (NE Russia): age, magma sources, and geodynamic implications // Lithos. 2008. Vol. 105. P. 329–346.
- 267. Till A.B., Dumoulin J.A., Gamble B.M., Kaufman D.S., Carroll P.I. Preliminary geologic map and fossil data, Solomon, Bendeleben, and southern Kotzebue quadrangles, Seward Peninsula, Alaska: U.S. // Geological Survey Open-File Report 86-276. 1986. 74 p., 3 sheets, scale 1:250 000.

- Tischendorf G., Reider M., Firster H.J., et al. A new graphical presentation and subdivision of potassium micas // Mineralogical Magazine. 2004. Vol. 68(4). P. 649–667.
- 269. Trail D., Mojzsis S.J., Harrison J.C., Schmitt A.K., Watson E.B., Young E.D. Constraints on Hadean zircon protoliths from oxygen isotopes, Ti-thermometry, and rare earth elements // Geochemistry, Geophysics, Geosystems. 2007. Vol. 8. Q06014, https://doi.org/10.1029/2006GC001449.
- 270. Trettin H.P. Late Silutrian-Early Devonian deformation, metamorphism, and granitic plutonism, Northern Ellesmere and Axel Heiberg islands. In: Geology of the Innuitian orogeny and Arctic platform of Canada and Greenland, (Geological Survey Canadian Bulletin Series: Geology of Canada. 1991. No. 3). P. 295–309.
- 271. Tuchkova M.I., Sokolov S.D., Khudoley A.K., Verzhbitsky V.E., Hayasaka Y., Moiseev A.V. Permian and Triassic deposits of Siberian and Chukotka passive margins: sedimentation setting and provenance: ICAM VI Proceedings. 2014. P. 61–96.
- 272. Turnbull R., Deering C.J., Tulloch A.D., Weaver S. Second boiling effects on the Al-content of hornblende rims from an exhumed Cretaceous arc pluton, Stewart Island, New Zealand // Am. Mineral. 2012. Vol. 97. P. 1129–1144.
- Uchida E., Endo S., Makino M. Relationship Between Solidification Depth of Granitic Rocks and Formation of Hydrothermal Ore Deposits // Resource Geology.
 2007. V. 57. P. 47–56.
- 274. Valley J.W. Oxygen isotopes in zircon // Reviews in Mineralogy and Geochemisty. 2003. Vol. 53. P. 343–386.
- Vermeesch P. IsoplotR: a free and open toolbox for geochronology // Geoscience Frontiers. 2018. Vol. 9, P.1479–1493.
- 276. Verzhbitsky V.E., Sokolov S.D., Tuchkova M.I., Frantzen E.M., Little A., Lobkovsky L.I. The South Chukchi sedimentary basin (Chukchi Sea, Russian Arctic): Age, structural pattern and hydrocarbon potential // AAPG. Memoir. 2012. Vol. 100. P. 267–290.

- 277. Vigneresse J.L., Barbey P., Cuney M. Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer // Journal of Petrology. 1996. Vol. 37. P. 1579–1600.
- 278. Vyhnal C.R., McSween H.Y., Speer J.A. Hornblende chemistry in Southern Appalachian granitoids: Implications for aluminum hornblende thermobarometry and magmatic epidote stability // American Mineralogist. 1991. Vol. 76. P. 176–188.
- 279. Wang Q., Zhu D.C., Zhao Z.D., Guan Q., Zhang X.Q., Sui Q.L., Moa X.X. Magmatic zircons from I-, S- and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study // Journal of Asian Earth Sciences. 2012. Vol. 53 P. 59–66.
- 280. Watson E.B., Harrison T.M. Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth // Science. 2005. Vol. 308. P. 841–844.
- 281. Watson E.B., Wark D.A., Thomas J.B. Crystallization thermometers for zircon and rutile // Contributions to Mineralogy and Petrology. 2006. Vol. 151. P. 413– 433.
- 282. White A.R., Chappell B.W. Granitoids types and their distribution in the Lachlan Fold Belt, Southeastern Australia // Memoir Geological Society America. 1983. Vol. 159. P. 21–34.
- 283. Whitney D.L., Evans B.W. Abbreviations for names of rock-forming minerals. American Mineralogist. 2010. Vol. 95. P. 185–187. doi:10.2138/am.2010.3371.
- 284. Wiedenbeck M., Hanchar J.M., Peck W.H., Sylvester P., Valley J., Whitehouse M., Kronz A., Morishita Y., Nasdala L., Fiebig J., Franchi I., Girard J.-P., Greenwood R.C., Hinton R., Kita N., Mason P.R.D., Norman M., Ogasawara M., Piccoli P.M., Rhede D., Satoh H., Schulz-Dobrick B., Skår O., Spicuzza M.J., Terada K., Tindle A., Togashi S., Vennemann T., Xie Q., Zheng Y.F. Further characterisation of the 91500 zircon crystal // Geostandards and Geoanalytical Research. 2004. Vol. 28. P. 9–39.
- 285. Williams I.S. U-Th-Pb geochronology by ion microprobe. In: McKibben M.A., Shanks W.C., and Ridley W.I. (eds.) Applications of Microanalytical Techniques to

Understanding Mineralizing Porcesses // Reviews in Economic Geology, 1998. Vol. 7. P. 1–35.

- 286. Wones D.R. Significance of the assemblage titanite + magnetite + quartz in granitic rocks // American Mineralogical.1989. V. 74. P. 744–749.
- 287. Wooden J.L., Mazdab F.K., Barth A.P., Miller C.F., Lowery L.E. Temperatures (Ti) and compositional characteristics of zircon: early observations using high mass resolution on the USGS-Stanford SHRIMP-RG // Third SHRIMP workshop. Rottnest Island, Australia. 2006. P. 64–65.
- 288. Xiang W., Griffin W.L., Jie C., Pinyon H., Xiang L. U and Th contents and Th/U ratios of Zircon in Felsic and Mafic Magmatic Rocks: Improved Zircon-Melt distribution coefficients // Acta Geologica Sinica. 2011. Vol. 85. P. 164–174.
- 289. Yakymchuk C., Brown M., Clark C., Korhonen F.J., Piccoli P.M., Siddoway C.S., Taylor R.J.M., Vervoort J.D. Decoding polyphase migmatites using geochronology and phase equilibria modelling // Journal of Metamorphic Geology. 2015. Vol. 33. P. 203–230.
- 290. Yang J.H., Cawood P.A., Du Y.S., Huang H., Huang H.W., Tao P. Large Igneous Province and magmatic arc sourced Permian-Triassic volcanogenic sediments in China // Sedimentary Geology. 2012. V. 261–262. P. 120–131.
- 291. Yavuz F. Evaluating micas in petrologic and metallogenic aspect: I definitions and structure of the computer program Mica+ // Computers and Geosciences. 2003a. Vol. 29. P. 1203–1213.
- 292. Yavuz F. Evaluating micas in petrologic and metallogenic aspect: Part II Applications using the computer program Mica+ // Computers and Geosciences. 20036. Vol. 29. P. 1215–1228.
- 293. Yavuz F. WinAmphcal: A Windows program for the IMA-04 amphibole classification // Geochemistry Geophysics Geosystems. 2007. Vol. 8. P. 1–12.
- 294. Yavuz F., Öztaş, T. Bioterm A program for evaluating and plotting microprobe analyses of biotite from barren and mineralized magmatic suites // Computers and Geosciences. 1997. Vol. 23. P. 97–907.

295. Zen E. Aluminum enrichment in silicate melts by fractional crystallization: some mineralogic and petrographic constraints // Journal of Petrology. 1986. Vol. 27. P. 1095–1117.

Приложение А

Таблица А.1. Химический состав пород Велиткенайского купола.

ПРИЛОЖЕНИЕ А.

N2.11.11.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Группа	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Образец	4002	4005	ELMIIC_5	5800	4900	5002	4600A	11A	6001	4301	5000	5801	4400B	5001	4400A
Порода	MO	MO	MO	MO	MO	MO	MO	ди	MO	MO	MO	MO	MO	MO	MO
SiO2	53.18	53.18	53.38	56.01	56.52	57.46	57.79	58.05	58.26	59.01	59.05	59.48	59.95	60.03	60.09
TIO2	1.04	1.02	0.85	0.72	0.80	0.88	0.62	1.01	1.02	0.92	0.76	0.83	0.64	0.95	0.90
Al2O3	16.78	16.99	19.74	15.58	16.30	15.81	18.37	16.31	16.61	16.50	15.89	16.65	17.45	16.36	16.82
Fe2O3	7.97	7.80	5.67	6.69	6.31	7.16	5.19	7.77	6.77	6.37	5.67	5.76	4.56	6.17	5.66
FeOoбщ	7.17	7.02	5.11	6.02	5.68	6.44	4.67	6.99	6.09	5.73	5.10	5.18	4.10	5.55	5.09
MnO	0.11	0.11	0.08	0.12	0.09	0.10	0.09	0.10	0.09	0.09	0.10	0.08	0.07	0.09	0.08
MgO	4.86	4.65	2.70	5.43	4.91	4.47	2.21	3.69	3.51	3.31	4.10	3.65	2.19	3.12	2.62
CaO	6.15	6.00	5.14	5.20	5.61	6.86	3.21	6.06	5.15	5.24	4.93	4.60	3.29	4.87	4.32
Na2O	2.72	2.99	3.34	2,42	3.00	2.92	3.64	3.34	3.30	3.73	2.98	3.27	2.69	3.07	3.80
K2O	5.52	5.35	5.40	6.87	5.39	3.39	6.93	2,42	4.23	3.50	5.42	4.78	6.89	4.49	4.05
P2O5	0.65	0.60	0.60	0.26	0.23	0.27	0.44	0.31	0.37	0.36	0.28	0.32	0.28	0.29	0.34
П.п.п	0.68	1.00	0.92	0.46	0.68	0.54	1.23	0.84	0.54	0.84	0.66	0.42	1.67	0.41	1.16
Сумма	99.96	99.98	96.92	99.98	99.98	99.99	99.96	99.97	99.98	99.97	99.98	99.97	99.98	99.99	99.99
Zr	321	298		275	212	194	359	344	335	331	266	287	245	247	261
Nb	18	18		18	16	14	19	17	19	19	16	17	14	18	17
Sc		20	12		16		10	14	11	13	11		8		10
v		175	102		116		94	111	102	108	103		67		96
Cr		40	7		230		10	66	46	55	48		34		46
Co		17			23		11		15	18	15		11		14
Ni		13	8		63		10	32	19	22	14		12		18
Rb		204	271		305		322	179	237	258	277		269		218
Sr		1,403	1,134		604		1,231	480	671	717	637		1,014		849
Y		43	54		27		46	40	32	40	22		26		38
Sn		8.4			4.6		10.1		3.9	7.9	3.7		9.9		7.6
Cs		6.9	18.8		13.6		4.3	21.0	7.6	13.1	10.3		14.9		19.2
Ba		2,979	2,644		1,086		2,486	624	1,182	932	1,313		3,383		1,721
Hf		1.8			0.9		2.2		0.6	1.0	0.8		0.7		1.0
Та		1.2			1.3		2.0	-	0.9	1.6	0.8		0.8		1.5
Pb		51.3	51.8		41.1		62.8	32.0	33.0	35.9	41.1		67.1		40.5
Th		24.5			33.7		95.5		46.5	56.0	25.1		25.8		29,1
0		5.2	7.8		2.8		9.5	5,2	2.3	7.2	2.8		6.9		6.8
La		92.0	200.5		1501		287.7	1577	247.7	271.0	120.8		80.0		94.1 172.6
Ce Pr		232.0	392.5		1560		56.87	137.7	247.7	20.78	120.0		152.6		18.45
Nd		92.41	153.50		59.87		191.81	64.60	100.90	106 55	54.25		61.18		74 98
Sm		17.40			10.19		28 57		15 71	17.63	9.72		10.52		13 73
En		3 22			1 74		4 66		215	2.48	1 79		2.75		2.89
Gd		17 34			10.55		26.52		15.87	17.41	9.62		10.84		14 34
ть		193			1.12		2.37		157	1 79	1.03		1 11		1 54
Dv		9.35			5.84		10.19		7.60	8.79	5.33		5.48		7.90
Ho		1.70			1.01		1.57		1.22	1.45	0.89		0.92		1.33
Er		4.68			3.10		4.90		3.65	4.38	2.64		2.74		3.91
Tm		0.61			0.37		0.55		0.41	0.51	0.31		0.31		0.45
Yb		3.83			2.58		3.97		2.80	3.43	2.18		2.06		3.06
Lu		0.54			0.34		0.53		0.36	0.46	0.30		0.28		0.41
Сумма REE		502	746	0	350	0	1,128	311	565	610	285	0	347	0	410
K2O/Na2O	2.03	1.79	1.62	2.84	1.80	1.16	1.90	0.72	1.28	0.94	1.82	1.46	2.56	1.46	1.07
Th/U		4.71			12.04		10.05		20.22	7.78	8.96		3.74		4.28
La/Sm		5.32			7.79		10.07		8.70	8.16	6.49		7.66		6.85
La/Yb		24.18			30.78		72.47		48.82	41.92	28.94		39.13		30.75
Nb/Zr	0.06	0.06		0.07	0.08	0.07	0.05	0.05	0.06	0.06	0.06	0.06	0.06	0.07	0.07

Продолжение таблицы А.1.

№.п.п.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Группа	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2
Образец	4502	33A	15	4600Agm	3500	3600A	6101	4501	4600B	4100A	4106A	4723A	4100B	4709	4503
Порода	MO	ди	MO	ГД	ГД	MO	MO	ГД	MO	ГД	Г	Г	MO	Г	Г
SiO2	60.35	61.19	62.11	63.33	63.75	64.80	65.09	65.14	66.18	66.36	69.77	68.02	68.47	69.61	69.74
TIO2	0.56	0.81	0.83	0.61	0.58	0.60	0.64	0.57	0.34	0.63	0.40	0.72	0.33	0.16	0.47
Al2O3	17.06	16.03	16.15	17.40	15.68	16.47	14.85	14.68	16.39	15.49	14.87	14.52	16.00	15.97	14.50
Fe2O3	5.28	6.12	4.91	3.97	4.40	4.06	3.89	4.51	2.45	4.13	2.45	4.64	2.41	2.36	3.03
FeOoбщ	4.75	5.51	4.42	3.57	3.96	3.65	3.50	4.06	2,21	3.72	2.21	4.18	2.17	2,12	2.73
MnO	0.10	0.10	0.07	0.07	0.08	0.09	0.07	0.09	0.05	0.08	0.04	0.05	0.04	0.03	0.06
MgO	2.15	3.08	2.55	2.07	2.12	1.76	1.68	2.79	1.22	1.89	1.04	1.82	0.63	0.46	1.14
CaO	3.09	4.97	3.97	3.98	3.91	2.65	2.45	5.59	1.63	2.85	1.89	1.53	1.58	1.25	2.11
Na2O	3.23	3.72	3.00	4.58	3.65	4.06	3.06	3.35	2.65	4.12	3.29	2.93	3.37	3.44	3.40
K2O	6.61	2,97	5.46	2.49	2.73	4.46	4.82	2.52	7.99	3.28	5.17	4.81	6.43	6.05	4.50
P2O5	0.49	0.29	0.27	0.24	0.23	0.29	0.16	0.11	0.14	0.29	0.17	0.12	0.12	0.08	0.16
П.п.п	0.87	0.63	0.50	1.15	2.76	0.62	3.13	0.59	0.68	0.76	0.74	0.84	0.46	0.58	0.79
Сумма	99.97	99.98	99.99	99.96	99.97	99.98	99.99	99.99	99.99	99.97	99.98	100.00	99.97	99.99	99.98
Zr	308	233	298	192	254	229	274	150	123	269	172		265		202
Nb	20	19	17	16	19	15	14	23	15	22	12		19		22
Sc	10	17	9	10	8	8			8		3			3	
v	68	91	75	66	62	70			39		30			43	
Cr	4	48	38	33	40	22			23		18			13	
Co	10	15	12	7	11	9			5		5			2	
Ni	4	20	14	29	15	9			12		8			2	
Rb	396	233	292	278	181	278			342		248			258	
Sr	1,028	555	688	967	480	718			889		722			225	
Y	44	75	41	41	40	40			38		23			23	
Sn	9.7	12.2	9.7	11.5	12.3	8.1			8.1		5.3			3.6	
Cs	13.9	16.6	21.2	7.7	15.2	6.2			4.3		6.2			5.9	
Ba	1,892	530	1,560	589	695	1,266			2,938		1,408			878	
Hf	0.8	1.1	0.8	0.9	0.8	0.8			0.7		0.8			0.3	
Та	2.0	3.5	2.8	2.7	3.5	1.0			2.7		1.9			1.0	
Pb	60.9	32.9	51.1	38.5	36.2	32.2			74.5		43.9			36.4	
Th	65.0	40.9	53.4	55.1	50.9	70.0			30.0		38.1			7.5	
U	7.3	5.5	6.5	4.7	10.7	1.9			9.6		3.9			2.6	
La	182.1	94.8	113.8	193.6	95.0	178.8			62.6		95.2			20.5	
Ce	337.8	196.7	233.7	340.0	195.4	341.1			133.4		191.5			35.3	
Pr	34.75	21.42	24.90	40.48	19.69	34.97			14.49		18.25			4.65	
Nd	115.48	80.42	90.96	143.64	69.21	114.19			62.04		67.87			16.92	
Sm	17.31	16.01	16.06	22.88	11.40	15.66			11.87		10.80			3.62	
Eu	2,42	1.93	2.27	3.14	1.42	1.88			2.09		1.61			0.75	
Gd	18.03	17.79	16.32	20.00	12.30	15.92			11.27		10.77			4.08	
Tb	1.80	2,42	1.81	2.10	1.45	1.66			1.34		1.12			0.66	
Dy	8.83	13.67	8.83	10.56	7.62	8.95			7.57		5.64			4.10	
Ho	1.53	2.63	1.53	1.79	1.39	1.53			1.35		0.95			0.85	
Er	4.99	7.93	4.45	5.52	4.37	4.74			4.28		2.84			2.60	
Tm	0.63	1.09	0.58	0.74	0.61	0.52			0.58		0.33			0.38	
Yb	4.71	7.38	3.76	5.28	4.35	3.29			4.40		2.16			2.54	
Lu	0.69	1.01	0.50	0.73	0.61	0.40			0.61		0.27			0.37	
Сумма REE	731	465	520	790	425	724	0	0	318	0	409	0	0	97	0
K2O/Na2O	2.05	0.80	1.82	0.54	0.75	1.10	1.58	0.75	3.02	0.80	1.57	1.64	1.91	1.76	1.32
Th∕U	8.90	7.44	8.22	11.72	4.76	36.84			3.13		9.77			2.88	
La/Sm	10.52	5.92	7.09	8.46	8.33	11.42			5.27		8.81			5.66	
La/Yb	38.66	12.85	30.27	36.67	21.84	54.35			14.23		44.07			8.07	
Nb/Zr	0.06	0.08	0.06	0.08	0.07	0.07	0.05	0.15	0.12	0.08	0.07		0.07		0.11

I	Тродолжен	ие	табл	ицы	A.1	١,

№.п.п.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Группа	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Образец	4702	4716A	4721	32A	4504	13A	4724A	4106B	35D	4718F	4717A	4705B	7100	14	4704A
Порода	Г	Г	Г	Г	Г	Г	Г	Г	Г	Г	Г	Г	Г	Г	Г
SiO2	69.89	70.10	70.17	70.51	70.51	70.73	71.58	71.72	71.80	71.86	71.90	71.94	72.79	72.85	73.03
TIO2	0.27	0.15	0.15	0.33	0.26	0.26	0.15	0.13	0.26	0.07	0.20	0.07	0.16	0.22	0.17
Al2O3	15.43	16.15	16.23	14.99	15.36	15.00	15.46	15.06	14.58	15.58	15.22	15.83	14.28	14.14	14.89
Fe2O3	2,20	1.46	1.02	2.12	2.06	1.97	0.95	1.38	2.21	0.54	1.70	0.60	1.32	1.95	1.09
FeOoбщ	1.98	1.31	0.92	1.91	1.85	1.77	0.86	1.24	1.99	0.49	1.53	0.54	1.19	1.76	0.98
MnO	0.02	0.03	0.02	0.03	0.03	0.04	0.01	0.02	0.03	0.00	0.03	0.01	0.03	0.05	0.02
MgO	0.54	0.48	0.37	0.69	0.48	0.50	0.23	0.26	0.53	0.28	0.33	0.25	0.34	0.31	0.43
CaO	1.73	1.11	1.37	1.57	1.68	1.58	0.81	1.19	1.65	1.06	1.52	0.49	0.89	1.30	0.99
Na2O	3.35	4.41	3.55	2.70	3.77	3.36	3.52	3.19	3.42	3.55	3.98	3.30	3.27	3.19	3.52
K2O	5.63	5.31	6.37	6.05	5.28	5.35	6.85	6.40	4.71	6.30	4.58	6.89	5.80	5.33	5.21
P2O5	0.11	0.05	0.05	0.12	0.10	0.09	0.03	0.08	0.09	0.06	0.04	0.04	0.10	0.04	0.02
П.п.п	0.67	0.75	0.71	0.77	0.35	1.01	0.40	0.41	0.60	0.70	0.50	0.59	0.99	0.57	0.62
Сумма	99.99	100.00	100.01	99.98	99.99	99.98	99.99	99.98	99.99	100.00	100.01	100.01	99.99	99.99	99.99
Zr	210			242	210	215		235	207				101	204	
Nb	10			13	14	17		7	9				13	20	
Sc	1						4	1	5	2			2		
V	28						2	13	19	4			1		
Cr	5						2	4	9	4			9		
Со	3						1	2		1			1		
Ni	3						1	1	4	3			1		
Rb	232						329	263	166	192			314		
Sr	860						96	658	214	201			74		
Y	19						30	10	14	8			10		
Sn	3.8						3.9	1.7		3.1			5.5		
Cs	3.7						12.7	4.3	3.1	8.7			16.9		
Ba	1,661						311	1,585	887	542			256		
Hf	1.2						1.9	1.5		1.5			1.3		
Ta	1.6						3.9	0.1		2.1			1.0		
Pb	58.2						89.0	54.0	28.1	82.1			54.4		
Th	65.6						46.2	32.1		12.9			28.5		
U	3.0						15.8	1.7	4.1	3.8			15.2		
La	68.1						46.8	104.6	73.5	14.5			32.5		
Ce	1/6.2						94.8	1/6.4	134.8	28.0			71.9		
Pr NJ	14.03						10.91	19.19	43.70	5.17			7.71		
Nd Sm	52.52 0 00						38.58	09.92	43.70	2.20			50.09		
Sm Fu	0.69						0.70	9.57		1.32			0.95		
Cd	0.05						0.79	7.82		2.16			6.61		
Gu Th	9.05						0.05	0.74		0.31			0.60		
Du	4.72						6.01	2.04		1.01			2.05		
Dy He	4.75						1.29	2.94		0.22			2.95		
Fr	2 38						3.08	1 30		0.99			1 20		
Tm	0.28						0.62	0.12		0.16			0.14		
TIII Vb	1.87						4.33	0.12		1.10			1.00		
I.	0.23						4.55	0.12		0.17			0.13		
Cymma REF	341	0	0	0	0	0	227	305	252	68	0	0	163	0	0
K2O/Na2O	1.68	1.20	1.79	2.24	1.40	1.59	1.95	2.01	1.38	1.77	1.15	2.09	1.77	1.67	1.48
Th/U	21.87						2.92	18.88		3 39			1.88		
La/Sm	7.66						5.56	11.16		630			4.69		
La/Yb	36.42						10.81	120.23		13.18			32.50		
Nb/Zr	0.05			0.05	0.07	0.08		0.03	0.04				0.13	0.10	

Продолжение таблицы А.1.

№.п.п.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Группа	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Образец	4700	4707	7200	5600	4705A	4706B	4715A	4300	6000	5003	5500	4201	7202	4004	3400
Порода	Г	Г	Г	Г	Г	Г	Г	Г	Г	Г	Г	Г	Г	MO	Г
SiO2	73.21	73.25	73.35	73.44	73.45	73.56	73.84	73.85	73.87	73.95	74.07	74.43	74.53	74.76	75.04
TIO2	0.11	0.27	0.11	0.10	0.22	0.04	0.08	0.13	0.13	0.19	0.13	0.11	0.07	0.05	0.06
Al2O3	14.11	13.91	14.68	15.18	14,29	14.93	14.53	14.06	14.01	13.80	13.90	13.73	14.24	13.71	13.73
Fe2O3	1.13	2.56	0.98	1.26	1.42	0.33	0.89	1.03	0.84	1,24	1.34	0.93	0.54	0.44	0.71
FeOoбщ	1.02	2.30	0.88	1.13	1.28	0.30	0.80	0.93	0.76	1.12	1,21	0.84	0.49	0.40	0.64
MnO	0.01	0.06	0.03	0.02	0.03	0.00	0.00	0.01	0.01	0.01	0.04	0.01	0.01	0.01	0.02
MgO	0.32	1.05	0.20	0.31	0.49	0.20	0.24	0.30	0.47	0.56	0.33	0.19	0.14	0.18	0.24
CaO	0.81	2.12	0.58	2.25	0.92	0.51	0.47	0.79	0.75	1.23	0.62	0.76	1.79	1.06	0.97
Na2O	3.05	4.10	3.53	5.70	3.64	3.81	3.47	2.53	2.13	2.23	3.34	2.21	3.11	2,12	3.30
K2O	6.16	1.71	5.94	1.27	4.80	6.15	5.87	6.60	7.25	6.34	5.09	7.15	5.21	7.01	5.17
P2O5	0.03	0.02	0.08	0.02	0.03	0.02	0.02	0.04	0.07	0.04	0.04	0.03	0.02	0.02	0.02
П.п.п	1.04	0.94	0.47	0.42	0.73	0.45	0.59	0.58	0.34	0.23	1.04	0.36	0.29	0.50	0.70
Сумма	99.98	99.99	99.98	99.99	100.02	100.00	100.00	100.00	99.98	99.99	99.99	99.98	100.00	99.99	99.99
Zr			74	93				181	136	130	119	144	53	53	57
Nb			13	6				9	8	9	15	10	6	7	9
Sc				2	4	1	2	2	1		5		1	1	1
v				3	12	6	22	1	7		7			4	
Cr				4	2	2	2	3	5		7		7	7	7
Co				1	2	0	1	1	1		1		0	1	1
Ni				2	2	2	12	1	2		2		1	2	2
Rb				53	168	193	249	287	387		422		210	252	333
Sr				249	112	222	175	361	496		62		270	675	127
Y				5	17	4	5	12	9		40		3	6	13
Sn				2.6	3.1	1.7	2.5	0.8	1.9		12,2		1.0	0.4	0.4
Cs				1.3	3.6	4.0	5.7	6.8	9.3		23.2		9.0	4.7	10.5
Ba				140	394	623	576	755	1,109		318		380	1,284	265
Hf				0.2	0.3	0.4	0.6	1.9	2.2		2.6		0.8	0.8	1.1
Ta				0.3	1.1	0.4	0.2	0.5	0.4		2.9		0.2	0.5	0.9
Pb				19.6	33.7	34.4	37.5	68.1	87.5		43.2		61.0	63.8	56.2
Th				7.7	27.8	3.0	5.0	86.8	64.1		48.7		11.7	27.3	25.8
U				0.8	3.9	0.8	1.0	14.9	3.9		11.5		31.4	19.6	12,4
La				14.4	41.6	5.3	8.7	57.7	53.8		51.2		21.5	19.7	28.4
Ce				32.0	81.8	9.4	16.6	144.6	219.7		107.8		28.4	43.9	56.3
Pr				3.53	9.05	1.00	1.82	11.88	14.19		11.09		4.66	4.87	6.51
Nd				13.90	31.05	3.38	6.56	42.54	48.96		40.70		17.14	18,28	24.65
Sm				2.84	6.11	0.74	1.55	7.61	8.24		8.78		2.70	3.68	5.38
Eu				0.64	0.56	0.44	0.51	0.83	1.84		0.50		0.86	0.69	0.51
Gd				3.00	5.94	0.79	1.69	7.41	7.33		9.60		2.33	3.40	5.35
Tb				0.34	0.78	0.12	0.23	0.77	0.65		1.34		0.23	0.38	0.64
Dy				1.49	3.86	0.70	1.19	3.68	2.95		7.57		1.02	1.72	3.32
Ho				0.22	0.65	0.13	0.20	0.56	0.46		1.41		0.15	0.27	0.57
Er				0.51	1.64	0.38	0.51	1.58	1.37		4.22		0.45	0.75	1.71
Tm				0.06	0.21	0.06	0.06	0.17	0.17		0.59		0.05	0.09	0.22
Yb				0.42	1.29	0.42	0.36	1.15	1.20		2.25		0.38	0.58	1.55
Lu				0.05	0.19	0.07	0.05	0.15	0.18		0.60		0.06	0.08	0.21
Сумма REE	0	0	0	73	185	23	40	281	361	0	248	0	80	98	135
K2O/Na2O	2.02	0.42	1.68	0.22	1.32	1.61	1.69	2.61	3.40	2.84	1.52	3.24	1.68	3.31	1.57
Th/U				9.63	7.13	3.75	5.00	5.83	16.44		4.23		0.37	1.39	2.08
La/Sm				5.07	6.81	7.16	5.61	7.58	6.53		5.83		7.96	5.35	5.28
La/Yb				34,29	32.25	12.62	24,17	50.17	44.83		22.76		56.58	33.97	18.32
Nb/Zr			0.18	0.06				0.05	0.06	0.07	0.13	0.07	0.11	0.13	0.16

Продолже	ние	таблицы	A.1	
				-

№.п.п.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Группа	2	2	2	2	2	2	2	2	2	2	2	2	2	Al	Al
Образец	4711	35C	ELMIIC_4	41	4718B	4705C	ELMIIC_6A	36	4710	5100	5004	4706A	4714	39	7701
Порода	Г	Г	Г	Г	Г	Г	Г	Г	Г	Г	Г	Г	Г	Г	Г
SiO2	75.06	75.08	75.24	75.29	75.56	75.70	75.82	75.92	75.99	76.49	76.97	77.15	79.12	73.80	74.01
TIO2	0.19	0.07	0.11	0.09	0.13	0.07	0.16	0.17	0.08	0.06	0.12	0.23	0.08	0.08	0.02
Al2O3	13.88	13.93	13.35	13.70	10.89	13.81	13.59	12.68	13.14	12.67	12.40	12.54	11.62	14.57	15.12
Fe2O3	1.46	0.62	0.56	0.91	2.54	0.83	1.02	1.99	1.17	1.20	1.72	1.40	0.78	1.09	1.03
FeOoбщ	1.31	0.56	0.50	0.82	2,29	0.75	0.92	1.79	1.05	1.08	1.55	1.26	0.70	0.98	0.93
MnO	0.03	0.02	0.02	0.03	0.05	0.00	0.02	0.03	0.01	0.01	0.02	0.04	0.01	0.05	0.15
MgO	0.49	0.21	0.08	0.15	0.71	0.33	0.39	0.30	0.18	0.13	0.15	0.49	0.19	0.16	0.11
CaO	1.74	1.03	0.27	0.77	4.55	0.60	3.08	1.13	0.94	0.59	1.12	1.45	0.51	0.69	0.46
Na2O	3.87	3.07	3.23	3.55	1.20	3.14	3.63	3.83	3.30	2.59	3.42	4.10	3.00	3.74	4.90
K2O	2.83	5.39	5.40	4.93	3.02	5.00	0.91	3.55	4.70	6.09	3.73	1.89	4.29	4.71	3.73
P2O5	0.01	0.11	0.02	0.02	0.04	0.03	0.01	0.03	0.02	0.01	0.02	0.02	0.03	0.06	0.16
Плл	0.45	0.40	0.73	0.54	1.30	0.50	0.61	0.29	0.49	0.08	0.24	0.66	0.38	1.00	0.30
Сумма	100.01	100.00	98.29	100.00	99.99	100.01	98.63	99.96	100.00	100.00	100.00	99.99	100.01	99.98	100.00
Zr		28		99				157		115	173			65	34
Nb		5		12				9		7	6			17	11
Sc		1	8	3		1	3	3		1				4	2
V		3	5			17	13	11		1				4	
Cr		6	4	1		7	10	4		4				5	17
Co		1		0		1		2		1					0
Ni		2	2	1		2	8	1		7				3	1
Rb		152	471	374		156	68	157		163				456	342
Sr		177	58	54		132	355	74		78				49	13
Y		1	79	8		11	6	49		7				25	5
Sn		1.5		7.4		2.6		3.7		0.6					9.8
Cs		2.8	21.2	10.5		3.4	2.8	4.0		2.0				29.5	65.0
Ba		762	163	94		462	84	612		779				145	29
Hf		0.1		2.1		0.3		0.4		0.9					1.0
Та		0.2		1.0		0.6		1.5		0.2					4.5
Pb		39.3	52.1	64.1		31.2	30.9	19.1		32.7				49.6	21.7
Th		1.7		30.3		7.8		14.6		17.0					2.4
U		0.7	17.5	3.7		1.8	14.0	2.2		0.7				22.8	1.9
La		5.1	32.9	21.0		10.7	7.5	41.3		11.9				17.3	2.0
Ce		8.4	81.4	48.2		20.6	14.8	94.6		35.0				41.4	4.5
Pr		0.90		5.43		2.36		9.56		3.54					0.54
Nd		3.40	26.20	20.81		8.66	5.60	38.03		14.20				17.00	2.08
Sm		0.66		4.70		2.00		8.96		3.36					0.78
Eu		0.89		0.40		0.42		0.91		0.45					0.06
Gd		0.69		4.41		2.24		10.87		3.20					0.86
Tb		0.08		0.50		0.34		1.67		0.41					0.17
Dv		0.44		2.44		1.91		10.24		2.08					1.08
Ho		0.07		0.36		0.39		1.95		0.38					0.17
Er		0.18		1.07		1.18		5.60		1.06					0.52
Tm		0.02		0.13		0.18		0.72		0.14					0.09
Yb		0.14		0.94		1,21		4.44		0.88					0.74
Lu		0.02		0.13		0.18		0.54		0.13					0.09
Cymma REE	0	21	141	111	0	52	28	229	0	77	0	0	0	76	14
K20/Na20	0.73	1.76	1.67	1.39	2.52	1.59	0.25	0.93	1.42	2.35	1.09	0.46	1.43	1.26	0.76
Th/U		2.43		8.19		4.33		6.64		24.29					1.26
La/Sm		7.73		4.47		5.35		4.61		3.54					2.56
La/Yb		36.43		22.34		8.84		9.30		13.52					2.70
Nb/Zr		0.18		0.12				0.06		0.06	0.03			0.26	0.32

\mathbf{a}	1	\mathbf{a}
2		2

Продолжение таблицы А.1.

№.п.п.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
Группа	Al	Al	AI	Al	Al	Al	МИ	МИ	МИ	МИ	МИ	МИ	МИ	МИ	МИ
Образец	10	3903	30	3902	3300	3907	31	5200	4500	4718A	7204	35A	4719	4718C	7201
Порода	Г	Г	Г	Г	Г	Г	ди	ди	ГД	ГД	ГД	ГД	ОГ	Г	Г
SiO2	74.10	74.30	74.33	74.73	75.00	75.59	51.48	54.75	60.02	65.94	66.18	67.05	69.81	69.83	70.84
TIO2	0.04	0.03	0.11	0.02	0.04	0.11	0.91	0.63	0.58	0.46	0.55	0.66	0.21	0.27	0.33
Al2O3	15.20	15.37	14.01	14.85	14.07	13.66	17.65	16.52	17.08	16.27	16.42	14.68	16.37	15.60	15.00
Fe2O3	0.82	0.41	1.28	0.46	0.72	0.95	8.20	10.08	5.42	4.18	3.49	5.76	1.57	1.99	2.16
FeOoбщ	0.74	0.37	1.15	0.41	0.65	0.86	7.38	9.07	4.88	3.76	3.14	5.18	1.41	1.79	1.94
MnO	0.13	0.04	0.06	0.04	0.12	0.06	0.11	0.18	0.11	0.07	0.06	0.11	0.02	0.03	0.04
MgO	0.11	0.10	0.16	0.05	0.09	0.13	3.81	4.78	2.23	1.45	1.17	2.09	0.54	0.83	0.60
CaO	0.54	0.41	0.63	0.62	0.47	0.73	5.70	8.15	3.21	1.92	2.02	1.58	1.54	1.71	1.46
Na2O	3.78	5.37	3.72	4.48	3.49	3.62	2.49	3.76	3.17	3.51	3.34	3.34	4.05	3.41	2.79
K2O	4.56	3.34	4.98	4.17	5.68	4.62	6.39	0.73	6.62	4.40	5.95	3.91	4.89	5.61	6.07
P2O5	0.01	0.02	0.03	0.02	0.01	0.02	1.03	0.13	0.53	0.09	0.25	0.07	0.04	0.05	0.12
П.п.п	0.69	0.60	0.66	0.52	0.31	0.48	1.75	0.22	0.82	1.71	0.46	0.69	0.97	0.67	0.50
Сумма	99.99	100.00	99.99	99.97	100.01	99.99	99.95	99.96	99.96	100.00	99.99	99.99	100.01	100.00	99.98
Zr	32	25	117	29	68	101	77	90	361		265	178			203
Nb	18	15	21	13	33	24	14	11	21		18	20			13
Sc			5	12	6		15		10	10	6	16	4		
v			3	0			130		81	107	36	97	37		
Gr			2	0	6		3		5	42	7	60	7		
Co			0	0	0		18		11	9	5	12	2		
Ni			0	1	1				5	23	3	20	4		
Rb			498	401	454		198		403	186	352	284	188		
Sr			60	32	29		3.027		988	212	499	142	184		
Y			16	21	64		38		58	20	19	7	11		
Sn			21.2	16.6	8.1		4.4		12.7	5.4	2.1	10.8	3.0		
G			40.5	20.0	12.1		3.4		13.6	97	21.3	11.0	5.6		
Ba			164	60	103		4 272		1.849	612	1.060	441	474		
Hf			1.8	0.8	13		2.3		11	0.2	0.4	0.2	0.3		
Та			7.9	6.3	11.9		0.5		3.1	0.6	1.6	2.4	0.5		
Pb			48.7	72.4	92.1		64.0		66.9	34.2	66.1	29.5	26.6		
Th			41.8	81	12.6		10.9		85.5	11.7	65.5	12.1	12.3		
U			10.5	7.0	32.2		1.3		9.6	4.0	40.8	3.3	2.3		
La			27.8	6.2	7.8		143.4		210.3	23.2	58.7	25.3	27.9		
Ce			62.2	12.5	13.4		327.0		388.8	44.6	136.0	54.6	49.8		
Pr			6.80	1.26	1.46		40.94		41.17	5.27	12.53	5.98	6.31		
Nd			25.47	4.72	6.20		169.94		141.05	19.89	46.83	23.59	22.83		
Sm			5.96	1.53	2.86		28.40		21.80	4.06	8 30	4.62	4.48		
Eu			0.40	0.08	0.18		5.82		2.94	1.11	1.46	1.01	0.91		
Gd			5.97	1.91	5.17		25.59		22.01	4.40	8.54	4.96	4.18		
Tb			0.79	0.40	1.30		2.27		2.26	0.62	0.94	0.55	0.49		
Dv			4 04	3.01	10.03		9.84		12.06	3.67	4 76	2.32	2 33		
Ho			0.69	0.68	2.34		1 38		2.09	0.77	0.77	0.31	0.39		
Er			2.03	2.56	8.54		4.18		6.60	2.36	2.17	0.38	1.04		
Tm			0.28	0.49	1 49		0.40		0.85	0.35	0.25	0.07	0.12		
Vb			1.97	412	12.76		2.65		6.45	2.38	1.76	0.52	0.74		
Lu			0.27	0.64	1.86		0.34		0.94	0.37	0.23	0.07	0.10		
Cymma REF	0	0	145	40	75	0	762	0	859	113	283	124	122	0	0
K20/Na2O	1.21	0.62	1 34	0.93	1.63	1.28	2 57	0.19	2.09	1.25	1.78	1.17	1.21	1.65	2.18
Th/II			3.98	1.16	0.39		8 38		8.91	2.93	1.61	3.67	5 3 5		
La/Sm			4 66	4.05	2.73		5.05		9.65	571	7.07	5.48	6.23		
La/Vb			14 11	1.50	0.61		54 11		32.60	9.75	33 25	48.65	37 70		
Nh/Zr	0.56	0.60	0.18	0.45	0.49	0.24	0.18	0.12	0.06	9.15	0.07	0.11	51.10		0.06
- 107 - 22	Sec. 10	1.00	Sec. 6 (2)	1000	4.47	A COMPANY OF THE OWNER		10 A 10 A	w.urd		stand if				4.40

Продолжен	ние	таблицы	A.1.
	0.1		0.3

Ne.п.п.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105
Группа	МИ	МИ	МИ	МИ	МИ	МИ	МИ	МИ	ВП	ВП	BΠ	BII	BII	ВП	BII
Образец	7300	4713	3501	4708	4723B	7600	3608	5601	4706C	4715B	3401	37B	3900	4712A	7700
Порода	Г	Г	Г	Г	Г	Г	Г	Г	ШГ	ΠГ	Ш	ΠГ	Ш	ΠГ	Ш
SiO2	71.59	71.93	71.99	72.15	72,20	73.38	75.75	76.73	49.57	53.56	54.80	55.93	60.30	60.58	65.34
TIO2	0.24	0.30	0.06	0.28	0.07	0.29	0.16	0.17	0.61	0.93	0.50	0.93	0.73	1.31	0.66
Al2O3	14.93	14.48	15.02	14.81	15.75	13.94	12.98	11,29	14.05	15.40	12.47	18.12	12.08	15.92	13.87
Fe2O3	1.83	2.54	0.58	2.89	0.53	2.26	1.66	2.98	10.17	7.70	5.72	7.84	4.00	6.74	5.63
FeOoбщ	1.65	2,29	0.52	2.60	0.48	2.03	1.49	2.68	9.15	6.93	5.15	7.06	3.60	6.07	5.07
MnO	0.03	0.06	0.02	0.05	0.01	0.04	0.03	0.04	0.23	0.25	0.19	0.09	0.59	0.17	0.07
MgO	0.49	1.17	0.28	0.92	0.18	0.84	0.58	0.80	9.98	4.50	10.15	4.03	6.08	2.92	3.68
CaO	1.46	1.73	1.54	2,21	0.74	2.10	1.23	0.95	8.17	8.57	9.51	3.95	8.81	3.30	4.96
Na2O	2.75	4.07	3.05	4.11	3.67	4.10	3.49	2.80	1.65	3.66	1.40	2.07	0.38	3.99	0.91
K2O	6.02	2.70	6.14	1.92	6.39	2.16	3.27	3.86	1.74	0.74	3.22	5.57	4.36	2.40	2.71
P2O5	0.10	0.04	0.03	0.02	0.03	0.07	0.03	0.02	0.08	0.07	0.20	0.17	0.20	0.45	0.11
П.п.п	0.47	0.99	1.20	0.64	0.45	0.77	0.74	0.31	3.75	4.63	1.76	1.19	2.44	2.23	1.97
Сумма	99.98	100.01	99.99	100.00	100.02	99.99	99.97	100.00	100.00	100.01	99.98	99.98	99.99	100.01	99.98
Zr	151		64			162	123	256			134	191	224		151
Nb	14		7			10	8	10			15	17	14		13
Sc		7		6		4		6	12		12	15	10		12
V		37		32		24		2	69		112	141	86		123
Cr		5		5		10		6	29		78	95	81		100
Co		4		3		3		2	8		14	21	10		58
Ni		3		11		4		16	12		41	47	23		87
Rb		133		121		136		193	231		204	229	215		129
Sr		155		107		193		109	100		265	172	243		159
Y		9		6		10		6	7		38	20	29		16
Sn		15.2		10.1		5.7		5.0	9.7		21.8	5.4	7.4		8.7
Cs		8.8		7.9		21.2		2.0	13.5		12.1	12.5	17.9		8.8
Ba		431		172		314		438	224		645	711	512		442
Hf		0.3		0.2		0.3		0.3	0.2		0.8	0.5	1.1		0.9
Ta		2.0		0.6		1.2		0.3	2.9		4.0	1.2	1.1		0.8
Pb		24.9		18.3		16.4		28.7	22.3		9.1	30.5	124,2		19.1
Th		10.3		14.4		18.4		10.1	14,4		7.2	14.7	12,2		8.8
U		6.4		2.9		9.4		0.7	2.4		3.9	2.8	2.5		3.0
La		17.8		23.5		46.0		24.1	24.1		16.7	38.8	42.6		26.5
Ce		34.0		46.3		98.4		52.4	47.6		42.1	79.4	84.8		54.4
Pr		3.89		5.23		8.72		5.81	5.50		5.47	8.77	9.31		5.90
Nd		14.05		18.86		32.83		23.32	20.02		24.68	36.67	39.17		24.55
Sm		2.80		3.87		4.80		4.66	4.05		5.78	7.36	7.68		4.71
Eu		0.66		0.58		0.80		0.71	0.68		1.35	1.44	1.67		1.01
Gd		2.93		3.56		4.84		4.81	3.97		6.86	8.00	8.65		5.33
Tb		0.37		0.40		0.50		0.51	0.45		1.04	0.95	1.03		0.66
Dy		1.88		1.66		2.66		2.04	1.92		6.92	5.32	6.04		3.88
Ho		0.33		0.24		0.45		0.28	0.28		1.35	0.90	1.08		0.71
Er		0.85		0.54		1.35		0.60	0.67		4.41	2.49	3.23		2.19
Tm		0.11		0.06		0.17		0.05	0.09		0.64	0.29	0.40		0.28
Yb		0.64		0.41		1.13		0.39	0.52		4.86	1.96	2.76		1.97
Lu		0.09		0.06		0.15		0.05	0.08		0.66	0.25	0.37		0.27
Сумма REE	0	80	0	105	0	203	0	120	110	0	123	193	209	0	132
K2O/Na2O	2.19	0.66	2.01	0.47	1.74	0.53	0.94	1.38	1.05	0.20	2.30	2.69	11.47	0.60	2.98
Th/U		1.61		4.97		1.96		14.43	6.00		1.85	5.25	4.88		2.93
La/Sm		6.36		6.07		9.58		5.17	5.95		2.89	5.27	5.55		5.63
La/Yb		27.81		57.32		40.71		61.79	46.35		3.44	19.80	15.43		13.45
Nb/Zr	0.09		0.11			0.06	0.07	0.04			0.11	0.09	0.06		0.09

Окончание таблицы А.1.

.N2.п.п.	106	107	108	109	110	111	112	113	114	115	116
Группа	ВП	ВΠ	ВП	ВП	ВП	ВП	ВΠ	ВП	ВП	ВП	ВП
Образец	ELM11C_8	7203	4720	4722A	25	6100	4724B	4600C	4712B	6502	3100
Порода	ПГ	ПГ	Ш	ПГ	ПГ	ПГ	ПГ	ΠГ	ПГ	Tr	Tr
SiO2	65.47	67.26	67.48	67.49	69.02	70.58	71.56	71.98	75.12	47.32	71.96
TIO2	0.80	0.62	0.82	0.73	0.87	0.74	0.71	0.20	0.21	4.50	0.73
Al2O3	13.63	10.59	14.29	14.96	13.13	13.09	12.94	14.91	12.93	11.90	13.50
Fe2O3	5.74	4.64	5.73	3.49	5.40	4.64	4.20	1.41	2.19	17.22	4.18
FeOoбщ	5.17	4.18	5.16	3.14	4.86	4.18	3.78	1.27	1.97	15.50	3.76
MnO	0.11	0.08	0.10	0.12	0.07	0.06	0.04	0.02	0.05	0.23	0.05
MgO	3.58	3.99	2,29	1.57	2.66	3.51	1.80	0.37	0.70	4.67	2,41
CaO	4.96	9.36	2,41	7.36	2.17	1.73	2.51	1.34	1.73	8.49	0.39
Na2O	2.32	2,42	3.21	0.80	2.66	1.31	2,28	3.18	4.49	2,21	0.25
K2O	2.26	0.63	2.80	2.01	2.41	3.59	2.79	5.85	1.19	1,42	2.66
P2O5	0.18	0.15	0.08	0.22	0.15	0.19	0.11	0.06	0.03	0.43	0.18
11.n.n	0.86	0.22	0.79	1,24	1.36	0.46	1.04	0.49	1.34	1,49	3.61
Сумма	99.97	100.00	100.00	99.99	99.99	100.00	99.98	99.98	99.98	99.94	99.99
Zr	240	213			279	213		155		247	283
ND	15	13			13	7		1		22	12
Sc V	02				74	50		19		712	73
è.	93				71	52		4		14	73
Co Co	17				11	10		2		46	8
Ni	49				10	23		3		47	26
Rb	167				119	129		281		58	106
Sr	259				221	71		926		329	18
Y	23				12	15		20		44	11
Sn	4.8				3.1	3.9		3.6		2.0	4.4
G	25.5				12.5	26.3		3.8		25.8	6.4
Ba	457				570	679		1,916		485	517
Hf	0.7				0.3	0.5		1.5		4.2	1.1
Ta	1.2				0.8	0.6		2.6		1.3	0.6
Pb	14.6				19.2	19.6		61.4		2.6	18.7
Th	15.2				11.2	10.0		78.4		3.0	14.5
U	2.4				1.7	1.5		5.3		0.9	2.0
La	42.1				42.1	20.9		69.6		22.7	40.1
Ce	85.9				87.7	46.0		134.3		56.4	83.0
Pr	9.26				9.06	5.18		13.37		7.03	8.94
Nd	38.78				37.77	21.84		50.99		33.87	35.23
Sm	7.19				6.70	4,41		8.61		8.23	6.14
Eu	1,29				1.49	0.95		1,42		2,42	1.18
Gd	7.85				7.15	4.90		8.53		10.37	6.15
Tb	0.97				0.71	0.39		0.91		1,42	0.63
Dy U	5.79				3.35	3.74		4.80		9.17	3.19
Ho E-	1.03				0.48	0.66		0.82		6.24	0.49
Er	2.99				0.13	0.24		2.55		5.24	0.16
Vh.	2.60				0.15	1.60		2.31		4.47	1 10
La	0.35				0.11	0.21		0.30		0.61	0.15
Cymma REF	206	0	0	0	199	113	0	299	0	164	188
K2O/Na2O	0.97	0.26	0.87	2.51	0.91	2.74	1.22	1.84	0.27	0.64	10.64
Th/U	6.33				6.59	6.67		14.79		3.40	7.42
La/Sm	5.86				6.28	4.74		8.08		2.75	6.52
La/Yb	16.19				48.39	13.06		30.13		5.07	33.57
Nb/Zr	0.06	0.06			0.05	0.06		0.07		0.09	0.04

Примечание. Аббревиатруа пород: Г - гранит, ГД- гранодиорит, МО - монцонит, ДИ - диорит, МИ - мигматит, Тг - триасовые песчаники и алевролиты, ПГ - девонские парагнейсы, ОГ – ортогнейс, Kfs - калиевый полевой шпат, gm - основная масса крупно порфировых разностей монцонитов. Группа: 1 – ранние монцонитоиды, 2 – поздние лейкограниты, МИ - мигматиты, Al - высокоглиноземистые лекограниты, ВП - вмещающие породы.

Приложение Б

Таблица	Б.1. Хим	ический	COCTAB 3	мфиболс	B H3 MOF	иотиноди	ton Ben	ткенайс	кого куп	OIIA.	ШРИ	HOMEH	HME B.	
№ п.п.	-	2	3	4	5	9	7	8	6	10	11	12	13	14
O6pa seu	15	15	15	15	15	15	15	15	15	15	15	15	15	15
Names	Mg-hast	Mg-hast	Mg-hast	Mg-hast	Mg-hast	Mg-hast cp.	Mg-hbl	Mg-bbl	Mg-hbl	Mg-hbl	Mg-hbl cp.	Tsche	Tsche	Tsche
SIO2	37.59	38.21	38.72	38.98	39.04	38.5	46.18	46.60	47.60	47.69	47.0	44.61	45.27	45.33
TiO	0.00	0.61	0.51	0.71	0.57	0.5	0.85	0.82	0.73	0.63	0.8	1.30	1.05	0.87
Al2O ₅	9.43	9.13	9.98	9.28	8.92	9.3	8.39	7.78	8.05	8.37	8.1	9.14	9.44	9.25
FeO	21.02	19.53	20.66	20.98	20.67	20.6	17.37	17.49	17.52	16.97	17.3	18.99	18.31	18.27
MgO	11.74	11.87	12.01	12.04	12.42	12.0	10.64	10.50	11.45	10.69	10.8	9.83	9.78	9.63
CaO	14.02	13.91	13.75	14.26	14,44	14.1	11.84	11.57	11.38	16.11	11.7	11.35	11.23	12.06
NazO.	2.22	2.08	2.29	2.24	2.06	2.2	1.41	1.04	0.64	0.98	1.0	1.43	0.84	1.39
K20	1.23	1.13	1.26	1.23	1.00	1.2	1.10	1.15	06.0	1.02	1.0	1.49	1.30	1.19
Сумма	97.25	96.47	99.18	99.72	99.12	98.3	97.78	96.95	98.27	98.26	97.8	98.14	97.22	97.99
8	5.626	5.732	5.657	5.677	5.71	5.7	6.586	6.686	6.704	6.725	6.7	6.393	6.49	6.475
H	0	0.069	0.056	0.078	0.063	0.1	0.091	0.088	0.077	0.067	0.1	0.14	0.113	0.093
V	1.663	1.614	1.718	1.593	1.538	1.6	1.41	1.316	1.336	1.391	1.4	1.544	1.595	1.557
Fe ²⁺	2.631	2.45	2.524	2.555	2.528	2.5	2.072	2.099	2.063	2.001	2.1	2.276	2.195	2.182
Fe ²⁺	0	0	0	0	0	0.0	0	0	0	0	0.0	0	0	0
Mg	2.619	2.655	2.616	2.614	2.708	2.6	2.262	2.246	2.404	2.247	2.3	2.1	2.09	2.05
5	2.248	2.236	2.152	2.225	2.263	2.2	1.809	1.779	1.717	1.799	1.8	1.743	1.725	1.846
Na	0.644	0.605	0.649	0.632	0.584	9.0	0.39	0.289	0.175	0.268	0.3	0.397	0.234	0.385
К	0.235	0.216	0.235	0.229	0.187	0.2	0.2	0.21	0.162	0.183	0.2	0.272	0.238	0.217
e IS	5.626	5.732	5.657	5.677	5.71	5.7	6.586	6.686	6.704	6.725	6.7	6.393	6.49	6.475
ωIV	1.663	1.614	1.718	1.593	1.538	1.6	1.41	1.314	1.296	1.275	1.3	1.544	1.51	1.525
Triot)	0	0.069	0.056	0.078	0.063	0.1	0.004	0	0	0	0.0	0.064	0	0
Total	7.289	7.415	7.431	7.347	7.31	7.4	80	80	80	8	8.0	×	80	80
Al ⁶⁰	0	0	0	0	0	0.0	0	100'0	0.04	0.116	0.0	0	0.086	0.032
The	0	0	0	0	0	0.0	0.087	0.088	0.077	0.067	0.1	0.076	0.113	0.093
Fe2+00	2.631	2.45	2.524	2.555	2.528	2.5	2.072	2.099	2.063	2.001	2.1	2.276	2.195	2.182
Mg ^(C)	2.369	2.55	2.476	2.445	2.472	2.5	2.262	2.246	2.404	2.247	2.3	2.1	2.09	2.05
Fe2+00	0	0	0	0	0	0.0	0	0	0	0	0.0	0	0	0
Total ^c	ŝ	ŝ	\$	5	ŝ	5.0	4.478	4,49	4.634	4,487	4.5	4,48	4.54	4.416
Mg ⁽⁰⁾	0.25	0.105	0.14	0.169	0.236	0.2	0	0	0	0	0.0	0	0	0
Fe ⁵⁺⁽⁰⁾	0	0	0	0	0	0.0	0	0	0	0	0.0	0	0	0
8 U	1.75	1.895	1,86	1.831	1.764	1.8	1.809	1.779	1.717	1.799	1.8	1.743	1.725	1.846
Na @	0	0	0	0	0	0.0	0.191	0.221	0.175	0.201	0.2	0.257	0.234	0.154
Total "	61	61	61	61	61	2.0	61	61	1.892	61	2.0	61	1.959	61
Naco	0.644	0.605	0.649	0.632	0.584	9.0	0.199	0.068	0	0.067	0.1	0.14	0	0.23
S D	0.498	0.341	0.292	0.394	0.499	0.4	0	0	0	0	0.0	0	0	0
K ⁽⁰⁾	0.235	0.216	0.235	0.229	0.187	0.2	0.2	0.21	0.162	0.183	0.2	0.272	0.238	0.217
Total ^	1.377	1.162	1.176	1.255	1.27	1.2	0.399	0.278	0.162	0.251	0.3	0.412	0.238	0.447
HO	1.998	2.003	1.951	1.944	1.953	2.0	1.904	1.916	1,88	1.883	1.9	1.913	1.914	1.907
H2O.	2.003	1.999	2.052	2.059	2.05	2.0	2.102	2.09	2.129	2.126	2.1	2.092	2.091	2.099
(Na+K)A	0.879	0.821	0.884	0.861	0.771	0.8	0.399	0.278	0.162	0.251	6.0	0.412	0.238	0.447
Ca+(Na)B	2.248	2.236	2.152	2.225	2.263	2.2	61	61	1.892	61	2.0	61	1.959	61
(Na+Ca)B	1.75	1.895	1,86	1.831	1.764	1.8	61.	61.	1.892	61.	2.0	61.	1.959	61.
Mg/(Mg+Fe ²	_	_	_	-	_	0.1	-	-	_	-	0.1	-	_	-
AI(VI)+Fe ³⁺	5.25	5.105	5.14	5.169	5.236	5.2	4,334	4.346	4.507	4.365	4	4.376	4.371	4.264
OH+F+CI	1.998	2.003	1.951	1.944	1.953	2.0	1.904	1.916	1,88	1.883	1.9	1.913	1.914	1.907
P ¹ (kbar)	4.5	4.2	4.7	4.1	3.8	4.3	3.2	2.7	2.8	3.1	2.9	3.8	4.1	3.9
P ² (kbar)	4.6	4.3	4.9	4.2	3.9	4.4	3.2	2.7	2.8	3.1	2.9	4.0	4	4.0
P ⁰ (kbar)	3.6	4.E	8. E	3.3	0.6	3.4	2.5	1.1	2.2	4	2.3	3.1	č,	3.1
P ⁴ (kbar)	6.4	4.7	5.2	4.6	4	4.7	3.7	3.3	4.6	3.6	3.5	6. 6.	4.6	হ হ
perm (toar)	4,4 4	1.4	4.7	4,0	3,8	4.2	3.1	7.7	2 2 2	3.1	67	3,8	4°I	3.9
Cation charg	46.00	45.93	45.94	45.92	45.94	45.95	45.91	45.91	45.92	45.93	45.92	45.86	45.89	45.91

Продолже	ние таб)	TIMULA D.1.				6		:	;		:				
Ле п.п.	e	10	1	18	19	70	71	77	23	24	67	70	17	28	
Образец	15	4005	40.05	4005	4005	4005	4005	4005	4005	4005	4005	4005	4005	4005	
Names	Tsche cp.	Mg-hast	Mg-hast	Mg-hast	Mg-hast	Mg-hast	Mg-hast	Mg-hast	Mg-hast	Mg-hast	Mg-hast	Mg-hast	Mg-hast	Mg-hast	
SIO2	45.1	44.51	46.51	44.39	43.16	45.55	44.45	43.06	42.70	41.28	43.23	43.58	43.51	42.70	
TIO	2	1.48	1.10	0.93	1.23	1.27	1.19	1.15	1.53	1.31	1.42	1.54	1.58	1.34	
AbO ₃	9.3	10.40	10.30	9.77	10.37	9.66	10.76	9.52	10.01	10.45	9.47	10.29	11.24	10.66	
FeO	18.5	16.41	17.08	16.26	17.09	17.41	16.62	16.62	15.45	16.97	16.39	15.60	16.48	16.67	
MgO	9.7	10.91	11.51	10.93	11.04	10.56	10.81	11.43	10.33	11.48	10,09	10.77	11.76	16.11	
CIIO	11.5	12.13	12.33	11.89	11.83	12.37	12.16	11.92	11.66	11.78	11.81	12.05	11.26	11.49	
Na2O	1.2	1.38	1.72	1.72	1.68	1.91	1.80	1.42	2.04	1,46	1.31	1.31	2.40	2.09	
K20	1.3	1.66	1.47	1.39	1.44	1.52	1.61	1.58	1.56	1.60	1.56	1.67	1.62	1.46	
Сумма	97.8	98.88	102.02	97.28	97.84	100.25	99.40	96.70	95.28	96.33	95.28	96.81	99.85	98.32	
s	6.5	6.314	6.382	6.391	6.209	6.389	6.279	6.263	6.3	6.055	6.368	6309	6.137	6.118	
F	0.1	0.158	0.114	0.101	0.133	0.134	0.126	0.126	0.17	0.145	0.157	0.168	0.168	0.144	
V	1.6	1.739	1.666	1.658	1.758	1.597	1.791	1.632	1.741	1.807	1.644	1.756	1.868	1.8	
Fest	2.2	1.947	1.96	1.958	2.056	2.042	1.963	2.022	1.906	2.082	2.019	1.889	1.944	1.997	
Fe ²⁺	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Mg	2.1	2.307	2.355	2.346	2.368	2.208	2.276	2.479	2.272	2.51	2.216	2.324	2.473	2.544	
Ca	1.8	1.844	1.813	1.834	1.823	1.859	1.84	1.858	1.843	1.851	1.864	1.869	1.702	1.764	
Na	0.3	0.38	0.458	0.48	0.469	0.519	0.493	0.4	0.584	0.415	0.374	0.368	0.656	0.581	
К	0.2	0.3	0.257	0.255	0.264	0.272	0.29	0.293	0.294	0.299	0.293	0.308	0.292	0.267	
S(1	6.5	6.314	6.382	6.391	6.209	6.389	6.279	6.263	6.3	6.055	6.368	6.309	6.137	6.118	
ωIV	1.5	1.686	1.618	1.609	1.758	1.597	1.721	1.632	1.7	1.807	1.632	1.691	1.863	1.8	
ωL	0.0	0	0	0	0.033	0.014	0	0.105	0	0.138	0	0	0	0.082	
Total	8.0	80	80	œ	œ	œ	8	90	œ	80	80	80	80	20	
VIC	0.0	0.053	0.048	0.049	0	0	0.07	0	0.041	0	0.012	0.065	0.005	0	
Dio Line	0.1	0.158	0.114	0.101	0.1	0.12	0.126	0.021	0.17	0.006	0.157	0.168	0.168	0.063	
Fe ^{3+(C)}	2.2	1.947	1.96	1.958	2.056	2.042	1.963	2.022	1.906	2.082	2.019	1,889	1.944	1.997	
Mg ^(C)	2.1	2.307	2.355	2.346	2.368	2.208	2.276	2.479	2.272	2.51	2.216	2.324	2.473	2.544	
Fe ¹⁺⁽⁰⁾	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Total ^c	4.5	4.502	4.521	4,498	4.561	4.403	4,486	4.579	4.424	4.648	4.445	4,494	4.614	4.651	
Mg ⁽⁰⁾	0.0	0	•	•	0	0	0	0	0	•	0	0	0	0 0	
F(c ^{ont} m)	0.0	0	0	0	0	0.0	0	0.0	0	0	0	0.0	0.	0	
	8. C	1.844	1,813	1.834	1.823	1.859	1.84	1.858	1.843	1.851	1.864	1,869	1.702	1.764	
	2.0	0.1.0	0.187	0.100	0.177	0.141	0.16	0.142	1.07	0.149	0.136	0.131	0.298	0.236	
Notes	0.7	7 22	10,0	7 7 7	701.0	2 270	7 222	0 3 C V	2 477	7750	2 230	2 2 2 2	2 2 60	7 344	
Catto		0	10		0	0	0	0	1	0	0	0	0		
K(v)	0.2	0.3	0.257	0.255	0.264	0.272	0.29	0.293	0.294	0.299	0.293	0.308	0.292	0.267	
Total ^A	0.4	0.524	0.528	0.57	0.556	0.65	0.623	0.551	0.721	0.566	0.531	0.545	0.649	0.611	
но	1.9	1.894	1,832	1.922	1.921	1.873	1.886	1.942	1.97	1.959	1.967	1.933	1.883	1.913	
H2O*	2.1	2.114	2.185	2.082	2.084	2.138	2.123	2.061	2.032	2.044	2.035	2.071	2.126	2.093	
(Na+K)A	0.4	0.524	0.528	0.57	0.556	0.65	0.623	0.551	0.721	0.566	0.531	0.545	0.649	0.611	
Ca+(Na)B	2.0	61	61	61	61	61	61	61	61	61	61	61	61	61	
(Na+Ca)B	2.0	61	61	61	61	61	6	61	61	61	61	6	61	61	
Mg/(Mg+Fe ¹	1.0	-	-	-	-	-	-	-	-	-	-	-	-	_	
$\Lambda I(VI) + Fe^{3+1}$	4.3	4.307	4.363	4.353	4.424	4.25	4.309	4 5	4.22	4.592	4.247	4.278	4.422	4.541	
OH+F+CI	6.1	1.894	1,832	1.922	1.921	1.873	1.886	1.942	1.97	1.959	1.967	1,933	1.883	1.913	
P'(kbar)	4.0	4 ·	4 ·	4,4	6,4	4.	5.1	4. 1.	4 v	5.5	বৃ	6.4	5.5	5.1	
P"(kbar)	- . .	5.1	¢ v	6 v	2 2	4 (1) (4,4	5.1	4.0	4 (V) (2.5	8° 7	4.0	
Per (KURT)	2.0	A.0	0.0	0.0	2 T	c.c.	- u	t o	2.0	4 v 1 v	0.0	0.4 4	ਰ ਵ ਰ ਪ	n v	
P*(KD0.r) Decent [char]	4.4 6.6	0.0 8 4	44	4.4	404	4.0	0,0	6 4 6 0	0.0 8 A	0.0	¢ 4	4.0	4.0	0.0	
Cation charg	45.88	45.84	45.89	45.90	45.87	45.87	45.87	45.87	45.83	45.86	45.84	45.83	45.83	45.86	
Продолже	зние та(5лицы Б	-T:												
--------------------------------	------------	----------------	-------------	-------	--------	-------	-------	--------	------------	------------	-------	------------	-----------------	------------	---------
№ п.п.	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43
Образец	40.05	4005	40.05	40.05	4005	4005	4005	4005	4005	40.05	4005	40.05	4005	4005	4005
Names	Mg-hast	Mg-hast	Mg-hast cp.	Tsche	Tsche	Tsche	Tsche	Tsche	Tsche	Tsche	Tsche	Tsche	Tsche	Tsche	Tsche
SIO1	41.27	43.77	43.6	44.53	44.75	45.65	45.07	47.18	43.94	44.20	44.48	44.53	43.06	43.95	43.51
TIO1	1.23	1.02	1.3	1.56	1.02	0.94	1.07	1.12	1.01	1.06	1.12	16.0	1.19	1.22	0.83
Al ₂ O ₃	10.69	9.51	10.2	01.11	10.30	9.48	10.62	9.96	9.80	10.06	10.32	8.55	9.29	8.48	9.25
FeO	16.30	16.56	16.5	16.79	16.52	16.20	16.16	16.99	16.62	16.88	17.10	15.86	16.40	16.22	16.08
MgO	11.11	12.11	1.1	10.58	11.91	10.85	10.99	11.40	11.37	11.53	11.63	12.27	11.71	11.65	11.83
CaO	11.41	12.08	11.9	12.10	12.06	12.15	11.51	12.63	11.97	12.32	12.32	11.57	11.78	11.64	11.72
Na ₂ O	1.58	1.42	1.7	1.40	0.96	1.42	0.71	0.90	1.16	1.05	1.25	1.39	1.17	1.55	0.93
K10	1.57	1.29	1.5	1.60	1.41	1.33	1.39	1.46	1.41	1.46	1.56	1.18	1.37	1.25	1.24
Сумия	95.16	97.16	97.8	99.66	98.93	98.02	97.52	101.64	97.28	98.56	99.78	96.26	95.97	95.96	95.39
S	6.122	6.333	6.3	6.266	6.3.22	6.499	6.426	6.473	6.332	6.291	6.273	6.459	6.294	6.42	6.378
ш	0.137	0.111	0.1	0.165	0.108	0.101	0.115	0.116	0.109	0.113	0.119	0.099	0.131	0.134	0.091
V	1.869	1.622	1.7	1.841	1.715	1.591	1.785	1.611	1.664	1.688	1.715	1.462	1.6	1.46	1.598
Febt	2.022	2,004	2.0	1.976	1.952	1.929	1.927	1.949	2.003	2,009	2.017	1.924	2.005	1.982	1.971
Fe ¹⁺	0	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0
Mg	2.457	2.483	2.4	2.219	2.508	2.303	2.336	2.332	2.443	2.446	2.445	2.653	2.552	2.537	2.585
5	1.813	1.873	1.8	1.824	1.825	1.853	1.758	1.857	1.848	1.879	1.862	1.798	1.845	1.822	1.841
Na	0.454	0.398	0.5	0.382	0.263	0.392	0.196	0.239	0.324	0.29	0.342	0.391	0.332	0.439	0.264
к	0.297	0.238	0.3	0.287	0.254	0.242	0.253	0.256	0.259	0.265	0.281	0.218	0.255	0.233	0.232
e IS	6.122	6.333	6.3	6.266	6.3.22	6,499	6.426	6.473	6.332	6.291	6.273	6.459	6.294	6.42	6.378
ωIV	1.869	1.622	1.7	1.734	1.678	1.501	1.574	1.527	1.664	1.688	1.715	1.462	1.6	1.46	1.598
ωII	0.009	0.045	0.0	0	0	0	0	0	0.004	0.021	0.012	0.08	0.105	0.12	0.025
Total	œ	œ	8.0	œ	œ	œ	œ	œ	œ	œ	×	œ	œ	œ	90
VI0	0	0	0.0	0.107	0.037	0.089	0.211	0.084	0	0	0	0	0	0	0
Ll ⁶⁰	0.128	0.066	0.1	0.165	0.108	0.101	0.115	0.116	0.106	0.092	0.107	0.02	0.025	0.014	0.067
Fe ³⁺⁽³⁾	2.022	2,004	2.0	1.976	1.952	1.929	1.927	1.949	2.003	2.009	2.017	1.924	2.005	1.982	1.971
Mg ^(C)	2.457	2.483	2.4	2.219	2.508	2.303	2.336	2.332	2.443	2.446	2.445	2.653	2.552	2.537	2.585
Fe ^{2+(C)}	0	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0
Total ^c	4.607	4.552	4.5	4.502	4.653	4.471	4.621	4.527	4.585	4.591	4.569	4.647	4.634	4.567	4.658
Mg ⁽⁰⁾	0	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0
Fe ²⁺⁽⁰⁾	0	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0
C3(0)	1.813	1.873	1.8	1.824	1,825	1,853	1.758	1.857	1.848	1.879	1.862	1.798	1.845	1,822	1,841
N ²⁰ (3)	0.187	0.127	0.2	0.176	0.175	0.147	0.196	0.143	0.152	0.121	0.138	0.202	0.155	0.178	0.159
To tal	61	61	2.0	61	61	61	1.955	61	61	61	61	61	61	61	61
Na ⁽³⁾	0.268	0.271	0.3	0.206	0.088	0.245	•	0.096	0.172	0.168	0.203	0.189	0.176	0.261	0.105
Cato	0	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0
Ko	0.297	0.238	0.3	0.287	0.254	0.242	0.253	0.256	0.259	0.265	0.281	0.218	0.255	0.233	0.232
Total ^	0.565	0.509	0.6	0.493	0.342	0.487	0.253	0.352	0.431	0.434	0.484	0.407	0.432	0.494	0.337
HO	1.981	1.932	1.9	1.879	1.886	1.901	1.904	1.832	1.924	6.1	1.883	1.937	1.952	1.95	1.957
H20	2.021	2.072	2.1	2.131	2.122	2.106	2.103	2.185	2.081	2.107	2.126	2.067	2.051	2.053	2.046
(Na+K)A	0.565	0.509	0.6	0.493	0.342	0.487	0.253	0.352	0.431	0.434	0.484	0.407	0.432	0.494	0.337
Ca+(Na)B	ri (r4 (2.0	ri (ri (61.0	1.955	r4 (ri (r4 (r4 (r4 (ri (r4 (r4 (
(Na+Ca)B	N -	4.	2.0	N -	n -	n -	cc/;1	ч.	N .	4.	ч.	ч.	N -	N -	N -
Mg/(Mg+Fe ⁺			1.0							_					
AI(VI)+Fe*+1	4.479	4.486	4.4	4.302	4.497	4.32	4.475	4.365	4.445	4.456	4.462	4.577	4.556	4.519	4.556
01+1+10	1.951	1.952	1.9	6/9.1	0227	1061	407.1	1.852	1.924		288.1	156.1	766.1	ck.1	1661
P'(kbar)	0,0	4.4	4 v	5.0	4.4	4 4	1.0	4	4 - U /	6 a a	4.7	۹. ۳. е	4 4	4 4 5 6	4 4
P ⁴ (Kbar)	× •	4,4	0.6	0.0	4 ¢	4 0		4,	¢ 4	4 (2 (4. c	n 1	4,4	n t n t	4. J
P'(KDar)	4 v Ú ¢	4		4 v	x .	5,5	4,	d, t	0,0	1.0	5.5	1.1	0,0	1.1	5,5
P*(KDar) Decentities v)	2.0	- -	2.6	5.5	2.6	0.4	0.0	1.4	4.4 4.4	0/ C	5.2	4.V 2.4	9. 6	2.4	4.6
Cation charg	45,86	45.89	45.86	45.84	45.89	45.90	45.89	45,88	45,89	45.89	45.88	45.90	45.87	45.87	45.91

Продолжен	ние табл	пицы Б.1													
№ п.п.	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58
Ofpasen	40.05	4005	40.05	4005	40.05	4005	4005	40.05	4005	4005	4005	40.05	4005	4005	40.05
Na mes	Tsche	Tsche	Tsche	Tsche	Tsche	Ische	Tsche	Ische	Tsche	Tsche cp.	Mg-hbl	Mg-hbl	Mg-hbl	Mg-hb1	Mg-hbl
10;	1.28	1.53	140	42.W5	13.3	1.03	0.05	40.04 0.91	0.00	1.1	0.97	080	0.89	1.10	0.71
AlsO ₃	10.25	10.71	10.49	11.06	10.54	9.55	9.52	10.36	9.70	10.0	10.00	9.07	8.00	9.93	8.06
FeO	16.13	15.74	16.24	16.49	15.90	17.00	16.16	15.83	16.34	16.4	16.39	15.00	16.08	15.57	16.62
MgO	11.93	11.54	10.76	11.40	9.52	10.82	13.23	12.20	11.65	11.5	11.78	13.33	11.82	10.08	13.47
CaO	12.01	11.45	11.97	11.24	11.55	12.24	11.75	11.51	11.61	11.9	11.93	11.72	12.32	11.46	11.97
Na 20	1.06	1.57	0.68	1.57	0.93	0.93	1.20	1.46	1.34	1.2	0.85	000	1.20	1.03	0.84
K30	1.45	1.64	1.68	1.50	1.60	1.43	1.29	1.38	1.36	1.4	1.26	1.39	1.03	1.38	1.03
Сумия	95.18	97.66	97.60	96.50	95.58	98.29	99.18	96,99	97.01	9.7.6	100.96	1 00.90	96.56	97.33	99.76
3	6.083	6.24	6.351	6.12	6.442	6.437	6.348	6.259	6.347	6.3	6.561	6.752	6.544	6.652	6.573
il.	0.143	0.165	0.151	0.132	0.146	0.11	0.101	0.099	0.107	0.1	0.1	0.082	0.097	0.118	0.075
V	1.789	1,812	1.769	1,898	1,8.1	1.6	1.58	1.763	1.648	1.7	1.618	1.455	1.364	1.664	1.327
Fe*	1.998	1,889	1.944	2.008	1.937	2.021	1.903	1.912	1.97	2.0	1.882	1.708	1.946	1.852	1.941
Fe ²⁺	0	0	0	0	0	0	0	0	0	0.0	0	0	0	0	0
Mg	2.634	2.469	2.296	2.474	2.068	2.293	2.777	2.626	2.504	2.5	2.411	2.706	2.55	2.137	2.805
5	1.906	1.761	1.835	1.753	1.803	1.864	1.773	1.781	1.794	1.8	1.755	1.71	1.91	1.746	1.791
Na	0.304	0.437	0.189	0.443	0.263	0.256	0.328	0.409	0.375	0.3	0.226	0	0.337	0.284	0.227
×	0.274	0.3	0.307	0.279	0.297	0.259	0.232	0.254	0.25	0.3	0.221	0.241	0.19	0.25	0.184
ωß	6.083	6.24	6.351	6.12	6.442	6,437	6.348	6.259	6.347	6.3	6.561	6.752	6.544	6.652	6.573
ωIV	1.789	1.76	1.649	1.88	1.558	1.563	1.58	1.741	1.648	1.6	1.439	1.248	1.364	1.348	1.327
ωL	0.128	0	0	0	0	0	0.072	0	0.005	0.0	0	0	0.092	0	0.075
Total	80	8	8	80	80	8	80	80	8	8.0	80	8	80	80	7.975
Al ⁶⁰	0	0.052	0.12	0.018	0.252	0.037	0	0.022	0	0.0	0.179	0.207	0	0.317	0
Coll.	0.014	0.165	0.151	0.132	0.146	0.11	0.029	0.099	0.103	0.1	0.1	0.082	0.005	0.118	0
Febto	1.998	1,889	1.944	2.008	1.937	2.021	1.903	1.912	1.97	2.0	1,882	1.708	1.946	1.852	1.941
Mg ^(C)	2.634	2,469	2.296	2.474	2.068	2.293	2.777	2.626	2.504	2.5	2.411	2.706	2.55	2.137	2.805
Fe ²⁺⁰⁰	0	0	0	•	•	0	0	0	•	0.0	0	0	0	•	0
Total	4.686	4.615	4.559	4.681	4.456	4.521	4.757	4.693	4.631	4.6	4.61	4.754	4.531	4.459	4.746
Mg ⁽⁰⁾	0	0	0	0	0	0	0	0	0	0.0	0	0	0	0	0
Fe ²⁴⁰⁰	0	0	0	0	0	•	0	0	•	0.0	0	0	0	0	0
5	1.906	1.761	1.835	1.753	1.803	1.864	1.773	1.781	1.794	1.8	1.755	1.71	1.91	1.746	1.791
Na Na	0.094	0.239	0.165	0.247	0.197	0.136	0.227	0.219	0.206	0.2	0.22.0	0	60.0A	0.254	0.209
Total -	1	7	7 00 0	2 102	7 7 6	7	1	7 7	7 4	0.2	1.98.1	5	7 7 7 7	7 00	7 210
Na N	170	0.198	0.024	161.0	0.066	0.12	5	61.0	0.168	7.0	•		0.247	c0.0	0.019
Koo Cart	0 274	200	0 307	0 279	0 297	0.50	0 232	0 254	20.0	0.0	1000	0 241	200	20.0	0 184
Total A	0 484	0.498	0 331	0 475	0 363	0370	0 33.7	0 444	0.418	10	0 221	0 241	0.437	0.28	0.202
HO	1.978	1.916	1161	1.944	1.945	1.898	1.88	1.928	1.925	6.1	1.833	1.818	1.932	1.899	1.865
H2O'	2.024	2.089	2.095	2.059	2.058	2.11	2.129	2.076	2.08	2.1	2.184	2.202	2.072	2.108	2.147
CNa+KOA	0.484	0.498	0.331	0.475	0.363	0.379	0.332	0.444	0.418	0.4	0.221	0.241	0.437	0.28	0.202
Ca+(Na)B	64	64	61	61	64	64	64	64	64	2.0	1.98.1	1.7.1	64	64	61
(Na+Ca)B	6	6	6	6	6	6	6	6	6	2.0	1.98.1	1.71	6	6	6
Mg/(Mg+Fe ¹	-	-	-	-	-	-	-	-	-	1.0	-	-	-	-	-
AI(VI)+Fe ³ +1	4.632	4.41	4.36	4.5	4.257	4.35	4.681	4.56	4.474	4.5	4.473	4.621	4.496	4.305	4.746
OH+F+CI	1.978	1.916	1.911	1.944	1.945	1.898	1.88	1.928	1.925	1.9	1.833	1.818	1.932	1.899	1.865
P ¹ (kbar)	5.1	5.2	5.0	5.6	5.2	4.1	4.0	5.0	4,4	4.6	4.2	3.4	2.9	4.5 2.4	2.8
P ¹ (kbar)	5.3	5.5	5.2	5.9	5.5	4.3	4.2	5.2	4.5	4.7	4,4	3.5	2.9	4.6	2.7
P ³ (kbar)	4.1	4.2	4.0	4.6	4	3.3	3.2	4.0	3.5	3.7	3.4	2.7	2.3	3.6	2.2
P4(kbar)	5.5	5.6	5.4	0.9	5.6	4.6	4.5	5.4	4.8	5.0	4.7	3.9	3.5	4.9	3.3
Press (kba r)	5.0	5.1	4.9	5.5	5.1	4.1	4.0	4.9	4.3	4.5	4.2	3.4	2.9	4,4	2.7
Cation charg	45.86	45,84	45.85	45,87	45.85	45.89	45.90	45.90	45,89	45.88	45.90	45.92	45.90	45,88	45.93

Продолже	ение та	блицы Б.	I.							5	\$				
Ан.п.	59	99	5	62	63	3	65	99	67	68	69	62	1	12	73
Образец	4005	4005	4005	4005	4005	4400	440.0	4400	4400	44.00	4400	4400	4400	4400	4400
Names	Mg-hbl	Mg-hbl cp.	Edenite	Edenite	Edenite cp.	Mg-hast	Mg-hast	Mg-hast cp.	Tsche	Tsche	Tsche	Tsche	Tsche	Tsche	Tsche
SIO1	46.87	47.2	46.32	46.02	46.2	45.77	44.82	45.3	43.80	39.00	44.33	47.03	46.07	47.40	45.20
TIO1	0.74	0.9	0.86	0.76	0.8	0.97	06.0	0.9	0.78	1.59	0.89	1.05	1.02	0.77	0.92
AlzO ₃	8.00	8.8	8.56	7.22	7.9	9.55	9.38	9.5	10.40	16.03	9.42	9,49	9.42	9.74	9.50
FeO	15.28	15.8	16.30	14,89	15.6	17.52	17.43	17.5	18.53	20.15	17.28	18.58	17.96	18.47	17.86
MgO	12.34	12.1	11.95	11.84	6.11	96.6	10.48	10.2	11.82	12.08	9.80	10.36	10.13	10.80	9,49
Cao	11.99	0.II	12.65	11.83	12.2	12.11	11.53	11.8	10.16	000	11.85	12.43	12.19	12.34	12.51
NarO	00.00	0.7	1.63	1.63	1.6	1.74	2.05	1.9	0.89	000	1.29	0.95	1.04	1.38	5
K ₂ O	0.92	1.2	1.18	1.15	1.2	1.03	1.07	3	1.1	939	1.17	1.16	1.19	1.14	1.31
Суммя	96.14	98.6	99.45	95.34	97.4	98.65	97.66	98.2	97.49	98.24	96.03	101.05	99.02	102.04	97.83
8	6.72	6.6	6.511	6.72	6.6	6.485	6.424	6.5	6.261	5.677	6.457	6.497	6,498	6.484	6.467
I	0.08	0.1	0.091	0.083	0.1	0.103	0.097	0.1	0.084	0.174	1 60.0	0.109	0.108	0.079	0.099
V	1.352	1.5	1.418	1.242	1.3	1.595	1.585	1.6	1.752	2.75	1.617	1.545	1.566	1.57	1.602
F. C ²⁺	1.832	1.9	1.916	1.818	1.9	2.076	2.089	2.1	2.215	2.453	2.105	2.146	2.119	2.113	2.137
F.e ²⁺	0	0.0	0	0	0.0	0	0	0.0	0	•	•	0	0	0	0
Mg	2.638	2.5	2.504	2.577	2.5	2.104	2.239	2.2	2.519	2.621	2.128	2.133	2.13	2.202	2.024
Ca	1.842	1.8	1.905	1.851	1.9	1.838	1.771	1.8	1.556	0	1.849	1.84	1.842	1.808	1.918
Na	0	0.2	0.444	0.461	0.5	0.478	0.57	0.5	0.247	•	0.364	0.254	0.284	0.366	0.288
ĸ	0.168	0.2	0.212	0.214	0.2	0.186	0.196	0.2	0.202	1.744	0.217	0.204	0.214	0.199	0.239
68	6.72	9.9	6.511	6.72	6.6	6.485	6.424	6.5	6.261	5.677	6.457	6.497	6.498	6.484	6.467
ωIV	1.28	1.3	1.418	1.242	1.3	1.515	1.576	1.5	1.739	2.323	1.543	1.503	1.502	1.516	1.533
61	•	0.0	0.071	0.038	0.1	•	0	0.0	•	•	•	•	0	•	0
Total	×	8.0	8	8	8.0	8	8	8.0	8	8	8	8	8	8	8
VI ₆₀	0.072	0.1	0	0	0.0	0.08	0.009	0.0	0.013	0.427	0.074	0.042	0.064	0.054	0.069
co/LL	0.08	0.1	0.02	0.046	0.0	0.103	0.097	0.1	0.084	0.174	7 60.0	0.109	0.108	0.079	0,099
Fe ^{2+(C)}	1.832	1.9	1.916	1,818	1.9	2.076	2.089	2.1	2.215	2.453	2.105	2.146	2.119	2.113	2.137
Mg ^(C)	2.638	2.5	2.504	2.577	2.5	2.104	2.239	2.2	2.519	1.946	2.128	2.133	2.13	2.202	2.024
Per-03	0	0.0	0	0	0.0	0	0	0.0	0	0	0	0	0	0	0
Total	4.682	4.6	4.498	4.478	4.5	4.406	4.488	4.4	4.891	ŝ	4.444	4.48	4.46	4.505	4.383
Mg ⁽⁰⁾	0	0.0	0	0	0.0	0	0	0.0	0	0.676	0	0	0	0	0
February 100	0	0.0	0	0	0.0	0	0	0.0	0	0	0	0	0	0	0
6 0 1 1	1.842	1.8	1.905	1.851	1.9	1.838	1.771	1.8	1.556	•	1.849	1.84	1.842	1.808	1.918
Nam	0 .	0.1	0.095	0.149	0.1	0.162	0.229	0.2	0.247	0	0.151	0.16	0.158	0.192	0.082
Total	1.842	1.9	7 2 4	2 2 2	2.0	2 2 4	2 2	2.0	503.1	0.0/0	7 7 7	2	2 22	2 . 2	2 200
2010		0.0	0.549	7100	0.0	0100	†1 0				617 O	+60'0	171.0	+/ TO	007.0
K(0)	0 168	0.0	0 212	0 214	0.2	0 186	0 196	0.0	0 202	1 744	0 217	0.204	0 214	0 1 90	0 230
Total	0.168	0.3	0.561	0.526	5.0	0.503	0.536	0.5	0.202	1.744	0.431	0.2.99	0.341	0.373	0.445
но	1.914	1.9	1.877	1.95	1.9	1.892	1.914	1.9	1.909	1.944	1.945	1,844	1,883	1.826	1.91
H20*	2.091	2.1	2.133	2.053	2.1	2.116	2.092	2.1	2.098	2.06	2.058	2.171	2.126	2.192	2.096
(Na+K)A	0.168	0.3	0.561	0.526	0.5	0.503	0.536	0.5	0.202	1.744	0.431	0.299	0.341	0.373	0.445
Ca+(Na)B	1.842	1.9	61	61	2.0	61	61	2.0	1,803	•	61	61	61	61	61
(Na+Ca)B	1.842	1.9	61	61	2.0	61	61	2.0	1,803	0	64	61	61	61	64
Mg/(Mg+Fe ¹	-	0.1	-	-	0.1	-	-	1.0	-		-	-	-	-	
AI(VI)+Fe ²⁺]	4.542	4. 8	4.42	4.395	4.4	4.259	4.338	4.3	4.747	5.501	4.307	4.321	4.313	4.369	4.23
OH+H+CI	1.914	1.9	1.877	1.95	1.9	1.892	1.914	1.9	1.909	1.944	1.945	1.844	1.883	1.826	1.91
P'(kbar)	2.9	3.4	20	5.5	2.8	4.1	4.1	7	4.9	9.9	4.7	3.9	4.0	4.0	4.1
P'(kbar)	57	5.5	2	5.2	2.7	4	4	4.2	1.5	10.8	4.4	4.0	4	- e e	4.4 5 5 5
P*(KDar)	37		01	8. C	7.7	1,4	2.5	5.5	0.4	7.9	10 1 10 1	1.5	7.5	7.5	5.5
P*(KDar) Demonstration	4 0 5 0			200	 	0.4 1	0.4	0.4	5.C	10.1	4 4	n a tre	t 0	0.4 0.0	0.4
Cation charg	45.92	45.91	45.91	45.92	45.91	45.90	45.90	45.90	45.92	45.83	45.90	45.89	45.89	45.92	45.90

Продолже	сние таб	лицы Б.	Ι.												
№ п.п.	74	75	76	11	78	79	80	81	82	83	84	85	86	87	88
Образец	4400	4400	4400	4400	4400	4400	4400	4400	4400	4400	4400	4400	4400	4400	4400
Names	Tsche	Tsche	Tsche	Tsche	Tsche	Tsche cp.	Mg-hbl	Mg-hbl	Mg-hbl	Mg-hbl	Mg-hbl	Mg-hbl	Mg-hbl	Mg-hbl	Mg-hbl
SIO ₂	44,83	44.47	44.85	44,49	43.95	44.6	47.75	46.20	48.58	48.35	49.11	48.20	47.58	49.19	49.27
TIO1	1.07	0.92	0.89	0.96	0.99	1.0	0.59	0.84	0.40	99'0	0.64	0.80	0.83	0.72	0.64
AlzO ₃	10.09	10.00	8.52	9.30	9.65	10.1	6.68	8.25	6.79	7.29	7.04	8.86	7.50	6.94	7.02
FeO	18.27	18.25	17.67	18,14	17.32	18.2	17.58	16.76	18.21	17.08	17.42	17.34	17.94	18.41	17.84
MgO	9.87	9.39	10.60	9.51	9.44	10.3	11.38	10.72	11.85	11.33	12.48	11.17	10.37	10.93	10.74
CaO	12.10	11.79	12.09	12.39	12.41	11.0	12.00	11.69	10.35	11.88	12.15	11.29	11.82	11.33	11.47
Na2O	1.32	1.29	0.82	000	0.00	0.8	0.95	0.72	00'0	0.85	1.22	0.90	0.74	1.15	0.88
K10	1.32	1.26	1.03	1.16	1.17	1.9	0.78	1.00	0.46	69.0	0.89	0.94	0.79	0.91	0.76
Сумия	98.87	97.37	96.47	95.95	94.93	97.9	97.71	96.18	96.64	98.13	100.95	99.50	97.57	99.58	98.62
s	6.362	6.397	6.489	6.47	6.452	6.4	6.782	99'9	6.898	6.811	6.752	69.9	6.761	6,838	6.904
E E	0.114	0.1	0.097	0.105	0.109	0.1	0.063	0.091	0.043	0.07	0.066	0.083	0.089	0.075	0.067
V	1.688	1.696	1.453	1.594	1.67	1.7	1.118	1.402	1.136	1.21	1.141	1.449	1.256	1.137	1.159
Fe ³⁺	2.168	2.196	2.138	2.206	2.126	2.2	2.088	2.021	2.163	2.012	2.003	2.013	2.132	2.14	2.091
Fe^{1+}	0	0	0	0	0	0.0	0	0	0	0	0	0	0	0	0
Mg	2.088	2.014	2.286	2.062	2.066	2.2	2.41	2.304	2.509	2.379	2.558	2.311	2.197	2.265	2.243
5	1.84	1.817	1.874	1.931	1.952	1.7	1.826	1.806	1.575	1.793	1.79	1.679	1.8	1.687	1.722
Na	0.363	0.36	0.23	0	0	0.2	0.262	0.201	0	0.232	0.325	0.242	0.204	0.31	0.239
K	0.239	0.231	0.19	0.215	0.219	0.3	0.141	0.184	0.083	0.124	0.156	0.166	0.143	0.161	0.136
elS	6.362	6.397	6.489	6.47	6.452	6.4	6.782	9979	6.898	6.811	6.752	6.69	6.761	6.838	6.904
ωIV	1.638	1.603	1.453	1.53	1.548	1.6	1.118	1.34	1.102	1.189	1.141	1.31	1.239	1.137	1.096
ωL	0	0	0.058	0	0	0.0	0.063	0	0	0	0.066	0	0	0.025	0
Total	œ	8	8	80	80	8.0	7.963	8	8	8	7.959	8	œ	8	8
VIG	0.05	0.093	0	0.064	0.122	0.1	0	0.062	0.035	0.021	0	0.139	0.017	0	0.063
ωL	0.114	0.1	0.039	0.105	0.109	0.1	0	0.091	0.043	0.07	0	0.083	0.089	0.05	0.067
Fe ³⁺⁽³⁾	2.168	2.196	2.138	2.206	2.126	2.2	2.088	2.021	2.163	2.012	2.003	2.013	2.132	2.14	2.091
Mg ^(C)	2.088	2.014	2.286	2.062	2.066	2.1	2.41	2.304	2.509	2.379	2.558	2.311	2.197	2.265	2.243
$Fe^{1+(0)}$	0	•	0	0	0	0.0	0	0	•	0	•	0	0	0	•
To tal ^c	4.455	4,445	4.534	4.487	4.479	4.5	4.561	4.539	4.793	4.537	4.62	4.613	4,483	4.526	4,494
Mg ⁽⁰⁾	0	0	0	0	0	0.1	0	0	0	0	0	0	0	0	0
F(1)+(1)	•	•	•	•	•	0.0	•	•	•	•	•	•	•	•	•
8	1.84	1.817	1.874	1.931	1.952	1.7	1.826	1.806	1.575	1.793	1.79	1.679	1.8	1.687	1.722
Natio	0.16	0.183	0.126	0	0	0.1	0.174	0.194	•	0.207	0.21	0.242	0.2	0.31	0.239
Total"	2000	17	2 2	1.931	1.952	1.9	2 200	2 202	575.1	7 7	14	1.921	2 2 0	1.997	1.961
All Caller	507.0 U		500			1.0	0.055	0.00		c70.0	c1.0		50000		
K ⁽⁰⁾	0.239	0.231	0.19	0.215	0.219	0.3	0.141	0.184	0.083	0.124	0.156	0.166	0.143	0.161	0.136
Total ^	0.442	0.408	0.294	0.215	0.219	0.5	0.229	0.191	0,083	0.149	0.271	0.166	0.147	0.161	0.136
HO	1.895	1.921	1.932	1.942	1.96	1.9	1.896	1.925	1.896	1.881	1.836	1.853	1.897	1.856	1.8.71
H2O*	2.113	2.084	2.072	2.062	2.042	2.1	2.111	2.08	2.111	2.128	2.181	2.16	2.11	2.157	2.14
(Na+K)A	0.442	0.408	0.294	0.215	0.219	0.5	0.229	0.191	0.083	0.149	0.271	0.166	0.147	0.161	0.136
Ca+(Na)B	61	64	61	1.931	1.952	1.8	61	61	1.575	64	64	1.921	61	1.997	1.961
(Na+Ca)B	n -	n -	n -	1.931	1.952	8. I.	r4 -	r4 -	1.575	N -	n -	1.921	n ·	1.997	1.961
Mg/(Mg+Fe ²				-		0.1							-		
AI(VI)+Fe+	4.306	4.302	4.424	4.332	4.315	4 - 6 -	4.498	4.387	4.706	4.413	4.561	4.462	4.345	4.405	4.397
DH+F+CI	269.1	1.94	756.1	746.1	0.1		0.62.1	C76.1	1 0	1991	0591	CC9.1	1697	00971	1/9/1
Pi(thar)	6 9 7 4	4,0 4 8	t t n e	- 6	4	- 0			0 F	4 - 4 c	0 F	t t n e	te vic	0 F	5 G
P ⁴ (k har)	0 F.	n r	1.0	1	3		9 er	1.0	14		1.4	1.0	0	1.4	140
P ⁴ (kbar)	5.0	1.5	9.6	4.6	6.4	5.1	2.3	3.7	2.4	2.8	2.4	0.6	3.0	2.4	2.5
Passa (kbar)	4.5	4.5	3.4	4.0	4.4	4.6	1.7	3.1	1.8	2.2	1.8	3.3	2.4	1.8	1.9
Cation charg	45,89	45.90	45.90	45.90	45.89	45.89	45.94	45.91	45.96	45.93	45.93	45.92	45.91	45.93	45.93

ı		ı									1									ī				~ ~	21															ı										
103	VII	Mg-hbl	47.74	0.62	6.74	17.45	10.87	11.76	1.38	0.73	97.29	6,817	190'0	1.134	2.084	0	2.314	1.799	0.382	0.133	11970	0.040	6100	• •	0.017	2.084	2.314	0	4,451	0	•	1.799	0.201	64	0.181	0.133	0.314	1.907	2.1	0.314	61	64	-	4.398	1.907	8.	1.6	5.5	4.7	1.0
102	VII	Mg-hbl	47.46	0.68	6.84	17.20	10.89	11.80	1.94	0.73	97.54	6.774	5/0.0	1.151	2.053	0	2.317	1,805	0.537	0.1.55	1151	10101	2000	0		2.053	2.317	0	4,413	0	0	1.805	0.195	64	0.342	0.133	0.474	1.906	2.101	0.474	61	61	-	4.371	1.906	1.9	1.7	4.4	2.5	1.7
101	VII	Mg-hbl	47.45	0.70	6.59	16.48	10.77	11.85	1.60	0.70	96.14	0.852	0.0.0	1.122	1.99		2.318	1,833	0.448	67.1.0	70970	77 1.1	1700	• •	0.049	1.99	2.318	0	4.3.95	0	0	1,833	0.167	64	0.281	0.129	0.41	1.928	2.076	0.41	61	64	-	4.309	1.928	1.7	1.6	5	5.4	1.1
100	440.0	Edenite	45.98	1.03	9.31	16.94	10.32	12.35	1.62	1.06	98.61	6.509	0.11	1.553	2.005	0	2.178	1.873	0.445	0.191	100.0	0		0.060	0.11	2.005	2.178	0	4,411	0	0	1.873	0.127	64	0.318	0.191	0.509	1.89	2.118	0.509	61	61	-	4.246	1.89	3.9	4.0	3.1	4 e e e	0.0
66	440.0	Mg-hbl cp.	47.7	0.8	7.9	17.4	10.9	6.11	0.1	0.9	98.4	0.1	0.1	1.3	2.0	0.0	2.3	1.8	0.3	2.0				1.0	3	2.0	2.3	0.0	4.5	0.0	0.0	1.8	0.2	2.0	0.1	0.2	0.2	1.9	2.1	0.2	2.0	2.0	1.0	4.4	1.9	2.7	2.7	2.1	5.5	1.4
98	4400	Mg-hbl	47.34	96.0	9.59	17.36	10.13	12.52	22	71.1	100.65	0.557	0.1	1.565	2.011	0	2.092	1.858	0.424	107.0	100.0	000	•	0.122	0.1	2.011	2.092	0	4.382	0	0	1.858	0.142	64	0.282	0.207	0.489	1.849	2.165	0.489	61	64	-	4.224	1.849	4.0	4.1	3.2	4.4 4.4	2.5
97	4400	Mg-hbl	45.68	0.80	7.90	16.85	10.01	12.03	1.12	0.94	95.33	0.085	0.088	1.363	2.062	0	2.184	1.886	0.318	C/10	20.0	0101		0.048	0.088	2.062	2.184	0	4.382	0	0	1.886	0.114	64	0.204	0.175	0.38	1.954	2.049	0.38	61	64	-	4.294	1.954	2.9	2.9	5	3.5	2.2
96	4400	Mg-hbl	48.54	0.48	5.67	16.37	11.42	12.32	0.80	0.50	96.10	6.982	0.052	0.961	1.969		2.449	1.899	0.223	7600	796.0	106.0	200.0	0		1.969	2.449	0	4,45	0	0	1.899	0.101	64	0.122	0.092	0.214	1.921	2.084	0.214	61	64	-	4.418	1.921	0.9	0.7	9.0	1.6	N.Y
95	4400	Mg-hbl	45.92	0.94	9.02	17.37	10.59	11.66	96.0	1.04	97.50	0.550	0.101	1.518	2.074	0	2.254	1.784	0.266	0.189	00000	****		0.074	0.101	2.074	2.254	0	4.536	0	0	1.784	0.216	64	0.049	0.189	0.239	1.906	2.1	0.239	61	64	-	4.401	1.906	3.7	3.8	3.0	4,4	2.1
94	4400	Mg-hbl	49,46	0.83	7.56	17.67	10.73	12.56	1.23	0.69	100.73	6.8	0.086	1.225	2.032		2.199	1.85	0.328	0.121	8.0 -	1		0.025	0.086	2.032	2.199	0	4,411	0	0	1.85	0.15	64	0.178	0.121	0.299	1.836	2.181	0.299	61	64	-	4.256	1.836	20	2.5	1.7	8.7	2.2
93	4400	Mg-hbl	48.47	0.85	7.83	18.13	11.28	12.22	0.72	0.89	100.39	0.095	0.088	1.275	2.094	0	2.323	1.809	0.193	10.10	260.0	2071	co.o	• •	0.058	2.094	2.323	0	4.548	0	0	1.809	0.191	64	0.001	0.157	0.158	1.844	2.171	0.158	61	64	-	4.417	1.844	5.0	2.4	6.1	1.6 2.1	6.4
92	4400	Mg-hbl	47.19	0.77	9.96	17.24	10.28	12.51	1.52	1.29	100.56	6.541	80'0	1.627	1.998	0	2.124	1.858	0.355	0.228	1400	AC4-1		0 168	0.08	1.998	2.124	0	4.417	0	0	1.858	0.142	64	0.212	0.228	0.441	1.851	2.163	0.441	61	64	-	4.29	1.851	4 6	4,4	3.4	5.4	4
	4400	Mg-hb1	47.74	0.70	8.6.8	17.21	11.12	12.33	0.95	0.89	99.62	0.052	0.075	1.425	2.005	0	2.31	1.841	0.257	801.0	700.0	640		0.077	0.073	2.005	2.31	0	4.511	0	0	1.841	0.159	64	0.097	0.158	0.256	1.86	2.152	0.256	61	61	-	4.393	1.86	e. e	e.e	2.6	20 C	4.6
90 D	4400	Mg-hbl	45,45	960	8.74	16.80	10.50	0.50	650	1.09	96.02	0.583	0.105	1.492	2.035	0	2.267	1.845	0.166	107.0	200.0	1.41	•	0.075	0.105	2.035	2.267	0	4.52	0	0	1.845	0.155	64	0.011	0.201	0.212	1.934	2.07	0.212	61	64	-	4.377	1.934	3.6	3.7	2.9	4.1 2 e	0.0
89 101	4400	Mg-hbl	46.90	0.85	9.24	16.48	10.21	11.96	1.61	1.04	98.29	0.626	60.0	1.539	1.947	•	2.15	1.81	0.441	0.187	070.0	+ /c-1		0 165	0.09	1.947	2.15	0	4,416	0	0	1.81	0.19	64	0.251	0.187	0.439	1.886	2.122	0.439	61	64	-	4.262	1.886	8	3.9	3.1	6.4 5 0	0,0
ALL POULOUS	Образец	Names	SIO ₂	TIO:	AIrOs	FeO	MgO	CaO	NarO	K±0	Сумыя	z	= :	2		F.0.*	Mg	Ca	Na	A N	014	021	TotalT		COLL COLL	Pet-0	Matt	Fe ¹⁺⁽⁰⁾	Total	Mg ⁽⁰⁾	Feb+00	Ca ⁽⁰⁾	Na ⁽⁰⁾	Total"	Nation Control	K(0)	Total A	HO	H2O*	(Na+K)A	Ca+(Na)B	(Na+Ca)B	Mg/(Mg+Fe ¹	AI(VI)+Fe ³ +:	OH+F+CI	P ¹ (kbar)	P ⁴ (kbar)	P ⁴ (kbar)	P ⁴ (kbar)	(Income)

Продолжи	ение таб	блицы Б.	1.	107	108	001	011		511	113	111	115	116	211	311
Office your		VII	AU1	ALL N	114	114			711	VIE	- III	VEE	110	VII	33.4
Names	Mo-bh	Mo-bbl	Mo-bbl	Ma-bhl	Ma-bhl	Mo-bhl	Mo-bhl	Mo-bhl	Mo-bbl cn.	Mo-bact	Machaet	Mo-bast en.	Terler	Tarlar	Turbo
SiO:	49.63	47.22	47.00	46.04	47.07	47.19	47.69	47.00	47.4	43.83	43.65	43.7	43.61	44.68	43.88
TIO	0.44	69'0	0.61	0.74	0.67	0.76	0.61	0.70	0.7	1.30	1.23	1.3	1.30	1.11	1.14
AlsO ₅	5.19	8.02	7.70	7.52	7.20	7.52	6.60	6.94	7.0	9.14	9.70	9.4	9.01	8.66	9.53
FeO	16,36	17.07	17.33	17.64	17.29	18.32	16.90	17.22	17.2	18.29	18.05	18.2	18.23	17.97	17.77
MgO	12.69	10.95	10.54	10.28	10.66	9.99	11.08	10.43	10.8	10.24	9.54	9.9	9.65	10.38	10.35
CaO	11.36	11.55	11.35	11.78	11.64	11.85	11.75	11.50	11.7	11.40	11.30	11.4	11.17	11.40	11.28
Na2O	1.09	1.99	1.63	1.19	1.66	1.56	1.28	1.55	1.5	1.97	1.69	1.8	1.71	1.46	1.39
Kr0	0.33	0.86	0.83	0.84	0.81	0.81	0.62	0.81	0.7	1.40	1.45	1.4	1.37	1.29	1.37
Сумия	97.09	98.35	96,99	96.03	97.00	98.00	96.53	96.15	97.0	97.57	96.61	. 1.70	96.05	96.95	96.71
8	7.032	6.679	6.732	6.681	6.751	6.714	6.846	6.792	6.8	6.322	6.348	6.3	6.381	6.456	6.359
E	0.047	0.073	0.066	0.081	0.072	0.081	0.066	0.076	0.1	0.141	0.135	0.1	0.143	0.121	0.124
V	0.867	1.337	1.3	1.286	1.217	1.261	1.117	1.182	1.2	1.554	1.663	1.6	1.554	1.475	1.628
F.c ³⁺	1.938	2.019	2.076	2.141	2.074	2.18	2.029	2.081	2.1	2.206	2.195	2.2	2.231	2.172	2.154
Fe ¹⁺	0	0	0	0	0	0	0	0	0.0	0	0	0.0	0	0	0
Mg	2.68	2.309	2.251	2.224	2.279	2.119	2.371	2.247	2.3	2.202	2.068	2.1	2.105	2.236	2.236
5	1.724	1.75	1.742	1.831	1.789	1.806	1.807	1.781	1.8	1.762	1.761	1.8	1.751	1.765	1.751
Na	0.299	0.546	0.453	0.335	0.462	0.43	0.356	0.434	4.0	0.551	0.477	0.5	0.485	0.409	0.391
K	0.06	0.155	0.152	0.155	0.148	0.147	0.114	0.149	0.1	0.258	0.269	0.3	0.256	0.238	0.253
E	7.032	6.679	6.732	6.681	6.751	6.714	6.846	6.792	6.8	6.322	6.348	6.3	6.381	6.456	6.359
εN	0.867	1.321	1.268	1.286	1.217	1.261	1.117	1.182	1.2	1.554	1.652	1.6	1.554	1.475	1.628
6 H	0.047	•	•	0.033	0.032	0.025	0.037	0.026	0.0	0.124	•	0.1	0.065	0.069	0.013
Total '	7.945	*	æ	œ	œ	x	x	x	8.0	x	æ	8.0	x	x	~
VI0	0	0.016	0.032	0	0	0	0	0	0.0	0	110.0	0.0	0	0	0
0/L	0	0.073	0.066	0.047	0.041	0.056	0.028	0.05	0.0	0.017	0.135	0.1	0.078	0.052	0.111
Fer-10	1.938	2.019	2.076	2.141	2.074	2.18	2.029	2.081	2.1	2.206	2.195	2.2	2.231	2.172	2.154
Mg ⁽¹⁾	2.68	2.309	2.251	2.224	2.279	2.119	2.371	2.247	2.3	2.202	2.068	2.1	2.105	2.236	2.236
Terret	0	0	0	0,110	0	0 1 200	0 ²	0	0.0	0	0	0.0	0	0	0
10.01	4,004	¢ 40 0		447 4	104.4	700.t	0.4.4 4	07t <	n e	164.4	001 C	n e	101.1	10.4	700 4
000+002															
0.0	1 734	175	1 742	1 831	1 789	1 806	1 807	1 781	8	1 762	1 761	8.1	1 7 5 1	1 765	1 751
Na ^(B)	0.276	0.25	0.258	0.169	0.211	0.194	0.193	0.219	0.2	0.238	0.239	0.2	0.249	0.235	0.249
Total"	~	64	64	64	6	~	64	64	2.0	ы	64	2.0	6	ы	64
Na ^{co}	0.024	0.296	0.194	0.166	0.25	0.237	0.163	0.215	0.2	0.313	0.237	0.3	0.236	0.174	0.142
Ca ^(N)	0	0	0	0	0	0	0	0	0.0	0	0	0.0	0	0	0
K ^{co}	0.06	0.155	0.152	0.155	0.148	0.147	0.114	0.149	0.1	0.258	0.269	0.3	0.256	0.238	0.253
Total A	0.084	0.451	0.346	0.322	0.399	0.384	0.277	0.364	0.3	0.57	0.506	0.5	0.492	0.412	0.395
HO	1.892	0.10	1.912	1.937	516.1	2010	1.917	1.95	1.9	1.926	1.942	e.1	1.954	1.929	1.935
H2O'	2.116	2.12	2.093	2.066	2.09	2.107	2.089	2.075	211	2.079	2.062		2.049	2.075	2.069
(Na+K)A	0.084	0.451	0.540	0.522	665.0	0.584	0.277	0.364	0.0	100	0000	0.0	0.492	0.412	c45.0
Ca+(Na)B	4.6	4 6	4 6	4	40	4.6	4	4.6	0 0	4.6	4 6	0.4	4.6	4 6	4
Ma/(Ma+Ea)B	4 -	4 -	4 -	4 -	4 -	4 -	4-	4 -		4 -	4 -		4 -	4 -	4 -
AICUD+Ee ²⁺	4.619	4.345	4 358	4 364	4 3 5 3	4.200	4.4	4 328	44	4.408	4 275	. 4	4 3 3 6	4 4 08	4.30
OH+F+CI	1.892	1.889	1.912	1.937	1.915	6.1	1.917	1.93	1.9	1.926	1.942	1.9	1.954	1.929	1.935
P'(kbar)	0.4	2.8	2.6	2.6	2.2	2.4	1.7	2.0	2.0	3.9	4,4	4.2	3.9	3.5	4.3
P ⁴ (kbar)	0.1	2.8	2.6	2.5	2.1	2.4	1.5	1.9	1.9	4.0	4.6	4.3	4.0	3.6	4.4
P ⁴ (kbar)	0.2	2.2	2.0	2.0	1.7	1.9	1.3	1.5	1.5	3.1	3.6	3.3	3.1	2.8	3.4
P ⁴ (kbar)		3.4	3.2	3.1	2.8	3.0	2.3	2.6	2.6	4.4	4.9	4.6	4.4	4.0	4.7
Cation charo	C.U 45.05	45.03	45.03	45.92	77	45.92	45.03	45.92	45.03	5.7 45.86	45.87	45.86	5.9 45.86	5.5 45.88	45.88
CHARTER COMP.		2000	20120	40.50F	10110	10.00		4 N - 5 P		20100	10.01	and the second s	20101		10,00

Продолж(ение та(5лицы Б. 120	I. 121	122	123	124	125	126	127	128	129	130	131	132	133
Образец	33.A	33.A	33.A	33.A	33.A	33.A	33.A	33A	33.A	33A	33.A	33.A	33.A	33A	33A
Names	Tsche	Tsche	Tsche	Tsche	Tsche	Tsche	Tsche	Tsche	Tsche	Tsche	Tsche	Tsche	Tsche cp.	Mg-hbl	Mg-hbl
SIO1	44,42	44,06	44.70	44,41	45.16	43.83	43.99	44.31	43.98	44,14	44.62	44.10	43	47.48	46.22
TIO1	1.11	1.20	1.12	1.18	0.85	1.26	1.20	1.28	1.30	1.22	1.27	1.36	1.2	0.68	0.96
Ab0s	9.21	9.59	8.94	8.55	7.87	9.32	8.95	9.56	9.44	9.33	9.37	10.04	9.2	7.32	7.80
FeO	17.47	18.74	18.26	18.36	18.02	17.38	17.12	17.92	17.86	17.73	17.78	18.20	17.9	17.23	18.12
MgO	10.64	9.59	10.07	11.08	11.24	10.35	10.51	10.19	10.34	10.06	10.22	66.6	10.3	11.90	10.73
CaO	11.57	11.40	11.36	11.48	11.58	11.36	11.29	11.13	11.26	11.23	11.20	11.30	11.3	11.59	11.19
Na ₂ O	1.20	1.20	1.60	1.29	1.59	1.17	1.47	1.34	5	1.24	1.42		4	1.03	1.40
K10	1.37	1.59	131	1.25	1.07	1.44	1.38	1.42	1.36	1.47	1.39	1.53	4.1	0.94	1.17
Сумия	96,99	97.37	97.36	97.60	97.38	96.11	95.91	97.15	97.18	96.42	97.27	98.12	97.0	98.17	97.59
S	6.408	6.358	6.437	6.381	6.497	6.393	6.423	6.384	6.351	6.413	6.417	6.306	6.4	6.712	6.09.9
E	0.12	0.13	0.121	0.128	0.092	0.138	0.132	0.139	0.141	0.133	0.137	0.146	0.1	0.072	0.103
2	1.566	1.631	1.517	1.448	1.334	1.602	1.54	1.623	1.607	1.598	1.588	1.692	1.6	1.22	1.315
F.c.*	2.108	2.262	2.199	2.206	2.168	2.12	2.09	2.159	2.157	2.154	2.138	2.177	2.2	2.037	2.167
Fe ¹⁺	•	•	0	•	0	•	0	0	0	0	•	0	0.0	0	0
Mg	2.288	2.063	2.162	2.373	2.411	2.25	2.288	2.189	2.226	2.179	2.191	2.13	2.2	2.508	2.287
5	1.788	1.763	1.753	1.767	1.785	1.775	1.766	1.718	1.742	1.748	1.726	1.731	1.8	1.755	1.714
Na	0.336	0.336	0.447	0.359	0.443	0.331	0.416	0.374	0.459	0.349	0.396	0.444	0.4	0.282	0.388
К	0.252	0.293	0.241	0.229	0.196	0.268	0.257	0.261	0.251	0.272	0.255	0.279	0.3	0.17	0.213
eß	6.408	6.358	6.437	6.381	6.497	6.393	6.423	6.384	6.351	6.413	6.417	6.306	6.4	6.712	6.609.6
εIV	1.566	1.631	1.517	1.448	1.334	1.602	1.54	1.616	1.607	1.587	1.583	1.692	1.6	1.22	1.315
ωL	0.026	0.011	0.046	0.128	0.092	0.005	0.037	•	0.042	•	•	0.001	0.0	0.069	0.076
Total	8	8	œ	7.957	7.923	æ	œ	œ	œ	œ	8	œ	8.0	œ	8
VIG	0	0	0	0	0	0	0	0.007	0	10.0	0.005	0	0.0	0	0
co/L	0.095	0.119	0.075	0	0	0.133	0.095	0.139	0.099	0.133	0.137	0.145	0.1	0.003	0.027
F(J)+(J)	2.108	2.262	2.199	2.206	2.168	2.12	2.09	2.159	2.157	2.154	2.138	2.177	2.2	2.037	2.167
Mg ^(C)	2.288	2.063	2.162	2.373	2.411	2.25	2.288	2.189	2.226	2.179	2.191	2.13	2.2	2.508	2.287
Fe ¹⁺⁽⁰⁾	0	•	0	•	•	0	0	0	0	0	0	0	0.0	0	0
Total	4.552	4,489	4.487	4.645	4.632	4.533	4.527	4.55	4.529	4.519	4.531	4.52	4 6	4.607	4.532
Mg ^(B)	•	•	0	•	0	0	0	0	0	0	•	0	0.0	0	•
F(2)*(0)	•	•	•	•	•	•	•	•	0	•	•	•	0.0	•	•
0	1.788	1.763	1.753	1.767	1.785	1.775	1.766	1.718	1.742	1.748	1.726	1.731	8. C	1.755	1.714
Na la	217.0	0.257	0.247	0.255	617.0	c77.0	0.234	0.282	867.0	757.0	0.2/4	0.209	7.0	0.245	087.0
- Intel -	101	7 000	7 100	201.0	7 20	7 100	7 107	7 000	7 201	7 002	7 10	7 146	0.0	7 0.50	7 100
0ac	0	0	0	0	0	0	0.0	- 0	0	0	0		100	0	0
K ^{to}	0.252	0.293	0.241	0.229	0.196	0.268	0.257	0.261	0.251	0.272	0.255	0.279	0.3	0.17	0.213
Total ^	0.376	0.391	0,44	0.356	0.425	0.374	0.439	0.353	0.452	0.37	0.377	0.454	0.4	0.207	0.316
но	1.926	1.927	1.923	1.919	1.921	1.947	1.95	1.924	1.928	1.94	1.92	1.909	1.9	1.887	1.909
H2O*	2.078	2.078	2.082	2.087	2.084	2.056	2.054	2.081	2.076	2.064	2.085	2.097	2.1	2.121	2.097
(Na+K)A	0.376	0.391	0.44	0.356	0.425	0.374	0.439	0.353	0.452	0.37	0.377	0.454	0.4	0.207	0.316
Ca+(Na)B	61	61	61	61	61	61	61	61	61	61	61	61	2.0	61	61
(Na+Ca)B	61	64	64	61	64	64	ы	64	64	64	61	ы	2.0	64	6
Mg/(Mg+Fe ²	-	-	-	-	-	-	-	-	-	-	-	-	1.0	-	-
AI(VI)+Fe ³ +	4.396	4.325	4.361	4.58	4.579	4.37	4.378	4.355	4.383	4.343	4.335	4.306	4.4	4.545	4.454
OH+F+CI	1.926	1.927	1.923	1.919	1.921	1.947	1.95	1.924	1.928	1.94	1.92	1.909	1.9	1.887	1.909
P'(kbar)	4.0	6.4	3.7	4,0	9 73	4.1	3.8	4	4.2	4	4.1	4.6	3.9	2.2	2.7
P ⁴ (kbar)	4.1	4.4	8.0	4.6	99, 1 F1 1	4. 6.	3.9	4.4	6.4	6.4	4	4 ·	4.0	2.1	7.7
P ⁰ (kbar)	c4 -	ৰ ল	3.0	2.7	17	5	3.1	4.0	3.3		5	3.7	3.1	1.7	1.1
P*(kbar)	4.4	4 4 8 6	4 4	6, E 6 e	50	6.4	6.4 9 c	7.4 C 4	4.6	4 4	4.6 6.6	5.0	4.4	x c ci c	m t m t
Cation charg	45.88	45.87	45.88	45.87	45.91	45.86	45.87	45.86	45.86	45.87	45.86	45.85	45.87	45.93	45.90
The second secon															

134 134	MILIA D. 1.	136	137	138	139	140	141	142	143	144	145	146	147	148
33.A	4600A	4600 A	4600 A	4600 A	4600 A	4600A	460A	4600A	4600.A	4600 A	4600A	4600A	4600A	4600A
Mg-hbl cp.	Mg-hast	Mg-hast	Mg-hast cp.	Tsche	Tsche	Tsche	Tsche	Tsche	Tsche	Tsche	Tsche	Tsche	Tsche	Tsche cp.
46.9	43.10	44.50	43.8	44.20	43.00	43.70	43.60	43.30	42.90	44.70	44.40	41.50	44.60	43.6
8.0	1.40	0.70	2	0.70	1.30	1.40	1.30	1.40	1.20	1.00	0.90	1.00	1.20	-
9.7	10.28	8.80	9.5	9.20	10.60	10.20	69.6	10.44	10.20	9.60	9.20	9.30	10.11	9.9
17.7	17.80	17.00	17.4	16.70	17.20	17.00	17.40	17.55	17.25	17.40	17.45	18.00	18.30	17.4
5	10.40	01.11	10.8	11.10	10.60	10.60	10.20	10.10	10.50	10.80	01.11	9.20	10.70	10.5
4	10.45	11.30	10.9	11.30	10.50	10.60	10.75	10.75	10.80	10.90	10.70	10.90	10.55	8.01
7.1	272	1.90	2.1	1.30	06.1	1.60	1.20	051	1.50	06.1	1.20	1.30	1.80	¢
3	1.60	1.20	1.4	1.20	1.50	1.60	1.60	1.60	1.60	1.30	1.20	1.50	1.50	1.5
97.9	97.28	96.50	- 6.9	95.70	96.60	96.70	95.74	96.64	95.95	97.60	96.15	92.70	98.76	96.3
6.7	6.223	6.446	6.3	6.44	6.228	6.321	6.362	6.274	6.265	6.392	6.429	6.2.96	6.32	6.3
0.1	0.152	0.076	0.1	0.077	0.142	0.152	0.143	0.153	0.132	0.108	0.098	0.114	0.128	0.1
13	1.749	1.502	1.6	1.58	1.809	1.739	1.667	1.783	1.756	1.618	1.57	1.663	1.689	1.7
2.1	2.149	2.059	2.1	2.035	2.083	2.056	2.123	2.127	2.107	2.081	2.113	2.284	2.169	2.1
0.0	0	0	0.0	0	0	0	0	0	0	0	0	0	0	0.0
2.4	2.238	2.397	2.3	2.411	2.289	2.286	2.219	2.182	2.286	2.302	2.396	2.081	2.261	2.3
1.7	1.617	1.754	1.7	1.764	1.629	1.643	1.681	1.669	1.69	1.67	1.66	1.772	1.602	1.7
0.3	0.63	0.534	9.0	0.367	0.534	0.449	0.34	0.421	0.425	0.527	0.337	0.382	0.495	0.4
0.2	0.295	0.222	0.3	0.223	0.277	0.295	0.298	0.296	0.298	0.237	0.222	0.29	0.271	0.3
6.7	6.223	6.446	6.3	6.44	6.228	6.321	6.362	6.274	6.265	6.392	6.429	6.2.96	6.32	6.3
1.3	1.749	1.502	1.6	1.56	1.772	1.679	1.638	1.726	1.735	1.608	1.57	1.663	1.68	1.7
0.1	0.028	0.052	0.0	0	0	0	0	0	0	0	0.001	0.041	0	0.0
8.0	8	8	8.0	æ	8	8	8	8	8	8	8	8	æ	8.0
0.0	0	0	0.0	0.02	0.037	0.059	0.029	0.057	0.021	0.011	0	0	600.0	0.0
0.0	0.124	0.024	0.1	0.077	0.142	0.152	0.143	0.153	0.132	0.108	0.097	0.073	0.128	0.1
2.1	2.149	2.059	2.1	2.035	2.083	2.056	2.123	2.127	2.107	2.081	2.113	2.284	2.169	2.1
2.4	2.238	2.397	2.3	2.411	2.289	2.286	2.219	2.182	2.286	2.302	2.396	2.081	2.261	2.3
0,0	0	0	0.0	0	0	0	0	0	0	0	•	0	0	0.0
4.6	4.597	4.566	4.6	4.617	4.649	4.615	4.601	4.591	4.62	4.598	4.692	4.508	4.638	4.6
0,0	0	0	0.0	0	0	0	0	0	0	0	0	0	0	0.0
0.0	0	0	0.0	0	0	0	0	0	0	0	0	0	0	0.0
1.7	1.617	1.754	1.7	1.764	1.629	1.643	1.681	1.669	1.69	1.67	1.66	1.772	1.602	1.7
0.3	0.383	0.246	0.3	0.236	0.371	0.357	0.319	0.331	0.31	0.33	0.337	0.228	0.398	0.3
2.0	64	61	2.0	61	64	61	64	64	64	61	1.997	64	61	2.0
0.1	0.246	0.287	0.3	0.131	0.163	0.091	0.02	60.0	0.115	0.197	0	0.154	0.096	0.1
0.0	0	0	0.0	0	0	0	0	0	0	0	0	0	0	0.0
0.2	0.295	0.222	0.3	0.223	0.277	0.295	0.298	0.296	0.298	0.237	0.222	0.29	0.271	0.3
0.3	0.541	0.509	0.5	0.354	0.44	0.387	0.318	0.386	0.413	0.434	0.222	0.444	0.368	0.4
1.9	1.928	1.934	1.9	1.945	1.934	1.931	1.948	1.935	1.95	1.909	1.933	2.026	1,892	1.9
2.1	2.077	2.07	2.1	2.058	2.07	2.073	2.055	2.069	2.053	2.097	2.071	1.976	2.116	2.1
6.0	0.541	0.509	0.5	0.354	0.44	0.387	0.318	0.386	0.413	0.434	0.222	0.444	0.368	0.4
2.0	64	61	2.0	61	61	61	61	61	61	61	1.997	61	61	2.0
2.0	64	64	2.0	64	64	64	64	64	64	64	1.997	64	64	2.0
1.0	-	-	1.0	-	-	-	-	-	-	-	-	-	-	1.0
4.5	4.388	4.456	4.4	4.466	4.41	4.401	4.371	4.365	4.414	4.394	4.509	4.365	4.438	4.4
1.9	1.928	1.934	1.9	1.945	1.934	1.931	1.948	1.935	1.95	1.909	1.933	2.026	1.892	1.9
2.5	4,9	3.6	4.3	4,0	5.2	4.8	4.5	5.1	4.9	4.2	4.0	4,4	4.6	4.6
2.4	5.1	3.7	4.4	4	5.5	5.1	4.6	5.3	5.1	4,4	4.1	4.6	4.8	4.8
1.9	3.9	2.9	3.4	3.2	4.2	3.9	3.6	4.1	4.0	3.4	3.2	3.6	3.7	3.7
3.0	5.3	4.1	4.7	4.5	5.6	5.3	4.9	5.5	5.4	4.7	4.5	4.9	5.0	5.0
2.4	4.8	3.6	4.2	4.0	5.1	4.8	4.4	5.0	4.8	4.2	3.9	4.4	4.5	4.5
45.91	45,85	45.92	45.89	45.92	45.86	45.85	45.86	45.85	45.87	45.89	45.90	45.89	45.87	45.88

Таблица Б.2	. XMM	ически	uň coc	TAB Má	птнези	ально	экеле:	NCTEIN	сощо з	Вели	гкенай	CKOLO	KVIIOI	Ia.						
Howep ILIL.	-	2	3	4	s	9	5	8	6	10	=	12	13	14	15	16	17	18	19	20
l'pyma	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Obpaseu	VII	VΠ	٧II	VII	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
MicaName(IMA)ac.	μ	ЪĽ	an	an	ЫĻ	ЫĻ	ЪL	ΡL	FL.	ΡL	ΡL	ЪL	ЪL	ЪL	ΡL	ΡL	ΡL	ЪĽ	FL	FL
SO:	37.17	37.25	37.00	39,08	31.59	31.84	32.06	32.09	32.10	32.11	32.18	32.35	32.37	32.79	10.55	34.02	37.93	38.33	38.68	38.50
01	3.10	3.70	400	9675	101	107	1.1	292	2.43	197	8.5	3.81	3.26	4.36	4.72	1	66.1	3.26	112	2.67
APO -	20.05	8 8	00010	30.16	21.78	21.65	21.55	21.21	10.45	21.46	21 60	0.00	10.45 20.08	20.01	00.00	1210	19.01	14,98	19.84	10.10
MnO		0.20	0.20	0.42							1						0.26	0.28		0.22
MeO	15.11	10.60	10.10	10.72	13.16	13.40	13.42	13.37	13.78	13.15	11.09	13.61	11.50	13.07	14.07	13.77	12.00	11.75	12.32	12.15
00	!	1	1	1	0.36	0.25	0.32	0.18	0.29	0.27	0.26	0.29	0.28	027	0.26	1	ı	1	!	1
Na10	!	;	i	ı	1.26	0.96	1.0	0.70	0.62	0.84	0.93	9071	1.21	0110	;	101	ı	!	!	!
K0	9.67	10.00	10.00	10,10	10.55	1143	11.06	11.29	11.12	11.05	11.18	10.83	1137	10.92	11.18	12.09	10.44	10.34	6976	6.67
Cymma	98.07	60.66	98.87	16'66	99.52	65.66	99.64	97.92	97.83	99.66	29.67	99.72	99.74	99.85	16.66	100.2.0	98.49	99,14	10001	98.34
37	2.793	2.790	2.780	2.901	2.402	2.410	2.423	2462	2.463	2.419	2.426	2.426	2.439	2.459	2.459	2.560	2.846	2.844	2.848	2.883
Autro Autro	1207	1.210	1.220	1.099	1.449	1.460	1.450	1483	1.488	1.464	1.493	1.506	1.459	1463	1.453	1.440	1.154	1.156	1.152	1.117
101	0910	0.132	0.135	0.142	!	1	1	1	I	1	ı į	1	1	1	1	0.103	96070	0.15	0.121	0.140
=	52 FO	0.2 08	0.226	0.189	0.208	0.232	0.224	8910	0.140	0.262	0.225	0.215	0.219	0.246	0.264	;	0.191	0.182	0.184	0.150
Fe [.]	0810	0.183	0.190	800	0.719	0.646	0.651	0.533	0.537	0.706	0.602	0,607	0.522	0.559	0.787	0.043	0,089	0.034	0.189	0.078
.e.	1080	1.133	1.143	1,265	0.762	21 ⁻⁰	0.733	0.834	0.835	0.646	0.759	0.710	0.800	0.75	0.472	1.324	1.104	1.142	1,033	1.136
1.00	!	I	ł	I j	0.149	0.130	0.126	0.055	0.049	1170	0081	0.068	0.102	6,00	0.088	I j	I j	1	1	1
10.00	0810	0.183	0.190	000	0.270	0.516	0.524	0477	0.488	0.589	0.521	0.539	0.420	0.4.80	0.699	0.043	0089	0004	0.189	0.078
ų,	1	1000	SI03	800	1	1	1	I	1	I	ı į	1	1	1	I }	1	0017	81070	1	0.014
Mg	1289	1.184	1.131	1.186	1.492	1,512	1.512	1529	1.576	1.476	1.471	-524	1,516	1461	1,562	145	342	1,300	.352	336
0	!	I	i	ı	0,029	0.02	0.026	0.015	0.024	0.022	0,021	0003	500	2023	0.021	1	ı	!	!	!
2	!	1	1	ı į	0.186	0.141	0.151	5070	0.092	0.123	0.136	512	0.177	818	ı į	0.147	ı	1		1
×	0.927	0.956	0.959	0.957	1.023	1.104	1.067	1105	1.089	1.062	1.075	1.036	6607	1045	1.063	1.161	6660	6660	0.905	0.924
Laite	0.93	0.96	0.96	80	12	1.2	1.24	122	1.21	121	R1 8	1.21	671	123	1.08	131	8 2	0.98	160	0.92
INT A sites	8	301	206	28	2 JU	6 10		818	610	6 11 6 11	8 16	8 16	6 JI	818 815	203	8 16	100	800	108	a su a
mail?	112	101	100	0.01	151	150	0.10	351	1.61	151	151	3	351	148	1.57	151	111	108	112	111
(eal)	38	40	144	1	3	2	19	54	19	191	8	5	2	26	55	26	-	22	3.6	2
LE.	0.49	0.53	0.54	0.52	950	0.48	0.48	0.47	0.47	0.48	0.48	0.46	0.47	0.47	0.45	0.47	0.47	0.48	0.48	0.48
Mel	0.51	0.47	0.46	0.48	3	0.51	0.52	0.53	0.54	0.52	0.52	0.54	0.53	0.53	0.55	0.51	0.53	0.51	0.51	15.0
M	44,14	46.26	43.95	62.50	!	!	!	15.47	18.38	1	1	680	7.06	237	1	86.14	63.85	61.42	44.20	56.78
Ti-ph	17.52	20,84	22.60	18.93	17.42	20.77	20,19	16.85	14,02	21.79	22.28	21.49	21,87	24.59	20,82	;	19,13	18,19	18.39	15.04
East	1000	7.13	7.18	14.13	!	!	!	!	1	ı	ı	!	!	!	;	8.87	673	14.29	5,83	1143
Feeas	18,03	18.29	18.96	000	71,85	64.58	65.06	53.27	53.71	70.62	60.21	60.70	52.19	55,86	78.67	4.28	8783	3.41	18.90	7,84
Mus	3.01	3.05	3.16	0.05	22.47	21.32	21.16	14,42	13.89	19.54	17.98	16.92	18.88	17.19	17.23	0.71	1.48	0.57	3.15	1.31
2	7.31	4.44	4.14	4.33	!	!	!	!	i	;	ı	!	!	!	;	;	000	2.12	9.54	7.61
Nph	0.422	0.391	0.377	0.188	0.48	0.496	0.493	0.508	0.519	0.486	0.489	0.505	0.50	0.487	0.508	0.507	0.442	0.427	0.435	0.437
Nar Star	0354	2120	0.381	0.414	0.245	0.237	0.239	0277	0.275	0.212	0.252	0.235	0.265	0.251	812	0.435	500	0.375	0.332	0.366
Nun	ļ	0000	000	0000	1					1							0000	0000	~ !	0.005
No.	000	0.044	0.045	0.047	!	!	!	!	;	i	I	!	!	!	;	0.034	0.011	0.051	0.010	0.045
N	0.057	0.069	0.075	0.062	0.067	0.076	0.073	0.056	0.046	0.086	0.075	0.071	0.072	0.082	0.086	1	0.063	0.06	0.059	0.048
Nmg	0,422	0.391	0.377	0.388	0.48	0.496	0.493	0.508	0.519	0.486	0.489	0,505	0,503	0.487	0.508	0.507	0.442	0.427	0.435	0.437
Nsid	0.316	0.32	0.337	0.232	0.399	0.389	0.385	0377	0.369	0.396	0,402	0.392	0.378	0386	0.367	0.377	0.231	0.272	0.246	0.227
Nam	0262	0.288	0.285	0.381	0.121	0.115	0.122	0.115	0.111	8110	0.11	0.102	0.12	9770	0.124	0.115	0.328	0.302	0.319	0.336
Nfe	0.524	0.55	0.565	0.543	0.498	0.475	0.478	0.472	0.465	0.478	0.481	0.464	0.466	0.473	0.446	0.487	0.49	0.506	0.498	50
NpM	0.506	0.474	0.459	0.484	0.502	0.525	0.522	0.528	0.535	0.522	0.519	0.536	0.534	0.527	0.554	0.531	0.529	0.525	0.525	0.528
(um)m	0044	0.053	0.005	1600	0.015	0.013	0.014	0021	0.021	5	0016	0.013	61070	0016	0004	0.082	0.048	0.053	0.007	6100
	5 8 9	010	+ cm	242	100	771-0	1 97 0	1610	+ 90	100		67170	0.45	010	1210	38	0000	2000	79070	1000
NOR	0000	0000	0000	0000	0000	00000	00000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	300	000	0000
FedFe+Mg)	0494	0.526	5	0.516	0.498	0.475	0.478	0.472	0465	0.478	0.481	0.464	0.466	0.473	0.446	0.469	0.471	0.475	0.475	0.472
Fe/Fe4-Fe	0.857	0.861	0.858	0.999	0.515	0.529	0.53	190	0.608	0.478	0.558	0.539	0.605	0.574	0.375	0.969	0.925	0.971	0.845	0.935
Fe//Mg+Fe ²	0.456	0.489	0.502	0.516	0.338	0.324	0.326	0353	0.346	0.304	0.34	0.318	0.345	034	0.232	0.461	0.451	0.468	0.433	0.456
(IS+IV)/IV	0.49	0.481	0.487	0.428	0900	909'0	0.599	0.602	0.604	0.605	0.615	0.621	0.598	0.595	165.0	0.603	0.439	0.461	0.447	0.436
Solidification Index	27.91	25.481	24,455	26.013	27.275	28,246	28.318	28.648	29.382	28.28	27.976	19,306	18,687	28,401	30.957	28,345	28,951	28.631	29,481	19,483

Продолжени	te raõi	ицы Б	.2.																	
Howep n.n.	21	22	23	24	23	26	27	28	29	95	31	32	33	3	35	8	37	38	39	9
Fpynna	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ображи	12	2	15	Vff	VEE	4005	4005	4005	40.05	1005	4005	1100	1 00	1100	1 00	1100	1 8	1100	1 00	1100
MicaName(IMA)ac.	FL,	FL,	FL.	FL,	FL.	FL,	FL,	FI,	FI,	FI,	FL,	FL,	FL.	FI,	FL,	FL.	FI,	FL.	FL,	FL.
100	2.91	31.65	155	6.5	102	23010	4.80 2.80	5 00 C	30.80 2.66	01.75	2.40	38.18	10.00	101	28.2	2 84	12.12	166	2 84	2.16
AbO	14.43	14.23	14.56	14.46	14.30	14.98	14.23	14.02	15.04	15.10	16.30	14.2	14.70	15.52	15.54	15.09	15.92	15.94	22.51	14.97
FeO.	19,62	19.24	19.54	20.42	20.45	10.01	18,20	17.78	18,88	18.51	18.48	20.85	19,46	19.92	20.23	19.70	19.79	20.37	20.19	19.52
MinO	ł	27	1	0.26	;	!	0.28	!	1	0.33	!	0.43	0.37	0.35	!	0.21	0.36	0.42	0.29	0.32
MgO	11.88	9911	11.49	12.00	12.20	13.46	12.84	13.84	13.06	13.53	£	10.96	12.21	11.47	11.67	12.01	11.05	11.64	1109	1.56
CaO	i	!	ı	!	i	!	ı	!	;	!	!	!	!	i	!	;	!	;	!	1
Nat/O	;	!	;	!	0.30	!	;	!	;	!	!	!	!	;	!	;	!	;	!	;
Ki0	9.86	9.82	9.61	10.36	1013	10.73	10.34	10.29	10.84	10.36	9.77	5676	9.85	676	9.70	9.72	15.6	9.46	9.43	9.26
Суниа	99.14	98.15	98.93	99.12	90.06	96'66	8.30	98.20	98.37	98.32	98.91	99.72	66.62	99,17	100.46	98.45	98.56	100.04	98.50	97.64
2	2,887	2.851	2.873	2806	2.807	2,814	2,865	2.835	2.768	2.778	2842	2,842	2853	2.817	2849	2,816	2827	2,868	2,813	2.876
	511.1	1.149	1.127	5.20	1.193	8	1.135	1.165	1.232	777	1.158	217	1.147	183	1151	1.184	52.51	1.132	1.187	1.124
	0.152	0,110	0.148	0.084	0120	0.178	0.169	0.069	600 19 10	0.136	0.138	9112	8178	0.177	0152	0.148	0.157	0.022	0.160	0.204
Feb.	0000	0.147	0101	810	0.166	0.087	004	0.173	0145	0.180	0.047		0.124	0.134	00.076	0.162	1500	0.014	0.124	0.047
Fe ³⁴	1.180	1.061	1.114	1011	1.116	1.087	1.080	0.938	1.044	6.6.0	1.094	1.187	1.076	1.105	1.164	1.072	6471	1.241	1.139	1.181
February	1	!	1	!	1	!	1	!	;	!	!	!	!	1	!	1	!	1	!	1
Februar	0,039	0.147	0,101	64.00	0.166	0.087	0.054	0.173	0.142	0.180	0.047	0,111	0.124	0.134	0.076	0.162	0.057	0.014	0.124	0.047
Mn	i	0.014	;	0.017	i	!	0.018	!	;	0.021	!	0.027	0.023	0.022	!	0.013	0.023	0.026	0.018	0.020
Mg	1.316	1,305	1.273	1341	1.363	1.482	1.427	15	1.462	1.510	1.2.98	1.216	1.342	1.271	1.276	1,340	1229	1.278	1.236	1.296
ð	i	!	;	!	i	!	;	!	;	!	!	!	!	;	!	;	!	;	!	;
Na	i	!	ı	!	0.044	!	1	!	1	!	!	!	!	ı	!	1	!	1	!	1
×	0.935	0.940	0.911	1660	0.968	101	0.983	0.981	1.039	0.990	0.920	0.943	0.927	0.917	0.908	0.928	0.908	0,889	0.900	0.889
I-site	0.94	50	160	6.8	101	101	0.98	867	104	663	6,5	50	6.9	6.92	160	667	16'0	0.89	8,5	0.89
M-400	202	9,8	206	20.0	2012	1.5	2016	2016	003	2.10	58	10.0	2.5	202	010	2006	500	5.14 8.01	202	200
the LA-Sites	2000	011	104	9070	118	1.78	1.010	111	111	116	301		2 I I	5	104	116	5.0	104	101	108
feall for the second seco	121	2	127	16	18	1.18	20	12	24	8	0	26	25	26	12	36	118	112	24	118
LE.	0.48	0.48	0.49	0.49	0.49	0.44	0.45	0.42	0.45	0.44	0.47	0.52	0.48	5	0.49	0.48	0.51	0.50	15.0	0.49
MgI	0.52	0.52	0.51	0.51	0.52	950	0.56	0.58	0.55	0.57	0.53	0.48	0.53	0.51	0.51	0.52	050	0.51	050	0.51
PH	58.81	50.15	48.02	58,87	62.15	68.24	90'99	59.94	63.26	59.91	\$0 . %	53.28	51.60	46.05	49.32	48.60	48,18	54.28	43.19	51.23
Ti-phI	16.27	20.61	19.85	16,91	17.02	12,77	16,20	16.80	15,02	12,90	13,83	17.75	16.91	16.83	15,83	15,99	15.21	9.20	15.97	13.35
East	13.84	6.11	11.48	2.40	151	8.87	9.72	1.16	613	5.13	19.04	10.33	676	13.23	16.69	61.6	20.82	22.94	16.34	18.79
Fe-cass	3.93	14.73	1011	17.92	16.57	8.68	5.45	17.30	14.17	18.04	4.8	0110	12.41	13.37	7.65	16.16	5.68	1.36	12.39	4.71
Mus	990	2.9	1.69	5.2	2.76	1.45	160	7.05	236	5	2.22	81	202	272	1.28	8	870	1	2.07	0.79
Lat Vich	0.476	067 C	200	2472	144		2071	0.400	1 20	101	04.7	2000	217	202	1170	217	01.0	0.40.7	1001	21.11
Nan	0.182	0.348	0.063	0359	0.364	0.15	0.151	0.304	0.342	0.316	0357	0.387	0347	0350	0.175	0.148	0.385	0.095	0.371	0.081
Npde	6070	0.115	0.108	0.117	0.113	0.094	6000	0.121	0.097	0,112	0.088	0.105	0.114	0.108	0101	61L0	0.083	0.081	0.101	0.085
Xmn	i	0,005	ı	0000	i	!	0006	!	;	0,007	!	60070	0000	0000	!	0004	0000	0,008	90070	0.007
Xal	0.049	0.036	0.048	0.027	0.023	0.038	0.037	0.022	0.032	0,036	0.088	0.046	0.044	0.058	0.062	0.048	0.074	0.08	0.067	0.066
XI	0.053	0,068	0.065	0.055	0.056	0.041	800	0.054	0.049	0,042	0.045	0.058	0.055	0.055	15000	0.052	20.0	0.029	0.052	0.043
Surv	0.420	274.0	CIM	1540	C1400	0.477	0403	6660	0.479	0.488	2100	0.000	0.435	1110	0.411	2000	1040	0407	50400	0.419
Vann Vann	6110	1210	570	1010	0 100	70770	0110	7070	5770	0 244	2450	FG2 0	20114	224.0	1020	0.78	0250	0220	19610	1170
Xe	150	0,500	0.517	0204	0.498	0.466	0467	0.434	0.468	0.457	0.521	1250	0499	0.527	0.529	0.508	0.543	0.541	0.543	0.525
Xphi	0.519	0.519	0.512	0.512	0.515	0.558	0.557	0.581	0.552	0.566	0.532	0.484	0.528	0.506	0.507	0.521	0,499	0.505	0.495	0.514
(uu)m	0.056	0.042	0.048	0.046	0.048	0.043	0.043	0.028	0.04	0.002	0.045	0.058	0.042	0.046	0.053	0.042	0.057	0.062	0.051	0.055
m(ph)	0.077	6.070	0.072	0.083	0.088	0.109	5	0.124	112	9110	0.076	0.062	0.081	1,000	007	0.082	0.065	0.067	0.065	0.073
Ning*	050	8	0.49	0.00	020	58	0.54	89	0.53	38	800	0.47	0.51	850	049	33	0.47	0.48	0.46	0.49
April 1 Section 1	0.481	0.481	0.48.6	0.456	0.484	CFF 0	0.443	0.419	0.448	447°0	0.468	0.516	64 F0	0.404	0.401	0470	0.501	1040	205.0	0.486
FeVFel+Fel	0.968	0.878	0.917	0.86	0.871	0.926	0.952	0.844	0.881	0.844	6560	0.914	0.897	0.892	0.938	0.869	1560	0.989	0.902	0.962
FeVMg+Fe ³	0.473	0.448	0.467	0,451	0.45	0.423	0.431	0.378	0.417	0.393	0.457	0.494	0.445	0.465	0.477	0.444	0,4.89	0.493	0.479	0.477
(ISHV)/IV	0.438	0.442	0.444	0,455	0.45	0.463	0.436	0.436	0.481	0.48	0.502	0.457	0.451	0.483	0.471	0.473	0,4%	0.483	0.495	0.462
Solidification Index	28.723	28,635	28.273	28.05	28.319	31.157	31.029	33.023	30.528	31.91	29.446	26.258	29.408	27.935	28.053	28.989	27,365	28.068	27.241	28.656

Продолжени	te raõn	ищы Б	.2																	
Howep ILL	ŧ	42	\$	4	\$	\$	47	\$	49	8	51	5	53	54	\$	56	S1	58	8	60
l'pyuna .	-	-	-	-	-	-	-	-	-	-	-	-	7	7	~	7	~	~	7	~
Objacen	4400	1100	4400	4100	7706	7706	7706	7706	77.06	7706	1106	7706	338	338	338	338	33.8	338	338	338
MicaName(IMA)ac.	И.	SID SID	018	OIS NO.	018	OIS O	01S	98	and set	01S	OIS .	SID SID	11	н,	11	SID :	OIS OF	SID	SID	SID SID
101	2.86	2.97	2.54	2.56	2.82	2.87	3.46	3.67	3.17	3.59	3,69	3.68	2.98	4.04	3.78	3.46	3.76	4.00	3.87	3.63
AbOs	14.55	15.77	15.61	15.98	15.88	15.46	16.00	15.65	14.67	15.29	14.79	15.50	14.45	13.82	14.29	14.84	14.23	14.33	14.96	14.34
FeO	17,64	20.08	20.01	20.99	22.77	21.77	19.38	21.29	21.40	19,90	2121	21.10	20.74	20,19	20.06	19.48	21.38	20.55	19.67	21.50
Min0	ı j	0.34	20	0.30	80	044	9-0	0.29	036	88	54	8970	I :	5	6.36	1	0.27	I	648	ı į
MgO	13,46	10.90	10.88	10.01	9.35	9.33	10,17	9.54	9.63	9.76	10.39	9.16	11.10	11.37	11.57	10,33	10.72	10.80	10.57	9,42
00	!	ł	!	ı	!	ı	!	i	1	!	1	!	1	!	ł	!	!	1	!	1
Natio	1	I Ì	1	I į	1	1	1	I	1	1	I ĝ	1	I ĝ	1	I à	ı į	1	I ĝ	1	1
Ki0	10.32	976	1076	9.72	1043	10.43	10,22	10.33	10.37	9,82	9.85	10,02	9.79	9.19	3.58	5,5	6876	9.79	8.6	10.18
Cymma	10'66	100.81	99,02	100,01	99.74	97.97	98,19	98,12	97.98	97,51	9925	97,51	98,09	98,46	98.21	98,46	99,63	99,33	05'66	98.72
	2.858	1120	1.107	1.127	1214	1 201	191	2.700	2832	1.161	1.181	2.785	12821	2.862	1201	1.081	1.160	1.140	2.872	1.116
4MV	0.127	0.230	0.257	0.266	0192	0.190	0.223	0.166	0.155	0.204	0.125	0.177	0.137	0.083	0.068	0.223	0.093	0.118	0.177	0.160
F	0.159	0.163	0.142	0.142	6510	0.165	56 ГО	0.209	0.182	0.204	0.208	0.211	0.169	0.228	0.214	0.194	0211	0.224	0.215	0.206
Feb	0.062	0.018	010.0	0.085	0.032	0.007	0.014	0.102	0.002	0.013	0.172	0.097	0.104	0265	0.261	0.075	0.186	0.138	0.069	0.036
Fe ³⁺	1.030	1.210	1.230	1.213	1399	1.383	1203	1.249	1.362	1.247	1.156	1,250	1.206	1000	1.005	1.141	1.149	1.143	1.149	1.320
Fearth	!	ł	!	ı	!	ı	!	i	1	!	;	!	i	!	1	!	!	;	!	1
Feature	0.062	0.018	0.010	0.085	0.032	000	0.014	0.102	0000	0.013	0.172	0.097	0.104	0265	0.261	0.075	0.186	0.138	0.069	0.036
Wu -	1 01	0.021	0.014	6100	1200	0.028	20025	6100	1002	0000	0.028	0.044	1 1	100	0.023	!	0.017	1 100	0.000	1 20
1 1 1	100	1.1 00	707-	1-104	16/71		2	6107		701-1	100	76071	NC 77	N 7	2	×41.			- 10/	0.007
	!	i	!	1	!	1	!	1	1	!	1	!	1	!	1	!	!	;	!	:
	1004	1 00	1 8 6 6	100	1 8	i	1 00	1 8	1000	1 0000	1 20	1.0	100	1 20	190	1000	100	1 0100	1 80	1000
Lette	0.07	0.91	0.96	003	8	102	0.00	100	101	100	104	0.06	004	0.00	1000	0.01	100	101	001	008
M-site	906	3.08	3.10	3.07	305	2.98	2.98	2.96	2.99	2.98	304	8.6	3.06	100	3.04	3.05	305	3.04	304	300
IMTA-sites	8.06	7.99	7.96	7.98	8.02	8.00	7.96	7.96	8,00	7.93	7.98	7.94	8.00	7.95	800	7.94	800	7.97	7.95	7.98
mgli ⁷	1.26	0.94	0.96	0.87	0.88	0.91	96.0	0.94	0.92	0.92	0.97	0.90	1.06	9071	1.14	0.00	6670	0.98	0.93	0.84
fear	1.12	811	1.14	1.19	1,42	1.39	17	141	141	1.29	1.44	1.43	1.34	1.43	4	1.19	1.47	1.39	67	1.40
LE.	0.42	0.51	0.51	0.54	0.58	0.57	0.52	0.56	0.56	0.54	0.54	0.57	0.51	80	650	0.51	623	0.52	0.52	0.56
Mg1	80	0.49	680	0.46	0.42	043	0.48	044	0.45	643	047	64	0.49	8	15.0	0.49	53	0.48	649	644
LH I	63.67	51.37	45.78	49.43	82.II	64.45	25,80	5,2	8	52.%	4 20 4 20 4 20	20.65	20.05	34.17	4.18	47,80	48.30	47.37	45.47	60.81
In-phi	16.61	2.01	14.16	47.41	1.01	17.60	19.01	26,02	1.5.17	2045	5.65	21.12	26.01	11777	21.45	19.41	21.12	11.4	217	2000
Ference	6116 6116	181	104	849	1.25	0.65	143	10.24	016	1.14	17.25	12.6	1040	26.40	26.08	7.45	2.10	13.76	889	161
Mus	10	151	0.87	7.08	0.54	0.54	1.19	1.71	013	0.22	2.88	1.62	1.73	4.42	4.35	6.21	3.11	2.29	1.15	3.02
Tal 1	2.61	896	14.24	8.29	!	;	2.09	;	;	5.11	5.86	2.44	5.68	12.15	3.94	9.22	5.75	6.96	9.51	2.01
Xph	0.48	0.385	0.388	0.36	0347	0.356	0.382	0.364	0.366	0.369	0.382	0.352	0.408	0,413	0.428	6379	0.391	0.394	0.383	0.353
Xan	0.333	0.392	0.397	0.396	0464	0.463	0404	0.422	0.455	0.418	0.381	0.422	0.394	0325	1850	0.376	0.376	0.376	0.378	641
Xpde	0.094	0.005	0.083	0.105	2000	0.052	0.064	1800	0.059	9000	0,119	800	86000	2000	0.14	0.108	0.128	0,117	3 3	0.084
	100	10000	0.001	0.000	0000	1000	2000	0.056	0000	0.068	1000	500	- 00	0070	0000	1004	0000	1000	1000	
X	1900	0.001	0.046	0.046	1300	10055	00066	1000	0.061	0.060	0.068	1000	200	0.074	1200	0.064	0000	0.074	0.071	0.069
Xme	0.48	0.385	0.388	0.36	0347	0.356	0.382	0.364	0.366	0.369	0.382	0.352	0.408	0413	0.428	6150	0.391	0.394	0.383	0.353
Xsid	0.222	0.312	0.307	0.343	0.38	0.363	03.59	0.372	0.307	0.332	0.297	0.372	0.265	0.22	0.261	0.271	0.255	0.252	0.282	0.273
Xam	0.298	0.303	0,305	0.297	0272	0.281	0258	0.264	0.328	0.299	0.321	0.276	0.327	0367	0.311	0.35	0.354	0.354	0.335	0.374
Nfe	0.451	0.551	0.555	0.586	0.608	0.598	0.559	0.584	0.581	0.571	0.556	0.594	0.537	0.515	0.506	0.556	0.545	0.538	0,545	0.589
Nph	0.576	0.492	0.492	0.459	0.423	0.433	0.483	0.444	0.445	0.466	0.466	0.436	0.488	0.501	0.507	0.486	0.472	0.484	0.489	0.439
	0007	000	20000	2000	19	19	0000	5000	00046	5000	2000	51070	1900	100	0000	2000	2000	0003	5000	0.005
(ml)m		047	240	1440	7470	110	0.44	110	6400	8	0.44	400	0.47	100	0.46	5 M 4	946	1000	0.46	111
XiOH)	0.999	6660	0.999	0.999	6660	0.999	6660	0.999	6660	66670	0.999	66650	6660	6660	0.999	6660	6660	0.999	66670	6660
Fe(Fe+Mg)	0.424	0.508	0.508	0.541	0.577	0.567	0.517	0.556	0.555	0.534	0.534	0.564	0.512	0,499	0.493	0.514	0.528	0.516	0.511	0.561
FeVFe ^{1+Fe³}	0.944	0.985	0.992	0.935	0977	0.995	0.988	0.924	66670	686.0	0.87	0.928	0.921	0.791	0.794	0.939	0.861	0.893	0.943	0.973
FeVMg+Fe ²	641	0.505	9050	0.524	0.572	0.566	0.514	0.536	0.555	0.531	0.499	0.545	0.491	0,441	0.436	0.498	0.491	0.488	0.496	0.555
AV(AHSI) Set 46 Set for Index	0.444	0.473	0.471	0.485	0.505	0.497	0.505	0.506	0.464	0.481	0.463 26.066	102.0	0.451	0,426	0.454 77 8.06	0.447	0.441	0.44	0.455	0.442
Soliding the month of the second	0.667.5	00/100	2 I 4 4 4 1	COC.P2	51.974	0.0677	7100	23.175	107.67	29,741	000707	24.191	20002	21.2016	21.600	70707	200	20,202	66007	7677

Окончание т	аблице	I B.2.																	
Hovep n.n.	5	3	63	65	99	69	8	s	70		12	5	74	5	8	F .	78	79	80
I pyttita	7	7	7	N-2	N-Z	W-Z	N-2	2-14	2-M	Z-M	Z-41	Z-M	Z-M	Z-M	Z=M	2-M		Z-VI	
Opparent Miss Name/IMANA	2010	338	100	100	100	0000	6000	6000	6000	0000	0000	0000	0000	6000	6000	7.204	1204	107/	12.04
CONTRACTOR	10.04	10 501	10 01	10 10	10 01	14.04	1760	1770	17 10	17 00	17 60	10 00	1746	1000	14 04	16.04	10.00	17 14	17 17
TIO	158	105	3.66	2.68	3.61	1.10	37.5	3.60	430	120	1.00	1.00	1.05	4.00	4.35	1 4 4	182	1.51	1,70
AbOs	14.55	14,45	14.67	14.33	14,96	15.30	14.60	15,00	14.60	14.50	14,80	14.40	14,80	14,80	14.93	15.17	15.06	15.28	15.16
VeO.	20.78	19.77	19,61	17,56	16.98	21,00	20,30	20,00	20.40	21.10	21,00	20,50	20,10	20,10	22.26	22.48	22.57	21,85	22,66
MinO	1	1	0.22	1	!	0.30	0.20	0.30	0.20	0.30	0.30	0.20	0.30	0770	0.31	0.36	0.52	0.44	0.59
MgO	10.05	9,95	10.54	13.69	12,46	11,00	10.70	11.00	10.50	10,80	10,30	10.30	10.40	10.10	8.63	9.46	8.56	9.14	8,81
CaO	I	;	;	1	!	!	I	;	;	;	!	!	!	1	1	;	;	;	!
Nat O	I	ı	ı	ı	!	!	I	ı	ı	1	!	!	!	1	1	1	0.22	1	!
Ki0	10.23	10,18	9,83	10,30	9,38	05"6	10,20	10.30	10,30	10,20	9,6	10,20	9.92	10.40	10,51	10,31	10.27	10,24	8.6
Cynna	99,88	98.30	97.90	99.45	97.81	98.27	98.59	99.17	98.50	99.20	80,08	98,85	98.12	98.95	97.69	98.16	97.61	98.77	99.17
7	2.900	2,894	2,863	2,885	2,880	2.777	2,828	2,816	2.796	2,837	2,818	2,853	2,823	2,846	2.759	2.753	2.759	2,808	2,807
	91.1	1.106	1.137	1.115	1.120	1.223	1.172	1.184	1.204	1.163	1.182	1.147	1.177	1.154	1,241	1.247	241	1.192	1,193
a.IV	0.174	0.174	0.166	6129	0.188	0.135	0.122	0.136	0.094	0.120	0.126	0.128	0.139	0.153	0.111	0,118	0.126	0.170	0.157
E	0.200	0.223	0.207	0.148	0.201	0.187	0.212	0.202	0.244	0.181	0.2.20	0.220	0.224	0.225	0.251	0.204	0.221	0.203	0.210
Fe ¹¹	0.066	0,066	0.040	0.028	0.066	0.262	0.107	0.100	61.79	66070	0.157	0.063	0.126	0100	0.151	0.187	0.110	0.050	0.114
Fe ¹ .	1.225	1.177	1.196	1.053	0.987	1.061	1.170	1.149	1.107	1,225	1.159	1.224	1.142	1,249	1.279	1.249	1,342	1,332	1317
Perce.	I	1	1	1	!	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Personal Property in the second secon	0.066	0,066	00-000	0.028	0.066	0.262	0.107	0.100	61.2	600%	0.157	0.063	0.126	0100	0.151	0.187	0.110	0.050	0.114
Mn	l	l	0.014	1	1	610.0	0.013	6100	0.013	6100	0.019	0013	0.019	0.013	07070	0.023	0.034	0.028	0.038
Mg	1.113	1.115	1.184	1,502	3/21	1,236	1.200	222	1.180	1,208	1.151	1.153	1.169	1.128	0.988	1.077	0.982	0601	266'0
5;	I	I	I	I	!	!	I	I	I	1	!	!	!	1	I	1		1	!
2.2	0.00	100	100	100	1000	100	0.070	1 00 0	100	100	100	100	1 0 0	1000	1010	100	2000	1000	100
4	0.210	0.970	0.06	1000	0.00	0.215	0.212	19/20	0.00	121	1000	0.00	0.00	0.004	10.00	0.01	10.05	0.00	0.00
1-site M - it -	100	200	2670	160	20.00	20.5	3 0.98	102	200	3.06	000	0.98	800	800	202	101	1.04	800	8.0
INTA-sites	000	202	20.0	808	200	10000	8	800	1010	803	20.6	10.0	200	2 08	101	002	107	0.7	2.06
me li 1	0.87	0.80	0.98	1.25	1	1.08	101	1.03	101	101	0.06	50.0	800	0.02	0.87	0.96	0.87	0.86	0.82
feal -	1.32	1.29	2	1.10	1.07	01.1	1.18	1.13	1.45	1.40	1.43	04.1	1.17	1.14	1.59	1.55	1.58	1.44	1.52
LK.	0.54	0.53	0.51	0.42	0.43	0.52	0.52	0.51	0.52	0.53	0.54	0.53	0.52	0.53	0.60	0.58	0.60	0.58	0.60
Mg1	0.46	0.47	0.49	0.58	0.57	0.48	0.48	0.50	0.48	0.48	0.47	0.47	0.48	0.47	0.41	0.43	0.40	0.43	0.41
Phi	58,44	56,80	53,85	66.72	44,31	37.23	55,54	55.96	50,38	1.05	47.36	57.67	48.68	60.71	51.27	52.21	56.11	57,28	49.75
Tiphi	20.00	22.33	20.73	14,84	20.14	18.70	21.21	20.22	24.38	18.06	21.99	22.02	22.40	22.53	25.12	20.39	22.11	20.30	21.02
E.asst	6.46	6.43	15.24	11.96	16,62	4,80	8,66	10.27	3.39	8.68	7.38	10.67	9.67	14.97	6.04	5.59	8,88	15.37	11,88
Fe-cas	6.57	6.58	3.98	2.77	9.60	26.22	10.69	10.02	17.91	9,93	15.71	6.30	12.57	1.01	15,07	18,69	11,05	5,00	11.43
Mus	5.48	5.48	9970	0.46	01.10	4.37	1.78	1.67	2.99	1.66	2.62	1,05	2.10	0.17	2.51	3.12	1,84	0.83	8
	3.05	2.38	5.53	3.26	11.24	8.68	2.13	1.86	0.95	233	4.94	2.29	4.58	0.61		I }		121	4.03
Xph	0.368	0.374	0.393	0.483	0.451	0.404	0.398	0.405	0.396	0.396	0.381	0.384	67°0	0.378	0.339	0.361	0.335	0.345	0.331
Nan V	0.405	0.395	0.397	0.339	0.323	0.447	0.389	0.38 200	0.371	0.402	0.384	0.407	0.381	0.419	0.438	0.419	0.458	0.447	0.439
- April - Apri	c	0.000	1000	6000	66.000	10100	0.000	0.006	0000	1600	10000	2000	2010	2000	26000	0000	1000	5000	100
Xal	0.058	0.058	200	10.041	0000	0.044	1900	2000	1000	0000	0040	0042	0.046	1000	10000	0.04	100	2000	1000
Xii	0.066	0.075	0.069	0.048	0.066	0.061	20.0	0.067	0.082	0.059	0.073	0.073	0.075	0.076	0.086	0.068	0.075	0.068	0.07
Nng	0.368	0.374	0.393	0.483	0.451	0.404	0.398	0,405	0.396	0.396	0.381	0.384	0.39	0.378	0.339	0.361	0.335	0.345	0.331
Xsid	0.261	0.265	0.278	0.201	0.251	0.326	0.28	0.295	0.292	0.272	0.299	0.268	0.298	0.292	0.362	0.359	0.372	0.351	0.352
Xann	0.371	0.361	0.329	0.316	0.299	0.27	0.321	50	0.313	0.332	0.32	0.348	0.313	0.33	0.299	0.279	0.292	0.304	0.317
Xe	0.568	0.56	0.542	6445	0474	15.0	0.538	0.531	0.539	0.54	0.556	0.551	0.546	0.556	0.69	0.591	0.616	0.601	0.616
vpm	1960	0.000	0.489	2850	1950	0.455	0.484	0.000	0.478	0.0477	0000	0.0472	0.066	2.440	0.405	0.424	0.000	0.0.00	0.405
	2005	1000	0.061	1110	1000	9900	0.063	0.067	1000	0000	10.055	0056	0.050	1000	64.0 0	10.047	00.000	0.041	0016
Xma*	0.45	0.45	0.46	0.56	6.53	0.46	0.46	0.47	0.45	0.46	0.44	0.45	0.45	0.45	0.38	040	037	0.40	65.0
X(01)	666'0	666'0	0660	0660	0660	666'0	666'0	666'0	0660	0660	0660	0,999	0.999	666'0	666'0	666'0	0660	0660	0.999
Fe/(Fe+Mg)	0.537	0.527	0.511	0.418	0.433	0.517	0.516	0.505	0.522	0.523	0.534	0.528	0.52	0.528	0.591	0.571	0.597	0.573	0.591
Ve ² /Ve ² +Ve ²	0.949	0.947	0.968	0.974	0.937	0,802	0.916	0.92	0.861	0.925	0,881	0,951	0.00	0.992	0,895	0.87	0.924	0.964	0.92
Fe ^{-/} Mg+Fe ⁻	0.524	0.514	0.503	0.412	0.417	0,462	0.494	0,484	0.484	020	0.502	0.515	0.494	0.526	0.564	0.537	0.577	0.564	0.57
Solidification Index	24.476	24.937	26363	32.948	32.097	26.506	25.971	26.634	25485	25653	24.976	25.122	25.73	24.877	0.845	22.391	20.567	22.168	21.265
					1	1				,							,		
Примечание.	Класс	зифика	10 RMJII	IOTHT a	IIO IN	A: FI-	- желе	socone	ожащи	и фло	COILNT,	SID -	Marhe	зиальн	lattooo	ожащи	И СИДС	тифoda	INT.
Сноски: 1- к	тассиф	икапи	онные	папам	ETDEI	Tis Tis	chendor	fetal	2001	Х – л	NIM MID	THA TOR	COCTAI	Ra Oci	CATIGHE	Ie nana	Mern	I COCTS	RS
	history				and to a			(t						adam a			
слюд по там	'uz, 20	05].																	
	,	,																	

№ п.п.	-	2	3	4	s	9	2	×	6	10	=	12	13	14	15	16	17	18	19	20
Образец	Vel-1	Vel-1	Vel-1	Vel-1	Vel-1	Vel-1	Vel-1	Vel-1	Vel-1	Vel-1	Vel-1	Vel-1	Vel-1	Vel-1	Vel-1	Vel-1	Vel-1	Vel-1	Vel-1	Vel-1
Минерал	Ξ	Ξ	Ξ	Э	ILI cp.	KIIII														
№ Площадки	e	e	-	3	9	2	4	6	4	2	2	4	4	4	s	2	2	4	4	4
№ Точки	-	2	4	-		3	9	-	3	-	-	4	2	-	1	2	2	4	-	4
SiO ₂	63.87	62.12	64.05	62.25	63.07	63.84	61.81	63.53	62.77	62.88	62.92	62.01	62.42	62.21	63.79	62.78	63.15	61.78	61.94	62.05
Al203	21.7	22.74	23.58	22.59	22.65	17.99	18.54	18.34	18.88	18.88	19.01	18.99	18.71	18.83	18.55	18.72	18.96	18.31	18.49	18.33
CaO	2.97	2.91	3.78	2.88	3.14	I	I	I	I	I	١	I	١	0.1	I	I	!	I	I	١
Na2O	9.19	9.96	9.59	10.45	9.80	3.53	2.68	2.1	2.19	1.95	1.86	1.59	1.59	1.5	1.52	1.46	1.43	1.39	1.27	1.24
K20	0.33	0.47	0,41	0.23	0.36	12.45	15	14.2	15.18	15.63	15.53	15.7	15.94	16.04	15.74	15.73	15.63	16.18	15.86	16.2
BaO	I	I	I	I	I	I	I	I	I	I	I	I	١	I	I	I	I	I	I	I
Сумма	98.06	98.20	101.41	98.40	99.02	97.81	98.03	98.17	99.02	99.34	99.32	98.29	98.66	98.68	99.60	98.69	99.17	97.66	97.56	97.82
Si	2.864	2.799	2.794	2.801	2.815	2.989	2.933	2.979	2.941	2.942	2.941	2.933	2.941	2.934	2.967	2.952	2.951	2.949	2.951	2.954
NI	1.147	1.208	1.213	1.198	1.192	0.993	1.037	1.014	1.043	1.041	1.047	1.059	1.039	1.047	1.017	1.038	1.045	1.030	1.038	1.029
Ca	0.143	0.141	0.177	0.139	0.150	!	I	I	i	I	ł	I	I	0.005	ł	ł	ł	!	I	ł
Na	0.799	0.870	0.811	0.912	0.848	0.320	0.247	0.191	0.199	0.177	0.169	0.146	0.145	0.137	0.137	0.133	0.130	0.129	0.117	0.114
К	0.019	0.027	0.023	0.013	0.021	0.744	0.908	0.850	0.907	0.933	0.926	0.947	0.958	0.965	0.934	0.944	0.932	0.985	0.964	0.984
Сумма, ф.е.	4.972	5.045	5.017	5.063	5.024	5.046	5.125	5.034	5.091	5.093	5.083	5.085	5.089	5.094	5.060	5.067	5.057	5.093	5.071	5.081
AIW	1.136	1.201	1.206	1.199	1.186	1.011	1.067	1.021	1.059	1.058	1.059	1.067	1.059	1.066	1.033	1.048	1.049	1.051	1.049	1.046
AIVI	0.011	0.007	0.006	I	0.008	1	I	I	i	I	I	I	I	I	I	ł	ł	I	I	I
An	14.9	13.6	17.5	13.1	14.8	1	ł	I	ł	ı	ł	I	I	0.5	I	i	I	1	I	1
Ab	83.1	83.8	80.2	85.7	83.2	30.1	21.4	18.3	18.0	15.9	15.4	13.4	13.1	12.4	12.8	12.3	12.2	11.6	10.8	10.4
0r	2.0	2.6	2.3	1.2	2.0	6.99	78.6	81.7	82.0	84.1	84.6	86.6	86.9	87.2	87.2	87.7	87.8	88.4	89.2	89.6

Таблица Б.3. Химический состав полевых шпатов из пород Велиткенайского купола.

<u>№</u> п.п.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Образец	Vel-1	Vel-1	Vel-1	Vel-1	Vel-1	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
Минерал	KIIII	KIIII	KIIII	KIIII	KIIII cp.	Ы	Ш	ГШ	Ш	Ы	ICI	ГП	Ш	Б	Ш	ЕП	ГП	III	Ы	ГШ
№ Площадки	2	s	2	2		-	-	-	-	-	-	2	2	2	2	2	2	2	-	-
№ Точки	3	٢	3	2		12	6/17	in PL	6/14	7/2	7/3	7/4	7/5	17	17/1	15	15/1	15/2	12	12
SiO ₂	63.05	63.59	63.29	63.01	62.78	51.86	52.03	52.69	52.95	51.73	52.46	50.23	50.64	51.9	52.67	51.03	52.21	50.72	59.12	57.64
Al2O3	18.27	18.28	18.24	18.68	18.58	30.52	30.69	28.29	28.13	28.7	29.12	30.68	30.39	29.53	29.26	30.5	29.29	30.67	25.63	25.69
CaO	I	I	ł	I	0.10	9.82	9.09	7.7	7.37	7.98	8.19	10.71	10.22	9.29	8.54	9.81	8.94	10.25	7.34	7.68
Na2O	1.18	1.1	0.96	I	1.70	8.64	8.3	9.31	9.38	8.88	9.19	7.88	8.19	8.8	6	8.16	8.89	7.9	6.11	7.08
K20	16.46	15.4	16.32	18.32	15.66	0.42	I	0.48	0.46	0.49	0.35	0.5	0.56	0.48	0.52	0.49	0.67	0.47	0.34	0.33
BaO	I	I	ł	I	I	I	1	!	ł	1	1	I	1	1	1	:	:	ł	I	1
Сумма	98.96	98.37	98.81	100.01	98.81	101.26	###	98.47	98.29	97.78	99.31	###	###	###	99.99	99.99	100.00	100.01	98.54	98.42
Si	2.965	2.986	2.975	2.952	2.954	2.346	2.363	2.437	2.449	2.410	2.408	2.307	2.325	2.375	2.404	2.336	2.389	2.324	2.661	2.618
VI	1.013	1.012	1.011	1.032	1.031	1.627	1.643	1.542	1.534	1.577	1.575	1.662	1.645	1.593	1.574	1.646	1.580	1.657	1.360	1.376
Ca	I	I	ł	I	0.005	0.476	0.443	0.381	0.365	0.398	0.403	0.527	0.503	0.456	0.418	0.481	0.438	0.503	0.354	0.374
Na	0.108	0.100	0.088	1	0.155	0.758	0.731	0.835	0.842	0.803	0.818 (0.702	0.729	0.781	0.796	0.724	0.789	0.702	0.533	0.624
K	0.987	0.922	0.979	1.095	0.940	0.024	ł	0.028	0.027	0.029	0.020	0.029	0.033	0.028	0.030	0.029	0.039	0.027	0.020	0.019
Сумма, ф.е.	5.076	5.020	5.052	5.079	5.073	5.232	5.181	5.224	5.218	5.217	5.224	5.227	5.234	5.233	5.222	5.217	5.235	5.213	4.935	5.015
AJIV A	1.035	1.014	1.025	1.048	1.046	1.654	1.637	1.563	1.551	1.590	1.592	1.693	1.675	1.625	1.596	1.664	1.611	1.676	1.339	1.382
AIVI	I	I	!	I	I	i	0.007	!	i	I	ı	I	I	I	I	!	:	I	0.022	I
ЛП	1	1	:	1	0.45	37.8	37.7	30.6	29.6	32.4	32.5	41.9	39.8	36.0	33.6	39.0	34.6	40.8	39.0	36.8
qp	9.9	9.8	8.2	1	14.23	60.3	62.3	67.1	68.2	65.3	65.9	55.8	57.6	61.7	64.0	58.7	62.3	57.0	58.8	61.4
0r	90.1	90.2	91.8	100.0	86.50	1.9	I	2.3	2.2	2.4	1.6	2.3	2.6	2.2	2.4	2.4	3.1	2.2	2.2	1.9

№ п.п.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Образец	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
Минерал	ЕП	ГП	ГШ	ГП	ГШ	ГП	ГП	Ð	ГШ	ЕП	ГП	ГП	ГП	Ξ	ЕП	ГП	ГШ	ГП	111	Ш
№ Площадки	-	-	-	-	-	-	-	-	-	-	2	2	2	2	2	2	2	2	2	2
№ Точки	6/4	6/3	6/17	6/7	ind PL	6/14	6/5	9/9	6/8	6/9	7/5	7/5/1	7/5/2	7/5/3	17	17/1	15	15/1	3/3	3/3
SiO ₂	59.53	60.77	59.98	59.72	60.29	59.01	60.93	61.39	57.69	61.87	59.93	59.17	61.08	60.85	61.41	61.35	58.46	60.7	59.21	58.28
ΛhO_3	25.54	24.4	24.94	25.08	22.95	25.4	24.52	24.89	26.17	22.94	25.77	24.86	24.15	24.16	24.79	24.2	25.66	24.81	25.14	24.87
CaO	7.51	6.64	6.81	٢	5.69	7.83	69.9	6.84	8.25	5.64	6.52	6.04	5.77	5.53	6.79	6.15	8.15	6.38	6.64	6.9
Na2O	6.92	7.25	7.15	7.24	8.46	7.24	6.68	7.32	6.22	8.09	6.84	8.03	7.59	7.23	7.26	7.93	6.44	7.03	7.23	7.33
K20	0.27	0.12	0.23	0.39	0.27	0.3	0.47	0.18	0.27	0.36	0.45	0.21	0.32	0.35	0.37	0.42	0.42	0.46	0.23	0.23
BaO	i	I	i	!	I	i	:	I	ł	:	i	ł	1	ł	:	:	ł	:	ł	;
Сумма	99.77	99.18	99.11	99.43	97.66	99.78	99.29	100.62	98.60	98.90	99.51	98.31	98.91	98.12	###	###	99.13	99.38	98.45	97.61
Si	2.657	2.717	2.689	2.674	2.746	2.642	2.721	2.707	2.612	2.774	2.673	2.677	2.736	2.741	2.711	2.726	2.634	2.710	2.671	2.659
AI AI	1.344	1.286	1.318	1.324	1.232	1.341	1.291	1.294	1.397	1.213	1.355	1.326	1.275	1.283	1.290	1.268	1.363	1.306	1.337	1.338
Са	0.359	0.318	0.327	0.336	0.278	0.376	0.320	0.323	0.400	0.271	0.312	0.293	0.277	0.267	0.321	0.293	0.393	0.305	0.321	0.337
Na	0.599	0.629	0.622	0.629	0.747	0.628	0.578	0.626	0.546	0.703	0.592	0.705	0.659	0.632	0.621	0.683	0.563	0.608	0.632	0.649
К	0.015	0.007	0.013	0.022	0.016	0.017	0.027	0.010	0.016	0.021	0.026	0.012	0.018	0.020	0.021	0.024	0.024	0.026	0.013	0.013
Сумма, ф.е.	4.978	4.957	4.969	4.989	5.019	5.011	4.937	4.963	4.971	4.982	4.958	5.018	4.965	4.943	4.965	4.994	4.978	4.955	4.984	5.003
APV	1.343	1.283	1.311	1.326	1.254	1.358	1.279	1.293	1.388	1.226	1.327	1.323	1.264	1.259	1.289	1.274	1.366	1.290	1.329	1.341
AIVI	0.001	0.004	0.007	!	I	i	0.011	I	0.009	!	0.029	0.004	0.011	0.024	0.001	1	ł	0.015	0.008	;
An	36.9	33.3	34.0	34.0	26.7	36.8	34.6	33.7	41.6	27.2	33.5	29.0	29.0	29.1	33.3	29.3	40.1	32.5	33.2	33.7
Ab	61.6	65.9	64.7	63.7	71.8	61.5	62.5	65.3	56.8	70.7	63.7	69.8	69.1	68.8	64.5	68.3	57.4	64.7	65.4	65.0
0r	1.5	0.7	1.4	2.2	1.5	1.7	2.9	1.0	1.7	2.1	2.8	1.2	1.9	2.2	2.2	2.4	2.4	2.8	1.3	1.3

Б.З.	
аблицы	
жение т	
αιοдодП	

№ п.п.	61	62	63	5	65	99	67	89	69	20	1	72	5	14	35	76	77	82	62	80
Образец	15	15	15	12	15	15	4005	4005	4005	4005	4005	4005	4005	4005	4005	4005	4005	4005	4005	4005
Минерал	IUI cp.	KIIII	KIIII	KIIII	KIIII	ann cp	ГШ	Ξ	Ð	ГП	ГШ	ГШ	Ð	11	ГI	ГШ	ГШ	Ξ	ГШ	Ы
№ Площадки		-	2	7	2		-	-	-	-	-	7	2	2	2	2	2	3	3	3
№ Точки		8/1	7/5/1	715/2	7/5/3		4	*	9	25	24	*	٢	9	5	4	3	*	25	22
SiO ₂	56.90	55.69	56.13	56.96	56.56	56.34	59.01	58.06	57.71	57.37	57.9	59.64	59.5	\$ 96.85	8.31	58.45	61.33	58.56	50.22	57.38
AbO_3	26.64	22.37	23	23	23.2	22.89	26.45	26.06	25.62	27.35	26.09	25.34	24.76	24.42 2	5.61	25.07	25.39	26.75	25.1	22.6
CaO	7.62		0.28			0.28	7.47	7.92	7.54	7.64	7.58	7.17	7.54	7.61	7.74	7.47	7.16	7.63	4.53	3.09
Na2O	7.75	2.12	1.88	2.19	1.95	2.04	7.43	6.58	7.16	7.07	7.64	7.29	7.17	6.7	7.86	6.8	6.17	7.09	7.63	5.71
K20	0.38	16.99	16.92	16.29	15.97	16.54	0.39	0.2	0.18	0.4	0.29	0.32	0.27	0.37	0.31	0.4	0.22	0.44	1.12	2.18
BaO	:	1.19	1.79	1.56	1.87	1.60														
Сумма	99.29	98.36	100.00	100.00	99.55	69.69	100.75	98.82	98.21	99.83	99.50	99.76	99.24	98.06 5	9.83	98.19 1	00.27	00.47	98.60	0.96
si	2.572	2.719	2.708	2.727	2.722	2.719	2.619	2.620	2.622	2.573	2.603	2.663	2.673	2.680 2	.619	2.654	2.702	2.604	2.708	0.660
A1	1.422	1.288	1.308	1.298	1.316	1.303	1.384	1.386	1.372	1.446	1.383	1.334	1.311	1.309 1	356	1.342	1.319	1.402	1.331	.235
Са	0.370	I	0.014	I	!	0.014	0.355	0.383	0.367	0.367	0.365	0.343	0.363 (371 (372 (0.363	0.338	0.364	0.218 (0.153
Na	0.681	0.200	0.176	0.203	0.182	0.190	0.639	0.576	0.631	0.615	0.666	0.631	0.625 (0.591 (.684 (0.599	0.527	0.611	0.665 (.513
К	0.022	1.058	1.041	0.995	0.981	1.019	0.022	0.012	0.010	0.023	0.017	0.018	0.015 (0.021 (0.018 (0.023	0.012	0.025	0.064	.129
Сумма, ф.е.	5.068	5.266	5.247	5.223	5.201	5.234	5.020	4.981	5.011	5.023	5.044	4.995	4.991	4.972 5	5.055	4.986	4.908	5.013	4.992	5.040
APV	1.428	1.281	1.292	1.273	1.278	1.281	1.381	1.380	1.378	1.427	1.397	1.337	1.327	1.320	381	1.346	1.298	1.396	1.292	340
Al ^{VI}	0.011	0.007	0.015	0.025	0.038	0.021	0.003	0.006	1	0.019	1	ı	ı	ı	1	1	0.021	0.007	0.038	I
An	34.40	1	1.1	1	:	1.14	34.9	39.4	36.4	36.5	34.8	34.6	36.2	37.7	34.6	36.9	38.5	36.4	23.0	19.2
Ab	63.64	15.9	14.3	16.9	15.6	15.70	62.9	59.3	62.6	61.2	63.5	63.6	62.3	60.1	63.7	60.8	60.1	61.1	70.2	64.5
0r	2.02	84.1	84.6	83.1	84.4	84.02	2.2	1.2	1.0	2.3	1.6	1.8	1.5	2.1	1.7	2.3	1.4	2.5	6.8	16.2

№ п.п.	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	96	100
Образец	4005	4005	4005	4005	4005	4005	4005	4005	4005	4005	4400	4400	4400	4400	4400	4400	4400	4400	4400	4400
Минерал	5	ГП	ГП	Ξ	ILI cp.	KIIII	KIIII	KIIII	KIIII	CIIII cp	Ξ	ГП	ГШ	ГШ	Ξ	ГШ	ГП	5	ГI	П
№ Площадки	3	3	3	3		3	3	-	-		-	-	-	-	-	-	2	2	2	2
№ Точки	16	18	17	13		٢	6	10	10		5	9	10	17	16	6	22	21	20	٢
SiO ₂	57.84	58.76	58.54	61.03	58.81	64.19	63.91	62.11	63.23	63.36	59.98	57.86	59.04	59	60.07	60.23	61.66	56.28	57.67	60.2
ΛhO_3	26.41	27.17	26.24	24.26	25.59	19.87	20.11	18.87	18.38	19.31	25.64	25.98	26.13	26.22	26.03	26.38	25.53	25.37	26.51	25.44
CaO	7.14	7.85	7.51	4.33	6.94						6.81	7.8	6.46	7.57	6.72	6.93	6.53	6.06	6.94	6.35
Na2O	7.42	7.13	7.55	8.82	7.18		1.52	0.93	0.65	1.03	7.18	5.94	6.6	6.51	6.74	6.27	6.33	6.11	6.87	6.4
K20	0.18	0.27	0.29	0.39	0.46	15.38	15.62	15.42	15.66	15.52	0.29	0.36	0.21	0.31	0.26	0.36	0.44	0.4	0.25	0.37
BaO																				
Сумма	98.99	###	###	98.83	98.98	99.44	101.16	97.33	97.92	99.22	99.90	97.94	98.44	99.61	99.82	###	###	94.22	98.24	98.76
Si	2.607	2.594	2.612	2.735	2.642	2.960	2.925	2.948	2.979	2.953	2.666	2.630	2.655	2.637	2.666	2.662	2.708	2.579	2.611	2.686
VI	1.404	1.414	1.381	1.282	1.355	1.080	1.085	1.056	1.021	1.061	1.343	1.392	1.385	1.382	1.362	1.374	1.322	1.371	1.415	1.338
Ca	0.345	0.371	0.359	0.208	0.334	i	1	ł	ł	I	0.324	0.380	0.311	0.363	0.320	0.328	0.307	0.298	0.337	0.304
Na	0.649	0.610	0.653	0.767	0.625	;	0.135	0.086	0.059	0.093	0.619	0.524	0.576	0.564	0.580	0.537	0.539	0.543	0.603	0.554
К	0.010	0.015	0.017	0.022	0.026	0.905	0.912	0.934	0.941	0.923	0.016	0.021	0.012	0.018	0.015	0.020	0.025	0.023	0.014	0.021
Сумма, ф.е.	5.020	5.012	5.032	5.018	5.006	4.952	5.056	5.033	5.011	5.013	4.980	4.946	4.946	4.963	4.950	4.927	4.912	5.018	4.987	4.932
AIIV	1.393	1.406	1.388	1.265	1.358	1.040	1.075	1.052	1.021	1.047	1.334	1.370	1.345	1.363	1.334	1.338	1.292	1.421	1.389	1.314
AIVI	0.011	0.008	1	0.017	0.014	0.041	0.010	0.004	!	0.018	0.009	0.022	0.040	0.019	0.028	0.036	0.031	I	0.027	0.025
An	34.4	37.2	34.9	20.9	33.71	:	:	1	:	1	33.8	41.1	34.6	38.4	35.0	37.1	35.2	34.5	35.3	34.6
Ab	64.6	61.2	63.5	76.9	63.46	;	12.9	8.4	5.9	9.08	64.5	56.6	64.1	59.7	63.4	60.7	61.9	62.8	63.2	63.0
0r	1.0	1.5	1.7	2.2	2.83	100.0	87.1	91.6	94.1	93.19	1.7	2.3	1.3	1.9	1.6	2.3	2.9	2.7	1.5	2.4

№ п.п.	101	102	103	104	105	106	107	108	109	110	≣	112	113	114	115	116	117	118	611	120
Образец	4400	4400	4400	4400	4400	4400	4400	4400	4400	4400	4400	4400	4400	4400	33B	33B	33B	33B	33B	33B
Минерал	Ð	ГШ	11	ГШ	ГI	11	Ы	ГI	5	ГП	ГШ	Ξ	ГП	IUI cp.	Ξ	KIIII	KIIII	KIIII	KIIII	KIIII
№ Площадки	2	2	3	3	3	3	3	3	3	3	3	3	3		2	-	2	-	-	-
<u>Ме</u> Точки	15	*	3	26	\$	3	-	2	9	٢	=	=	10		6	15	=	18	14	17
SiO ₂	60.57	59.94	60.56	60.33	56.99	57.95	58.12	58.24	57.71	58.44	60.05	57.48	58.89	59.01	57.09	64.5	63.14	65.61	65.19	65.7
AbO_3	26.77	24.59	26.51	26.6	26.88	27.1	27.19	26.94	27.01	26.86	27.31	26.19	25.7	26.30	25.14	18.91	18.44	11.01	18.45	18.54
CaO	6.66	6.82	7.29	6.67	7.63	8.07	8.13	7.96	7.98	7.94	7.7	7.18	6.79	7.17	689					
Na2O	6.03	6.45	6.77	7.06	6.78	5.5	5.64	5.75	6.06	5.62	5.89	5.69	6.32	6.28	8.62	2.12	2.06	1.83	1.67	1.54
K20	0.29	0.54	0.17	0.45	0.2	0.16	0.34	0.27	0.19	0.16	0.28	0.37	0.36	0.31	0.43	15.06	15.69	14.46	15.29	14.49
BaO																				
Сумма	###	98.34	101.30	###	98.48	98.78	99.42	99.16	98.95	99.02	101.23	96.91	98.06	99.07	98.17	100.59	99.33	101.01	100.60	100.27
Si	2.668	2.703	2.653	2.648	2.585	2.603	2.602	2.610	2.598	2.618	2.631	2.594	2.659	2.638	2.615	2.960	2.954	2.982	2.991	3.005
A1	1.390	1.307	1.369	1.377	1.437	1.435	1.435	1.423	1.433	1.419	1.410	1.394	1.368	1.386	1.358	1.023	1.017	1.024	0.998	1.000
Са	0.314	0.330	0.342	0.314	0.371	0.388	0.390	0.382	0.385	0.381	0.361	0.347	0.328	0.344	0.338	ł	i	ł	I	ł
Na	0.515	0.564	0.575	0.601	0.596	0.479	0.490	0.500	0.529	0.488	0.500	0.498	0.553	0.545	0.766	0.189	0.187	0.161	0.149	0.137
K	0.016	0.031	0.010	0.025	0.012	0.009	0.019	0.015	0.011	0.009	0.016	0.021	0.021	0.017	0.025	0.882	0.936	0.838	0.895	0.845
Сумма, ф.е.	4.903	4.941	4.954	4.977	5.001	4.923	4.935	4.936	4.956	4.921	4.922	4.969	4.944	4.950	5.102	5.063	5.099	5.006	5.032	4.986
APV	1.332	1.297	1.347	1.352	1.415	1.397	1.398	1.390	1.402	1.382	1.369	1.406	1.341	1.362	2.642	2.977	2.983	2.976	3.002	3.000
AIVI	0.058	0.011	0.023	0.025	0.022	0.039	0.037	0.033	0.031	0.037	0.041	I	0.026	0.030	I	1	ł	:	I	1
An	37.2	35.7	36.9	33.4	37.9	44.3	43.4	42.6	41.6	43.4	41.2	40.1	36.4	37.98	29.9	:	:	:	1	:
ЧÞ	60.9	61.0	62.0	63.9	60.9	54.7	54.5	55.7	57.2	55.6	57.0	57.5	61.3	60.10	67.8	17.6	16.7	16.1	14.3	14.0
0r	1.9	3.4	1.1	2.7	1.2	1.0	2.1	1.7	1.2	1.0	1.8	2.4	2.3	1.93	2.2	82.4	83.3	83.9	85.7	86.0

№ п.п.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
Образец	33B	33B	33B	33B	7706	7706	7706	7706	7706	7706	7706	7706	7706	7706	7706	7706	7706	7706	7706	7706
Минерал	KIIII	KIIII	KIIII	KIIII cp.	ILI	ШЛ	ITI	Ы	ITI	IU	Ш	ГШ	ШJ	Ы	IU	E	ILI	ШI	EII	Ð
Ме Площадки	2	2	-		-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	2
Ме Точки	13	12	16		4/1	4/2	4/3	4/4	9	6/2	*	2	12/1	12/2	=	=	10	~	*	9
SiO ₂	64.53	63.88	65.16	64.71	58.93	59.04	58.46	59.55	59.2	58.08	58.99	59.18	58.79	56.95	59.57	58.9	59.12	61.19	60.05	59.77
ΛbO_3	18.61	17.81	18.73	18.58	25.12	24.78	27.1	26.51	25.31	25.95	25.81	26.63	25.75	26.1	26.26	25.51	26.19	26	25.55	25.87
CaO					6.58	6.1	7.59	6.94	7.38	7.05	7.31	7.39	6.38	7.63	7.3	7.03	7.11	6.2	6.26	7.12
Na2O	1.58	1.01	0.95	1.60	8.12	7.41	6.41	7.62	60.9	7.89	8.17	7.53	7.34	7.55	7.51	8.51	16.9	7.07	8.08	7.9
K20	14.96	15.36	15.12	15.05	0.44	0.47	0.34	0.31	0.38	0.2	0.27	0.27	0.33	0.31	0.23	0.25	0.37	0.33	0.29	0.38
BaO																				
Сумма	99.68	98.06	96.66	99.94	99.19	97.80	99.90	####	98.36	99.17	100.55	101.00	98.59	98.54	100.87	100.20	99.70	100.79	100.23	101.04
si	2.983	3.002	2.996	2.984	2.655	2.685	2.607	2.628	2.671	2.619	2.628	2.618	2.653	2.592	2.635	2.631	2.641	2.687	2.669	2.643
IV	1.014	0.987	1.015	1.010	1.334	1.329	1.425	1.379	1.346	1.380	1.356	1.389	1.370	1.401	1.370	1.344	1.379	1.346	1.339	1.349
Са	I	ł	I	I	0.318	0.297	0.363	0.328	0.357	0.341	0.349	0.350	0.308	0.372	0.346	0.337	0.340	0.292	0.298	0.337
Na	0.142	0.092	0.085	0.143	0.709	0.653	0.554	0.652	0.533	0.690	0.706	0.646	0.642	0.666	0.644	0.737	0.598	0.602	0.696	0.677
К	0.882	0.921	0.887	0.886	0.025	0.027	0.019	0.017	0.022	0.012	0.015	0.015	0.019	0.018	0.013	0.014	0.021	0.018	0.016	0.021
Сумма, ф.е.	5.022	5.008	4.982	5.025	5.045	4.991	4.968	5.017	4.932	5.041	5.054	5.018	4.993	5.050	5.008	5.071	4.980	4.950	5.018	5.032
APV	2.986	3.013	2.985	2.990	2.666	2.671	2.575	2.621	2.654	2.620	2.644	2.611	2.630	2.599	2.630	2.656	2.621	2.654	2.661	2.651
AI ^{VI}	ł	!	I	I	I	1	I	I	ł	I	I	!	1	I	!	ł	!	I	I	I
An	9	3	1	1	30.2	30.4	38.8	32.9	39.1	32.7	32.6	34.6	31.8	35.2	34.5	31.0	35.5	32.0	29.5	32.6
4b	13.9	9.1	8.7	13.79	67.4	66.8	59.2	65.4	58.4	66.2	66.0	63.9	66.3	63.1	64.2	67.7	62.4	66.0	68.9	65.4
Or	86.1	6'06	91.3	86.21	2.4	2.8	2.0	1.7	2.4	1.2	1.4	1.5	2.0	1.7	1.3	1.3	2.2	2.0	1.6	2.0

№ п.п.	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161
Образец	7706	7706	7706	7706	7706	7706	7706	7706	7706	7706	7706	7706	7706	7706	7706	7706	7706	7706	7706	7706	7706
Минерал	Ξ	Э	Ξ	Ы	E	Ы	ГШ	ГШ	Ы	E	EII	Ы	Ξ	1	IUI cp.	KIIII	KIIII	KIIII	KIIII	KIIII X	IIII cp
<u>Ме</u> Площадки	2	2	2	3	3	3	3	3	3	3	3	3	3	3		7	7	7	5	3	
№ Точки	=	≓	=	16	18	17	=	13	13	13	4	4	15	15		٩	٩	٩	4	2	
SiO ₂	58.39	58.12	58.08	59.6	58.25	57.29	57.76	60.23	58.46	58.86	58.66	57.76	59.21	59.56	58.87	64.99	64.07	63.26	63.48	63.23	63.81
Al2O3	26.63	25.2	25.35	24.69	24.06	25.82	25.48	25.8	25.74	26.15	25.52	25.01	25.22	24.74	25.66	19.34	18.86	17.93	18.56	18.47	18.63
CaO	7.1	6.83	7.1	6.39	6.74	7.86	6.83	7.07	7.66	7.29	7.41	7.13	6.45	6.52	6.99						
Na ₂ O	7.75	7.48	6.99	6.74	8.34	7.7	8.48	7.66	6.96	7.44	6.96	7.36	8.81	8.34	7.57	0.7	1.47	1.01	1.27	1.1	1.11
K20	0.43	0.39	0.48	0.42	0.33	0.16	0.29	0.32	0.32	0.36	0.21	0.29	0.35	0.43	0.33	15.52	15.3	15.55	16.33	14.75	15.49
BaO																					
Сумма	100.30	98.02	98.00	97.84	97.72	98.83	98.84	###	99.14	###	98.76	97.55	100.04	99.59	99.42	100.55	99.70	97.75	99.64	97.56	99.04
Si	2.603	2.647	2.645	2.701	2.669	2.601	2.620	2.656	2.633	2.627	2.647	2.645	2.651	2.674	2.643	2.975	2.968	2.992	2.962	2.982	2.976
IN	1.400	1.353	1.361	1.319	1.300	1.382	1.362	1.341	1.367	1.376	1.358	1.350	1.331	1.309	1.358	1.044	1.030	1.000	1.021	1.027	1.024
Ca	0.339	0.333	0.346	0.310	0.331	0.382	0.332	0.334	0.370	0.349	0.358	0.350	0.309	0.314	0.336	!	I	I	!	I	i
Na	0.670	0.661	0.617	0.592	0.741	0.678	0.746	0.655	0.608	0.644	0.609	0.653	0.765	0.726	0.659	0.062	0.132	0.093	0.115	0.102	0.101
К	0.024	0.023	0.028	0.024	0.019	0.009	0.017	0.018	0.018	0.021	0.012	0.017	0.020	0.025	0.019	0.906	0.904	0.938	0.972	0.888	0.922
Сумма, ф.е.	5.044	5.018	4.997	4.947	5.061	5.052	5.081	5.010	4.996	5.017	4.984	5.015	5.076	5.047	5.017	4.987	5.035	5.023	5.071	4.999	5.023
AIIV	2.600	2.647	2.639	2.681	2.700	2.618	2.638	2.659	2.633	2.624	2.642	2.650	2.669	2.691	2.642	2.956	2.970	3.000	2.979	2.973	2.976
۸IV	1	1	1	1	1	1	1	1	1	1	1	1	1	:	:	:	1	:	:	1	:
An	32.8	32.7	34.9	33.5	30.3	35.7	30.3	33.2	37.1	34.4	36.6	34.3	28.2	29.5	33.24	:	1	1	:	1	:
٩Þ	64.9	65.0	62.3	63.9	67.9	63.4	68.1	65.0	61.0	63.5	62.2	64.0	6.93	68.2	64.89	6.4	12.7	9.0	10.6	10.3	9.81
0r	2.3	2.3	2.8	2.6	1.7	0.8	1.6	1.8	1.8	2.1	1.2	1.7	1.8	2.3	1.87	93.6	87.3	91.0	89.4	89.7	90.19

Окончание таблицы Б.3.

237 Приложение В

N⁰	²⁰⁶ Pbc,	²⁰⁶ Pb*	U	Th	²³² Th/	Возраст,	млн. лет	²³⁸ U/	±1σ,	²⁰⁷ Pb*/	±1σ,	²⁰⁷ Pb*/	±1σ,	²⁰⁶ Pb*/	±1σ,	К
точки	%		г/т		²³⁸ U	²⁰⁶ Pb/ ²³⁸ U	±lσ	²⁰⁶ Pb*	%	²⁰⁶ Pb*	%	²³⁵ U	%	²³⁸ U	%	кор.
	3500	, гранод	иорит, р	анняя ф	раза. Сро	едневзвешен	ный конк. во	зраст =	106±0.	5 млн ле	т, СКІ	BO=0.21 ,	p= 0.6	5, N=12/	12.	
2.1	0.08	20.20	1431	624	0.45	104.7	0.5	60.98	0.44	0.048	1.60	0.107	2.4	0.016	0.5	0.19
3.1	0.15	20.90	1479	418	0.29	105.2	0.5	60.84	0.45	0.049	1.70	0.113	2.0	0.016	0.5	0.23
1.1	0.20	9.50	668	314	0.49	105.6	0.7	60.53	0.65	0.049	2.40	0.113	2.5	0.016	0.7	0.26
4.1	-0.30	4.20	299	164	0.57	103.8	1.0	61.79	10.0	0.045	3.90	0.107	4.5	0.016	1.0	0.22
6.1	-0.01	19.90	1415	468	0.34	104.8	0.5	60.99	0.45	0.048	1.70	0.107	2.0	0.016	0.5	0.23
5.1	-0.01	11.50	808	163	0.21	105.4	0.6	60.44	0.59	0.048	2.20	0.103	3.6	0.016	0.6	0.17
8.1	0.11	21.20	1488	554	0.38	105.9	0.5	60.31	0.44	0.049	1.60	0.110	1.9	0.016	0.4	0.23
1.1	0.04	22.80	1593	606	0.39	106.3	0.5	60.13	0.42	0.048	1.60	0.110	1.7	0.016	0.4	0.25
2.2	0.29	7.40	513	286	0.58	107.0	0.8	59.88	0.76	0.050	2.80	0.120	3.3	0.016	0.8	0.23
g2.1	-0.08	16.50	1157	430	0.38	106.5	0.5	60.09	0.50	0.047	1.90	0.111	2.2	0.016	0.5	0.22
g7.1	0.04	9.90	686	666	1.00	107.0	0.7	59.56	0.64	0.048	2.60	0.105	4.6	0.016	0.7	0.15
g4.1	0.02	9.90	682	301	0.46	107.3	1.8	59.46	1.60	0.048	2.50	0.108	3.4	0.016	1.6	0.48
	4	005, мон	цонит, р	анняя ф	раза. Сре	едневзвешен	ный конк. во	зраст =	105±1 1	млн лет,	СКВС) =1.1, p=	= 0.29, I	N=15/15.		
8.1	0.00	6.60	489	17	0.04	100.1	1.9	63.90	1.90	0.049	4.20	0.107	4.6	0.015	1.9	0.41
9.2	0.48	6.30	460	80	0.18	100.9	1.9	63.10	1.90	0.052	4.10	0.106	6.6	0.015	1.9	0.28
2.1	0.00	4.70	344	14	0.04	101.6	2.0	63.00	2.00	0.049	6.70	0.107	7.0	0.015	2.0	0.28
11.2	1.54	6.10	428	98	0.24	103.7	2.1	60.70	1.90	0.064	3.80	0.117	13.0	0.016	2.0	0.16
1.2	1.22	7.50	527	96	0.19	104.1	2.3	60.70	1.80	0.057	3.60	0.107	21.0	0.016	2.2	0.11
5.1	3.60	11.00	761	340	0.46	104.2	2.1	59.20	1.70	0.075	2.60	0.105	18.0	0.016	2.0	0.11
3.1	17.60	8.00	469	96	0.21	105.0	4.0	50.09	1.80	0.188	5.00	0.111	59.0	0.016	3.8	0.06
1.1	1.64	20.10	1395	405	0.30	105.3	1.8	59.73	1.70	0.061	3.00	0.110	10.0	0.016	1.7	0.17
9.1	0.10	15.60	1101	412	0.39	105.6	1.8	60.50	1.70	0.048	2.70	0.109	3.6	0.016	1.7	0.47
4.1	0.00	14.20	996	841	0.87	105.9	1.8	60.40	1.70	0.050	2.80	0.114	3.3	0.016	1.7	0.52
12.1	0.44	30.50	2116	668	0.33	106.6	1.7	59.69	1.60	0.052	1.80	0.111	4.4	0.016	1.6	0.37
10.1	12.81	11.60	698	124	0.18	107.6	2.9	51.72	1.70	0.145	10.0	0.098	56.0	0.016	2.7	0.05
7.1	0.14	26.00	1788	798	0.46	108.2	1.8	59.00	1.70	0.049	2.10	0.112	3.3	0.016	1.7	0.53

Таблица В.1. Результаты U-Pb SHRIMP-RG датирования циркона из гранитоидных интрузий Чукотки (Чаунская субпровинция)

N₂	²⁰⁶ Pbc,	²⁰⁶ Pb*	U	Th	²³² Th/	Возраст,	млн. лет	²³⁸ U/	±1σ,	²⁰⁷ Pb*/	±1σ,	²⁰⁷ Pb*/	±1σ,	²⁰⁶ Pb*/	±1σ,	ĸ
точки	%		г/т		²³⁸ U	²⁰⁶ Pb/ ²³⁸ U	±1σ	²⁰⁶ Pb*	%	²⁰⁶ Pb*	%	²³⁵ U	%	²³⁸ U	%	ахор.
6.1	0.00	38.10	2606	672	0.27	108.7	1.7	58.81	1.60	0.048	1.70	0.113	2.4	0.017	1.6	0.68
11.1	0.00	35.40	2411	947	0.41	109.3	1.8	58.47	1.60	0.048	1.80	0.114	2.4	0.017	1.6	0.67
	4600	b, монцо	онит, ра	нняя фа	за. Сред	невзвешеннь	ый 206Pb*/23	8U возра	аст = 1	05±1 мл	н лет, (СКВО=0).2, p=	0.82, N=	3/5.	
2.1	0.12	22.10	1617	144	0.09	101.6	0.7	62.82	0.65	0.049	1.50	0.103	2.2	0.015	0.7	0.30
1.2	8.08	30.50	2030	1426	0.73	103.8	4.9	57.16	0.66	0.112	24.0	0.120	91.0	0.016	4.8	0.05
5.1	0.22	75.30	5337	3149	0.61	104.9	0.6	60.86	0.60	0.049	0.80	0.109	1.3	0.016	0.6	0.47
4.1	0.49	45.00	3171	2382	0.78	105.2	0.7	60.52	0.62	0.052	1.50	0.110	2.1	0.016	0.6	0.29
3.1	0.02	170.0	9024	8622	0.99	139.4	2.8	45.67	2.10	0.049	1.00	0.144	2.3	0.021	2.1	0.88
	4600	дт, моні	цонит, р	анняя ф	оаза. Сре	дневзвешени	ный конк. воз	зраст = 1	103±1 M	илн лет,	СКВО	=0.13, p	= 0.72,	N=11 из	11.	
5.1	0.14	7.00	518	61	0.12	101.4	0.8	63.28	0.76	0.049	2.90	0.112	3.7	0.015	0.8	0.21
2.2	-0.12	6.10	447	658	1.52	100.6	0.8	63.33	0.82	0.047	3.10	0.095	4.7	0.015	0.8	0.18
1.1	-0.08	9.80	724	1683	2.40	101.3	0.8	63.27	0.75	0.047	2.40	0.106	3.0	0.015	0.8	0.25
8.1	-0.13	2.80	205	303	1.53	103.0	1.3	62.57	1.20	0.047	4.80	0.117	7.8	0.016	1.3	0.16
2.1	0.06	4.40	322	778	2.49	102.7	1.0	62.35	0.97	0.048	3.70	0.109	3.9	0.016	1.0	0.25
7.1	0.06	9.60	693	152	0.23	102.9	0.7	62.34	0.65	0.048	2.40	0.113	3.5	0.016	0.7	0.19
10.1	0.00	24.20	1753	1417	0.84	102.8	0.4	62.14	0.41	0.048	1.60	0.104	1.9	0.016	0.4	0.22
6.1	0.14	19.50	1406	579	0.43	103.3	0.5	61.87	0.45	0.049	1.70	0.108	1.9	0.016	0.5	0.24
3.1	0.09	7.60	547	1353	2.56	103.1	0.8	61.88	0.73	0.048	2.70	0.104	3.6	0.016	0.7	0.21
4.1	-0.17	4.20	302	448	1.53	103.2	1.0	61.64	0.97	0.046	5.80	0.094	8.4	0.016	1.0	0.12
9.1	0.21	27.30	1943	919	0.49	104.4	0.4	61.16	0.80	0.049	2.80	0.110	3.6	0.016	0.8	0.22
	4600	Ksp, мон	цонит,	ранняя	фаза. Ср	едневзвешен	ный конк. во	озраст =	104±1	млн лет	, СКВ	D=0.04 , j	p= 0.85	5, N=8 из	10.	
7.1	0.53	2.80	209	439	2.17	100.9	1.2	63.17	1.20	0.052	4.50	0.106	5.9	0.015	1.2	0.20
1.1	0.12	8.40	606	346	0.59	103.0	0.8	62.27	0.72	0.049	2.70	0.114	3.6	0.016	0.7	0.21
4.2	0.00	13.80	997	1166	1.21	102.7	0.6	62.20	0.53	0.048	2.00	0.103	2.5	0.016	0.5	0.22
8.1	0.06	40.30	2879	270	0.10	104.0	0.3	61.41	0.32	0.048	1.50	0.107	1.7	0.016	0.3	0.19
6.1	-0.19	19.30	1384	22	0.02	103.9	0.5	61.50	0.46	0.046	2.20	0.102	2.4	0.016	0.5	0.19
3.1	-0.05	3.80	268	559	2.15	103.9	1.1	61.42	1.00	0.047	4.90	0.103	5.7	0.016	1.1	0.18
2.1	0.22	13.10	930	209	0.23	104.7	0.6	61.15	0.57	0.049	2.50	0.114	2.6	0.016	0.6	0.22
5.1	-0.06	8.40	596	163	0.28	105.3	0.7	60.79	0.69	0.047	2.60	0.109	2.8	0.016	0.7	0.25
9.1	-0.07	26.80	1894	685	0.37	105.2	0.4	60.68	0.37	0.047	1.40	0.105	2.1	0.016	0.4	0.18

No	²⁰⁶ Phc.	²⁰⁶ Ph*	I	Тһ	²³² Th/	Boonact	мли пот	²³⁸ []/	±1σ.	²⁰⁷ Ph*/	±1σ.	²⁰⁷ Pb*/	±1σ.	²⁰⁶ Ph*/	±1σ.	
	0/	10	U	111	238TT	Dospaci,	млн. лет	206DL*	, 	206 DL *	, 	235TT	, 	2381	-10, 0/	K _{кор.}
точки	70		г/т			²⁰⁶ Pb/ ²³⁸ U	±1σ	PD*	70	PD*	70		70		70	
4.1	0.03	29.00	1997	561	0.29	108.0	0.4	59.20	0.38	0.048	1.40	0.113	1.6	0.016	0.4	0.25
	77	06, монц	онит, ра	нняя ф	аза. Сред	невзвешенн	ый конк. воз	раст = 1	05±1.5	млн лет	, СКВ	O=1.1, p=	= 0.3, N	N=8 из 10).	
1.2	0.98	9.00	654	270	0.43	101.0	1.9	62.70	1.90	0.055	2.30	0.103	6.1	0.015	1.9	0.31
6.1	0.77	10.60	765	406	0.55	102.7	1.9	61.90	1.90	0.054	2.00	0.108	4.4	0.016	1.9	0.43
9.1	0.51	9.30	671	503	0.77	102.4	1.9	62.00	1.90	0.052	2.30	0.101	5.5	0.016	1.9	0.34
5.1	0.34	13.40	947	1164	1.27	104.6	1.9	60.90	1.80	0.050	2.00	0.107	4.0	0.016	1.8	0.46
1.1	0.68	7.90	556	304	0.57	104.8	2.0	60.47	1.90	0.053	2.50	0.100	6.2	0.016	1.9	0.31
4.1	0.37	9.30	644	453	0.73	106.1	2.0	59.80	1.90	0.051	2.30	0.103	6.4	0.016	1.9	0.30
7.1	0.58	9.80	675	371	0.57	106.6	2.0	59.20	1.90	0.052	2.30	0.096	7.5	0.016	1.9	0.26
3.1	0.17	24.20	1672	805	0.50	107.5	1.9	59.40	1.80	0.049	1.50	0.113	2.8	0.016	1.8	0.64
8.1	1.73	5.90	397	191	0.50	108.7	2.3	57.40	2.00	0.061	3.00	0.101	15.0	0.017	2.1	0.15
2.2r	1.01	14.70	709	259	0.38	153.2	7.0	41.30	4.60	0.057	5.30	0.172	8.6	0.024	4.6	0.54
2.1	0.24	125.0	518	71	0.14	1592.0	25.0	3.570	1.80	0.100	0.50	3.863	1.9	0.280	1.8	0.95
EC	GC40A, f	кварцев	ый моні	цонит, р	анняя фа	аза. Среднев	звешенный к	онк. воз	враст =	104±1 м	ілн лет	, СКВО	=2.2, p	= 0.13, N	=7 из 1	0.
2.1	1.42	10.20	742	325	0.45	102.0	0.8	61.80	0.66	0.059	1.80	0.104	6.5	0.015	0.8	0.10
5.1	0.21	4.70	339	264	0.81	102.0	0.9	62.50	0.89	0.049	5.30	0.102	7.6	0.016	0.9	0.10
9.1	-0.09	8.70	629	300	0.49	103.0	0.6	62.20	0.56	0.047	2.30	0.101	3.6	0.016	0.6	0.20
10.1	-0.17	7.70	555	248	0.46	104.0	0.6	61.80	0.57	0.046	2.50	0.106	3.2	0.016	0.6	0.20
1.1.	-0.10	11.70	840	274	0.34	104.0	0.7	61.60	0.69	0.047	3.90	0.106	4.0	0.016	0.7	0.20
6.1	-0.08	8.00	569	259	0.47	104.0	0.9	61.40	0.87	0.047	2.40	0.104	3.3	0.016	0.9	0.30
4.1	-0.12	11.60	828	268	0.33	104.0	1.0	61.40	0.92	0.047	2.00	0.107	2.5	0.016	0.9	0.40
3.1	-0.06	12.90	919	332	0.37	104.0	1.0	61.30	0.96	0.047	1.90	0.107	2.1	0.016	1.0	0.50
8.1	-0.08	15.70	1095	406	0.38	106.0	0.8	60.10	0.74	0.047	1.70	0.105	2.6	0.016	0.8	0.30
7.1	-0.01	63.90	4290	856	0.21	111.0	0.6	57.70	0.51	0.048	0.90	0.114	1.1	0.017	0.5	0.50
4504, г	ранит, п	юздняя	фаза. Ни	ижнее по	ересечен	ие дискорди	и,U-Pb возрас	ст = 100±	⊧8.5 мл	н лет, ве	ерхнее	пересеч	ение Т	C=608±45	, СКВО)= 1.9,
4.1	1.70	4.30	326	426	1.35	97.5	1.2	65.34	1.10	0.061	3.30	0.122	6.8	0.015	1.2	0.18
7.1	0.46	17.20	1282	276	0.22	99.7	0.5	63.95	0.46	0.051	1.70	0.104	3.3	0.015	0.5	0.15
2.1	0.37	17.20	1268	80	0.06	100.3	0.5	63.38	0.47	0.050	1.70	0.098	4.3	0.015	0.5	0.12
1.2	0.11	36.70	2683	197	0.08	101.7	0.4	62.86	0.35	0.048	1.30	0.105	1.6	0.015	0.4	0.22
1.1	0.22	27.20	1964	665	0.35	102.8	0.4	62.07	0.38	0.049	1.40	0.106	2.2	0.016	0.4	0.18

№	²⁰⁶ Pbc,	²⁰⁶ Pb*	U	Th	²³² Th/	Возраст,	млн. лет	²³⁸ U/	±1σ,	²⁰⁷ Pb*/	±1σ,	²⁰⁷ Pb*/	±1σ,	²⁰⁶ Pb*/	±1σ,	V
точки	%		г/т		²³⁸ U	²⁰⁶ Pb/ ²³⁸ U	±1σ	²⁰⁶ Pb*	%	²⁰⁶ Pb*	%	²³⁵ U	%	²³⁸ U	%	Ккор.
7.2	0.84	17.40	1226	297	0.25	104.8	0.5	60.60	0.47	0.054	2.30	0.111	4.4	0.016	0.5	0.12
4.2	4.87	82.40	5148	1286	0.26	113.8	2.7	53.69	1.00	0.087	17.0	0.127	45.0	0.017	2.4	0.05
6.1	0.18	156.0	9614	1478	0.16	120.8	0.2	52.80	0.15	0.049	0.60	0.126	0.7	0.018	0.2	0.21
5.1	1.66	6.00	105	53	0.53	413.0	4.3	14.97	1.00	0.068	2.40	0.555	5.3	0.066	1.1	0.20
3.1	0.05	74.70	854	473	0.57	625.0	1.8	9.810	0.30	0.061	0.80	0.845	1.0	0.101	0.3	0.32
			6000, гр	ранит, п	оздняя ф	оаза. Возраст	по хорде к о	быкн. св	винцу	103±1 мл	н лет,	СКВО=	0.81			
1.1	1.17	22.30	1712	264	0.16	95.5	0.5	65.98	0.42	0.057	1.50	0.092	6.4	0.014	0.5	0.08
7.1	0.18	62.50	4761	900	0.20	97.6	0.3	65.47	0.30	0.049	0.90	0.102	1.1	0.015	0.3	0.27
7.2	0.82	31.60	2388	185	0.08	97.8	0.4	65.00	0.35	0.054	1.20	0.102	2.5	0.015	0.4	0.15
3.1	0.37	30.80	2266	168	0.08	101.0	0.4	63.22	0.36	0.051	1.30	0.108	1.8	0.015	0.4	0.21
6.2	0.20	62.80	4586	754	0.17	101.9	0.3	62.69	0.26	0.049	1.00	0.106	1.6	0.015	0.3	0.16
1.2	0.21	81.70	5916	1448	0.25	102.6	0.2	62.23	0.22	0.049	0.80	0.106	1.2	0.016	0.2	0.19
4.1	0.16	69.80	5054	753	0.15	102.7	0.3	62.19	0.29	0.049	0.90	0.106	1.2	0.016	0.3	0.23
5.1	0.12	75.80	5424	879	0.17	103.9	0.3	61.45	0.27	0.049	0.90	0.106	1.2	0.016	0.3	0.24
2.1	0.28	17.50	1239	497	0.41	104.6	0.5	60.84	0.49	0.050	1.80	0.104	3.3	0.016	0.5	0.16
6.1	0.16	130.0	9054	1892	0.22	106.2	0.2	60.05	0.19	0.049	1.00	0.109	1.2	0.016	0.2	0.15
5.2	0.04	241.0	14952	2290	0.16	119.6	0.2	53.40	0.16	0.048	0.50	0.125	0.6	0.018	0.2	0.28
EGC33	В, грані	ит, поздн	няя фаза	. Нижне	е пересе	чение диској	рдии,U-Pb во	зраст =	101±4 1	млн лет,	верхн	ее перес	ечение	e =591±32	2, СКВ	O= 1.4
11	0.85	8.50	651	654	1.04	96.3	1.3	65.76	1.32	0.054	2.80	0.094	5.9	0.015	1.3	0.23
1	0.55	6.40	487	557	1.18	96.8	1.6	65.85	1.63	0.052	2.40	0.103	4.9	0.015	1.6	0.34
2	0.03	8.60	661	649	1.01	97.1	1.5	66.02	1.60	0.048	2.30	0.103	3.1	0.015	1.6	0.52
13	50.70	11.80	440	569	1.34	108.2	3.4	32.07	1.61	0.450	2.50	0.136	52.7	0.016	3.1	0.06
8	1.30	22.20	1657	606	0.38	98.3	1.2	64.10	1.22	0.058	1.60	0.095	4.7	0.015	1.2	0.27
6	0.14	10.40	786	123	0.16	98.8	1.3	64.74	1.30	0.049	2.00	0.103	2.7	0.015	1.3	0.49
3	0.07	18.70	1396	314	0.23	99.8	1.5	64.15	1.54	0.048	1.50	0.106	2.2	0.015	1.5	0.69
7	-0.09	15.50	1160	201	0.18	99.5	1.2	64.23	1.23	0.047	1.80	0.100	2.4	0.015	1.2	0.52
17	0.02	11.40	849	385	0.47	99.8	1.2	64.00	1.25	0.048	2.00	0.100	2.7	0.015	1.3	0.46
4	-0.31	5.90	435	295	0.70	100.1	1.7	63.96	1.69	0.045	3.20	0.100	3.6	0.015	1.7	0.46
1	0.25	13.60	1000	159	0.16	101.2	1.2	63.07	1.23	0.050	1.80	0.104	2.8	0.015	1.2	0.44
14	0.02	17.00	1246	206	0.17	101.4	1.2	62.99	1.22	0.048	1.90	0.102	2.6	0.015	1.2	0.47

N⁰	²⁰⁶ Pbc,	²⁰⁶ Pb*	U	Th	²³² Th/	Возраст,	млн. лет	²³⁸ U/	±1σ,	²⁰⁷ Pb*/	±lσ,	²⁰⁷ Pb*/	±1σ,	²⁰⁶ Pb*/	±lσ,	ĸ
точки	%		г/т		²³⁸ U	²⁰⁶ Pb/ ²³⁸ U	±1σ	²⁰⁶ Pb*	%	²⁰⁶ Pb*	%	²³⁵ U	%	²³⁸ U	%	Кор.
9	0.00	21.00	1536	287	0.19	101.9	1.2	62.72	1.22	0.048	1.50	0.104	2.2	0.015	1.2	0.56
4	0.07	29.00	2102	882	0.43	102.7	1.2	62.24	1.20	0.048	1.30	0.107	1.8	0.016	1.2	0.67
10	0.03	39.40	2848	925	0.34	102.9	1.2	62.04	1.19	0.048	1.10	0.104	2.0	0.016	1.2	0.59
2	0.21	26.40	1896	496	0.27	103.5	1.3	61.82	1.22	0.049	1.40	0.112	1.9	0.016	1.2	0.65
12	0.18	42.60	3032	734	0.25	104.4	1.2	61.11	1.18	0.049	1.00	0.107	1.9	0.016	1.2	0.63
3	0.31	1.00	39	8	0.20	183.3	6.0	32.73	2.31	0.052	7.00	NA	NA	0.028	3.3	NA
16	0.52	37.50	635	319	0.52	428.8	5.1	14.53	1.22	0.059	0.90	0.556	1.6	0.068	1.2	0.76
16	0.34	23.80	307	216	0.73	555.7	6.7	11.09	1.26	0.061	1.20	0.743	2.0	0.090	1.3	0.62
5	-0.05	46.70	551	195	0.36	606.1	7.1	10.14	1.23	0.059	0.90	0.810	1.5	0.098	1.2	0.81
5100,	гранит,	поздняя	фаза. У	наследо	ванные	ядра. Верхн	ее пересечен	ие диско	рдии :	587±15 м	лн лет	с (СКВС)=1.2 N	N=14/14) ,	с зада	нным
1.1	0.33	38.50	709	264	0.39	394.0	8.3	15.81	2.20	0.058	1.70	0.486	3.7	0.063	2.2	0.59
1.2	0.12	111.0	1220	733	0.62	649.0	13.0	9.430	2.10	0.060	1.00	0.872	2.5	0.105	2.1	0.86
1.3	0.06	136.0	1536	953	0.64	633.0	13.0	9.690	2.10	0.059	0.90	0.838	2.4	0.103	2.1	0.90
2.1	0.30	79.70	1517	510	0.35	381.2	8.0	16.36	2.10	0.059	1.40	0.477	3.2	0.060	2.1	0.67
2.2	0.00	201.0	2308	1709	0.77	622.0	13.0	9.880	2.10	0.060	0.80	0.841	2.3	0.101	2.1	0.94
3.1	0.08	118.0	1386	1083	0.81	609.0	12.0	10.08	2.10	0.060	1.00	0.814	2.5	0.099	2.1	0.87
4.1	0.06	84.30	984	676	0.71	612.0	13.0	10.03	2.10	0.060	1.20	0.827	2.5	0.099	2.1	0.85
5.1	0.05	204.0	2274	1666	0.76	639.0	13.0	9.580	2.10	0.060	0.80	0.865	2.3	0.104	2.1	0.93
6.1	0.04	129.0	1654	945	0.59	561.0	12.0	10.99	2.10	0.059	1.00	0.740	2.4	0.091	2.1	0.88
7.1	0.09	131.0	1529	1060	0.72	612.0	12.0	10.02	2.10	0.061	0.90	0.828	2.4	0.099	2.1	0.90
8.1	0.06	177.0	2603	1756	0.70	492.0	10.0	12.61	2.10	0.058	0.80	0.634	2.3	0.079	2.1	0.91
9.1	-0.05	153.0	1688	1248	0.76	646.0	13.0	9.490	2.10	0.060	0.90	0.881	2.4	0.105	2.1	0.90
9.2	0.02	199.0	2874	2122	0.76	500.0	10.0	12.40	2.10	0.058	0.80	0.653	2.3	0.080	2.1	0.94
10.1	0.10	55.10	640	404	0.65	614.0	13.0	9.990	2.20	0.061	1.40	0.833	2.7	0.100	2.2	0.78
3300, г	ранат-м	усковит	овый гр	анит, по	оздняя ф	аза. Среднев	звешенный 2	206Pb*/2	38 U во	эзраст =	102±0.	5 млн ло	ет, СК	BO=0.83	, p= 0.4	4, N=3
1.1	-0.08	34.80	2549	666	0.27	101.5	0.4	62.98	0.35	0.047	1.30	0.102	1.5	0.015	0.4	0.23
3.1	0.12	46.30	3370	467	0.14	102.1	0.3	62.50	0.31	0.049	1.20	0.103	1.7	0.016	0.3	0.19
5.1	0.13	7.00	507	61	0.12	102.0	0.8	62.42	0.76	0.049	2.80	0.100	5.3	0.016	0.8	0.15
2.1	0.85	13.00	227	151	0.69	416.8	2.8	14.98	0.68	0.061	3.50	0.574	3.6	0.066	0.7	0.19
4.1	0.37	14.40	175	99	0.59	588.9	4.0	10.46	0.70	0.062	1.80	0.825	2.0	0.095	0.7	0.36

N≌	²⁰⁶ Pbc,	²⁰⁶ Pb*	U	Th	²³² Th/	Возраст, 1	млн. лет	²³⁸ U/	±1σ,	²⁰⁷ Pb*/	±1σ,	²⁰⁷ Pb*/	±1σ,	²⁰⁶ Pb*/	±1σ,	Kron
точки	%		г/т		²³⁸ U	²⁰⁶ Pb/ ²³⁸ U	±1σ	²⁰⁶ Pb*	%	²⁰⁶ Pb*	%	²³⁵ U	%	²³⁸ U	%	Kop.
7701,	гранат-м	усковит	говый гр	анит, п	оздняя ф	аза. Среднева	звешенный 2	206Pb*/2	238U в	озраст =	101±1	млн лет	, СКВ	O=0.15 , j	p= 0.7,	N=3/6
1.1	0.04	91.70	6849	1214	0.18	99.7	0.6	64.17	0.60	0.048	0.70	0.103	0.9	0.015	0.6	0.63
2.1	0.50	100.0	7274	60	0.01	101.8	0.6	62.51	0.60	0.052	1.20	0.105	2.3	0.015	0.6	0.27
5.1	27.78	75.30	3910	342	0.09	103.5	1.6	44.60	0.62	0.269	4.40	0.088	51.0	0.016	1.5	0.03
4.1	14.24	92.80	5469	600	0.11	108.4	1.5	50.61	0.68	0.161	0.50	0.106	22.0	0.017	1.4	0.06
6.1	0.95	116.0	7537	253	0.03	113.3	0.7	55.97	0.60	0.055	2.10	0.121	3.1	0.017	0.6	0.20
3.1	0.03	202.0	12744	117	0.01	117.5	0.7	54.32	0.59	0.048	0.50	0.120	0.9	0.018	0.6	0.67
	4719, ми	гматит.	Средне	взвешен	ный 206	Рb*/238U воз	раст = 108±2	млн ле	т, N=1/	19. Унас	следов	анные я,	дра = 6	500±13 м	лн лет	,
1.1	0.07	103.0	1148	95	0.09	642.0	13.0	9.540	2.10	0.060	1.00	0.868	2.4	0.104	2.1	0.88
2.1	0.53	24.80	910	27	0.03	200.4	4.5	31.49	2.20	0.056	2.30	0.227	5.3	0.031	2.3	0.43
3.1	0.17	20.70	248	62	0.26	597.0	13.0	10.29	2.20	0.060	2.10	0.794	3.9	0.097	2.2	0.57
4.1	0.18	18.30	214	118	0.57	612.0	13.0	10.02	2.30	0.063	2.30	0.847	3.6	0.099	2.3	0.64
5.1	0.25	12.60	146	38	0.27	615.0	14.0	9.960	2.40	0.062	2.90	0.836	4.3	0.100	2.4	0.55
6.1	0.00	19.10	238	103	0.45	575.0	12.0	10.71	2.30	0.059	2.40	0.771	3.3	0.093	2.3	0.69
7.1	0.11	46.50	3182	66	0.02	108.6	2.3	58.80	2.10	0.048	1.60	0.112	2.9	0.017	2.1	0.74
8.1c	-0.09	19.10	400	7	0.02	349.1	7.6	17.99	2.20	0.053	2.50	0.419	3.6	0.055	2.2	0.63
8.2r	1.20	105.0	6185	176	0.03	124.4	2.6	50.70	2.10	0.056	1.00	0.126	4.7	0.019	2.1	0.46
9.1	0.22	46.00	692	24	0.04	480.0	10.0	12.92	2.20	0.059	1.60	0.609	3.3	0.077	2.2	0.66
10.1	-0.32	14.10	175	40	0.24	578.0	13.0	10.70	2.30	0.059	2.90	0.806	5.1	0.093	2.4	0.47
11.1	-0.06	194.0	1022	391	0.40	1286.0	25.0	4.530	2.10	0.111	0.70	3.395	2.3	0.220	2.1	0.94
12.1	0.01	123.0	2309	1698	0.76	388.7	8.0	16.09	2.10	0.055	1.00	0.470	2.4	0.062	2.1	0.90
13.1	0.02	161.0	3757	185	0.05	313.0	6.5	20.09	2.10	0.053	0.90	0.367	2.3	0.049	2.1	0.91
14.1	0.00	44.40	543	454	0.86	587.0	12.0	10.49	2.20	0.061	1.60	0.801	2.7	0.095	2.2	0.81
15.1	0.26	19.20	234	232	1.02	586.0	13.0	10.48	2.30	0.058	2.50	0.738	4.3	0.095	2.3	0.54
16.1	0.07	104.0	6591	148	0.02	117.7	2.5	54.20	2.10	0.048	1.20	0.122	2.7	0.018	2.1	0.78
17.1	0.02	27.70	417	214	0.53	481.0	10.0	12.92	2.20	0.059	2.00	0.630	3.0	0.077	2.2	0.73
18.1	0.24	25.40	422	92	0.22	435.5	9.4	14.27	2.20	0.060	2.10	0.562	3.7	0.069	2.2	0.61
19.1	0.03	173.0	10404	276	0.03	123.5	2.6	51.70	2.10	0.048	0.90	0.128	2.4	0.019	2.1	0.89
5601, 1	иигмати	г. Наруг	иенная и	ізотопна	ая систе	иа. Средневзв	ешенный во	озраст в	нижне	ем перес	ечении	і конкор	дии он	соло 102	.5±2.5,	СКВС

N⁰	²⁰⁶ Pbc,	²⁰⁶ Pb*	U	Th	²³² Th/	Возраст,	млн. лет	²³⁸ U/	±1σ,	²⁰⁷ Pb*/	±1σ,	²⁰⁷ Pb*/	±1σ,	²⁰⁶ Pb*/	±1σ,	Kron
точки	%		г/т		²³⁸ U	²⁰⁶ Pb/ ²³⁸ U	±1σ	²⁰⁶ Pb*	%	²⁰⁶ Pb*	%	²³⁵ U	%	²³⁸ U	%	кор.
5.1	0.41	34.50	2561	315	0.13	100.0	1.8	63.80	1.80	0.051	1.30	0.106	2.6	0.015	1.8	0.68
9.1	0.32	19.70	1389	819	0.61	105.1	1.9	60.70	1.80	0.050	1.70	0.110	3.4	0.016	1.8	0.53
6.1	1.25	26.20	726	1306	1.86	262.3	4.7	23.85	1.80	0.061	1.40	0.308	3.6	0.041	1.8	0.50
7.1	0.54	33.20	766	345	0.46	316.9	5.5	19.81	1.80	0.057	1.50	0.385	2.7	0.050	1.8	0.65
3.1	0.87	95.70	1886	562	0.31	368.7	6.9	16.92	1.90	0.060	1.70	0.468	3.1	0.058	1.9	0.62
10.1	0.12	208.0	4118	753	0.19	368.7	6.3	16.97	1.80	0.054	0.50	0.439	1.8	0.058	1.8	0.95
4.1	0.65	15.10	200	82	0.42	539.6	9.7	11.39	1.90	0.063	1.70	0.713	3.6	0.087	1.9	0.52
8.1	0.38	43.60	530	512	1.00	589.0	10.0	10.43	1.80	0.062	1.00	0.809	2.2	0.095	1.8	0.82
2.1	0.22	23.80	287	210	0.75	591.0	10.0	10.38	1.80	0.061	1.30	0.774	2.7	0.095	1.9	0.69
E	GC35A, 1	мигмати	т (непол	тирован	ный кай	мы, запрессо	вано в инди	и); 177.0	40939	E, 69.263	53 N. 2	206Pb*/2	2 38 U во	озраст п	о хорде	к
1.1	NA	30.10	2162	40	0.02	103.5	2.6	61.65	2.50	0.048	3.00	0.103	4.3	0.016	2.5	0.58
2.1	0.32	29.10	2119	9	0.00	102.3	1.9	62.27	1.80	0.050	1.50	0.104	3.3	0.016	1.8	0.56
3.1	0.14	24.10	1482	-9	0.01	120.9	21.0	52.79	17.6	0.049	1.80	0.128	17.7	0.018	17.6	0.99
4.1	0.81	24.70	4444	44	0.01	163.7	NA	38.59	21.6	0.056	3.50	0.177	22.1	0.025	21.6	0.98
5.1	0.38	40.90	2951	178	0.06	103.1	2.3	61.81	2.20	0.051	1.20	0.108	3.0	0.016	2.2	0.75
6.1	0.38	23.10	1634	10	0.01	105.2	1.2	60.52	1.20	0.051	1.70	0.107	3.3	0.016	1.2	0.35
7.1	0.37	30.80	826	44	0.05	274.4	32.3	22.92	12.0	0.054	2.70	0.310	12.5	0.043	12.0	0.96
8.1	0.16	33.60	2503	10	0.00	99.8	1.7	63.72	1.70	0.049	1.40	0.096	3.4	0.015	1.7	0.51
9.1	0.85	19.40	1422	16	0.01	101.5	2.0	62.47	2.00	0.055	2.00	0.104	5.0	0.015	2.0	0.41
10.1	0.76	33.50	1774	7	0.00	140.2	11.6	45.20	8.40	0.055	1.30	0.151	8.8	0.022	8.4	0.95
12.1	0.39	17.10	1270	6	0.01	100.5	10.3	63.07	10.3	0.051	4.80	0.094	12.5	0.015	10.3	0.83
11.1	0.93	18.70	1284	10	0.01	108.5	12.6	58.42	11.8	0.055	4.00	0.114	13.1	0.017	11.8	0.90
36	б9-500, м	онцонит	, Велитн	сенай 17	7 .2061 E	, 69.1983 N. B	озраст по ди	іскордии	. Сред	невзвеш	енное	значени	е ниж	него пер	есечен	ия
7	0.10	9.90	729	155	0.22	100.3	0.7	63.53	0.67	0.048	3.20	0.098	4.8	0.015	0.7	0.15
2	0.17	8.00	586	128	0.23	100.9	0.8	62.90	0.72	0.049	3.40	0.093	6.6	0.015	0.8	0.12
6	0.05	28.90	2115	185	0.09	101.6	0.4	62.87	0.39	0.048	1.80	0.103	2.4	0.015	0.4	0.17
1	0.09	18.30	1330	97	0.08	101.8	0.5	62.61	0.48	0.048	2.30	0.101	3.6	0.015	0.5	0.14
11r	0.38	19.30	1400	75	0.06	102.4	0.5	62.33	0.47	0.051	2.20	0.109	2.8	0.016	0.5	0.17
9r	0.34	26.70	1921	158	0.08	103.2	0.4	61.91	0.41	0.050	1.90	0.110	2.7	0.016	0.4	0.16
8c	0.23	53.90	3818	445	0.12	104.9	0.3	60.90	0.29	0.049	1.40	0.111	1.6	0.016	0.3	0.18

№	²⁰⁶ Pbc,	²⁰⁶ Pb*	U	Th	²³² Th/	Возраст,	млн. лет	²³⁸ U/	±1σ,	²⁰⁷ Pb*/	±1σ,	²⁰⁷ Pb*/	±1σ,	²⁰⁶ Pb*/	±1σ,	K _{kon}
точки	%		г/т		²³⁸ U	²⁰⁶ Pb/ ²³⁸ U	±1σ	²⁰⁶ Pb*	%	²⁰⁶ Pb*	%	²³⁵ U	%	²³⁸ U	%	Kop.
5	0.35	33.50	2367	71	0.03	105.0	0.4	60.68	0.36	0.050	1.70	0.109	2.7	0.016	0.4	0.14
10	-0.02	110.0	2241	2116	0.98	356.8	0.9	17.55	0.24	0.053	1.10	0.412	1.4	0.056	0.3	0.18
3	0.17	49.90	989	599	0.63	368.0	1.5	17.01	0.41	0.055	1.50	0.443	1.6	0.058	0.4	0.25
4	0.08	113.0	2208	1657	0.78	373.5	0.9	16.76	0.24	0.054	1.00	0.446	1.1	0.059	0.2	0.22
5310, г	аббро-ам	ифиболи	іт, будиі	ны офио	литов в	Велиткенайс	ком массиве	е. Возрас	т по ді	искорди	и. Ниж	кнее пер	есечени	ие около	103 м.	тн лет
8.1	-0.24	10.40	753	1	0.00	102.4	3.7	62.31	3.61	0.046	3.20	0.097	5.8	0.016	3.6	0.62
1.1	0.90	1.00	26	12	0.48	288.5	33.1	22.05	11.7	0.059	9.10	0.418	17.8	0.045	11.7	0.66
3.1	1.59	9.30	179	121	0.70	385.0	4.0	16.16	1.05	0.067	6.80	0.532	7.9	0.061	1.1	0.14
7.1	0.74	4.70	88	63	0.73	382.0	21.5	16.17	5.78	0.060	3.50	0.420	10.7	0.061	5.8	0.54
2.1	1.09	8.20	144	83	0.60	413.3	13.7	14.82	3.40	0.064	2.70	0.446	9.3	0.066	3.4	0.37
4.1	22.50	8.10	133	73	0.57	368.5	138.7	10.92	8.19	0.238	52.4	0.903	215.	0.058	38.7	0.18
6.1	0.46	7.30	97	60	0.64	533.0	17.2	11.41	3.33	0.062	3.10	0.574	9.9	0.086	3.4	0.34
5.1	-0.02	13.00	168	94	0.58	556.9	5.7	11.07	1.07	0.058	2.10	0.716	2.7	0.090	1.1	0.40
EGC	б, монцо	нит, Пег	тымель	ский пл	утон; 17	5.193257 E, 69	.006861 N. E	возраст г	10 хорд	це к Pb(c	om)= 1	07±2 мл	н лет,	СКВО=	1.8, N=	10/10.
1	0.44	15.40	1057	286	0.28	107.5	2.8	58.90	2.60	0.051	3.90	0.102	6.5	0.016	2.6	0.40
2	12.55	9.30	724	848	1.21	96.0	3.7	58.51	3.80	0.147	2.30	0.104	17.2	0.015	3.9	0.23
3	0.92	31.80	2132	540	0.26	108.5	2.8	58.36	2.60	0.055	1.10	0.112	3.8	0.017	2.6	0.70
5	0.91	8.00	557	351	0.65	107.1	3.7	59.35	3.40	0.055	2.50	0.117	8.0	0.016	3.5	0.43
6	NA	21.60	1434	579	0.42	111.4	2.3	57.26	2.00	0.047	1.80	0.109	3.4	0.017	2.0	0.61
7	NA	9.90	677	415	0.63	109.1	2.9	58.87	2.70	0.047	2.30	0.121	4.3	0.017	2.7	0.63
8	NA	5.50	331	220	0.60	107.8	2.4	59.34	2.20	0.044	2.70	0.106	5.1	0.016	2.2	0.44
9	9.74	20.40	1454	1323	0.94	103.5	2.0	55.23	1.80	0.125	18.0	0.090	62.9	0.016	1.9	0.03
10	0.09	13.90	970	904	0.96	106.8	2.1	59.89	2.00	0.048	3.80	0.113	4.9	0.016	2.0	0.41
11	0.81	28.70	2037	2901	1.44	102.2	2.8	62.09	2.70	0.054	4.10	0.106	5.7	0.016	2.7	0.48
	EGC8, г	ранодио	рит, плу	утон Куг	вет; 175.8	81723 E, 69.17	2093 N. Возр	раст по х	орде к	Pb(com)= 105=	±2 млн л	ет, СК	BO=1.3,	N=8/8.	
1	0.64	28.10	2037	1064	0.54	102.8	2.8	61.95	2.80	0.053	1.00	0.110	3.3	0.016	2.8	0.85
2	0.28	9.10	649	165	0.26	103.8	2.5	61.47	2.40	0.050	3.20	0.109	4.8	0.016	2.4	0.50
3	NA	3.90	284	172	0.63	101.6	1.8	62.80	1.70	0.047	2.90	0.100	7.4	0.015	1.8	0.24
4	0.06	25.20	1788	553	0.32	104.9	2.5	60.90	2.40	0.048	2.50	0.108	3.3	0.016	2.4	0.63
5	NA	21.50	1491	406	0.28	107.3	2.0	59.59	1.90	0.047	1.30	0.110	2.5	0.016	1.9	0.76

N⁰	²⁰⁶ Pbc,	²⁰⁶ Pb*	U	Th	²³² Th/	Возраст,	млн. лет	²³⁸ U/	±1σ,	²⁰⁷ Pb*/	±lσ,	²⁰⁷ Pb*/	±lσ,	²⁰⁶ Pb*/	±1σ,	
точки	%		г/т		²³⁸ U	²⁰⁶ Pb/ ²³⁸ U	±1σ	²⁰⁶ Pb*	%	²⁰⁶ Pb*	%	²³⁵ U	%	²³⁸ U	%	Ккор.
6	8.30	13.30	991	289	0.30	101.0	3.4	58.79	3.30	0.114	1.10	0.126	7.7	0.015	3.4	0.44
7	7.83	54.00	3797	2061	0.56	105.9	2.0	55.72	1.90	0.110	1.80	0.113	6.5	0.016	1.9	0.30
3	0.64	58.80	4065	3447	0.88	107.7	2.2	59.04	2.10	0.053	3.10	0.113	4.1	0.016	2.1	0.51
PV2,	монцони	ит, Певе	кский п	лутон (с	еверный	і). Средневзв	ешенный 200	6Pb*/238	возр	раст = 10	9±1 мл	1н лет, С	СКВО=	= 3.6 , 3= 0 .	001, N=	=7/13.
11.1	0.28	16.40	1134	626	0.57	107.9	0.5	59.26	0.43	0.050	1.50	0.117	1.6	0.016	0.4	0.27
9.1	-0.01	10.30	706	657	0.96	108.0	0.5	59.11	0.45	0.048	2.80	0.109	3.2	0.016	0.5	0.14
7.1	-0.06	17.20	1186	381	0.33	108.3	0.4	59.13	0.34	0.047	1.50	0.114	2.0	0.016	0.4	0.17
10.1	0.04	17.20	1181	308	0.27	108.5	0.4	58.83	0.34	0.048	1.50	0.111	1.8	0.017	0.3	0.19
8.1	-0.08	10.70	730	377	0.53	108.7	0.5	58.79	0.43	0.047	2.80	0.111	2.8	0.017	0.4	0.15
1.2	-0.01	16.30	1106	426	0.40	109.4	0.4	58.41	0.36	0.048	1.80	0.112	2.0	0.017	0.4	0.18
6.1	0.07	12.10	823	168	0.21	109.7	0.5	58.18	0.41	0.048	1.80	0.111	2.4	0.017	0.4	0.18
2.1	-0.07	18.80	1270	526	0.43	110.0	0.4	58.05	0.33	0.047	1.40	0.110	1.8	0.017	0.3	0.19
5.1	58.82	20.90	590	481	0.84	100.9	12.3	24.29	0.42	0.515	6.00	NA	NA	0.015	12.3	NA
1.1	0.07	12.30	812	115	0.15	112.3	0.5	56.77	0.48	0.048	1.70	0.113	2.6	0.017	0.5	0.19
12.1	-0.13	8.00	529	199	0.39	112.2	0.6	56.86	0.50	0.047	2.20	0.111	3.0	0.017	0.5	0.17
3.1	-0.09	23.10	1454	473	0.34	117.8	0.3	54.15	0.29	0.047	1.30	0.117	1.8	0.018	0.3	0.16
4.1	0.17	28.30	925	495	0.55	225.5	0.8	28.07	0.34	0.052	1.20	0.252	1.4	0.035	0.3	0.25
PV	15, monz	zonit, Пе	векский	плутон	(средний	й шток). Сре	дневзвешенн	ый 206F	Pb*/238	SU возра	ст ~1	05±1 млі	н лет, (С КВО=3	.6, N=5	5/13
6.2C	1.08	9.40	668	296	0.46	103.5	0.6	61.17	0.49	0.056	2.80	0.109	5.9	0.016	0.6	0.10
3.1	0.52	13.60	965	254	0.27	104.3	0.5	60.93	0.43	0.052	1.80	0.106	4.8	0.016	0.5	0.10
8.1	1.03	10.40	726	506	0.72	105.3	0.9	60.14	0.73	0.056	2.60	0.110	7.1	0.016	0.8	0.12
9.1	-0.03	4.00	284	212	0.77	104.7	0.9	60.71	0.74	0.047	3.20	0.097	8.0	0.016	0.8	0.10
11.1	-0.14	5.20	362	110	0.31	106.0	0.7	60.14	0.67	0.047	2.90	0.102	4.0	0.016	0.7	0.17
4.1	0.11	4.70	327	155	0.49	107.4	0.8	59.20	0.69	0.049	5.20	0.103	7.4	0.016	0.7	0.10
6.1R	0.40	25.00	1691	447	0.27	109.7	0.3	58.15	0.30	0.051	1.30	0.117	2.0	0.017	0.3	0.16
1.1	0.10	21.10	1425	203	0.15	109.9	0.4	58.09	0.33	0.049	1.40	0.113	2.0	0.017	0.3	0.17
10.1	0.14	25.60	1725	531	0.32	110.2	0.3	57.87	0.30	0.049	1.30	0.112	2.0	0.017	0.3	0.15
2.1	0.45	71.60	4520	488	0.11	117.4	0.2	54.22	0.20	0.052	0.80	0.125	1.4	0.018	0.2	0.15
7.1	32.19	8.60	327	170	0.54	133.8	3.1	32.57	0.51	0.304	1.10	0.157	35.7	0.021	2.4	0.07
5.1	0.46	22.70	668	732	1.13	248.8	0.9	25.29	0.34	0.054	1.20	0.277	2.4	0.039	0.4	0.15

№	²⁰⁶ Pbc,	²⁰⁶ Pb*	U	Th	²³² Th/	Возраст,	млн. лет	²³⁸ U/	±1σ,	²⁰⁷ Pb*/	±1σ,	²⁰⁷ Pb*/	±1σ,	²⁰⁶ Pb*/	±1σ,	K _{KOP.}
точки	%		г/т		²³⁸ U	²⁰⁶ Pb/ ²³⁸ U	±1σ	²⁰⁶ Pb*	%	²⁰⁶ Pb*	%	²³⁵ U	%	²³⁸ U	%	-1
	PV8, гра	нодиори	іт, плут	он Лоот	айпынь.	Средневзвеш	енный 206Р	b*/238U	возра	ст 107±0	.5 млн	лет, СК	BO=1,	p=0.43,	N=5/13	
3.1	0.08	8.80	642	239	0.38	101.5	0.5	62.90	0.46	0.048	2.00	0.103	2.5	0.015	0.5	0.19
6.1	0.26	7.70	540	207	0.40	106.6	1.5	60.18	1.45	0.050	2.10	0.122	3.7	0.016	1.5	0.40
4.1	0.12	10.20	710	754	1.10	106.9	0.5	59.78	0.46	0.049	2.00	0.111	2.2	0.016	0.5	0.21
2.1	0.05	10.20	712	267	0.39	106.8	0.5	59.75	0.45	0.048	1.90	0.108	2.5	0.016	0.5	0.18
11.1	-0.05	8.60	597	231	0.40	106.8	0.6	59.76	0.60	0.047	2.30	0.106	3.1	0.016	0.6	0.19
10.1	-0.04	12.60	875	305	0.36	107.3	0.5	59.54	0.43	0.047	1.90	0.109	2.1	0.016	0.4	0.21
1.1	-0.05	11.10	766	581	0.78	107.1	0.5	59.49	0.43	0.047	1.90	0.104	3.4	0.016	0.5	0.14
9.1	0.05	9.50	654	329	0.52	107.1	0.9	59.38	0.83	0.048	3.10	0.102	5.6	0.016	0.9	0.15
8.1	0.00	14.30	984	902	0.95	107.5	1.1	59.30	1.07	0.048	2.20	0.107	3.2	0.016	1.1	0.33
5.1	-0.07	10.60	722	426	0.61	108.5	0.5	58.75	0.45	0.047	2.00	0.105	3.4	0.017	0.5	0.14
7.1	0.15	9.30	580	234	0.42	118.5	0.7	53.74	0.60	0.049	3.00	0.121	4.2	0.018	0.6	0.15
	8500, ке	варцевыі	й монцо	нит, Ин	рогинай	ский плутон.	Средневзве	шенный	206Pb	*/238U i	возраст	r ~ 107±1	1.5 млн	и лет, CK	CBO=4	
8500, к 4.1 0.84 3.1 0.66 1.1 0.59 5.1 0.58		8.50	605	403	0.69	104.5	0.8	60.80	0.69	0.054	2.50	0.111	6.6	0.016	0.8	0.12
3.1	0.66	12.90	907	586	0.67	104.8	0.6	60.61	0.57	0.053	2.10	0.108	4.1	0.016	0.6	0.15
1.1	0.59	6.80	477	267	0.58	105.1	0.9	60.34	0.76	0.052	2.80	0.103	8.2	0.016	0.9	0.11
5.1	0.58	8.30	577	431	0.77	107.3	1.8	59.59	0.70	0.052	3.50	0.121	3.6	0.016	0.7	0.19
7.1	0.27	20.30	1410	784	0.57	106.7	0.5	59.71	0.45	0.050	1.70	0.108	2.7	0.016	0.5	0.17
9.1	0.62	9.80	673	390	0.60	106.5	0.8	59.20	0.65	0.053	2.30	0.096	7.8	0.016	0.7	0.10
2.1	0.33	14.60	1001	885	0.91	107.8	0.6	59.08	0.53	0.050	2.00	0.110	3.2	0.016	0.6	0.17
6.2	0.35	9.60	652	347	0.55	108.6	0.8	58.35	0.67	0.051	3.40	0.102	6.9	0.017	0.7	0.11
6.1	0.28	28.70	1949	1578	0.84	109.2	0.5	58.35	0.40	0.050	1.40	0.113	2.2	0.017	0.4	0.19
8.1	2.89	7.40	442	185	0.43	123.9	1.0	51.35	0.76	0.071	4.80	0.183	5.5	0.019	0.8	0.14
	83	00, грани	ит, Пык	арваамо	ский мас	сив. Среднев	звешенный 2	206Pb*/2	238U в	озраст =	92±1 n	илн лет,	СКВО	=1, p=1.	1	
5.1	1.10	6.20	506	373	0.76	90.5	0.7	70.36	0.77	0.056	2.70	0.101	4.7	0.014	0.8	0.17
1.1	1.89	2.70	216	125	0.60	90.6	1.2	69.63	1.20	0.062	4.00	0.099	11.0	0.014	1.4	0.12
6.1	4.06	1.50	119	59	0.51	91.1	1.9	68.10	1.60	0.080	5.20	0.107	22.0	0.014	2.1	0.10
2.1	0.92	5.50	444	259	0.60	90.8	0.9	69.50	0.88	0.055	3.10	0.085	9.3	0.014	1.0	0.11
7.2	0.71	6.70	537	132	0.25	92.3	0.7	69.07	0.76	0.053	2.80	0.099	4.9	0.014	0.8	0.16
9.1	0.61	12.30	983	248	0.26	92.7	0.6	68.71	0.65	0.052	2.10	0.097	3.5	0.014	0.7	0.19

N⁰	²⁰⁶ Pbc,	²⁰⁶ Pb*	U	Th	²³² Th/	Возраст,	млн. лет	²³⁸ U/	±1σ,	²⁰⁷ Pb*/	±1σ,	²⁰⁷ Pb*/	±1σ,	²⁰⁶ Pb*/	±lσ,	ĸ
точки	%		г/т		²³⁸ U	²⁰⁶ Pb/ ²³⁸ U	±1σ	²⁰⁶ Pb*	%	²⁰⁶ Pb*	%	²³⁵ U	%	²³⁸ U	%	К кор.
7.1	1.37	3.00	238	83	0.36	91.7	1.4	67.83	1.20	0.058	4.20	0.070	25.0	0.014	1.6	0.06
4.1	2.26	7.10	557	146	0.27	93.2	1.1	67.20	0.77	0.065	3.30	0.097	15.0	0.014	1.2	0.08
3.1	0.45	10.60	838	352	0.43	93.5	0.6	68.12	0.61	0.051	2.30	0.095	4.1	0.014	0.6	0.15
8.1	2.24	2.10	161	103	0.66	94.0	1.5	66.72	1.40	0.065	10.0	0.099	19.0	0.014	1.6	0.08
	8′	700, дайі	ка ламп	рофира.	206Pb*/2	238U среднев	звешенный	возраст	= 108±	1 млн ле	ет, СКІ	BO=1.7,	p=0.09	, N=9/10		
4.1	0.15	11.40	830	99	0.12	102.6	0.8	62.29	0.74	0.049	2.30	0.107	2.5	0.016	0.7	0.29
6.1	0.05	10.50	731	714	1.01	106.2	0.8	59.99	0.73	0.048	2.20	0.105	3.2	0.016	0.7	0.23
7.1	0.01	5.40	375	181	0.50	106.8	0.9	59.87	0.85	0.048	4.40	0.110	4.5	0.016	0.9	0.19
3.1	0.19	5.50	381	245	0.67	106.8	0.9	59.65	0.85	0.049	3.10	0.106	4.9	0.016	0.9	0.18
4.2	-0.03	12.00	834	142	0.18	106.7	0.8	59.63	0.71	0.047	2.10	0.102	3.7	0.016	0.7	0.20
5.1	0.06	12.70	874	366	0.43	108.0	0.8	59.03	0.74	0.048	3.70	0.108	4.4	0.016	0.8	0.17
9.1	-0.08	6.50	448	357	0.82	108.3	0.9	59.11	0.81	0.047	2.80	0.113	3.3	0.016	0.8	0.25
2.1	0.17	9.20	627	391	0.64	108.5	0.9	58.86	0.80	0.049	2.30	0.114	2.6	0.017	0.8	0.31
8.1	0.10	14.80	1008	155	0.16	108.9	0.8	58.58	0.69	0.049	1.80	0.110	2.5	0.017	0.7	0.27
1.1	-0.08	5.70	389	226	0.60	109.3	1.0	58.37	0.91	0.047	3.10	0.107	4.1	0.017	0.9	0.22
	8.1 0.10 14.80 1008 155 0.16 108.9 0.8 58.58 0.69 0.049 1.80 0.110 2.5 0.017 0.7 0.27 1.1 -0.08 5.70 389 226 0.60 109.3 1.0 58.37 0.91 0.047 3.10 0.107 4.1 0.017 0.9 0.22 8100, гранит, массив Северный. Средневзвешенный конк. возраст = 88±1 млн лет, СКВО=0.39, р= 0.53, N=7/9.															
m-1.2	1.55	2.90	248	150	0.63	86.7	1.1	73.47	1.20	0.060	4.10	0.104	8.5	0.013	1.3	0.15
P-5.1	1.40	4.00	337	318	0.97	85.6	1.0	73.25	1.00	0.058	3.50	0.077	13.0	0.013	1.2	0.09
P-1.1	4.63	1.20	102	41	0.42	80.3	3.1	70.70	1.70	0.084	5.10	NA	NA	0.012	3.8	NA
P-3.1	0.48	16.00	1364	266	0.20	87.2	0.5	73.09	0.57	0.051	1.90	0.089	3.3	0.013	0.6	0.18
P-6.1	0.71	9.10	771	302	0.40	88.0	0.6	72.57	0.64	0.053	2.30	0.096	4.9	0.013	0.7	0.14
P-2.1	0.93	10.40	870	527	0.63	88.4	0.6	71.95	0.61	0.055	2.20	0.095	4.1	0.013	0.6	0.16
P-9.1	3.16	2.10	171	130	0.78	86.9	1.7	69.78	1.40	0.072	4.30	0.054	43.0	0.013	2.0	0.05
m-1.1	0.36	13.40	1105	299	0.28	89.6	0.5	70.92	0.51	0.050	2.20	0.086	6.0	0.014	0.6	0.10
P-4.1	3.38	1.80	137	145	1.10	92.2	1.8	67.30	1.50	0.074	4.70	0.099	21.0	0.014	1.9	0.09
	SEV	7 , грани т	г, масси	в Севери	ный. 206	Pb*/238U cpe	едневзвешени	ный возј	раст =	88±1 млі	н лет, (CKBO=1	1.2, p=0).3, N=6/	10	
9.1	1.16	11.10	992	301	0.31	81.6	1.0	77.15	0.40	0.056	1.60	0.075	8.8	0.012	0.6	0.07
7.1	0.24	23.10	2006	726	0.37	85.8	0.5	74.53	0.28	0.049	1.80	0.089	2.3	0.013	0.3	0.13
2.1	0.24	14.50	1245	263	0.22	86.4	0.5	74.00	0.35	0.049	1.50	0.091	2.1	0.013	0.4	0.18
4.1	0.21	3.60	311	117	0.39	87.5	1.5	73.44	0.71	0.049	3.10	0.099	4.9	0.013	0.7	0.15

N⁰	²⁰⁶ Pbc,	²⁰⁶ Pb*	U	Th	²³² Th/	Возраст,	млн. лет	²³⁸ U/	±1σ,	²⁰⁷ Pb*/	±1σ,	²⁰⁷ Pb*/	±1σ,	²⁰⁶ Pb*/	±1σ,	KKOD.
точки	%		г/т		²³⁸ U	²⁰⁶ Pb/ ²³⁸ U	±1σ	²⁰⁶ Pb*	%	²⁰⁶ Pb*	%	²³⁵ U	%	²³⁸ U	%	.1.
11.1	0.28	5.40	460	304	0.68	87.6	1.5	72.82	0.70	0.050	2.60	0.088	5.3	0.013	0.7	0.14
1.1	-0.28	3.90	334	160	0.50	87.3	1.5	73.04	0.67	0.045	3.00	0.079	5.3	0.013	0.7	0.13
10.1	0.06	19.10	1605	337	0.22	88.4	0.5	72.34	0.32	0.048	1.40	0.090	1.6	0.013	0.3	0.20
13.1	-0.02	6.50	549	237	0.45	88.5	1.0	72.27	0.54	0.047	2.40	0.089	2.7	0.013	0.5	0.20
8.1	0.09	26.00	2181	1738	0.82	88.6	0.5	72.19	0.27	0.048	1.20	0.090	1.5	0.013	0.3	0.18
7.2	-0.02	6.90	580	142	0.25	88.0	1.0	72.23	0.52	0.047	2.30	0.080	5.9	0.013	0.6	0.10
5.1	0.13	21.20	1761	198	0.12	89.8	0.5	71.30	0.30	0.048	1.30	0.094	1.3	0.014	0.3	0.22
12.1	-0.02	11.70	967	200	0.21	90.3	1.0	70.77	0.41	0.047	1.80	0.090	2.4	0.014	0.4	0.18
6.1	0.16	3.40	280	146	0.54	90.6	1.5	70.35	0.74	0.049	3.20	0.089	5.0	0.014	0.8	0.15
3.1	0.06	127.5	9185	624	0.07	103.3	0.5	61.87	0.13	0.048	0.50	0.106	0.6	0.016	0.1	0.22
	268, гр	анит, Ва	алькарв	аамский	й массив	. Средневзвеі	пенный кон	к. возра	ст = 10	4±1 млн	лет, С	СКВО=0.	08, p=	0.78, N=	10/10.	
1.1	0.00	3.60	252	180	0.74	106.5	1.6	60.04	1.50	0.049	5.30	0.113	5.5	0.016	1.5	0.27
2.1	0.20	17.30	1248	548	0.45	103.0	0.9	61.99	0.85	0.049	2.40	0.105	3.0	0.016	0.9	0.28
3.1	0.15	21.80	1524	1011	0.69	106.5	1.0	59.97	0.91	0.048	2.50	0.109	3.7	0.016	0.9	0.25
4.1	0.96	2.50	182	94	0.53	100.2	2.1	63.20	2.00	0.055	7.00	0.104	13.0	0.015	2.1	0.16
5.1	0.00	6.00	440	211	0.50	101.4	1.4	63.06	1.40	0.049	6.40	0.108	6.5	0.015	1.4	0.21
6.1	0.00	3.70	261	209	0.83	104.6	1.7	61.10	1.70	0.051	6.00	0.115	6.2	0.016	1.7	0.27
7.1	0.10	17.60	1229	680	0.57	106.4	0.9	60.05	0.88	0.049	2.50	0.111	3.0	0.016	0.9	0.30
8.1	0.55	12.80	902	383	0.44	105.2	1.1	60.42	1.10	0.053	3.20	0.110	5.8	0.016	1.1	0.19
9.1	1.04	5.50	397	302	0.79	102.8	1.6	61.57	1.40	0.055	4.80	0.104	14.0	0.016	1.6	0.12
10.1	0.15	14.50	1042	541	0.54	103.1	0.9	61.91	0.91	0.048	2.70	0.106	3.5	0.016	0.9	0.26
	270, гр	анит, Ва	лькарв	аамский	і массив.	. Средневзвег	ценный кон	к. возра	ст = 10	4±1 млн	лет, С	КВО=0.	08, p=	0.78, N=	16/16.	
1.1	0.00	11.40	798	516	0.67	106.4	1.3	60.09	1.20	0.047	3.50	0.109	3.7	0.016	1.2	0.33
2.1	0.96	3.00	217	183	0.87	103.5	2.0	61.20	1.90	0.054	6.50	0.104	14.0	0.016	2.0	0.14
3.1	0.00	2.50	177	115	0.67	103.8	2.0	61.60	1.90	0.050	6.40	0.113	6.6	0.016	1.9	0.29
4.1	0.00	3.20	232	138	0.61	103.6	2.0	61.70	2.00	0.047	5.90	0.106	6.2	0.016	2.0	0.32
5.1	0.18	12.50	865	472	0.56	107.3	1.1	59.47	1.10	0.047	2.50	0.105	3.8	0.016	1.1	0.28
6.1	0.10	20.80	1419	824	0.60	108.7	1.0	58.73	0.89	0.048	2.20	0.111	2.8	0.017	0.9	0.32
7.1	0.00	9.60	687	390	0.59	104.0	1.3	61.50	1.30	0.049	3.80	0.111	4.0	0.016	1.3	0.32
8.1	0.45	6.70	493	303	0.64	101.4	1.5	62.77	1.50	0.049	4.50	0.100	7.6	0.015	1.5	0.20

№	²⁰⁶ Pbc,	²⁰⁶ Pb*	U	Th	²³² Th/	Возраст, в	млн. лет	²³⁸ U/	±1σ,	²⁰⁷ Pb*/	±lσ,	²⁰⁷ Pb*/	±1σ,	²⁰⁶ Pb*/	±1σ,	Kren
точки	%		г/т		²³⁸ U	²⁰⁶ Pb/ ²³⁸ U	±lσ	²⁰⁶ Pb*	%	²⁰⁶ Pb*	%	²³⁵ U	%	²³⁸ U	%	кор.
9.1	0.29	7.90	564	279	0.51	103.2	1.4	61.76	1.40	0.048	4.10	0.103	5.6	0.016	1.4	0.25
10.1	0.14	18.00	1262	1458	1.19	106.1	1.0	60.18	0.92	0.049	2.40	0.110	3.3	0.016	0.9	0.28
11.1	0.00	10.50	736	309	0.43	106.0	1.3	60.33	1.20	0.049	4.20	0.113	4.4	0.016	1.2	0.28
12.1	0.00	12.80	915	478	0.54	104.4	1.2	61.27	1.20	0.048	3.30	0.110	3.5	0.016	1.2	0.33
13.1	0.23	10.30	740	436	0.61	103.8	1.3	61.43	1.30	0.049	3.70	0.106	4.8	0.016	1.3	0.26
14.1	0.37	13.80	964	528	0.57	106.2	1.3	59.99	1.10	0.048	3.20	0.103	7.2	0.016	1.2	0.16
15.1	1.23	6.00	436	208	0.49	101.7	1.7	62.11	1.50	0.051	4.80	0.091	12.0	0.015	1.6	0.13
15.2	0.30	5.50	392	205	0.54	104.7	1.7	60.90	1.60	0.050	5.00	0.108	7.4	0.016	1.6	0.22
	KU-1, гр	анито-г	нейс, Ку	эквуньс	ский мас	сив. Среднева	вешенный	конк. во	зраст	= 324±5 M	илн ле	т, СКВС)=0.23,	p= 0.64,	, N=6/8.	
2.1	1.25	53.70	1179	408	0.36	334.1	1.9	18.62	0.57	0.063	0.80	0.407	2.1	0.053	0.6	0.28
4.1	-0.05	56.40	1170	814	0.72	351.4	3.3	17.84	0.98	0.053	0.90	0.408	1.3	0.056	1.0	0.73
6.1	0.09	37.70	769	136	0.18	357.4	5.3	17.52	1.54	0.054	1.00	0.422	2.0	0.057	1.5	0.78
3.1	0.12	24.20	491	139	0.29	359.9	4.4	17.43	1.26	0.054	1.30	0.436	1.9	0.057	1.3	0.67
5.1	0.01	12.20	247	86	0.36	359.8	2.6	17.38	0.75	0.053	1.90	0.410	2.8	0.057	0.8	0.27
8.1	0.00	114.3	2271	499	0.23	367.1	4.4	17.07	1.22	0.053	0.60	0.435	1.4	0.058	1.2	0.90
1.1	-0.10	74.40	1461	399	0.28	370.9	5.9	16.88	1.65	0.053	0.80	0.433	1.8	0.059	1.6	0.90
7.1	0.08	63.20	1241	412	0.34	371.4	3.1	16.84	0.85	0.054	0.70	0.440	1.2	0.059	0.9	0.69
		42/A-8	85, грані	ит, Эргу	веемски	й массив. Сре	дневзвешен	ный 206	5Pb*/23	38U возр	аст 10	7±1 млн	лет, п	n=2/4		
1	0.30	2.60	211	195	0.95	90.4	1.1	69.92	1.00	0.050	5.20	0.078	14.0	0.014	1.2	0.08
2	2.22	19.70	1425	722	0.52	101.1	0.5	62.01	0.36	0.065	1.60	0.108	5.5	0.015	0.5	0.09
3	0.82	11.00	756	389	0.53	107.6	0.6	58.90	0.48	0.054	2.40	0.110	6.6	0.016	0.6	0.09
4	0.01	8.40	578	347	0.62	107.6	0.8	59.13	0.66	0.048	3.00	0.103	5.3	0.016	0.7	0.13
S-3	3-2, гран	итогней	с, Сеняв	винское	подняти	е. Средневзве	шенный ко	нк. Возр	аст = 5	535±8 мл	н лет,	СКВО=	0.0004′	7, p= 0.98	8, N=10	/10.
1.1	0.03	10.70	142	77	0.56	542.0	13.0	11.40	2.50	0.058	2.70	0.710	3.7	0.087	2.5	0.67
2.1	0.00	16.90	225	105	0.48	541.0	13.0	11.42	2.40	0.057	2.20	0.694	3.3	0.087	2.4	0.74
3.1	0.72	3.68	50	23	0.47	526.0	15.0	11.75	3.00	0.056	8.40	0.662	8.9	0.085	3.0	0.34
4.1	0.50	8.24	113	71	0.65	523.0	13.0	11.84	2.60	0.055	5.30	0.651	5.9	0.084	2.6	0.44
5.1	0.72	6.81	91	46	0.52	536.0	14.0	11.53	2.60	0.057	7.90	0.683	8.3	0.086	2.6	0.32
6.1	0.59	3.75	51	29	0.60	530.0	15.0	11.67	2.90	0.057	9.80	0.675	10.0	0.085	2.9	0.28
7.1	0.00	6.73	88	42	0.49	547.0	14.0	11.29	2.60	0.060	3.50	0.742	4.3	0.088	2.6	0.60

No	206 D b.o	206 DL *	T.	TI.	232Th/	D		238	±1 <i>a</i>	207 Dh */	±1σ	207 Db */	±1σ	206 Dh */	±1σ	
JIT	ruc,	-**Pb*	U	In	111/	Возраст,	млн. лет	20(7)	±10,	FU"/	±10,	F D**/	±10,	FD"/	±10,	Ккор.
точки	%		г/т		²³⁸ U	²⁰⁶ Pb/ ²³⁸ U	±1σ	²⁰⁶ Pb*	%	²⁰⁶ Pb*	%	²³⁵ U	%	²³⁸ U	%	_
8.1	0.36	8.84	117	56	0.49	539.0	13.0	11.46	2.60	0.057	5.00	0.691	5.6	0.087	2.6	0.45
9.1	0.00	11.90	156	80	0.53	550.0	13.0	11.22	2.50	0.057	2.60	0.705	3.6	0.089	2.5	0.68
10.1	0.74	10.70	148	80	0.56	518.0	13.0	11.95	2.50	0.062	5.70	0.720	6.3	0.083	2.5	0.41
4	Ю1, гран	итогней	с, Сенян	винское	подняти	не. Средневзе	вешенный ко	нк. Возр	аст = (587±8 мл	ін лет,	СКВО=	0.081,	p= 0.78,]	N=6/20	
5.1	0.55	27.30	342	288	0.87	569.7	8.3	10.82	1.50	0.058	5.10	0.739	5.3	0.092	1.5	0.29
6.1	0.41	71.10	846	1427	1.74	599.1	7.9	10.27	1.40	0.059	2.20	0.794	2.6	0.097	1.4	0.53
10.1	0.27	87.00	1029	949	0.95	603.4	8.0	10.19	1.40	0.059	1.70	0.806	2.2	0.098	1.4	0.63
9.1	2.00	6.70	76	71	0.96	616.0	14.0	9.970	2.40	0.056	13.0	0.780	14.0	0.100	2.4	0.18
1.1	0.18	110.0	1240	1701	1.42	632.6	8.0	9.700	1.30	0.061	1.30	0.874	1.9	0.103	1.3	0.70
4.1	0.13	49.70	518	451	0.90	680.8	9.1	8.980	1.40	0.062	1.80	0.960	2.3	0.111	1.4	0.62
7.1	0.11	128.0	1327	840	0.65	682.6	8.7	8.950	1.30	0.062	1.10	0.967	1.8	0.111	1.3	0.76
19.1	0.09	22.50	233	161	0.71	684.9	10.0	8.920	1.50	0.062	2.30	0.961	2.8	0.112	1.5	0.56
15.1	0.33	31.60	326	66	0.21	685.3	9.6	8.910	1.50	0.061	2.40	0.955	2.8	0.112	1.5	0.53
12.1	0.79	10.60	107	83	0.81	698.0	13.0	8.740	2.00	0.063	6.00	1.001	6.3	0.114	2.0	0.31
8.1	1.02	6.05	60	18	0.30	703.0	15.0	8.680	2.20	0.061	8.50	0.971	8.8	0.115	2.2	0.25
11.1	0.68	20.30	194	149	0.79	736.0	11.0	8.260	1.60	0.063	4.50	1.058	4.8	0.120	1.6	0.33
3.1	0.20	38.10	299	247	0.85	888.0	12.0	6.767	1.50	0.069	1.90	1.424	2.4	0.147	1.5	0.60
2.1	0.00	83.50	523	240	0.47	1100.0	14.0	5.376	1.40	0.084	0.98	2.158	1.7	0.186	1.4	0.81
17.1	0.11	68.80	357	201	0.58	1302.0	17.0	4.468	1.40	0.087	1.20	2.697	1.9	0.223	1.4	0.76
20.1	0.18	57.80	220	91	0.43	1716.0	24.0	3.277	1.60	0.116	1.10	4.912	1.9	0.305	1.6	0.81
18.1	0.16	81.10	292	90	0.32	1800.0	23.0	3.103	1.40	0.200	0.76	8.900	1.6	0.322	1.4	0.88
14.1	1.18	11.30	37	49	1.35	1928.0	37.0	2.860	2.20	0.118	3.80	5.720	4.4	0.348	2.2	0.50
13.1	0.09	67.40	174	104	0.62	2394.0	30.0	2.223	1.50	0.183	0.85	11.37	1.7	0.449	1.5	0.87
16.1	0.18	42.60	103	33	0.33	2518.0	35.0	2.091	1.70	0.187	1.30	12.38	2.1	0.478	1.7	0.79

Образец/ точка	¹⁷⁶ Нf/ ¹⁷⁷ Нf, измерено	¹⁷⁶ Нf/ ¹⁷⁷ Нf, скоррект.	$\pm 2\sigma$	¹⁷⁶ Lu/ ¹⁷⁷ Hf	±2σ	¹⁷⁶ Yb/ ¹⁷⁷ Hf	±2σ	¹⁷⁸ Hf/ ¹⁷⁷ Hf	±2σ	¹⁸⁰ Hf/ ¹⁷⁷ Hf	±2σ	∑Hf _{Beam}	Возраст, млн лет	±2σ	¹⁷⁶ Hf/ ¹⁷⁷ Hf _i	εHf₀	εHfi	±2σ	δ ¹⁸ Ο (vsmow) %0	±2σ
								g30g, Коол	еньски	й купол, ор	гогнейс	:								
g30g_1	0.282627	0.282669	26	0.00240	6	0.08210	300	1.467162	38	1.886924	72	22.62	101	1.0	0.282665	-5.6	-2.0	0.9	9.68	0.32
g30g_2	0.282633	0.282675	25	0.00369	2	0.12940	210	1.467190	34	1.886931	81	22.55	101	1.0	0.282668	-5.4	-1.9	0.9	9.84	0.33
g30g_4	0.282570	0.282612	31	0.00266	22	0.09680	920	1.467171	30	1.887009	81	19.90	101	1.0	0.282607	-7.6	-4.0	1.1	9.92	0.33
g30g_6	0.282665	0.282707	33	0.00430	0	0.16150	230	1.467156	29	1.886876	76	20.12	101	1.0	0.282699	-4.2	-0.8	1.2	9.84	0.33
g30g_9	0.282053	0.282095	34	0.00092	1	0.03860	82	1.467139	53	1.886880	130	12.84	650	32.0	0.282084	-25.9	-10.3	1.2	5.82	0.20
g30g_3	0.282435	0.282477	46	0.00214	11	0.08650	260	1.467190	53	1.886880	180	12.92	650	32.0	0.282451	-12.4	2.7	1.6	5.92	0.20
g30g_7	0.281674	0.281716	63	0.00077	2	0.03228	57	1.467164	57	1.886890	180	14.46	650	32.0	0.281707	-39.3	-23.7	2.2	5.79	0.20
								g31, Коол	еньскиі	й купол, орт	огнейс									
g31_2	0.282706	0.282748	44	0.00323	7	0.12460	390	1.467168	36	1.886867	92	14.75	575	9.0	0.282714	-2.8	10.3	1.6	6.21	0.21
g31_5	0.282748	0.282790	45	0.00478	26	0.19700	1100	1.467161	49	1.886860	120	11.65	575	9.0	0.282739	-1.3	11.2	1.6	5.90	0.20
g31_5r	0.282647	0.282689	32	0.00124	2	0.04900	140	1.467181	38	1.886986	92	15.15	575	9.0	0.282676	-4.9	9.0	1.1	6.26	0.22
g31_6	0.282719	0.282761	30	0.00188	8	0.07040	210	1.467136	42	1.886888	85	13.93	575	9.0	0.282741	-2.3	11.3	1.1	6.14	0.21
g31_8	0.282687	0.282729	32	0.00330	20	0.13080	970	1.467182	37	1.886859	84	10.92	575	9.0	0.282694	-3.5	9.6	1.1	6.42	0.22
g31_9	0.282668	0.282710	28	0.00355	5	0.14860	200	1.467186	30	1.886984	68	13.77	575	9.0	0.282672	-4.1	8.8	1.0	6.21	0.21
g31_10	0.282721	0.282763	41	0.00314	6	0.13360	460	1.467142	56	1.886890	130	12.46	575	9.0	0.282729	-2.3	10.9	1.5	6.29	0.22
g31_11	0.282646	0.282688	37	0.00206	4	0.08550	130	1.467154	38	1.886979	94	11.71	575	9.0	0.282666	-4.9	8.6	1.3	6.27	0.22
g31_12	0.282655	0.282697	40	0.00318	2	0.14410	290	1.467180	44	1.886900	110	13.08	575	9.0	0.282663	-4.6	8.5	1.4	5.96	0.20
g31_13	0.282678	0.282720	29	0.00234	3	0.10560	140	1.467173	39	1.886835	73	11.83	575	9.0	0.282695	-3.8	9.7	1.0	6.16	0.21
							WF	RC, о.Вранге	ля, гра	нит (Gottlie	b et al.,	2018)								
wrc_55	0.282188	0.282230	32	0.00102	5	0.03152	65	1.467155	46	1.886996	95	19.81	710	_	0.282217	-21.1	-4.2	1.1	_	_
wrc_23	0.282344	0.282386	56	0.00154	29	0.06700	1400	1.467225	93	1.886770	150	16.67	710	_	0.282366	-15.6	1.0	2.0	_	_
wrc_18	0.282120	0.282162	120	0.00078	3	0.02834	97	1.467151	65	1.887030	300	22.79	710	_	0.282152	-23.5	-6.5	4.3	_	_
wrc_109	0.282272	0.282314	49	0.00120	1	0.05200	130	1.467210	44	1.886910	140	16.34	710	—	0.282298	-18.1	-1.4	1.7	_	_
wrc_123	0.282235	0.282277	33	0.00082	5	0.03094	75	1.467192	37	1.887000	110	15.96	710	_	0.282266	-19.4	-2.5	1.2	_	_
wrc_121	0.282216	0.282258	40	0.00088	1	0.03564	32	1.467194	41	1.886850	140	18.12	710	_	0.282247	-20.1	-3.2	1.4	_	_
wrc_135	0.282228	0.282270	30	0.00111	7	0.04520	270	1.467150	41	1.887000	100	15.66	710	_	0.282255	-19.7	-2.9	1.1	_	_
wrc_152	0.282139	0.282181	39	0.00068	2	0.02470	100	1.467150	38	1.887120	120	20.51	710	_	0.282172	-22.8	-5.8	1.4	—	_

Таблица В.2. Изотопный состав Hf в цирконах из гранитоидных интрузий Чукотки
Образец/ точка	¹⁷⁶ Нf/ ¹⁷⁷ Нf, измерено	¹⁷⁶ Нf/ ¹⁷⁷ Нf, скоррект.	±2σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	±2σ	¹⁷⁶ Yb/ ¹⁷⁷ Hf	±2σ	¹⁷⁸ Hf/ ¹⁷⁷ Hf	±2σ	¹⁸⁰ Hf/ ¹⁷⁷ Hf	±2σ	∑Hf _{Beam}	Возраст, млн лет	±2σ	¹⁷⁶ Hf/ ¹⁷⁷ Hf _i	εHf₀	εHfi	±2σ	δ ¹⁸ Ο (vsmow) %0	±2σ
					EGC2	21, Велитко	енайски	ий купол, ор	отогней	с мигматизи	грован	ный (Gottli	ieb et al., 201	18)						
egc21_1	0.282544	0.282586	50	0.00238	15	0.09170	890	1.467209	43	1.886800	150	15.08	661	11.0	0.282557	-8.5	6.7	1.8	6.37	0.22
egc21_2	0.282483	0.282525	31	0.00236	3	0.08680	180	1.467185	37	1.886859	79	13.30	661	11.0	0.282496	-10.7	4.5	1.1	5.88	0.20
egc21_3	0.282494	0.282536	29	0.00117	5	0.03840	170	1.467181	36	1.886963	85	14.90	661	11.0	0.282522	-10.3	5.5	1.0	6.20	0.21
egc21_4	0.282468	0.282510	25	0.00201	9	0.07360	320	1.467169	39	1.886950	100	14.06	661	11.0	0.282485	-11.2	4.2	0.9	5.71	0.20
egc21_11	0.282463	0.282505	34	0.00170	5	0.05890	130	1.467172	36	1.886947	94	13.01	661	11.0	0.282484	-11.4	4.1	1.2	4.81	0.16
egc21_6	0.282496	0.282538	35	0.00232	16	0.09250	820	1.467174	39	1.886818	99	11.31	661	11.0	0.282510	-10.2	5.0	1.2	_	
egc21_8	0.282453	0.282495	35	0.00258	3	0.10350	210	1.467171	41	1.886930	110	11.24	661	11.0	0.282463	-11.7	3.4	1.2	5.15	0.17
egc21_12	0.282492	0.282534	31	0.00176	4	0.06780	280	1.467207	44	1.886910	120	11.93	661	11.0	0.282512	-10.4	5.1	1.1	_	_
egc21_13	0.282457	0.282499	37	0.00174	13	0.06800	470	1.467119	46	1.886970	110	11.14	661	11.0	0.282478	-11.6	3.9	1.3	_	
egc21_10	0.282497	0.282539	40	0.00276	16	0.11170	510	1.467220	40	1.886870	140	11.64	661	11.0	0.282505	-10.2	4.9	1.4	6.29	0.22
					EGC3	86, Велитко	енайски	ий купол, ор	отогней	с мигматизи	трован	ный (Gottli	ieb et al., 201	18)						
egc36_11	0.282596	0.282638	24	0.00191	0	0.06384	78	1.467174	39	1.886924	78	13.75	612	7.3	0.282616	-6.7	7.7	0.8	5.33	0.18
egc36_12	0.282643	0.282685	25	0.00207	5	0.06860	250	1.467155	34	1.886941	68	14.26	612	7.3	0.282662	-5.0	9.3	0.9	_	_
egc36_13	0.282585	0.282627	34	0.00233	10	0.08340	250	1.467173	41	1.887019	90	13.23	612	7.3	0.282601	-7.1	7.1	1.2	_	
egc36_4	0.282660	0.282702	69	0.00225	6	0.08440	390	1.467140	79	1.886740	180	15.29	612	7.3	0.282677	-4.4	9.8	2.4	4.88	0.17
egc36_14	0.282674	0.282716	31	0.00186	5	0.06500	210	1.467180	39	1.886857	93	13.09	612	7.3	0.282695	-3.9	10.5	1.1	_	
egc36_5	0.282566	0.282608	32	0.00210	9	0.07750	510	1.467162	51	1.886956	86	12.23	612	7.3	0.282584	-7.7	6.6	1.1	4.97	0.17
egc36_6	0.282583	0.282625	40	0.00228	17	0.08860	850	1.467162	39	1.886900	130	13.33	612	7.3	0.282599	-7.1	7.1	1.4	5.06	0.18
egc36_15	0.282610	0.282652	30	0.00180	9	0.06770	250	1.467239	40	1.886950	100	11.88	612	7.3	0.282632	-6.2	8.2	1.1	_	_
egc36_7	0.282581	0.282623	31	0.00178	6	0.06910	350	1.467139	34	1.886984	89	11.58	612	7.3	0.282603	-7.2	7.2	1.1	5.15	0.17
						Zł	138, o.X	Кохова, ксеі	нолит о	ртогнейса (Akinin	et al., 2015))							
ZH38_8	0.282667	0.282709	51	0.00349	23	0.07120	120	1.467161	52	1.887210	170	22.40	626	9.0	0.282668	-4.2	9.9	1.8	3.19	0.19
ZH38_7	0.282721	0.282763	26	0.00208	15	0.05870	360	1.467193	29	1.886979	92	16.78	626	9.0	0.282739	-2.3	12.4	0.9	3.78	0.23
ZH38_5	0.282697	0.282739	23	0.00128	6	0.03640	180	1.467184	32	1.887020	81	18.93	626	9.0	0.282724	-3.1	11.8	0.8	3.95	0.24
ZH38_4	0.282735	0.282777	28	0.00309	5	0.09850	150	1.467170	36	1.887016	87	16.07	626	9.0	0.282741	-1.8	12.4	1.0	3.58	0.23
ZH38_3	0.282712	0.282754	30	0.00206	1	0.06183	24	1.467166	31	1.886970	100	15.68	626	9.0	0.282730	-2.6	12.0	1.1	3.27	0.20
ZH38_1	0.282716	0.282758	25	0.00166	3	0.04570	100	1.467187	38	1.886970	110	14.29	626	9.0	0.282739	-2.4	12.4	0.9	3.60	0.22
						Zł	H13, o.X	Кохова, ксеі	нолит о	ртогнейса (Akinin	et al., 2015))							
ZH13_7	0.282634	0.282676	41	0.00196	10	0.04470	170	1.467129	34	1.886870	140	18.71	638	11.0	0.282653	-5.3	9.6	1.5	_	_

Образец/ точка	¹⁷⁶ Нf/ ¹⁷⁷ Нf, измерено	¹⁷⁶ Нf/ ¹⁷⁷ Нf, скоррект.	$\pm 2\sigma$	¹⁷⁶ Lu/ ¹⁷⁷ Hf	±2σ	¹⁷⁶ Yb/ ¹⁷⁷ Hf	±2σ	¹⁷⁸ Hf/ ¹⁷⁷ Hf	±2σ	¹⁸⁰ Hf/ ¹⁷⁷ Hf	±2σ	∑Hf _{Beam}	Возраст, млн лет	±2σ	¹⁷⁶ Hf/ ¹⁷⁷ Hf _i	εHf	εHfi	±2σ	δ ¹⁸ Ο (vsmow) ‰	$\pm 2\sigma$
ZH13_6	0.282618	0.282660	27	0.00169	5	0.03688	86	1.467179	33	1.886920	110	16.27	638	11.0	0.282640	-5.9	9.1	1.0		_
ZH13_2	0.281575	0.281617	41	0.00090	0	0.02773	26	1.467144	51	1.886910	110	10.06	_	20.0	0.281617	-42.8	_	1.5	_	_
ZH13_1	0.282658	0.282700	30	0.00120	2	0.02958	68	1.467183	69	1.886910	170	17.64	638	11.0	0.282686	-4.5	10.8	1.1	_	_
							ŀ	KU-1, Куэкв	уньско	е поднятие,	ортогн	ейс								
ku_1	0.282550	0.282592	29	0.00153	8	0.04290	190	1.467152	38	1.886940	130	17.82	362	5.0	0.282582	-8.3	0.9	1.0	6.67	0.23
ku_2	0.282546	0.282588	38	0.00198	8	0.07030	290	1.467159	43	1.886850	120	20.87	362	5.0	0.282575	-8.5	0.6	1.3	7.04	0.23
ku_3r	0.282537	0.282579	30	0.00139	3	0.04920	110	1.467178	34	1.887029	75	15.67	362	5.0	0.282570	-8.8	0.5	1.1	6.90	0.24
ku_3c	0.282506	0.282548	26	0.00085	7	0.02620	250	1.467174	24	1.887080	110	17.40	362	5.0	0.282543	-9.9	-0.5	0.9	6.56	0.22
ku_5	0.282536	0.282578	38	0.00233	5	0.08710	230	1.467133	34	1.887052	89	11.27	362	5.0	0.282563	-8.8	0.2	1.3	6.66	0.23
ku_6	0.282534	0.282576	38	0.00182	15	0.07200	640	1.467185	44	1.886950	130	11.94	362	5.0	0.282564	-8.9	0.2	1.3	7.02	0.24
ku_7	0.282616	0.282658	30	0.00149	6	0.05860	270	1.467194	43	1.886796	85	16.66	362	5.0	0.282648	-6.0	3.2	1.1	6.42	0.22
ku_8	0.282560	0.282602	26	0.00130	6	0.04930	200	1.467183	40	1.886854	89	20.28	362	5.0	0.282594	-8.0	1.3	0.9	6.87	0.24
						Е	GC11a,	Велиткенай	йский к	супол, монцо	онит ра	нней фазы	I.							
egc11a_1.FIN	0.282400	0.282442	28	0.00065	1	0.02513	23	1.467189	40	1.886841	83	14.06	105	1.0	0.282441	-13.6	-9.8	1.0	9.93	0.20
egc11a_2.FIN	0.282391	0.282433	24	0.00055	2	0.02228	80	1.467210	32	1.887038	80	13.55	105	4.0	0.282432	-13.9	-10.1	0.8	9.73	0.19
egc11a_3.FIN	0.282431	0.282473	23	0.00076	2	0.03252	96	1.467178	36	1.887122	96	14.57	105	1.0	0.282472	-12.5	-8.7	0.8	9.56	0.19
egc11a_5.FIN	0.282478	0.282520	30	0.00045	3	0.01800	160	1.467203	35	1.886866	66	17.58	105	1.0	0.282519	-10.9	-7.1	1.1	9.22	0.18
egc11a_6.FIN	0.282415	0.282457	34	0.00097	2	0.04212	89	1.467222	44	1.886968	89	14.38	105	1.0	0.282455	-13.1	-9.3	1.2	9.58	0.19
egc11a_8.FIN	0.282367	0.282409	31	0.00045	0	0.01926	18	1.467170	42	1.887014	94	12.55	105	1.0	0.282408	-14.8	-11.0	1.1	9.90	0.19
egc11a_9r.FIN	0.282419	0.282461	24	0.00056	0	0.02478	38	1.467197	38	1.886979	82	15.67	105	1.0	0.282460	-12.9	-9.2	0.8	9.31	0.18
						Е	GC11a,	Велиткенай	йский к	супол, монцо	онит ра	нней фазы	I							
egc15_2.FIN_	0.282401	0.282443	28	0.00052	0	0.02043	9	1.467168	28	1.887040	100	23.52	107	2.0	0.282442	-13.6	-9.7	1.0	9.56	0.19
egc15_4.FIN_	0.282386	0.282428	20	0.00067	3	0.02680	110	1.467169	41	1.887024	88	21.40	107	1.0	0.282427	-14.1	-10.3	0.7	8.99	0.17
egc15_5.FIN_	0.282454	0.282496	26	0.00095	9	0.03700	390	1.467149	31	1.886969	86	18.79	107	1.0	0.282494	-11.7	-7.9	0.9	8.87	0.17
egc15_7.FIN_	0.282469	0.282511	19	0.00070	1	0.02746	45	1.467153	24	1.886863	67	20.11	107	1.0	0.282510	-11.2	-7.4	0.7	8.87	0.17
egc15_9.FIN_	0.282478	0.282520	23	0.00082	1	0.03355	89	1.467152	20	1.886875	75	19.09	107	1.0	0.282519	-10.9	-7.0	0.8	8.67	0.17
egc15_10.FIN	0.282428	0.282470	24	0.00061	1	0.02583	67	1.467148	31	1.886911	92	18.58	107	1.0	0.282469	-12.6	-8.8	0.8	8.43	0.17
egc15_11.FIN	0.282438	0.282480	20	0.00028	1	0.00885	46	1.467155	37	1.886981	57	15.90	107	1.0	0.282480	-12.3	-8.4	0.7	8.46	0.17
						EGC40	а, интр	узия мыса Э	Энмыта	гын, деформ	мирова	нный мон	цонит							
egc40a_2.FIN	0.282572	0.282614	22	0.00143	17	0.06160	810	1.467171	31	1.886828	80	17.46	103	1.0	0.282612	-7.5	-3.8	0.8	9.68	0.19

Образец/ точка	¹⁷⁶ Нf/ ¹⁷⁷ Нf, измерено	¹⁷⁶ Нf/ ¹⁷⁷ Нf, скоррект.	±2σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	±2σ	¹⁷⁶ Yb/ ¹⁷⁷ Hf	±2σ	¹⁷⁸ Hf/ ¹⁷⁷ Hf	±2σ	¹⁸⁰ Hf/ ¹⁷⁷ Hf	±2σ	∑Hf _{Beam}	Возраст, млн лет	±2σ	¹⁷⁶ Hf/ ¹⁷⁷ Hf _i	εHf	εHfi	±2σ	δ ¹⁸ Ο (vsmow) %0	$\pm 2\sigma$
egc40a_4.FIN	0.282531	0.282573	29	0.00058	0	0.02379	24	1.467174	37	1.886888	83	18.47	103	1.0	0.282572	-9.0	-5.2	1.0	8.84	0.18
egc40a_9.FIN	0.282567	0.282609	39	0.00047	1	0.02036	55	1.467197	42	1.886770	110	17.34	103	1.0	0.282608	-7.7	-4.0	1.4	9.29	0.18
egc40a_10.FI	0.282510	0.282552	52	0.00082	7	0.03760	380	1.467171	39	1.887010	140	15.59	103	1.0	0.282551	-9.7	-6.0	1.8	9.29	0.18
egc40a_11r.FI	0.282545	0.282587	30	0.00064	2	0.02990	160	1.467182	37	1.886890	100	15.20	103	1.0	0.282586	-8.5	-4.7	1.1	_	_
egc40a_12.FI	0.282432	0.282474	36	0.00061	1	0.02936	82	1.467193	38	1.886886	85	15.76	103	1.0	0.282473	-12.5	-8.7	1.3	_	_
						EG	C 31, Be	литкенайск	хий куп	ол, монцоди	орит п	оздней фаз	ы							
egc31_5.FIN_	0.282596	0.282638	34	0.00179	1	0.07650	160	1.467241	47	1.887080	110	11.67	100	1.0	0.282635	-6.7	-3.1	1.2	7.22	0.14
egc31_7.FIN_	0.282631	0.282673	35	0.00252	20	0.10900	1100	1.467214	40	1.886920	110	11.32	100	1.0	0.282669	-5.4	-1.9	1.2	6.63	0.13
egc31_9.FIN_	0.282619	0.282661	33	0.00042	2	0.01626	98	1.467208	52	1.886932	70	15.22	100	1.0	0.282661	-5.9	-2.2	1.2	6.90	0.14
egc31_10.FIN	0.282590	0.282632	44	0.00159	2	0.06888	95	1.467145	59	1.886900	130	12.54	100	1.0	0.282629	-6.9	-3.3	1.6	6.76	0.14
egc31_13.FIN	0.282613	0.282655	40	0.00169	3	0.07270	200	1.467238	47	1.886920	120	10.80	100	1.0	0.282652	-6.1	-2.5	1.4	6.14	0.12
egc31_14.FIN	0.282575	0.282617	46	0.00061	6	0.02610	290	1.467176	54	1.886950	160	11.35	100	1.0	0.282616	-7.4	-3.7	1.6	6.75	0.14
egc31_16.FIN	0.282586	0.282628	34	0.00130	3	0.05636	51	1.467195	37	1.887020	110	10.54	100	1.0	0.282626	-7.0	-3.4	1.2	6.69	0.13
egc31_18.FIN	0.282590	0.282632	36	0.00165	6	0.06980	480	1.467167	37	1.886910	110	11.68	100	1.0	0.282629	-6.9	-3.3	1.3	6.76	0.13
egc31_15.FIN	0.282593	0.282635	37	0.00135	6	0.05410	310	1.467223	43	1.886892	93	12.43	100	1.0	0.282633	-6.8	-3.2	1.3	6.39	0.13
						45	04, Вел	иткенайски	ій купо	л, лейкогра	нит поз	здней фазы	Í							
4504_1.FIN_	0.282586	0.282628	37	0.00290	5	0.08980	240	1.467160	59	1.887030	120	17.74	100	1.0	0.282623	-7.0	-3.5	1.3	7.36	0.25
4504_4.FIN_	0.282574	0.282616	26	0.00143	8	0.04990	330	1.467163	33	1.887091	83	16.90	100	1.0	0.282614	-7.5	-3.8	0.9	8.66	0.29
4504 11.FIN	0.282599	0.282641	32	0.00185	5	0.05940	110	1.467167	36	1.886900	94	17.24	100	1.0	0.282638	-6.6	-3.0	1.1	7.02	0.23
4504 12.FIN	0.282609	0.282651	37	0.00125	8	0.04680	370	1.467180	50	1.886970	140	15.72	100	1.0	0.282649	-6.2	-2.6	1.3	7.18	0.25
4504 13.FIN	0.282549	0.282591	32	0.00040	2	0.01332	94	1.467150	39	1.886910	110	17.66	100	1.0	0.282591	-8.3	-4.7	1.1	7.36	0.25
4504 14.FIN	0.282737	0.282779	32	0.00111	4	0.03858	98	1.467192	30	1.886840	130	20.61	620	5.0	0.282766	-1.7	13.2	1.1	5.84	0.20
4504 15.FIN	0.282692	0.282734	46	0.00229	6	0.09020	390	1.467190	47	1.886750	200	9.70	620	5.0	0.282708	-3.3	11.1	1.6	_	_
4504 10.FIN	0.282515	0.282557	49	0.00168	19	0.06920	750	1.467163	45	1.887040	120	12.79	100	1.0	0.282554	-9.5	-5.9	1.7	8.13	0.27
						EGC30	, Велит	кенайский	купол,	Grt-Ms лейк	ограни	ит поздней	фазы							
egc30 1.FIN	0.282639	0.282681	23	0.00151	2	0.06090	140	1.467149	30	1.886940	70	20.25	103	1.0	0.282678	-5.2	-1.5	0.8	7.86	0.16
egc30 2.FIN	0.282496	0.282538	29	0.00107	2	0.04430	120	1.467173	38	1.886938	80	16.44	103	1.0	0.282536	-10.2	-6.5	1.0	8.73	0.17
egc30 4.FIN	0.282627	0.282669	21	0.00245	5	0.10180	330	1.467183	31	1.886953	80	19.79	103	1.0	0.282665	-5.6	-2.0	0.7	9.12	0.18
egc30 5.FIN	0.282558	0.282600	27	0.00195	4	0.07770	220	1.467197	30	1.886920	70	23.23	103	1.0	0.282597	-8.0	-4.4	1.0	9.07	0.18
egc30_7.FIN_	0.282622	0.282664	25	0.00128	3	0.05670	120	1.467201	30	1.886960	110	18.38	103	1.0	0.282662	-5.8	-2.1	0.9	8.07	0.16

Ofmanaw/	¹⁷⁶ Hf/	¹⁷⁶ Hf/		1761/		176 V/ L/		178TT£/		180 TT£ /			Deamage		176 11£ /				$\delta^{18}O$	
тоция	¹⁷⁷ Hf,	¹⁷⁷ Hf,	$\pm 2\sigma$	177 LIF	$\pm 2\sigma$	177 LIF	$\pm 2\sigma$	177 LIF	$\pm 2\sigma$	177 LIF	$\pm 2\sigma$	$\sum H f_{Beam}$	возраст,	$\pm 2\sigma$	177 DF	εHf ₀	$\epsilon H f_i$	$\pm 2\sigma$	(VSMOW)	$\pm 2\sigma$
ТОЧКа	измерено	скоррект.		111		111		111		111			млн лет		111 _i				‰	
egc30_10.FIN	0.282660	0.282702	32	0.00296	9	0.12980	560	1.467184	46	1.886869	88	20.19	103	1.0	0.282697	-4.4	-0.8	1.1	6.24	0.13
egc30_13.FIN	0.282579	0.282621	30	0.00134	2	0.06027	69	1.467201	45	1.886897	87	13.31	103	1.0	0.282619	-7.3	-3.6	1.1	6.52	0.13
egc30_15.FIN	0.282726	0.282768	31	0.00333	7	0.15810	670	1.467233	31	1.886860	100	18.83	103	1.0	0.282762	-2.1	1.5	1.1	6.44	0.13
egc30_16.FIN	0.282693	0.282735	29	0.00242	4	0.10970	330	1.467179	31	1.886930	76	17.64	600	10.0	0.282708	-3.3	10.7	1.0	5.84	0.12

Примечание. Для изотопных отношений ¹⁷⁶Hf/¹⁷⁷Hf, ¹⁷⁶Lu/¹⁷⁷Hf, ¹⁷⁶Yb¹⁷⁷Hf, ¹⁷⁸Hf/¹⁷⁷Hf, ¹⁸⁰Hf/¹⁷⁷Hf значения $\pm 2\sigma$ приведены для последних значащих цифр.

Образец/	160	±2 <i>a</i>	180	±2 <i>a</i>	180/160	±2 <i>a</i>	δ ¹⁸ Ω%-	±2 <i>a</i>	$\delta^{18}O_{(VSMOW)}$	±2 <i>c</i>	Возраст,	$\delta^{18}O_{adj.975000}$	+20
точка	0	±20	0	±2 0	0/0	±26	0 0700	±20	‰	±26	млн лет	‰	±26
						Велиткенай	іский купол						
				EG	С15, Велитке	найский ку	пол, монцоні	ит ранней	фазы				
EGC15@1.ai	2.35E+09	1.54E+06	4.76E+06	3.16E+03	2.0210E-03	1.03E-07	9.3	0.1	8.4	0.3	105	8.7	0.2
EGC15@2.ai	2.37E+09	4.26E+05	4.79E+06	9.83E+02	2.0229E-03	1.33E-07	10.2	0.1	9.2	0.4	105	9.6	0.2
EGC15@3.ai	2.36E+09	5.18E+05	4.78E+06	1.08E+03	2.0210E-03	1.35E-07	9.2	0.1	8.3	0.3	105	8.6	0.2
EGC15@4.ai	2.38E+09	1.65E+06	4.82E+06	3.39E+03	2.0217E-03	7.67E-08	9.6	0.0	8.7	0.3	105	9.0	0.2
EGC15@5.ai	2.35E+09	3.45E+06	4.75E+06	7.00E+03	2.0214E-03	1.20E-07	9.5	0.1	8.6	0.3	105	8.9	0.2
EGC15@6.ai	2.35E+09	6.42E+05	4.76E+06	1.44E+03	2.0217E-03	1.96E-07	9.6	0.1	8.7	0.4	105	9.0	0.2
EGC15@7.ai	2.36E+09	6.26E+05	4.77E+06	1.31E+03	2.0214E-03	1.53E-07	9.5	0.1	8.6	0.3	105	8.9	0.2
EGC15@8.ai	2.37E+09	1.29E+06	4.78E+06	2.43E+03	2.0199E-03	1.52E-07	8.7	0.1	7.9	0.3	105	8.2	0.2
EGC15@9.ai	2.35E+09	1.47E+06	4.76E+06	3.05E+03	2.0210E-03	1.17E-07	9.2	0.1	8.4	0.3	105	8.7	0.2
EGC15@10.	2.14E+09	2.19E+05	4.32E+06	5.85E+02	2.0205E-03	1.49E-07	9.0	0.1	8.1	0.3	105	8.4	0.2
EGC15@11.	2.35E+09	7.13E+05	4.75E+06	1.63E+03	2.0206E-03	1.57E-07	9.0	0.1	8.2	0.3	105	8.5	0.2
EGC15@12.	2.30E+09	1.79E+06	4.64E+06	3.67E+03	2.0202E-03	1.34E-07	8.8	0.1	8.0	0.3	105	8.3	0.2
				EGO	С11а, Велитк	енайский ку	пол, монцон	ит ранней	і фазы				
EGC11A@1	2.86E+09	3.72E+05	5.79E+06	7.48E+02	2.0227E-03	1.03E-07	10.1	0.1	9.2	0.4	106	9.6	0.2
EGC11A@1	2.89E+09	5.78E+05	5.85E+06	1.23E+03	2.0235E-03	1.55E-07	10.5	0.1	9.6	0.4	106	9.9	0.2
EGC11A@2.	2.89E+09	7.39E+05	5.85E+06	1.55E+03	2.0231E-03	1.79E-07	10.3	0.1	9.4	0.4	106	9.7	0.2
EGC11A@3.	2.85E+09	5.70E+06	5.77E+06	1.15E+04	2.0227E-03	1.21E-07	10.1	0.1	9.2	0.4	106	9.6	0.2
EGC11A@4.	2.88E+09	9.57E+05	5.82E+06	1.74E+03	2.0229E-03	1.24E-07	10.2	0.1	9.3	0.4	106	9.7	0.2
EGC11A@5	2.90E+09	1.10E+06	5.86E+06	2.20E+03	2.0220E-03	1.53E-07	9.8	0.1	8.9	0.4	106	9.2	0.2
EGC11A@6	2.89E+09	1.03E+06	5.85E+06	2.07E+03	2.0221E-03	1.49E-07	9.8	0.1	8.9	0.4	106	9.3	0.2
EGC11A@6	2.90E+09	5.66E+05	5.86E+06	1.21E+03	2.0228E-03	1.32E-07	10.1	0.1	9.3	0.4	106	9.6	0.2
EGC11A@7.	2.88E+09	8.55E+05	5.82E+06	1.61E+03	2.0221E-03	1.50E-07	9.8	0.1	8.9	0.4	106	9.3	0.2
EGC11A@8	2.90E+09	1.02E+06	5.87E+06	2.12E+03	2.0235E-03	1.30E-07	10.5	0.1	9.6	0.4	106	9.9	0.2
EGC11A@8	2.88E+09	6.14E+05	5.83E+06	1.39E+03	2.0227E-03	1.78E-07	10.1	0.1	9.2	0.4	106	9.5	0.2
EGC11A@9	2.88E+09	7.12E+06	5.83E+06	1.42E+04	2.0224E-03	1.63E-07	10.0	0.1	9.1	0.4	106	9.4	0.2
EGC11@9R.	2.89E+09	1.03E+06	5.85E+06	2.18E+03	2.0222E-03	1.27E-07	9.8	0.1	9.0	0.4	106	9.3	0.2
EGC11A@1	2.03E+09	6.88E+06	4.11E+06	1.40E+04	2.0224E-03	1.76E-07	9.9	0.1	9.1	0.4	106	9.4	0.2
EGC11A@1	2.84E+09	3.53E+06	5.74E+06	6.93E+03	2.0225E-03	1.76E-07	10.0	0.1	9.1	0.4	106	9.5	0.2

Таблица В.3. Изотопный состав О в цирконах из гранитоидных интрузий Чукотки

Образец/									$\delta^{18}O_{(VSMOW)}$		Возраст,	$\delta^{18}O_{adj,975000}$	
точка	¹⁶ O	$\pm 2\sigma$	¹⁸ O	$\pm 2\sigma$	¹⁸ O/ ¹⁶ O	$\pm 2\sigma$	δ ¹⁸ O‰	$\pm 2\sigma$	%0	$\pm 2\sigma$	млн лет	%	$\pm 2\sigma$
EGC11A@1	2.90E+09	3.88E+05	5.86E+06	8.20E+02	2.0220E-03	9.15E-08	9.7	0.0	8.9	0.4	106	9.2	0.2
EGC11A@1	2.90E+09	5.98E+05	5.85E+06	1.34E+03	2.0212E-03	1.79E-07	9.3	0.1	8.5	0.4	106	8.8	0.2
EGC11A@1	2.36E+09	8.71E+05	4.76E+06	2.03E+03	2.0228E-03	1.27E-07	10.1	0.1	9.2	0.4	106	9.5	0.2
EGC11A@1	2.34E+09	7.03E+05	4.74E+06	1.49E+03	2.0229E-03	1.31E-07	10.2	0.1	9.2	0.4	106	9.6	0.2
EGC11A@1	2.33E+09	3.65E+05	4.72E+06	7.84E+02	2.0224E-03	1.68E-07	9.9	0.1	9.0	0.4	106	9.3	0.2
EGC11A@1	2.33E+09	1.93E+05	4.71E+06	5.58E+02	2.0218E-03	1.51E-07	9.6	0.1	8.7	0.4	106	9.0	0.2
EGC11A@1	2.32E+09	3.43E+05	4.69E+06	8.18E+02	2.0222E-03	1.44E-07	9.8	0.1	8.9	0.4	106	9.2	0.2
EGC11A@1	2.30E+09	3.57E+05	4.65E+06	8.27E+02	2.0216E-03	1.11E-07	9.5	0.1	8.6	0.3	106	8.9	0.2
EGC11A@1	2.32E+09	9.60E+05	4.69E+06	1.92E+03	2.0225E-03	1.27E-07	10.0	0.1	9.1	0.4	106	9.4	0.2
EGC11A@1	2.33E+09	5.65E+05	4.71E+06	1.34E+03	2.0228E-03	1.35E-07	10.2	0.1	9.2	0.4	106	9.5	0.2
EGC11A@1	2.33E+09	6.40E+05	4.70E+06	1.43E+03	2.0227E-03	1.41E-07	10.1	0.1	9.1	0.4	106	9.4	0.2
				4504	4, Велиткенай	іский купол	, лейкогран	ит поздней	фазы				
4504@3C.ai	3.19E+09	4.27E+05	6.42E+06	9.51E+02	2.0148E-03	8.72E-08	6.2	0.0	5.7	0.2	608	5.8	0.1
4504@6.ais	3.16E+09	9.07E+05	6.38E+06	2.15E+03	2.0168E-03	1.33E-07	7.1	0.1	6.6	0.2	608	6.8	0.1
4504@4C	3.10E+09	3.92E+05	6.26E+06	8.08E+02	2.0173E-03	9.34E-08	7.4	0.0	6.8	0.2	100	7.0	0.1
4504@9.ais	3.15E+09	2.09E+06	6.36E+06	4.17E+03	2.0177E-03	1.43E-07	7.6	0.1	7.0	0.2	100	7.2	0.1
4504@1.ais	3.21E+09	2.99E+06	6.48E+06	6.14E+03	2.0181E-03	1.23E-07	7.8	0.1	7.2	0.2	100	7.4	0.1
4504@2.ais	3.21E+09	1.76E+06	6.47E+06	3.60E+03	2.0183E-03	9.82E-08	7.9	0.0	7.2	0.3	100	7.5	0.1
4504@8.ais	3.18E+09	1.19E+06	6.42E+06	2.49E+03	2.0184E-03	1.07E-07	7.9	0.1	7.3	0.3	100	7.5	0.1
4504@5c.ais	3.10E+09	6.15E+05	6.25E+06	1.20E+03	2.0184E-03	1.01E-07	7.9	0.1	7.3	0.3	100	7.5	0.1
4504@10.ais	3.17E+09	8.26E+05	6.40E+06	1.67E+03	2.0188E-03	1.05E-07	8.1	0.1	7.5	0.3	100	7.7	0.1
4504@5R.ai	3.19E+09	1.40E+06	6.44E+06	2.76E+03	2.0193E-03	1.11E-07	8.4	0.1	7.7	0.3	100	7.9	0.1
4504@7.ais	3.14E+09	5.69E+05	6.34E+06	1.21E+03	2.0197E-03	6.63E-08	8.6	0.0	7.9	0.3	100	8.1	0.1
4504@4.ais	3.20E+09	5.79E+05	6.46E+06	1.30E+03	2.0208E-03	1.13E-07	9.1	0.1	8.4	0.3	100	8.7	0.1
				EGC3	81, Велиткена	иский купо	л, монцодио	рит поздне	ей фазы				
EGC31@1.ai	2.86E+09	4.86E+05	5.77E+06	1.27E+03	2.0167E-03	1.34E-07	7.1	0.1	6.5	0.3	100	6.7	0.1
EGC31@2.ai	2.86E+09	1.18E+06	5.76E+06	2.36E+03	2.0173E-03	1.28E-07	7.4	0.1	6.7	0.3	100	7.0	0.1
EGC31@3.ai	2.89E+09	2.04E+06	5.82E+06	4.18E+03	2.0162E-03	1.38E-07	6.9	0.1	6.2	0.3	100	6.5	0.1
EGC31@4.ai	2.86E+09	5.02E+05	5.78E+06	1.02E+03	2.0179E-03	1.50E-07	7.7	0.1	7.0	0.3	100	7.2	0.1
EGC31@5.ai	2.89E+09	5.54E+05	5.84E+06	1.20E+03	2.0178E-03	1.37E-07	7.7	0.1	7.0	0.3	100	7.2	0.1
EGC31@6.ai	2.86E+09	7.75E+05	5.77E+06	1.46E+03	2.0173E-03	1.23E-07	7.4	0.1	6.8	0.3	100	7.0	0.1

Образец/	1(0		18 0		180.460		218 2 4 ($\delta^{18}O$ (VSMOW)		Возраст,	$\delta^{18}O_{adj.975000}$	
точка	0	±2σ	0°1	±2σ	¹⁸ O/ ¹⁶ O	±2σ	ð"0‰	±2σ	%0	±2σ	млн лет	‰	±2σ
EGC31@7.ai	2.78E+09	1.86E+06	5.61E+06	3.67E+03	2.0166E-03	1.28E-07	7.0	0.1	6.4	0.3	100	6.6	0.1
EGC31@8R.	2.70E+09	1.63E+06	5.45E+06	3.28E+03	2.0164E-03	1.28E-07	7.0	0.1	6.3	0.3	100	6.6	0.1
EGC31@8C.	2.65E+09	1.87E+06	5.34E+06	3.66E+03	2.0174E-03	1.35E-07	7.5	0.1	6.8	0.3	100	7.0	0.1
EGC31@9.ai	2.66E+09	4.52E+05	5.36E+06	8.91E+02	2.0171E-03	1.07E-07	7.3	0.1	6.7	0.3	100	6.9	0.1
EGC31@10.	2.63E+09	1.01E+06	5.31E+06	2.04E+03	2.0168E-03	1.54E-07	7.2	0.1	6.5	0.3	100	6.8	0.1
EGC31@11.	2.52E+09	2.48E+06	5.08E+06	4.86E+03	2.0170E-03	1.29E-07	7.3	0.1	6.6	0.3	100	6.9	0.1
EGC31@12.	2.49E+09	4.98E+05	5.03E+06	1.14E+03	2.0183E-03	1.14E-07	7.9	0.1	7.2	0.3	100	7.5	0.1
EGC31@13	2.47E+09	4.63E+05	4.97E+06	1.10E+03	2.0155E-03	1.73E-07	6.5	0.1	5.9	0.2	100	6.1	0.1
EGC31@13	2.41E+09	4.79E+05	4.86E+06	1.07E+03	2.0161E-03	1.01E-07	6.8	0.1	6.2	0.3	100	6.4	0.1
EGC31@14	2.42E+09	7.26E+05	4.88E+06	1.48E+03	2.0171E-03	1.64E-07	7.3	0.1	6.6	0.3	100	6.9	0.1
EGC31@14	2.43E+09	5.21E+05	4.89E+06	1.07E+03	2.0168E-03	1.95E-07	7.2	0.1	6.5	0.3	100	6.8	0.1
EGC31@15.	2.36E+09	3.14E+06	4.75E+06	6.24E+03	2.0161E-03	1.97E-07	6.8	0.1	6.2	0.3	100	6.4	0.1
EGC31@16.	2.41E+09	8.86E+05	4.86E+06	1.59E+03	2.0167E-03	1.60E-07	7.1	0.1	6.5	0.3	100	6.7	0.1
EGC31@17.	2.41E+09	8.30E+05	4.85E+06	1.80E+03	2.0164E-03	1.51E-07	7.0	0.1	6.3	0.3	100	6.6	0.1
EGC31@18.	2.40E+09	8.00E+05	4.84E+06	1.59E+03	2.0168E-03	7.79E-08	7.2	0.0	6.5	0.3	100	6.8	0.1
EGC31@19.	2.39E+09	8.33E+05	4.83E+06	1.68E+03	2.0163E-03	9.93E-08	6.9	0.0	6.3	0.3	100	6.5	0.1
				EGC30, E	Велиткенайск	хий купол, G	art-Ms лейко	гранит по	здней фазы				
EGC30@1.ai	2.87E+09	1.12E+06	5.79E+06	2.37E+03	2.0191E-03	1.88E-07	8.3	0.1	7.6	0.3	102	7.9	0.2
EGC30@2.ai	2.90E+09	1.90E+06	5.86E+06	3.91E+03	2.0210E-03	1.38E-07	9.2	0.1	8.4	0.3	102	8.7	0.2
EGC30@3.ai	2.89E+09	3.79E+05	5.84E+06	8.03E+02	2.0197E-03	9.93E-08	8.6	0.0	7.8	0.3	102	8.1	0.2
EGC30@4.ai	2.87E+09	3.76E+06	5.81E+06	7.65E+03	2.0218E-03	1.24E-07	9.6	0.1	8.8	0.4	102	9.1	0.2
EGC30@5.ai	2.89E+09	7.91E+05	5.85E+06	1.82E+03	2.0217E-03	1.39E-07	9.6	0.1	8.8	0.4	102	9.1	0.2
EGC30@6.ai	2.81E+09	3.91E+06	5.68E+06	7.86E+03	2.0184E-03	1.44E-07	8.0	0.1	7.3	0.3	102	7.5	0.1
EGC30@7.ai	2.84E+09	4.60E+05	5.73E+06	1.25E+03	2.0196E-03	1.46E-07	8.5	0.1	7.8	0.3	102	8.1	0.2
EGC30@8.ai	2.83E+09	7.50E+05	5.72E+06	1.52E+03	2.0201E-03	1.24E-07	8.8	0.1	8.0	0.3	102	8.3	0.2
EGC30@9.ai	2.54E+09	5.49E+06	5.13E+06	1.11E+04	2.0167E-03	1.05E-07	7.1	0.1	6.5	0.3	102	6.7	0.1
EGC30@10	2.86E+09	8.45E+05	5.76E+06	1.83E+03	2.0157E-03	1.46E-07	6.6	0.1	6.0	0.3	102	6.2	0.1
EGC30@10	2.87E+09	2.61E+06	5.79E+06	5.27E+03	2.0163E-03	1.23E-07	6.9	0.1	6.3	0.3	102	6.5	0.1
EGC30@11.	2.87E+09	7.60E+05	5.79E+06	1.56E+03	2.0160E-03	1.63E-07	6.7	0.1	6.1	0.3	102	6.4	0.1
EGC30@12.	2.88E+09	4.40E+05	5.81E+06	9.34E+02	2.0190E-03	1.10E-07	8.2	0.1	7.5	0.3	102	7.8	0.2
EGC30@13.	2.87E+09	3.14E+05	5.79E+06	6.73E+02	2.0163E-03	9.90E-08	6.9	0.0	6.3	0.3	102	6.5	0.1

Образец/	160	±2-	180	±2-	180/160	±2 <i>-</i>	\$1800/	±2-	$\delta^{18}O_{(VSMOW)}$	±2-	Возраст,	$\delta^{18}O_{adj.975000}$	+2-
точка	0	±2σ	0	±2 6	··· U /··· U	±2σ	0 ^{~~} U‰	±26	‰	±2σ	млн лет	‰	±2σ
EGC30@14.	2.88E+09	7.65E+05	5.82E+06	1.47E+03	2.0199E-03	1.56E-07	8.7	0.1	7.9	0.3	102	8.2	0.2
EGC30@15.	2.90E+09	5.47E+05	5.84E+06	1.07E+03	2.0161E-03	1.18E-07	6.8	0.1	6.2	0.3	102	6.4	0.1
EGC30@16.	2.90E+09	6.48E+05	5.84E+06	1.40E+03	2.0149E-03	1.03E-07	6.2	0.1	5.6	0.2	102	5.8	0.1
			EGC36	б, Велиткен	айский купол	1, ортогнейс	мигматизир	ованный	(Gottlieb et al., 2	2018)			
EGC36@8C.	3.30E+09	8.79E+05	6.64E+06	1.60E+03	2.0118E-03	1.22E-07	4.6	0.1	4.3	0.2	612	4.4	0.1
EGC36@2.ai	3.34E+09	8.71E+05	6.72E+06	1.86E+03	2.0127E-03	1.29E-07	5.1	0.1	4.7	0.2	612	4.8	0.1
EGC36@9.ai	3.31E+09	4.49E+05	6.65E+06	9.05E+02	2.0128E-03	7.61E-08	5.1	0.0	4.7	0.2	612	4.9	0.1
EGC36@4.ai	3.29E+09	5.45E+05	6.62E+06	1.22E+03	2.0128E-03	1.23E-07	5.2	0.1	4.7	0.2	612	4.9	0.1
EGC36@5.ai	3.31E+09	1.18E+06	6.67E+06	2.29E+03	2.0130E-03	1.25E-07	5.2	0.1	4.8	0.2	612	5.0	0.1
EGC36@3.ai	3.33E+09	1.21E+06	6.70E+06	2.55E+03	2.0131E-03	1.13E-07	5.3	0.1	4.9	0.2	612	5.0	0.1
EGC36@6.ai	3.32E+09	7.23E+05	6.68E+06	1.51E+03	2.0132E-03	1.30E-07	5.3	0.1	4.9	0.2	612	5.1	0.1
EGC36@7R.	3.29E+09	4.68E+05	6.62E+06	7.88E+02	2.0132E-03	1.11E-07	5.4	0.1	4.9	0.2	612	5.1	0.1
egc36@10.ai	3.09E+09	6.44E+05	6.22E+06	1.16E+03	2.0133E-03	1.13E-07	5.4	0.1	4.9	0.2	612	5.1	0.1
EGC36@7.ai	3.31E+09	6.19E+05	6.66E+06	1.26E+03	2.0134E-03	6.35E-08	5.4	0.0	5.0	0.2	612	5.1	0.1
EGC36@1.ai	3.35E+09	5.69E+05	6.74E+06	1.18E+03	2.0134E-03	9.02E-08	5.5	0.0	5.0	0.2	612	5.2	0.1
egc36@11.ai	3.11E+09	8.17E+05	6.25E+06	1.82E+03	2.0138E-03	1.05E-07	5.6	0.1	5.2	0.2	612	5.3	0.1
			EGC21	l, Велиткен	айский купол	1, ортогнейс	мигматизир	ованный	(Gottlieb et al., 2	2018)			
EGC21@6.ai	3.16E+09	5.22E+05	6.36E+06	1.01E+03	2.0123E-03	1.03E-07	4.9	0.1	4.5	0.2	661	4.6	0.1
EGC21@11.	3.08E+09	5.64E+05	6.20E+06	1.17E+03	2.0127E-03	8.22E-08	5.1	0.0	4.7	0.2	661	4.8	0.1
EGC21@8.ai	3.15E+09	4.32E+05	6.35E+06	8.37E+02	2.0134E-03	8.11E-08	5.4	0.0	5.0	0.2	661	5.2	0.1
EGC21@4.ai	3.16E+09	5.87E+05	6.36E+06	1.13E+03	2.0146E-03	1.26E-07	6.0	0.1	5.5	0.2	661	5.7	0.1
EGC21@2.ai	3.17E+09	9.60E+05	6.39E+06	1.91E+03	2.0149E-03	1.34E-07	6.2	0.1	5.7	0.2	661	5.9	0.1
EGC21@7.ai	3.15E+09	9.39E+05	6.35E+06	1.81E+03	2.0154E-03	7.59E-08	6.4	0.0	5.9	0.2	661	6.1	0.1
EGC21@5.ai	3.16E+09	5.01E+06	6.37E+06	1.02E+04	2.0155E-03	9.47E-08	6.5	0.0	6.0	0.2	661	6.1	0.1
EGC21@3.ai	3.17E+09	5.25E+05	6.38E+06	1.15E+03	2.0156E-03	1.26E-07	6.5	0.1	6.0	0.2	661	6.2	0.1
EGC21@10.	3.16E+09	6.89E+06	6.37E+06	1.42E+04	2.0158E-03	1.62E-07	6.6	0.1	6.1	0.2	661	6.3	0.1
EGC21@9.ai	3.15E+09	7.10E+05	6.35E+06	1.57E+03	2.0158E-03	1.30E-07	6.7	0.1	6.1	0.2	661	6.3	0.1
EGC21@1.ai	3.17E+09	4.42E+05	6.39E+06	9.88E+02	2.0160E-03	1.08E-07	6.7	0.1	6.2	0.2	661	6.4	0.1
					Чаунск	ая субпрови	нция грани	гоидов					

EGC40a, интрузия мыса Энмытагын, деформированный монцонит

-2.50E+0.9 $0.4/E+0.5$ $4.05E+0.0$ $1.50E+0.5$ $2.0225E+0.5$ $0.20E+0.6$ 9.9 0.0 9.0 0.4 1.04 9.5	9.3 0.2	104	0.4	9.0	0.0	9.9	8.26E-08	2.0223E-03	1.30E+03	4.65E+06	6.47E+05	2.30E+09	EGC40A@1
---	---------	-----	-----	-----	-----	-----	----------	------------	----------	----------	----------	----------	----------

Образец/	160		180		180.460		318004		$\delta^{18}O$ (VSMOW)		Возраст,	$\delta^{18}O_{adj.975000}$	
точка	O	±2σ	180	±2σ	¹⁸ O/ ¹⁶ O	±2σ	δ ¹⁸ O‰	±2σ	%0	±2σ	млн лет	‰	±2σ
EGC40A@1	2.30E+09	8.97E+05	4.64E+06	1.67E+03	2.0219E-03	1.75E-07	9.7	0.1	8.8	0.4	104	9.1	0.2
EGC40@2C.	2.35E+09	3.70E+05	4.75E+06	6.40E+02	2.0232E-03	1.62E-07	10.3	0.1	9.4	0.4	104	9.7	0.2
EGC40@2R.	2.33E+09	6.04E+05	4.72E+06	1.33E+03	2.0235E-03	1.53E-07	10.5	0.1	9.5	0.4	104	9.8	0.2
EGC40@3C.	2.34E+09	7.60E+05	4.74E+06	1.41E+03	2.0220E-03	1.83E-07	9.7	0.1	8.8	0.4	104	9.1	0.2
EGC40A@3	2.29E+09	1.89E+06	4.63E+06	3.79E+03	2.0226E-03	1.62E-07	10.0	0.1	9.1	0.4	104	9.4	0.2
EGC40A@4.	2.36E+09	1.03E+06	4.77E+06	2.17E+03	2.0214E-03	1.86E-07	9.4	0.1	8.5	0.4	104	8.8	0.2
EGC40A@5.	2.33E+09	2.73E+06	4.71E+06	5.65E+03	2.0213E-03	1.59E-07	9.4	0.1	8.5	0.3	104	8.8	0.2
EGC40A@6	2.34E+09	4.86E+05	4.74E+06	1.11E+03	2.0222E-03	1.66E-07	9.9	0.1	8.9	0.4	104	9.2	0.2
EGC40A@6	2.34E+09	5.63E+05	4.72E+06	1.16E+03	2.0224E-03	1.42E-07	9.9	0.1	9.0	0.4	104	9.3	0.2
EGC40A@7	2.36E+09	1.70E+06	4.77E+06	3.62E+03	2.0221E-03	1.18E-07	9.8	0.1	8.9	0.4	104	9.2	0.2
EGC40A@7	2.35E+09	1.34E+06	4.75E+06	2.71E+03	2.0222E-03	1.22E-07	9.8	0.1	8.9	0.4	104	9.2	0.2
EGC40A@8.	2.29E+09	5.69E+05	4.63E+06	1.19E+03	2.0199E-03	1.44E-07	8.7	0.1	7.9	0.3	104	8.2	0.2
EGC40A@9	2.31E+09	4.51E+05	4.67E+06	9.32E+02	2.0219E-03	1.30E-07	9.7	0.1	8.8	0.4	104	9.1	0.2
EGC40A@9	2.34E+09	4.27E+05	4.73E+06	9.23E+02	2.0223E-03	1.17E-07	9.9	0.1	9.0	0.4	104	9.3	0.2
EGC40A@1	2.35E+09	1.01E+06	4.76E+06	2.29E+03	2.0223E-03	1.32E-07	9.9	0.1	9.0	0.4	104	9.3	0.2
					EGC40a, иі	трузия мыс	а Энмытагь	ін, гранит					
EGC41@1.ai	2.38E+09	4.96E+05	4.80E+06	1.13E+03	2.0181E-03	1.52E-07	7.8	0.1	7.1	0.3	105	7.3	0.1
EGC41@2.ai	2.38E+09	1.09E+06	4.82E+06	2.30E+03	2.0207E-03	1.71E-07	9.1	0.1	8.3	0.3	105	8.6	0.2
EGC41@3.ai	2.39E+09	2.80E+06	4.84E+06	5.57E+03	2.0227E-03	1.82E-07	10.1	0.1	9.2	0.4	105	9.5	0.2
EGC41@4R.	2.41E+09	5.64E+05	4.88E+06	1.27E+03	2.0212E-03	1.19E-07	9.3	0.1	8.5	0.3	105	8.8	0.2
EGC41@4C.	2.39E+09	6.69E+05	4.82E+06	1.70E+03	2.0198E-03	1.98E-07	8.7	0.1	7.9	0.3	105	8.2	0.2
EGC41@5.ai	2.38E+09	9.06E+05	4.81E+06	1.80E+03	2.0208E-03	1.32E-07	9.1	0.1	8.3	0.3	105	8.6	0.2
EGC41@6.ai	2.39E+09	6.58E+05	4.83E+06	1.38E+03	2.0202E-03	1.67E-07	8.8	0.1	8.0	0.3	105	8.3	0.2
EGC41@7.ai	2.40E+09	1.37E+06	4.84E+06	2.84E+03	2.0212E-03	1.47E-07	9.3	0.1	8.5	0.3	105	8.8	0.2
EGC41@8.ai	2.94E+09	4.24E+06	5.94E+06	8.63E+03	2.0167E-03	9.46E-08	7.1	0.0	6.5	0.3	105	6.7	0.1
EGC41@9.ai	2.93E+09	4.23E+06	5.91E+06	8.70E+03	2.0165E-03	1.31E-07	7.0	0.1	6.4	0.3	105	6.6	0.1
EGC41@10.	2.92E+09	5.09E+06	5.89E+06	1.04E+04	2.0166E-03	1.29E-07	7.0	0.1	6.4	0.3	105	6.6	0.1
EGC41@11.	2.39E+09	7.45E+05	4.84E+06	1.52E+03	2.0214E-03	1.49E-07	9.5	0.1	8.6	0.4	105	8.9	0.2
					Ортог	нейсы фунд	амента Чуко	отки:					
					EGC6, Пе	етымельскі	ий массив, м	онцонит					
EGC6@1R.a	2.36E+09	4.36E+05	4.77E+06	1.02E+03	2.0198E-03	1.63E-07	8.6	0.1	7.8	0.3	107	8.1	0.2

Образец/							10		$\delta^{18}O_{(VSMOW)}$		Возраст,	$\delta^{18}O_{adj.975000}$	
точка	¹⁶ O	$\pm 2\sigma$	¹⁸ O	$\pm 2\sigma$	¹⁸ O/ ¹⁶ O	$\pm 2\sigma$	δ ¹⁸ O‰	$\pm 2\sigma$	%0	$\pm 2\sigma$	млн лет	‰	$\pm 2\sigma$
EGC6@1C.a	2.37E+09	1.31E+06	4.78E+06	2.53E+03	2.0203E-03	1.49E-07	8.9	0.1	8.0	0.3	107	8.3	0.2
EGC6@2C.a	2.39E+09	2.17E+06	4.84E+06	4.40E+03	2.0205E-03	7.52E-08	9.0	0.0	8.1	0.3	107	8.4	0.2
EGC6@2R.a	2.35E+09	1.15E+06	4.75E+06	2.41E+03	2.0224E-03	1.35E-07	10.0	0.1	9.0	0.4	107	9.3	0.2
EGC6@3R.a	2.36E+09	9.52E+05	4.76E+06	1.90E+03	2.0209E-03	1.64E-07	9.2	0.1	8.3	0.3	107	8.6	0.2
EGC6@3C.a	2.37E+09	8.79E+05	4.79E+06	1.70E+03	2.0209E-03	1.72E-07	9.2	0.1	8.3	0.3	107	8.6	0.2
EGC6@4C.a	2.36E+09	5.83E+05	4.76E+06	1.16E+03	2.0196E-03	1.66E-07	8.6	0.1	7.8	0.3	107	8.0	0.2
EGC6@4R.a	2.35E+09	1.30E+06	4.74E+06	2.42E+03	2.0204E-03	1.39E-07	9.0	0.1	8.1	0.3	107	8.4	0.2
EGC6@5R.a	2.32E+09	1.95E+06	4.69E+06	3.92E+03	2.0190E-03	2.02E-07	8.3	0.1	7.5	0.3	107	7.7	0.2
EGC6@5C.a	2.35E+09	1.14E+06	4.76E+06	2.45E+03	2.0209E-03	1.38E-07	9.2	0.1	8.3	0.3	107	8.6	0.2
					KU-1, Ку	эквуньское	поднятие, о	ртогнейс					
KU@1C.ais	3.22E+09	9.93E+05	6.49E+06	1.93E+03	2.0166E-03	1.43E-07	7.0	0.1	6.5	0.2	324	6.7	0.1
KU@1R.ais	3.20E+09	4.39E+05	6.46E+06	9.30E+02	2.0174E-03	7.04E-08	7.4	0.0	6.8	0.2	324	7.0	0.1
KU@2.ais	3.22E+09	9.93E+05	6.49E+06	2.11E+03	2.0171E-03	1.15E-07	7.3	0.1	6.7	0.2	324	6.9	0.1
KU@3R.ais	3.18E+09	4.53E+06	6.42E+06	9.35E+03	2.0171E-03	1.46E-07	7.3	0.1	6.7	0.2	324	6.9	0.1
KU@4.ais	3.21E+09	3.69E+05	6.47E+06	8.52E+02	2.0177E-03	1.19E-07	7.6	0.1	7.0	0.2	324	7.2	0.1
KU@5.ais	3.19E+09	6.05E+05	6.44E+06	1.19E+03	2.0166E-03	1.17E-07	7.0	0.1	6.5	0.2	324	6.7	0.1
KU@6.ais	3.19E+09	6.30E+05	6.43E+06	1.52E+03	2.0173E-03	1.45E-07	7.4	0.1	6.8	0.2	324	7.0	0.1
KU@7.ais	3.17E+09	7.93E+05	6.39E+06	1.54E+03	2.0161E-03	9.63E-08	6.8	0.0	6.2	0.2	324	6.4	0.1
KU@8MET.	3.18E+09	6.71E+05	6.41E+06	1.26E+03	2.0170E-03	1.47E-07	7.3	0.1	6.7	0.2	324	6.9	0.1
KU@-3CC	3.09E+09	5.96E+05	6.24E+06	1.22E+03	2.0164E-03	8.62E-08	6.9	0.0	6.4	0.2	324	6.6	0.1
					g31, K	ооленьский	купол, орто	огнейс					
G31@1C.ais	3.16E+09	3.16E+05	6.37E+06	8.74E+02	2.0157E-03	1.27E-07	6.6	0.1	6.1	0.2	575	6.2	0.1
G31@1R.ais	3.14E+09	3.97E+05	6.33E+06	9.74E+02	2.0160E-03	1.12E-07	6.7	0.1	6.2	0.2	575	6.4	0.1
G31@2.ais	3.15E+09	5.87E+05	6.34E+06	1.16E+03	2.0156E-03	6.53E-08	6.6	0.0	6.0	0.2	575	6.2	0.1
G31@3.ais	3.14E+09	6.92E+05	6.33E+06	1.57E+03	2.0157E-03	1.51E-07	6.6	0.1	6.1	0.2	575	6.2	0.1
G31@4R.ais	3.16E+09	5.90E+05	6.36E+06	1.23E+03	2.0153E-03	1.16E-07	6.4	0.1	5.9	0.2	575	6.1	0.1
G31@5R.ais	3.18E+09	1.11E+06	6.41E+06	2.45E+03	2.0157E-03	1.59E-07	6.6	0.1	6.1	0.2	575	6.3	0.1
G31@5C.ais	3.17E+09	6.05E+05	6.38E+06	1.23E+03	2.0150E-03	8.09E-08	6.2	0.0	5.7	0.2	575	5.9	0.1
G31@6.ais	3.15E+09	5.60E+05	6.36E+06	1.19E+03	2.0155E-03	1.27E-07	6.5	0.1	6.0	0.2	575	6.1	0.1
G31@7.ais	3.17E+09	6.12E+05	6.38E+06	1.51E+03	2.0153E-03	1.22E-07	6.4	0.1	5.9	0.2	575	6.1	0.1
G31@8.ais	3.15E+09	6.90E+05	6.35E+06	1.43E+03	2.0161E-03	1.45E-07	6.8	0.1	6.2	0.2	575	6.4	0.1

160 $\pm 2\sigma$ 180 $\pm 2\sigma$ 180/160 $\pm 2\sigma$ δ 180/60	% 6.2 6.3 6.3 6.2 6.2 9.7 9.8	$\pm 2\sigma$ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2
G31@9.ais3.16E+096.28E+056.38E+061.32E+032.0156E-031.34E-076.60.16.00.2575G31@10.ais3.15E+098.14E+056.34E+061.82E+032.0158E-031.60E-076.60.16.10.2575G31@11R.ai3.14E+095.97E+056.33E+061.25E+032.0158E-031.36E-076.60.16.10.2575G31@12C.ai3.16E+095.48E+056.37E+061.13E+032.0151E-038.50E-086.30.05.80.2575G31@12R.ai3.16E+095.52E+056.37E+061.17E+032.0156E-037.40E-086.60.06.00.2575G31@13.ais3.16E+096.68E+056.37E+061.39E+032.0155E-031.09E-076.50.16.00.2575	6.2 6.3 6.3 6.0 6.2 6.2 9.7 9.8	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2
G31@10.ais3.15E+098.14E+056.34E+061.82E+032.0158E-031.60E-076.60.16.10.2575G31@11R.ai3.14E+095.97E+056.33E+061.25E+032.0158E-031.36E-076.60.16.10.2575G31@12C.ai3.16E+095.48E+056.37E+061.13E+032.0151E-038.50E-086.30.05.80.2575G31@12R.ai3.16E+095.52E+056.37E+061.17E+032.0156E-037.40E-086.60.06.00.2575G31@13.ais3.16E+096.68E+056.37E+061.39E+032.0155E-031.09E-076.50.16.00.2575	 6.3 6.3 6.0 6.2 6.2 9.7 9.8 	0.1 0.1 0.1 0.1 0.1 0.2
G31@11R.ai3.14E+095.97E+056.33E+061.25E+032.0158E-031.36E-076.60.16.10.2575G31@12C.ai3.16E+095.48E+056.37E+061.13E+032.0151E-038.50E-086.30.05.80.2575G31@12R.ai3.16E+095.52E+056.37E+061.17E+032.0156E-037.40E-086.60.06.00.2575G31@13.ais3.16E+096.68E+056.37E+061.39E+032.0155E-031.09E-076.50.16.00.2575	 6.3 6.0 6.2 6.2 9.7 9.8 	0.1 0.1 0.1 0.1 0.2
G31@12C.ai 3.16E+09 5.48E+05 6.37E+06 1.13E+03 2.0151E-03 8.50E-08 6.3 0.0 5.8 0.2 575 G31@12R.ai 3.16E+09 5.52E+05 6.37E+06 1.17E+03 2.0156E-03 7.40E-08 6.6 0.0 6.0 0.2 575 G31@13.ais 3.16E+09 6.68E+05 6.37E+06 1.39E+03 2.0155E-03 1.09E-07 6.5 0.1 6.0 0.2 575	6.0 6.2 6.2 9.7 9.8	0.1 0.1 0.1
G31@12R.ai 3.16E+09 5.52E+05 6.37E+06 1.17E+03 2.0156E-03 7.40E-08 6.6 0.0 6.0 0.2 575 G31@13.ais 3.16E+09 6.68E+05 6.37E+06 1.39E+03 2.0155E-03 1.09E-07 6.5 0.1 6.0 0.2 575	6.2 6.2 9.7 9.8	0.1 0.1 0.2
G31@13.ais 3.16E+09 6.68E+05 6.37E+06 1.39E+03 2.0155E-03 1.09E-07 6.5 0.1 6.0 0.2 575	6.2 9.7 9.8	0.1 0.2
	9.7 9.8	0.2
g30g, Кооленьский купол, ортогнейс	9.7 9.8	0.2
G30@1.ais 3.05E+09 5.33E+05 6.16E+06 1.04E+03 2.0230E-03 1.11E-07 10.2 0.1 9.4 0.3 101	9.8	
G30@2.ais 3.08E+09 1.42E+06 6.22E+06 2.87E+03 2.0233E-03 1.72E-07 10.4 0.1 9.6 0.3 101		0.2
G30@6C.ais 3.10E+09 1.40E+06 6.27E+06 3.02E+03 2.0237E-03 1.09E-07 10.6 0.1 9.7 0.3 101	10.0	0.2
G30@3.ais 3.11E+09 1.07E+06 6.26E+06 2.39E+03 2.0150E-03 1.35E-07 6.3 0.1 5.8 0.2 650	5.9	0.1
G30@4.ais 3.12E+09 7.40E+05 6.31E+06 1.31E+03 2.0235E-03 1.36E-07 10.5 0.1 9.6 0.3 101	9.9	0.2
G30@5.ais 3.12E+09 4.59E+05 6.28E+06 8.46E+02 2.0149E-03 1.05E-07 6.2 0.1 5.7 0.2 650	5.8	0.1
G30@6R.ais 3.13E+09 7.35E+05 6.33E+06 1.54E+03 2.0233E-03 1.03E-07 10.4 0.1 9.6 0.3 101	9.8	0.2
G30@7.ais 3.10E+09 6.11E+05 6.24E+06 1.12E+03 2.0147E-03 1.43E-07 6.1 0.1 5.6 0.2 650	5.8	0.1
G30@8.ais 3.12E+09 4.88E+05 6.29E+06 1.29E+03 2.0148E-03 1.32E-07 6.1 0.1 5.7 0.2 650	5.8	0.1
ZH38, о.Жохова, ксенолит ортогнейса (Akinin et al., 2015)		
ZH38@1.ais 2.99E+09 4.37E+05 6.01E+06 8.92E+02 2.0101E-03 9.12E-08 3.8 0.0 3.5 0.2 626	3.6	0.1
ZH38@2.ais 3.00E+09 7.64E+05 6.05E+06 1.55E+03 2.0130E-03 1.25E-07 5.3 0.1 4.8 0.3 626	5.0	0.2
ZH38@3.ais 2.93E+09 8.97E+05 5.90E+06 1.80E+03 2.0094E-03 1.25E-07 3.5 0.1 3.2 0.2 626	3.3	0.1
ZH38@4.ais 2.99E+09 7.65E+05 6.02E+06 1.43E+03 2.0101E-03 1.72E-07 3.8 0.1 3.5 0.2 626	3.6	0.1
ZH38@5.ais 3.00E+09 2.60E+06 6.03E+06 5.23E+03 2.0109E-03 1.13E-07 4.2 0.1 3.9 0.2 626	4.0	0.1
ZH38@6.ais 2.97E+09 3.59E+05 5.97E+06 8.32E+02 2.0079E-03 1.42E-07 2.7 0.1 2.5 0.2 626	2.5	0.1
ZH38@7.ais 2.96E+09 1.08E+06 5.96E+06 2.19E+03 2.0105E-03 1.24E-07 4.0 0.1 3.7 0.2 626	3.8	0.1
ZH38@8.ais 2.98E+09 5.67E+05 5.99E+06 1.16E+03 2.0093E-03 8.56E-08 3.4 0.0 3.1 0.2 626	3.2	0.1
Охотско-Чукотский вулканогенный пояс		
8100, массив Северный, гранит		
8100@1C.ai 3.26E+09 5.55E+05 6.58E+06 1.15E+03 2.0194E-03 1.06E-07 8.4 0.1 7.8 0.3	8.0	0.1
8100@2.ais 3.27E+09 1.20E+06 6.61E+06 2.51E+03 2.0198E-03 1.54E-07 8.6 0.1 8.0 0.3	8.2	0.1
8100@3.ais 3.27E+09 7.45E+05 6.61E+06 1.59E+03 2.0191E-03 1.71E-07 8.3 0.1 7.6 0.3	7.9	0.1
8100@4.ais 3.27E+09 4.51E+05 6.61E+06 8.09E+02 2.0200E-03 1.13E-07 8.7 0.1 8.0 0.3	8.3	0.1

Образец/	160	12-	180	12-	$\delta^{18}O_{(VSMOW)}$		12-	Возраст,	$\delta^{18}O_{adj.975000}$	12-			
точка	U	±20	0	±20	0/ 0	±20	0 0/00	±20	‰	±20	млн лет	‰	±20
8100@5R.ai	3.23E+09	7.09E+05	6.52E+06	1.53E+03	2.0191E-03	7.09E-08	8.3	0.0	7.7	0.3		7.9	0.1
8100@6R.ai	3.19E+09	1.66E+06	6.44E+06	3.20E+03	2.0183E-03	9.73E-08	7.9	0.0	7.3	0.3		7.5	0.1
8100@7C.ai	3.20E+09	4.45E+05	6.46E+06	9.74E+02	2.0189E-03	1.04E-07	8.2	0.1	7.5	0.3		7.8	0.1
8100@7R.ai	3.14E+09	4.67E+06	6.34E+06	9.36E+03	2.0198E-03	1.42E-07	8.7	0.1	8.0	0.3		8.2	0.1
8100@8C.ai	3.20E+09	4.39E+05	6.46E+06	8.56E+02	2.0190E-03	9.91E-08	8.2	0.0	7.6	0.3		7.8	0.1
8100@8R.ai	3.19E+09	6.64E+05	6.45E+06	1.26E+03	2.0198E-03	1.10E-07	8.6	0.1	8.0	0.3		8.2	0.1
8100@1rr.ai	3.09E+09	1.17E+06	6.24E+06	2.34E+03	2.0198E-03	9.10E-08	8.6	0.0	8.0	0.3		8.2	0.1

№ точки	К	Na	Al	Fe	Ti	Hf	Y	Nb	Th	U	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	\sum^{REE}	Th/ U	Ce/ Ce*	Eu/ Eu*	T ₁	T ₂
												3300, гр	анат-му	сковит	овый гр	анит, п	оздняя (фаза.												
2.1T	375	112	152	4.00	4.40	14039	811	20.3	113	680	0.03	16.7	0.11	0.21	0.71	0.08	9.18	4.63	67.2	30.3	159	38.9	342	64.9	734	0.17	67.2	0.10	671	705
4.1T	62.1	27.9	59.6	3.00	7.80	11272	949	6.78	140	235	0.07	11.1	0.28	0.56	1.77	0.25	19.5	8.03	97.0	38.6	193	41.0	347	61.1	819	0.60	19.6	0.13	716	756
4.2CT	67.5	30.4	166	32.9	78.6	9234	5563	22.0	869	807	0.05	52.0	1.24	6.18	16.0	2.66	154	54.8	615	237	995	195	1476	248	4054	1.08	50.9	0.16	956	1038
5.1T	24.2	15.1	13.8	2.50	5.40	14548	1557	25.4	128	685	0.02	24.5	0.10	0.23	1.11	0.11	15.5	8.35	125	57.9	305	76.0	676	126	1417	0.19	125	0.08	686	722
5.2T	114	46.1	164	41.0	68.9	10032	5699	24.8	768	1102	0.02	43.3	0.70	3.87	14.1	2.36	163	61.7	735	294	1284	257	1959	328	5146	0.70	82.5	0.15	939	1018
6.1T	85.4	43.1	58.6	3.40	7.80	9951	1956	6.45	166	248	0.02	10.1	0.35	1.64	4.52	0.72	44.1	17.5	209	80.8	377	77.0	611	106	1540	0.67	31.7	0.16	716	757
													3500, r	раноди	орит, ра	нняя ф	a3a.													
8.1T	15.5	9.60	11.1	2.80	10.1	12458	820	8.78	535	1391	0.01	19.0	0.20	0.85	2.37	0.12	18.0	7.06	81.4	31.0	148	33.5	286	51.8	679	0.38	98.2	0.05	738	782
1.1T	20.8	14.9	12.1	3.80	9.40	12416	732	7.33	554	1424	0.01	16.0	0.19	0.89	2.06	0.12	18.0	6.90	76.6	28.8	144	32.6	286	52.5	664	0.39	90.9	0.06	731	774
3.1T	19.9	10.8	12.2	3.50	6.30	13017	697	7.91	403	1432	0.01	16.7	0.11	0.42	1.37	0.17	13.5	5.29	63.3	24.1	124	29.0	265	49.7	592	0.28	140	0.12	698	736
1.1T	28.1	14.5	15.5	3.40	8.00	12752	884	8.23	573	1578	0.01	22.2	0.18	0.80	2.15	0.21	20.8	7.14	85.6	33.8	167	38.2	329	60.7	768	0.36	132	0.10	718	759
2.1T	41.2	29.8	18.9	4.10	10.3	13486	724	9.55	428	1275	0.01	13.6	0.17	0.79	2.26	0.07	17.0	6.15	73.0	28.1	136	31.2	259	46.1	613	0.34	92.5	0.03	740	784
2.1T	9.50	4.80	7.60	2.90	9.30	12820	741	9.01	411	1216	0.01	14.4	0.16	0.69	2.09	0.06	16.7	6.22	71.6	28.2	130	29.8	246	45.7	592	0.34	100	0.03	731	774
3.1T	30.4	18.6	11.9	1.90	18.6	10588	602	3.79	264	466	0.03	12.1	0.41	1.60	3.33	0.10	21.2	6.62	69.4	24.6	107	22.0	177	31.7	477	0.57	27.6	0.04	794	847
4.1T	24.2	13.6	25.7	2.10	16.6	11057	1268	4.57	381	849	0.03	13.7	0.73	3.32	6.49	0.38	41.8	14.3	146	54.6	226	47.5	374	64.5	993	0.45	20.9	0.07	783	834
5.1T	29.0	12.9	14.4	4.00	4.00	14762	702	8.92	274	1137	0.02	6.94	0.12	0.31	1.30	0.02	13.1	5.50	69.0	27.3	134	29.7	258	46.3	591	0.24	38.2	0.02	663	696
6.1T	43.5	23.3	11.5	3.60	7.70	12713	826	8.65	545	1507	0.01	19.0	0.17	0.71	2.13	0.12	18.1	6.62	79.6	31.5	151	35.2	300	54.9	698	0.36	116	0.06	715	755
													4600gr	п, монц	онит, ра	нняя ф	aзa.													
5.1T	19.9	11.5	10.7	1.50	6.80	13505	406	8.19	190	388	0.00	26.3	0.07	0.30	1.07	0.29	9.05	3.46	38.0	15.0	72.7	16.7	148	27.2	358	0.49	456	0.28	704	743
6.1T	23.3	16.5	13.2	2.70	9.60	12715	830	7.45	496	863	0.34	56.3	0.94	1.57	3.03	0.71	22.0	7.67	82.9	31.0	140	30.5	253	45.4	675	0.57	24.0	0.27	733	776
6.2T	19.8	10.4	12.9	3.20	5.00	13014	660	8.06	652	1534	0.01	37.2	0.12	0.53	1.71	0.63	14.6	5.18	57.6	22.6	116	26.3	255	50.1	587	0.43	347	0.38	679	714
7.1T	69.2	23.2	12.1	2.80	4.20	13668	413	4.71	220	929	0.18	14.4	0.44	0.67	0.92	0.27	6.17	2.61	31.0	13.8	72.3	18.9	180	39.5	381	0.24	12.4	0.34	667	700
9.1T	18.1	11.5	12.1	3.50	5.10	13355	704	8.55	508	1513	0.00	23.7	0.09	0.53	1.38	0.47	13.6	5.37	61.0	24.6	123	30.3	273	52.4	609	0.34	341	0.33	681	717
													4600Ks	р, монц	онит, ра	анняя ф	aзa.													
2.1T	29.2	17.1	13.9	2.30	4.00	13910	375	4.90	195	851	0.08	14.2	0.26	0.47	0.75	0.27	5.79	2.30	30.0	12.3	67.8	17.7	169	36.7	358	0.23	23.7	0.40	662	695
3.2RT	19.2	10.6	10.8	3.60	5.40	13764	537	7.37	526	1561	0.01	45.0	0.15	0.67	1.89	0.59	13.3	4.38	48.2	18.4	83.2	19.6	184	38.1	457	0.34	328	0.36	686	722
4.2T	28.9	18.5	11.7	2.00	12.5	9626	1267	6.76	952	941	0.03	78.0	0.70	3.53	7.77	1.59	50.4	15.8	154	52.3	233	49.1	393	70.9	1110	1.01	136	0.24	756	803
6.1T	20.2	11.5	13.7	4.00	7.40	11664	1013	13.6	1877	2043	0.02	121	0.42	1.95	5.52	1.99	40.3	13.6	136	42.1	198	42.2	346	62.1	1012	0.92	322	0.41	711	751

Таблица В.4. Примесные элементы в цирконе из гранитоидных интрузий Чукотки (Чаунская провинция)

N₂	К	Na	Al	Fe	Ti	Hf	Y	Nb	Th	U	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	\sum^{REE}	Th/	Ce/	Eu/ Eu*	T ₁	T_2
10чки 8.1Т	16.9	11.8	10.1	3.90	3.50	13846	472	7.31	250	1972	0.01	19.5	0.06	0.17	0.70	0.37	6.51	2.82	34.9	14.4	84.3	23.8	249	56.6	493	0.13	198	0.53	653	684
9.1T	36.7	28.6	12.0	2.10	5.50	13393	463	7.03	247	856	0.00	15.3	0.06	0.23	0.82	0.27	7.29	3.03	37.1	16.0	86.0	21.3	209	42.0	438	0.29	224	0.34	687	723
													8800, гр	анит, Я	нранай	ский ма	ссив													
8.1T	10.0	12.4	14.6	3.90	10.6	9705	1155	5.26	449	894	0.01	10.5	0.22	1.15	2.98	0.15	28.2	9.79	112	44.2	191	38.7	306	54.8	800	0.50	60.2	0.05	742	786
6.1T	9.30	10.5	14.2	4.50	8.80	10726	988	3.99	199	511	0.04	17.3	0.27	0.69	2.08	0.25	20.7	7.25	90.7	36.1	170	39.5	328	57.4	770	0.39	40.9	0.12	725	767
3.1T	8.40	11.4	27.8	3.40	27.3	8707	749	3.10	86.5	111	0.02	26.2	0.33	1.25	2.72	0.99	19.5	6.75	72.8	28.0	131	28.4	242	44.8	605	0.78	73.1	0.41	833	892
2.1T	10.3	13.3	14.4	5.90	6.70	11961	2042	17.4	807	2336	0.01	12.9	0.20	1.17	3.77	0.15	39.6	16.0	187	76.3	353	77.1	651	115	1533	0.35	95.4	0.04	703	742
											8	500, ква	рцевый	і монцо	нит, Ин	рогинай	іский п.	путон.												
9.2T	9.60	11.2	17.4	2.70	32.3	10291	541	1.90	233	382	0.01	4.85	0.26	1.18	3.31	0.25	20.8	5.89	56.1	20.6	83.1	17.3	142	25.3	381	0.61	20.2	0.09	851	913
9.1T	6.60	9.50	15.4	3.00	8.90	12507	637	6.24	351	1327	0.01	6.89	0.15	0.60	1.73	0.06	14.9	5.07	59.6	23.5	111	25.6	220	41.3	510	0.26	45.4	0.03	727	769
8.2T	9.40	11.7	18.5	3.40	10.9	10930	383	3.48	60.5	107	0.02	28.1	0.14	0.37	0.96	0.15	8.07	2.97	34.0	14.7	69.5	16.2	145	27.1	347	0.57	122	0.16	745	789
8.1T	15.0	15.1	153	4.10	11.4	12477	659	8.10	566	1368	0.12	10.1	0.51	1.08	2.31	0.11	15.7	5.12	54.7	21.7	91.7	20.2	169	30.7	423	0.41	9.90	0.05	748	794
6.2T	133	19.9	50.3	4.40	19.2	10626	2296	7.53	1372	1723	0.15	21.3	2.06	7.67	13.9	0.74	98.3	30.9	311	105	446	91.0	713	120	1962	0.80	9.30	0.06	797	851
6.1T	8.30	9.30	13.7	3.40	11.5	12726	684	6.58	566	1503	0.01	8.99	0.21	0.96	2.40	0.10	19.0	6.49	68.3	25.5	115	26.2	216	39.0	529	0.38	45.4	0.05	749	794
5.1T	9.20	12.7	18.0	4.30	27.6	10792	405	2.83	217	422	0.01	4.84	0.16	0.82	1.74	0.08	12.2	3.71	39.3	14.6	64.2	13.8	115	21.7	292	0.51	35.9	0.05	834	893
3.1T	7.60	10.3	17.8	4.30	14.2	12635	661	6.35	573	1375	0.01	8.97	0.23	0.94	2.45	0.09	18.0	5.82	63.8	23.5	109	23.5	204	36.8	497	0.42	37.5	0.04	768	817
2.1T	11.2	14.6	20.9	3.90	17.3	12153	581	5.44	429	1146	0.01	8.08	0.19	0.83	2.07	0.11	15.9	5.17	56.3	21.5	94.8	20.8	177	32.5	436	0.37	45.0	0.06	787	839
1.1T	9.90	11.4	14.3	3.30	33.1	10127	474	3.11	266	450	0.01	6.86	0.23	1.02	2.49	0.18	17.5	4.99	51.3	18.5	78.8	16.7	131	24.3	354	0.59	32.7	0.08	853	916
												83	600, rpai	нит, Пы	карваа	мский м	ассив.													
9.1T	7.70	11.6	17.2	4.00	5.70	10807	911	4.55	265	766	0.01	7.61	0.14	0.68	2.27	0.09	19.9	7.58	87.1	34.5	156	33.1	271	47.5	667	0.35	68.6	0.04	690	726
8.1T	8.40	11.5	101	4.50	28.6	10050	901	1.03	56.8	102	0.02	1.68	0.22	0.80	2.53	0.22	24.7	8.86	103	38.9	170	35.7	278	49.1	714	0.56	6.90	0.09	838	898
7.2T	5.80	8.50	22.2	4.20	4.70	12221	838	2.85	95.3	401	0.01	2.72	0.10	0.34	1.25	0.06	15.0	6.01	76.7	32.2	153	34.0	289	53.6	664	0.24	23.0	0.04	676	711
6.2T	6.40	8.10	104	3.40	27.8	10090	1469	1.15	51.2	98.3	0.01	2.19	0.30	1.56	4.12	0.22	33.7	10.5	110	44.8	177	35.9	272	46.8	740	0.52	9.30	0.06	835	894
6.1T	6.60	8.60	32.5	4.00	4.80	11845	993	3.11	138	567	0.02	3.81	0.17	0.47	1.75	0.08	17.9	7.42	93.9	39.0	185	39.2	346	60.7	796	0.24	14.4	0.04	676	711
4.1T	6.80	12.4	16.0	3.70	4.60	11911	387	3.11	77.3	306	0.01	3.75	0.05	0.17	0.60	0.03	6.83	2.79	33.7	14.1	67.4	15.1	132	23.9	300	0.25	54.1	0.04	674	708
3.11	10.3	12.7	17.0	5.20	2.20	12770	1187	9.71	593	2194	0.00	5.44	0.08	0.40	1.75	0.06	21.8	9.20	116	45.3	213	48.3	401	69.2	930	0.27	92.1	0.03	621	649
2.11	7.40	9.00	15.5	4.40	13.5	8588	2870	4.67	793	851	0.08	12.9	1.54	0.62	13.7	1.27	105	32.1	322	114	460	89.1	680	115	1954	0.93	8.70	0.10	/64	812
1.21	7.50	9.90	16.9	4.20	4.90	12361	1120	3.89	129	1058	0.01	4.58	0.14	0.49	1.97	0.07	20.2	8.40	104	43.2	205	47.5	392	69.8	897	0.24	26.9	0.04	0/8	/13
1.11	/.00	8.40	08.4	4.70	23.1	9023	13/2	1.90	138	221	0.02	3.33	0.54	2.70	5.58	0.41	41.1	13.8	140	55.9	230	40.3	303	02.4	9/1	0.05	8.10	0.08	810	8/2
7 3T	65.7	50.7	14.3	4 90	8 30	12200	1735	10.4	501	1480	0.01	17.8	0.24	ранит, 1 10	массив 3 45	0.05	ы и. 34.2	12.6	140	61.8	270	55.6	453	77.6	1136	0.34	70.0	0.01	721	760
1.51	03.7	50.7	14.3	4.90	0.50	12200	1/33	10.4	501	1400	0.01	1/.0	0.24	1.10	5.45	0.05	34.2	12.0	149	01.0	270	55.0	433	//.0	1130	0.34	17.7	0.01	121	/02

№ точки	K	Na	Al	Fe	Ti	Hf	Y	Nb	Th	U	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Σ^{ree}	Th/ U	Ce/ Ce*	Eu/ Eu*	T ₁	T ₂
7.2T	8.60	13.1	13.9	3.30	5.80	12885	845	15.8	319	1394	0.01	8.38	0.11	0.43	1.29	0.02	14.4	6.07	78.9	32.0	161	35.6	301	53.4	693	0.23	69.3	0.01	691	728
7.1T	6.40	8.30	13.7	3.20	13.7	11020	1028	5.21	245	588	0.01	8.49	0.19	0.78	2.60	0.05	22.2	8.68	97.8	38.8	173	37.1	298	52.9	740	0.42	44.1	0.02	765	813
6.2T	9.50	10.7	15.8	4.10	27.5	9521	1439	2.39	211	289	0.01	8.49	0.53	3.61	7.40	0.32	51.4	16.1	164	58.4	237	46.8	362	60.7	1017	0.73	25.9	0.05	834	893
6.1T	7.70	9.30	14.8	5.30	10.5	11494	950	5.49	291	748	0.01	9.46	0.17	0.77	2.14	0.05	20.7	8.16	93.0	37.3	168	36.3	297	52.0	725	0.39	57.8	0.02	741	786
5.1T	10.1	13.8	24.4	3.70	20.8	9664	1194	2.24	176	215	0.04	7.01	0.64	2.71	5.14	0.35	36.8	12.1	133	48.8	217	43.0	336	57.7	901	0.82	11.1	0.08	805	859
4.1T	6.30	6.90	14.6	4.30	18.8	9844	1117	2.07	107	101	0.01	16.4	0.31	1.83	4.56	0.91	36.8	11.2	117	42.8	178	36.0	286	49.4	781	1.06	75.3	0.22	795	848
3.1T	8.90	10.9	15.5	4.30	4.20	13199	1174	8.36	324	1585	0.01	10.8	0.12	0.34	1.56	0.02	19.3	8.50	111	47.7	226	51.2	407	70.3	954	0.20	63.6	0.01	666	700
2.1T	55.7	130	14.4	5.00	16.1	9497	3108	7.30	1192	1422	0.07	23.4	1.77	9.23	15.1	0.18	114	35.4	368	131	538	104	794	130	2264	0.84	16.6	0.01	780	831
10.1T	6.40	9.50	179	6.40	29.4	10251	1048	1.59	96.0	146	0.01	2.95	0.33	1.75	4.03	0.24	31.5	10.7	112	43.1	189	38.9	315	56.9	807	0.66	11.4	0.07	840	901
1.1T	8.40	9.10	12.3	2.60	24.2	9822	376	1.84	45.7	108	0.02	3.58	0.16	0.48	1.16	0.06	10.4	3.67	41.3	15.7	72.5	15.7	134	24.6	324	0.42	17.1	0.05	821	878
2.31	7.40	11.0	13.4	3.80	12.1	10287	2002	4.90	835	1222	0.03	16.1	0.96	5.17	10.5	0.16	76.0	25.1	272	99.3	431	87.0	672	114	1809	0.68	21.7	0.02	754	800
2.21	7.00	9.30	12.7	2.50	5 20	10585	/84	21.8	412	429	0.01	10.7	0.20	0.90	2.52	0.10	20.4	11.4	/9.8	30.8	135	28.0	231	38.9	282	0.53	60.8 21.2	0.04	/8/	838
2.11	14.9	10.7	24.0	0.40	3.30	15252	1010	21.8	412	2/13	0.07	14.0	6000	1.04	2.09 T 1102.14	0.02 aa daaa	20.0	11.4	144	00.0	289	04.5	330	94.2	1238	0.15	21.5	0.01	084	720
9.1T	8.80	14.0	19.5	10.2	5.60	13370	1665	41.8	484	3274	0.06	11.5	0.27	0.59	1.97	0.09	24.0	10.6	141	60.3	306	70.4	633	115	1375	0.15	22.0	0.04	689	725
8.1T	743	70.5	20.5	9.00	5.30	13314	2627	16.2	702	4596	0.33	11.2	0.79	1.24	3.95	0.24	43.2	17.7	214	91.4	422	94.8	825	146	1873	0.15	5.30	0.06	685	721
6.2T	12.1	15.2	35.8	23.6	5.90	13294	2590	72.5	938	5824	0.21	15.8	0.82	1.63	3.63	0.17	35.8	16.2	211	92.5	448	105	896	161	1989	0.16	9.20	0.05	693	730
6.1T	35.3	18.7	58.8	14.1	6.30	12301	4535	54.4	2397	10928	0.01	15.1	0.26	1.10	6.64	0.32	78.7	35.4	445	181	870	194	1693	292	3812	0.22	59.4	0.04	698	736
5.2T	17.3	27.1	32.1	9.80	5.80	12368	3683	40.2	861	4691	0.01	15.5	0.17	1.00	4.05	0.24	46.0	21.4	297	121	648	146	1285	226	2810	0.18	124	0.05	692	729
4.1T	49.6	36.6	60.0	48.3	7.00	13771	5434	138	2310	13997	0.16	25.8	0.74	1.57	5.92	0.30	74.6	35.8	474	189	980	227	1990	340	4345	0.17	18.0	0.04	707	746
2.1T	14.6	23.5	14.8	5.80	5.00	11399	1009	6.21	447	1070	0.02	18.7	0.24	0.80	2.34	0.17	21.7	7.46	88.9	35.2	167	36.8	310	56.7	746	0.42	64.4	0.07	680	715
1.2T	22.2	25.7	19.3	7.50	5.20	12455	3813	29.6	1137	4412	0.01	22.8	0.22	1.47	6.11	0.43	65.4	28.2	350	141	660	145	1209	208	2838	0.26	161	0.07	682	718
1.1T	11.4	14.7	19.4	8.10	2.00	14097	377	9.91	72.0	1469	0.01	2.61	0.04	0.06	0.24	0.02	3.62	1.86	27.5	13.0	70.3	19.3	186	36.9	362	0.05	28.9	0.08	613	639
													4504	I, грани	т, поздн	яя фаза														
7.1T	10.0	13.7	27.0	8.00	4.10	13006	828	11.3	442	1794	0.04	27.3	0.18	0.39	1.44	0.45	14.2	5.21	65.2	28.3	142	34.7	332	67.5	719	0.25	76.4	0.30	665	699
2.1T	17.0	13.3	15.0	7.20	3.00	13694	346	8.41	110	1112	0.01	10.7	0.02	0.03	0.28	0.10	3.75	1.65	23.4	11.4	65.4	18.7	196	44.9	376	0.10	146	0.31	641	671
1.2T	10.1	10.0	15.1	7.40	3.30	14741	1211	18.3	348	3582	0.34	17.9	0.32	0.32	0.92	0.43	10.9	4.84	67.5	34.8	218	63.8	689	159	1268	0.10	13.1	0.41	648	679
Прим	еча	ние.	Сод	ержа	ние	элеме	нтов	в г/	г. Те	мпер	атур	а по	мин	ерал	ьном	у те	рмом	етру	'Ti	в ци	ркон	e': T	`1 –	Wats	son et	al.,	2006	5; T2	– Fe	erry,

Watson, 2007.