На правах рукописи

kg

Коржнева Ксения Евгеньевна

ВЛИЯНИЕ КАТИОННЫХ ЗАМЕЩЕНИЙ В МНОГОКОМПОНЕНТНЫХ НИТРАТАХ И ХАЛЬКОГЕНИДАХ НА ИХ СТРУКТУРУ И СВОЙСТВА

1.6.4 – Минералогия, кристаллография. Геохимия, геохимические методы поисков полезных ископаемых

Автореферат диссертации на соискание ученой степени кандидата геолого-минералогических наук

Новосибирск -2024

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук (ИГМ СО РАН).

Научный руководитель:	Исаенко Людмила Ивановна Доктор
	технических наук, ведущий научный
	сотрудник Института геологии и
	минералогии им. В.С. Соболева СО РАН
	(г. Новосибирск)
Официальные оппоненты:	Солодовников Сергей Федорович
	Доктор химических наук, профессор,
	ведущий научный сотрудник Института
	неорганической химии им. А.В.
	Николаева СО РАН (г. Новосибирск)
	Филатов Станислав Константинович
	Филатов Станислав Константинович Доктор геолого-минералогических наук,
	Филатов Станислав Константинович Доктор геолого-минералогических наук, профессор Санкт-Петербургского
	Филатов Станислав Константинович Доктор геолого-минералогических наук, профессор Санкт-Петербургского государственного университета (г. Санкт-
	Филатов Станислав Константинович Доктор геолого-минералогических наук, профессор Санкт-Петербургского государственного университета (г. Санкт- Петербург)
Ведущая организация:	Филатов Станислав Константинович Доктор геолого-минералогических наук, профессор Санкт-Петербургского государственного университета (г. Санкт-Петербург) Федеральное государственное бюджетное
Ведущая организация:	Филатов Станислав Константинович Доктор геолого-минералогических наук, профессор Санкт-Петербургского государственного университета (г. Санкт- Петербург) Федеральное государственное бюджетное научное учреждение «Федеральный
Ведущая организация:	Филатов Станислав Константинович Доктор геолого-минералогических наук, профессор Санкт-Петербургского государственного университета (г. Санкт-Петербург) Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр
Ведущая организация:	Филатов Станислав Константинович Доктор геолого-минералогических наук, профессор Санкт-Петербургского государственного университета (г. Санкт-Петербург) Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Красноярский научный центр

Защита состоится «25» сентября 2024 года в 10.00 часов на заседании Диссертационного совета 24.1.050.02, созданного на базе ФГБУН ИГМ СО РАН, в конференц-зале (630090, г. Новосибирск, пр-т ак. Коптюга, 3).

Отзыв в одном экземпляре, оформленный в соответствии с требованиями Минобрнауки России, просим направлять по адресу: 630090, г. Новосибирск, пр-т ак. Коптюга, 3, Гаськовой О.Л. Тел./факс: +7 (383) 373-03-28; +7(383) 373-05-61 e-mail: gaskova@igm.nsc.ru

С диссертацией можно ознакомиться в библиотеке и на сайте ФГБУН ИГМ СО РАН https://www.igm.nsc.ru/images/diss/loadfiles_dzubenko/ korzhneva/dis-Korzhneva.pdf.

Автореферат разослан «12» августа 2024 г.

Ученый секретарь Диссертационного совета, д.г.-м.н.

Junif

О.Л. Гаськова

введение

Актуальность исследования и степень разработанности темы. С развитием лазерных технологий возрастает потребность в высокоэффективных кристаллических функциональных материалах. Нелинейно-оптические кристаллы, в которых отсутствует центр симметрии, имеют нелинейную восприимчивость второго порядка и преобразуют частоту лазерного излучения от ультрафиолетового до среднего и дальнего инфракрасного диапазона. Такие материалы являются основными элементами в лазерных спектрометрах с широкой волновой перестройкой. Потребность в этих системах в настоящее время очень велика и возрастает с каждым годом. лазерная спектрометрия Например, позволяет осуществлять мониторинг окружающей среды, диагностировать различные заболевания путем анализа состава, выдыхаемого человеком воздуха и т. д.

По этой причине разработка принципов и алгоритмов поиска таких нелинейно-оптических кристаллов является важной и актуальной задачей. Хорошо известна методика поиска новых материалов, основанная на изменении состава. Для этого, как правило, исследуются ряды соединений и устанавливаются закономерности: состав – структура – свойства.

Радиусы и валентности катионов по-разному влияют на структурные мотивы и свойства многокомпонентных нитратов и халькогенидов, учет этих параметров важен при поиске устойчивых структур. Для фундаментальных задач необходимы исследования новых систем, где изменение катионов дает возможность выявлять закономерности образования многокомпонентных соединений, твердых растворов и получать функциональные материалы с заданными характеристиками, а также возможность переносить полученные данные на другие подобные системы. Работа направлена на выявление структурных факторов, отвечающих за нелинейно-оптические свойства, нецентросимметричных В кристаллах.

Цель работы - оценка влияния замещения катионов в структуре кристаллов на свойства многокомпонентных нитратов и халькогенидов для установления закономерностей состав – структура – свойства.

Для достижения поставленной цели были поставлены следующие задачи:

• Построение структурных карт двойных нитратов для определения областей существования центросимметричных и нецентросимметричных структур;

• Поиск нецентросимметричных двойных нитратов на базе простых структур Ba(NO₃)₂, KNO₃, NaNO₃, RbNO₃;

• Разработка методик выращивания кристаллов двойных нитратов K₂Ba(NO₃)₄ и Rb₂Na(NO₃)₃;

• Исследование оптических свойств полученных двойных нитратов;

• Проведение структурного анализа систем LiGaSe₂-AgGaSe₂, LiInSe₂-AgInSe₂ при замещении Ag на Li;

• Установление закономерностей между изменением структур и нелинейных свойств в системах LiGaSe₂-AgGaSe₂, LiInSe₂-AgInSe₂

Научная новизна и теоретическая значимость работы

• Построены структурные карты двойных нитратов натрия, калия, рубидия, цезия и поливалентных металлов, выделены области существования центросимметричных и нецентросимметричных структур.

• Впервые выращен кристалл K₂Ba(NO₃)₄ оптического качества из водных растворов в присутствие L-аргинин ацетата и определена его структура.

• Построена фазовая диаграмма системы KNO₃–Ba(NO₃)₂–H₂O при 60°C.

• Методом Бриджмена–Стокбаргера впервые выращен монокристалл Rb₂Na(NO₃)₃ оптического качества.

• Впервые показано, что особенности структур K₂Ba(NO₃)₄ и Rb₂Na(NO₃)₃ обеспечивают значительную ширину запрещенной зоны и приемлемое двулучепреломление.

• По данным структурного анализа системы LiGaSe₂-AgGaSe₂ выделены область образования тетрагонального твердого раствора (0≤x≤0.9) и один член ромбического твердого раствора Li_{0.98}Ag_{0.02}GaSe₂.

• По данным структурного анализа системы LiInSe₂-AgInSe₂ определены области образования тетрагонального ($0 \le x \le 0.37$) и ромбического твердого раствора ($0.55 \le x \le 1$).

Практическая значимость работы

Ha основании структурных изменений, которые обеспечиваются полным или частичным замещение катионов в группах многокомпонентных нитратов и халькогенидов, были выделены нецентросимметричные соединения с высокими нелинейными показателями и определены закономерности состав структура – свойства. Полученные соединения K₂Ba(NO₃)₄ и Rb₂Na(NO₃)₃ являются эффективными материалами, которые могут быть использованы для преобразования лазерного излучения в ультрафиолетовом диапазоне. Рациональная замена атомов Ag на Li в системах LiGaSe₂-AgGaSe₂ и LiInSe₂-AgInSe₂ позволила объединить преимущества исходных соединений и выделить твердых растворов, сочетающие сбалансированный составы комплекс параметров для эффективного их использования в среднем инфракрасном диапазоне.

На защиту выносятся следующие положения:

1. Оптическое качество кристаллов $K_2Ba(NO_3)_4$ достигается путем выращивания из водных растворов в присутствии L-аргинин ацетата, а также кристаллов $Rb_2Na(NO_3)_3$ при выращивании методом Бриджмена– Стокбаргера из состава 75% RbNO₃ и 25% NaNO₃

2 Сочетание щелочных, шелочноземельных катионов И равнобедренных NO₃ треугольников, расположенных на плоскостях двойных нитратов K₂Ba(NO₃)₄ и структурах симметрии, в Rb₂Na(NO₃)₃, обеспечивает значительную ширину запрещенной достаточное двулучепреломление, что зоны И позволяет эффективно использовать их в качестве преобразователей частоты лазерного излучения в ультрафиолетовом диапазоне

 $Li_{0.5}Ag_{0.5}GaSe_2$, $Li_{0.78}Ag_{0.22}InSe_2$, выделенные 3. Составы на основании структурного анализа систем LiGaSe₂-AgGaSe₂ и LiInSe₂-AgInSe₂. сочетают сбалансированный комплекс параметров эффективно позволяющий использовать качестве их в преобразователей частоты лазерного излучения В среднем инфракрасном диапазоне

Личный вклад автора

Использованные экспериментальные и теоретические результаты, представленные в диссертации, получены автором лично или при его непосредственном участии. Автору принадлежит критический анализ литературы и обоснованный выбор объектов исследования, изучение структурных баз данных и построение структурных карт двойных нитратов. Выполнение экспериментов по выращиванию выбранных двойных нитратов и структурный анализ этих соединений проведены самостоятельно. Автором выполнен структурный анализ систем LiGaSe₂-AgGaSe₂ и LiInSe₂предложены сбалансированными AgInSe₂ И составы co характеристиками. Рял инструментальных исследований трактовка результатов проведены совместно с д.ф.-м.н. А.П. Елисеевым; С.И. Лобановым, к.ф.-м.н. М.С. Молокеевым; д.ф.-м.н. С.А. Громиловым; к.ф.-м.н. С.В. Горяйновым, А.Ф. Курусь, д.н. Zh. Lin.

Апробация результатов работы

Основные результаты работы представлены в качестве устных и стендовых докладов на 15 российских и международных научных конференциях. Среди них Международная научная студенческая конференция МНСК (2015 – 2018), Международная Российско-Казахстанская школа-конференция «Химические технологии функциональных материалов» (2015, 2017). 17 Всероссийское совещание по экспериментальной минералогии (2015), Школа-конференция молодых учёных «Неорганические соединения и функциональные материалы» ICFM (2017, 2022), Международная школа конференция молодых ученых «Нелинейная фотоника» (2018, 2022, 2023), IX Сибирская конференция молодых ученых по наукам о Земле (2018), XXII Международный симпозиум имени академика М.А. Усова студентов и молодых ученых (2018) и XV симпозиум «Термодинамика и материаловедение» (2023)

Публикации

Основные результаты диссертации изложены в 14 статьях российских и международных журналов из текущего списка ВАК (из них 10 входит в список Web of Science) и в 15 материалах конференций и тезисах докладов.

Структура и объем работы

Диссертационная работа состоит из введения, четырех глав, заключения, списка используемой литературы. Общий объем работы 137 страницы. Диссертационная работа содержит 68 рисунков и 20 таблиц. Список цитируемой литературы включает 162 наименований, из них 149 на иностранных языках.

Благодарности

Автор выражает искреннюю благодарность своему научному руководителю – д.т.н., вед. науч. сотр. ИГМ СО РАН Исаенко Людмиле Ивановне за руководство, помощь при выполнении бесконечное терпение. Также работы, советы хочется И поблагодарить за оказанную помощь в проведении исследований и ценные консультации д.ф.-м.н. [Кидярова Бориса Ивановича], д.ф.м.н., вед. науч. сотр. ИГМ СО РАН Елисеева Александра Павловича, Лобанова Сергея Ивановича, к.ф.-м.н., ст. науч. сотр. ИФ СО РАН Молокеева Максима Сергеевича, д.ф.-м.н., зав. лаб. ИНХ СО РАН Громилова Сергея Александровича, науч. сотр. ИГМ СО РАН Курусь Алексея Федоровича, к.ф.-м.н., ст. науч. сотр. ИГМ СО РАН Горяйнова Сергея Владимировича, д.н. Zheshuai Lin Technical Institute of Physics and Chemistry CAS, д.т.н., зав. лаб. ИГМ СО РАН Коха Александра Егоровича.

Работа выполнена при поддержке грантов: РФФИ №18-32-00359; РНФ №19-12-00085 и государственного задания ИГМ СО РАН

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении диссертационной работы обоснованы актуальность выбранной темы, определены основные цели и задачи работы, сформулированы научная новизна, практическая значимость и защищаемые положения.

ГЛАВА 1. ЛИТЕРАТУРНЫЙ ОБЗОР.

В природе простые нитраты крайне мало распространены. Большое разнообразие халькогенидов чаще всего встречается в различных рудах в виде соединений цинка, меди, железа, свинца, молибдена (сфалерит, киноварь, галенит, молибденит).

Проведенный поиск по опубликованным базам данных не обнаружил сведений о существовании двойных нитратов в природе. Поэтому возникла необходимость изучения свойств уже известных синтетических двойных нитратов. В результате проведенного анализа литературных данных было выявлено, что двойные нитраты в основном образуются сочетанием катионов щелочных, щелочноземельных металлов друг с другом, с *d*- и *f*- металлами IV, V, VI и VII периодов и редкоземельными элементами (РЗЭ). Для изучения изменения структур двойных нитратов, были подобраны

катионы, которые максимально отличаются и оптимально искажают положение треугольных нитратных групп. Это разновалентные катионы с близкими радиусами (K⁺, Ba²⁺), и изовалентные катионы с разными радиусами (Rb⁺, Na⁺).

Для лучшего понимания взаимодействия состав – структура свойства нами были исследованы изначально соединения с простыми треугольными группами, а затем более сложные системы с тетраэдрами. Типичными материалами первой группы являются нитраты, которые прозрачны в ультрафиолетовом диапазоне, а второй - халькогениды, которые прозрачны в среднем инфракрасном диапазоне.

Известно, что для селенидов край пропускания сдвинут в область более длинных волн в инфракрасном диапазоне, они характеризуются большими нелинейными коэффициентами и более низкой температурой плавления по сравнению с сульфидами. Поэтому многокомпонентные селениды были выбраны в качестве объектов исследования.

ГЛАВА 2. ТЕХНИКА ЭКСПЕРИМЕНТОВ И МЕТОДЫ ИССЛЕДОВАНИЯ КРИСТАЛЛОВ

В главе 2 описаны методы выращивания кристаллов из водных растворов, из раствора-расплава и методом Бриджмена– Стокбаргера. Рентгеноструктурным и рентгенофазовым анализом проводили идентификацию кристаллических фаз двойных нитратов K₂Ba(NO₃)₄, Rb₂Na(NO₃)₃ и многокомпонентных халькогенидов в системах LiGaSe₂-AgGaSe₂, LiInSe₂-AgInSe₂.

Для кристаллов K₂Ba(NO₃)₄ и Rb₂Na(NO₃)₃ был проведен дифференциальный термический анализ (ДТА) с помощью синхронного термоанализатора Netzsch STA 449C Jupiter и Thermoscan-2. Спектры оптического пропускания этих кристаллов измерены с помощью спектрофотометров PC 2501 фирмы Shimadzu в ультрафиолетовом – видимом - ближнем инфракрасном диапазоне и ИК-Фурье-спектрометра Infralum FT801 в среднем инфракрасном диапазоне.

Расчеты ширины запрещенной зоны, двулучепреломления и коэффициента генерации второй гармоники для двойных нитратов и многокомпонентных халькогенидов были проведены с помощью программы CASTEP. Для систем Li_xAg_{1-x}GaSe₂ и Li_xAg_{1-x}InSe₂

экспериментально были оценены эффективности генерации второй гармоники методом Курца и Перри.

ГЛАВА 3. ИССЛЕДОВАНИЕ ДВОЙНЫХ НИТРАТОВ Структурные карты двойных нитратов

Двойные нитраты в основном образуются сочетанием катионов щелочных, щелочноземельных металлов друг с другом, с d- и f-металлами IV, V, VI и VII периодов и редкоземельными элементами. По форме NO₃ треугольника и положению атома азота в структурах центросимметричных двойных нитратов, было выявлено, что разносторонние NO₃ треугольники располагаются в общей позиции или на плоскости симметрии. В то время как, равнобедренные NO₃ треугольники находятся на плоскости симметрии или на оси второго порядка, а равносторонние - только на оси третьего порядка. По форме NO₃ треугольника и положению азота в структурах нецентросимметричных двойных атома нитратов, было показано, что разносторонние NO₃ треугольники располагаются В общей позиции, а равнобедренные NO₃ треугольники - на плоскости симметрии или на оси второго обнаруженные нецентросимметричные порядка. Почти все соединения обладают разносторонними NO₃ треугольниками, кроме Rb₂Na(NO₃)₃ и K₂Ba(NO₃)₄, поэтому подробно были изучены именно эти соединения.

По данным из открытых структурных баз Springer, Crystallography open database были построены структурные карты центросимметричных и нецентросимметричных двойных нитратов натрия, калия, рубидия и цезия (**рис. 1**). Структурные карты – это графики зависимости эффективных ионных радиусов В от размера полиэдров катиона A (среднее значение длин связей <A-O>).

Рисунок 1. Структурные карты нецентросимметричных и центросимметричных двойных нитратов A_xB_y(NO₃)_z. Обозначения:

IV, V период – *d*, *f*-металлы IV и V периода, P3Э+Th –

редкоземельные элементы и технеций, квадраты - нецентросимметричные, круги – центросимметричные соединения.

Для калиевых соединений можно выделить три поля по размерам катионов. Первое - с маленьким размером катиона B, в котором наблюдаются калиевые центросимметричные соединения с d- и f- элементами IV, V периода (Cu, Ag, Pd) и одно нецентросимметричное соединение K₂Ni(NO₃)₄. Второе поле со средним размером катиона B, в котором обнаружены как центросимметричные, так и нецентросимметричные соединения с P3Э и K₂Th(NO₃)₆. Из-за своей структурной схожести с K₃M₂(NO₃)₉ (M=La, Ce, Pr, Nd, Sm) в эту область также попало соединение K₃Bi₂(NO₃)₉. В третьей области наблюдаются только калиевые нецентросимметричные соединения с Rb и Ba.

Отдельно выделить поля по размеру катионов для рубидиевых соединений очень сложно, поскольку наблюдаются пересечения областей. Область, в которой второй катион В является *d*-элементом IV или V периода, пересекается с той, в которой катион В представлен редкоземельными элементами и Th. При этом поле с редкоземельными элементами и Th пересекается с областью, где катион В представлен щелочными элементами. Для цезиевых соединений можно выделить поле, в которое входят соединения с катионом В, представленным *d*-элементами IV и V периода, а также соединения $Cs_2Th(NO_3)_6$ и $Cs_2Ce(NO_3)_6$. Отдельно от них наблюдается твердый раствор $Cs_xRb_{1-x}NO_3$.

Найденные нецентросимметричные соединения, сочетающие в себе только щелочные/щелочноземельные катионы, образуют в основном твердые растворы и всего два двойных соединения K₂Ba(NO₃)₄ и Rb₂Na(NO₃)₃.

Рост кристаллов и их структура

Проведено три серии опытов по выращиванию кристаллов $K_2Ba(NO_3)_4$. В первой серии кристаллы были выращены из чистых водных растворов при постоянной температуре. На основе полученных данных построена фазовая диаграмма системы KNO_3 -Ba $(NO_3)_2$ -H₂O при 60°C. Во второй серии кристаллы были выращены из раствора–расплава, соответствующего эвтектике E_1 (LiNO₃–31 %, CsNO₃–33 %, KNO₃–36 %). По данным ДТА было установлено, что около 197.3°C это соединение разлагается на чистые нитраты бария и калия. Оптически прозрачные кристаллы $K_2Ba(NO_3)_4$ впервые были выращены из водных растворов в присутствии L-аргинин ацетата (C₈H₁₈N₄O₄) в третьей серии (**рис.** 2а).

Рисунок 2. (а) Прозрачный кристалл $K_2Ba(NO_3)_4$; (б) монокристалл $Rb_2Na(NO_3)_3$.

В процессе исследования обнаружено, что существующие фазовые диаграммы системы $RbNO_3$ -NaNO_3 не корректны, поэтому были использованы разные составы расплавов: 68% $RbNO_3 - 32\%$ NaNO_3 и 75% $RbNO_3 - 25\%$ NaNO_3. Кристаллы $Rb_2Na(NO_3)_3$ были выращены методом Бриджмена-Стокбаргера. Из первого состава была получена смесь кристаллов, из второго - монокристалл $Rb_2Na(NO_3)_3$ (**рис. 26**). По данным ДТА выявлено, что соединение $Rb_2Na(NO_3)_3$ плавится при 210°C.

Кристаллическая структура $K_2Ba(NO_3)_4$ была впервые определена с помощью монокристального рентгеноструктурного анализа. Соединение $K_2Ba(NO_3)_4$ кристаллизуется в тетрагональной пространственной группе $I\overline{4}2m$ с параметрами элементарной ячейки a=b=8.3126(7) Å, c=7.7711(6) Å, V=536.988 Å³.

В кристаллах $Ba(NO_3)_2$ треугольник NO_3 является равносторонним, ромбических кристаллах KNO₃ в равнобедренным. Комбинирование катионов из двух этих структур формирование обеспечивает структуры $K_2Ba(NO_3)_4$ с равнобедренным треугольником NO_3 (рис. 3). При ЭТОМ координационное число К меняется от 9 (в простом KNO₃) до 12 (в $K_2Ba(NO_3)_4$), в результате чего эффективные ионные радиусы Ba^{2+} и К⁺ становятся близки.

Соединение $Rb_2Na(NO_3)_3$ кристаллизуется в ромбической пространственной группе $Pmc2_1$ с параметрами ячейки a=5.327(5) Å, b=9.079(4) Å, c=9.718(6) Å, V=470.00(57) Å³. Было обнаружено, что в структуре $RbNO_3$ наблюдаются три разносторонних NO_3 треугольника, в структуре $NaNO_3$ - один равносторонний треугольник. Комбинирование катионов из двух этих структур обеспечивает формирование нецентросимметричной структуры $Rb_2Na(NO_3)_3$ с тремя равнобедренными NO_3 треугольниками (**рис. 4**).

Рисунок 3. Элементарные ячейки и NO₃-треугольники для (а) Ва(NO₃)₂, (б) KNO₃ и (в) К₂Ва(NO₃)₄ в плоскости *ac*.

Рисунок 4. Структуры элементарных ячеек и NO₃ группы в RbNO₃, NaNO₃ и Rb₂Na(NO₃)₃ в плоскости *bc*

Оптические и нелинейные свойства

Кристалл $K_2Ba(NO_3)_4$ прозрачен от 0.2 до 2.2 мкм, $Rb_2Na(NO_3)_3$ – от 0.22 мкм до 3 мкм (рис. 5). Небольшой пик

поглощения с максимумом около 0.3 мкм характерен как для простых нитратов, так И для наших соединений. Экспериментальные и теоретические данные ширины запрещенной зоны K₂Ba(NO₃)₄ – Eg_{эксп}=4.94 эВ, Eg_{pacy}=4.85 эВ, Rb₂Na(NO₃)₃ – Ед_{эксп}=5.08 эВ, Ед_{расч}=4.98 эВ. Теоретически были рассчитаны двулучепреломление $\Delta n_{K2Ba(NO3)4} = 0.057$, $\Delta n_{Rb2Na(NO3)3}=0.228$ И коэффициенты нелинейности второго порядка d_{36(K2Ba(NO3)4)}=-2.44 d_{32(Rb2Na(NO3)3)}=-0.98 $d_{31(Rb2Na(NO3)3)} = -3.08$ πм/В, пм/В. пм/В. d_{33(Rb2Na(NO3)3)}=0.05 пм/В. Таким образом, полученные кристаллы эффективными материалами преобразования являются для лазерного излучения в ультрафиолетовом диапазоне.

Рисунок 5. Спектры пропускания (а) K₂Ba(NO₃)₄ и (б) Rb₂Na(NO₃)₃

ГЛАВА 4. ИССЛЕДОВАНИЕ МНОГОКОМПОНЕНТНЫХ ХАЛЬКОГЕНИДОВ

Для лучшего понимания влияния катионов на структурные мотивы вначале были исследованы соединения с простыми треугольными группами, а затем перешли к более сложным системам с тетраэдрами. Зависимость изменения структурных мотивов и нелинейных свойств проявляется наиболее ярко при изучении халькогенидных рядов.

В системе LiGaSe₂-AgGaSe₂ структурно изучены тетрагональный твердый раствор Li_xAg_{1-x}GaSe₂ ($0 \le x \le 0.9$) и один член ромбического твердого раствора Li_{0.98}Ag_{0.02}GaSe₂ (**рис. 6**). Небольшое содержание Ag в LiGaSe₂ провоцирует сильный сдвиг Li к ребру Se(1)-Se(2), что приводит к дальнейшему переходу от тетрагональной ($I\overline{4}2d$) структуры в ромбическую (*Pna*2₁).

Рисунок 6. Структура (а) тетрагонального твердого раствора $Li_xAg_{1-x}GaSe_2$ ($0 \le x \le 0.9$) и (б) ромбического твердого раствора $Li_xAg_{1-x}GaSe_2$ (x=0.98, 1)

При исследовании зависимости длин связей Ga-Se и Ag(Li)-Se от содержания Li было замечено, что в тетрагональном твердом растворе длины связей Ag(Li)-Se больше, чем Ga-Se (**рис. 7**), размер тетраэдра GaSe₄ практически не изменяется («жесткий»). В то же время размер тетраэдра Li(Ag)Se₄ уменьшается при увеличении содержания Li, что свидетельствует о его более «гибком» поведении.

Рисунок 7. Размеры тетраэдров Li(Ag)Se4 и GaSe4.

Измерение углов Li(Ag)-Se-Ga показало, что для тетрагонального твердого раствора характерно постепенное увеличение угла Li(Ag)-Se-Ga. Был введен критерий искажения тетраэдров f, который является отклонением положения Se в нашей структуре от идеальной структуры ZnSe. Было выявлено, что хорошо коррелирует со степенью нелинейность искажения тетраэдров. Максимальное значение коэффициента нелинейности наблюдается при x=0.8, что соответствует наибольшему искажению структуры (f) (**рис. 8**). При таком этом наблюдается малое значение двулучепреломления. Уменьшение концентрации Li позволяет найти компромисс между двулучепреломлением и коэффициентом нелинейности. Таким образом, был выделен состав Li_{0.5}Ag_{0.5}GaSe₂, сочетающий сбалансированный комплекс параметров.

Проведенные исследования показали, что замещение Ga на In существенно изменяет структуру и свойства кристаллов. В ряду Li_xAg_{1-x}InSe₂ можно выделить тетрагональный твердый раствор (0≤x≤0.37) и ромбический твердый раствор (0.55≤x≤1) (**рис. 9**).

Рисунок 8. Зависимость нелинейных коэффициентов (d_{ij}), искажение тетраэдров f и значения двулучепреломления в кристаллах твердых растворов Li_xAg_{1-x}GaSe₂ (x=0, 0.5, 0.6, 0.8, 0.9, 1).

Рисунок 9. Структуры (а) тетрагонального твердого раствора Li_xAg_{1-x}InSe₂ (при x=0, 0.2, 0.37); (б) ромбического твердого раствора Li_xAg_{1-x}InSe₂ (при x=0.55, 0.78, 0.81, 1)

По мере увеличения Li от чистого AgInSe₂ до LiInSe₂ размер тетраэдров Li(Ag)Se₄ уменьшается («гибкий»), в то время как, размер тетраэдров InSe₄ практически не изменяется («жесткий»). В соединениях Li_{0.78}Ag_{0.22}InSe₂ и Li_{0.55}Ag_{0.45}InSe₂ размеры тетраэдров становятся очень близкими (**рис. 10**). Когда Li(Ag)Se₄ тетраэдр становится больше InSe₄ тетраэдра, ромбическая фаза становится менее стабильной, что приводит к образованию тетрагональных кристаллов Li_{0.37}Ag_{0.63}InSe₂.

Содержание Li

Рисунок 10. Изменения длин связей In-Se и Ag(Li)-Se с увеличением содержания Li в ряду Li_xAg_{1-x}InSe₂.

По мере увеличения концентрации Li от 0 до 0.37 в тетрагональной структуре наблюдается небольшое увеличение угла Li(Ag)-Se-In. В ромбической серии все по-другому, поскольку наблюдается При содержании два положения Se. Li=0.78 наибольшее искажение структуры и наблюдается наибольший нелинейный коэффициент, также приемлемое а двулучепреломление (рис. 11). Таким образом, был выделен состав $Li_{0.78}Ag_{0.22}InSe_2$ сбалансированный сочетающий комплекс параметров.

Рисунок 11. Изменение коэффициента нелинейности (d_{ij}) и двулучепреломления (Δn) от содержания Li.

Основные результаты

Проведена оценка влияния замещения катионов в структуре кристаллов на свойства многокомпонентных нитратов и халькогенидов для установления закономерностей состав – структура - свойства.

Построены структурные карты двойных нитратов натрия, калия, рубидия, цезия и поливалентных металлов. Впервые выращен кристалл K₂Ba(NO₃)₄ оптического качества из водных растворов в присутствии L-аргинина ацетата и расшифрована его структура. Впервые выращен монокристалл Rb₂Na(NO₃)₃ оптического качества методом Бриджмена-Стокбаргера из состава 75% RbNO₃ – 25% NaNO₃.

Разновалентные катионы K⁺ и Ba²⁺ с близкими радиусами и равнобедренный NO₃ треугольник в структуре K₂Ba(NO₃)₄ обеспечивают значительную ширину запрещенной зоны (E_g=4.9 эВ), достаточное двулучепреломление (Δn =0.057) и нелинейный коэффициент d₃₆=-2.44 пм/В. Изовалентные катионы Rb⁺ и Na⁺ с

разными радиусами и три вида равнобедренных NO₃ треугольников в структуре $Rb_2Na(NO_3)_3$ обеспечивают значительную ширину запрещенной зоны (Eg=5.08 эB), высокое двулучепреломление (Δn =0.228) и нелинейные коэффициенты d_{31} =-3.08 пм/В.

В системе LiGaSe₂-AgGaSe₂ выделен тетрагональный твердый раствор ($0 \le x \le 0.9$) и один член ромбического твердого раствора Li_{0.98}Ag_{0.02}GaSe₂. В системе LiInSe₂-AgInSe₂ обнаружены области образования тетрагонального твердого раствора ($0 \le x \le 0.37$) и ромбического твердого раствора ($0.55 \le x \le 1$).

В результате, в группе двойных нитратов были получены кристаллы K₂Ba(NO₃)₄ и Rb₂Na(NO₃)₃, отвечающие необходимым требованиям для использования их в качестве преобразователей Ha ультрафиолетового лазерного излучения. основании структурного анализа выделены составы Li_{0.5}Ag_{0.5}GaSe₂ И Li_{0.78}Ag_{0.22}InSe₂. сочетающие сбалансированный комплекс эффективного их использования параметров для в среднем инфракрасном диапазоне.

Список публикаций по теме диссертации

1. L.I. Isaenko, <u>K.E. Korzhneva</u>, S.V. Goryainov, A.A. Goloshumova, L.A. Sheludyakova, V.L. Bekenev, O.Y. Khyzhun. Structural, optical and electronic properties of $K_2Ba(NO_3)_4$ crystal. Physica B: Condensed Matter 2018, 531, 149–158

2. <u>К.Е. Коржнева</u>, Л.И. Исаенко, А.П. Елисеев, М.С. Молокеев. Экспериментальное исследование процессов кристаллизации K₂Ba(NO₃)₄ из раствора-расплава. Фундаментальные проблемы современного материаловедения 2018, 15, 1, 11

3. A.Yu. Tarasova, A.P. Yelisseyev, L.I. Isaenko, A.A. Goloshumova, **K.E. Zarubina** (Korzhneva). SrPb₃Br₈:Pr crystals: growth and investigation of spectroscopic characteristics. Journal of Luminescence 2018, 195, 166–169

4. <u>К.Е. Коржнева</u>, Л.И. Исаенко, А.П. Елисеев, А.А. Голошумова, А.Ю. Тарасова, М.С. Молокеев. Исследования твердых растворов состава Pb_{1-x}Ba_x(NO₃)₂. Фундаментальные проблемы современного материаловедения 2018, 15, 3, 360

5. <u>K.E. Korzhneva</u>, B.I. Kidyarov, L.I. Isaenko, D.A. Zherebtsov, V.V. Sharutin, A.P. Yelisseyev, N.V. Pervukhina, A.Yu. Tarasova. Growth, structure and physical properties of nonlinear $K_2Ba(NO_3)_4$ crystals. Journal of Solid State Chemistry 2019, 274, 52–57

6. L.I. Isaenko, <u>K.E. Korzhneva</u>, O.Y. Khyzhun, M.S. Molokeev, A.A. Goloshumova, A.Y. Tarasova. Structural and X-ray spectroscopy studies of $Pb_{1-x}Ba_x(NO_3)_2$ solid solutions. Journal of Solid State Chemistry 2019, 277, 786–792

7. А.Ф. Курусь, Л.И. Исаенко, А.П. Елисеев, С.И. Лобанов, П.Г. Криницын, **К.Е. Коржнева**, А.Ю. Тарасова. Монокристаллы халькогенидов для полупроводниковых детекторов нейтронного излучения. Фундаментальные проблемы современного материаловедения 2019, 16, 1, 16

8. С.А. Гражданников, <u>К.Е. Коржнева</u>, А.П. Елисеев, П.Г. Криницын, Л.И. Исаенко. Нелинейный монокристалл LiGaTe₂: поиск условий роста и исследование оптических свойств Фундаментальные проблемы современного материаловедения 2020, 17, 1, 9

9. <u>K.E. Korzhneva</u>, V.L. Bekenev, O.Y. Khyzhun, A.A. Goloshumova, A.Y. Tarasova, M.S. Molokeev, L.I. Isaenko, A.F. Kurus. Single crystal growth and the electronic structure of Rb₂Na(NO₃)₃: Experiment and theory. Journal of Solid State Chemistry 2021, 294, 121910

10. L.I. Isaenko, L. Dong, A. Kurus, Zh. Lin, A. Yelisseyev, S. Lobanov, M. Molokeev, <u>K. Korzhneva</u>, A. Goloshumova $Li_xAg_{1-x}GaSe_2$: Interplay Between Lithium and Silver in Mid-Infrared Nonlinear Optical Chalcogenides. Adv. Optical Mater. 2022, 2201727

11. L.I. Isaenko, L. Dong, <u>K.E. Korzhneva</u>, A. Yelisseyev, S. Lobanov, S. Gromilov, M.S. Molokeev, A. Kurus, Zh. Lin. Evolution of Structures and Optical Properties in a Series of Infrared Nonlinear Optical Crystals $\text{Li}_x\text{Ag}_{1-x}\text{InSe}_2$ ($0 \le x \le 1$). Inorg. Chem. 2023, 62, 39, 15936–15942

12. S.I. Lobanov, <u>K.E. Korzhneva</u>, S.A. Gromilov, A.S. Sukhikh, L.I. Isaenko. Structural features of $Li_{0.55}Ag_{0.45}InSe_2$ and $Li_{0.37}Ag_{0.63}InSe_2$ crystals. Journal of Crystal Growth. 2023, 604, 127057

L. Isaenko, L. Dong, A. Yelisseyev, S. Lobanov, <u>K. Korzhneva</u>, S. Gromilov, A. Sukhih, A. Pugachev, V. Vedenyapin, A. Kurus, A. Khamoyan, Zh. Lin. A new nonlinear optical crystal Li_{0.81}Ag_{0.19}InSe₂ with balanced properties for efficient nonlinear conversion in the mid-IR region. Journal of Alloys and Compounds. 2023, 969, 172382
S.I. Lobanov, <u>K.E. Korzhneva</u>, A.P. Yelisseyev, S.A. Gromilov, A.S. Sukhikh, V.N. Vedenyapin, A.G. Khamoyan, L.I. Isaenko. Temperature dependence of the properties of the Li_{0.81}Ag_{0.19}InSe₂

nonlinear crystal. Journal of Solid State Chemistry. 2023, 328, 124372