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Doped GaSe crystals for laser frequency conversion
Jin Guo1,2, Ji-Jiang Xie1,2, Dian-Jun Li1,2, Gui-Long Yang1,2, Fei Chen1,2, Chun-Rui Wang1,2, Lai-Ming Zhang1,

Yury M Andreev3,4, Konstantin A Kokh5,6, Gregory V Lanskii3,4 and Valery A Svetlichnyi4

In this review, we introduce the current state of the art of the growth technology of pure, lightly doped, and heavily doped (solid solution)
nonlinear gallium selenide (GaSe) crystals that are able to generate broadband emission from the near infrared (IR) (0.8 mm)
through the mid- and far-IR (terahertz (THz)) ranges and further into the millimeter wave (5.64 mm) range. For the first time, we
show that appropriate doping is an efficient method controlling a range of the physical properties of GaSe crystals that are
responsible for frequency conversion efficiency and exploitation parameters. After appropriate doping, uniform crystals grown by a
modified technology with heat field rotation possess up to 3 times lower absorption coefficient in the main transparency window
and THz range. Moreover, doping provides the following benefits: raises by up to 5 times the optical damage threshold; almost
eliminates two-photon absorption; allows for dispersion control in the THz range independent of the mid-IR dispersion; and
enables crystal processing in arbitrary directions due to the strengthened lattice. Finally, doped GaSe demonstrated better
usefulness for processing compared with GaSe grown by the conventional technology and up to 15 times higher frequency
conversion efficiency.
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INTRODUCTION

The e-polytype of gallium selenide (hereinafter GaSe) has been known

since 19341 and promises efficient optical frequency conversion and

detection over a large range of wavelengths. The performance potential

of GaSe, which belongs to the point group symmetry �6m2, can be attrib-

uted to its extreme physical properties. GaSe has a broadband transpar-

ency window over the range of 0.62–20 mm for non-polarized light

continues at wavelengths o50 mm2,3. Other attractive physical prop-

erties of GaSe are its prodigious birefringence B5 0.375 at l5 10.6 mm

and 0.79 at terahertz (THz) range4, and very high second-order non-

linear susceptibility d22 5 54 pm V21 at 10 mm5 and 24.3 pm/V in the

THz band6. Among the mid-infrared (IR) anisotropic nonlinear crys-

tals, GaSe has the second highest optical damage threshold7,8 and ther-

mal conductivity in the planeof the (0001) layers (0.162W(cm?deg)21),

accompanied by large thermal capacity Cp5 47.9 J (mol?deg)21 and

density 5.05 g cm23, close coefficients of linear thermal expansion a|
5 10.8?1026 deg21 and aH5 9.1?1026 deg21, and low two-photon

absorption coefficients 0.2–0.5 cm21 GW21 for 0.7–0.8 mm pumping.

The physical properties are well reviewed elsewhere5,9.

A GaSe crystal was first used for laser frequency conversion in the

mid-IR in 19729,10. In subsequent years, GaSe was widely used for in-

lab mid-IR applications5. Over the past two decades, GaSe has been

among the most promising nonlinear optical crystals for efficient

generation of ultrabroadband radiation 0.8–5640 mm (with the

exception of the phonon limited gap between 38 mm and 58 mm)

using birefringent phase matching (PM)9,11–14, as well as for electro-

optic detection with extremely large (120 THz) bandwidth15.

However, in spite of these promising properties, GaSe has not

achieved the ubiquity of other nonlinear materials, such as nonlinear

ZnGeP2 or electro-optic zinc telluride, in commercial and industrial

applications. This lack of application of GaSe is the result of the

difficulty in growing and processing large, high optical quality

(absorption coefficient a f 0.1–0.2 cm21), single crystal sam-

ples16–18, due to its layered structure with weak interlayer, van der

Waals type, bonding9. With careful preparation, it is possible to

produce optical quality surfaces along the (0001) direction, which

is orthogonal to the c-axis6. Access to other crystallographic direc-

tions and fine polishing of exfoliated samples are hampered because

GaSe has perfect cleavage and low hardness6,19. The hardness of GaSe

has been measured to be close to 0 on the Mohs’ scale9. The limited

optical quality of grown GaSe crystals is caused by the weak technolo-

gical control of defects: point defects (mainly Ga vacancies) and

micro-defects (Ga precipitates, voids or bubbles, stacking disorders,

broken layers, and dislocations)20,21,22. In particular, the dislocation

density can reach 109 cm22 22, and the fraction of layer stacking faults

may be up to 0.6723. Moreover, low layer bonding gives rise to the

existence of four (e, d, c, and b) polytypes9 that can found in a single

sample, further limiting its applications. As a result, the physical
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properties of GaSe are strongly dependent on the state-of-the-art of

the growth technology, as well as on the specifications of the

measurement facility used, and the experimental conditions. Finally,

the physical properties reported for GaSe in over 2000 published

papers are highly variable; the optical properties for the e-wave remain

unstudied or are inconsistent. To fully exploit the potential of GaSe

and to expand its applications, it is necessary to overcome these lim-

itations, i.e., to improve further its physical properties.

Fortunately, GaSe is a goodmatrix material for doping with various

impurities. The original e-polytype structure of GaSe is strengthened

by doping; meanwhile, the physical properties responsible for the

efficiency of frequency conversion and the possibility of electro-optic

applications may be noticeably modified. However, due to the nega-

tive effect on optical nonlinearity of doping by sulfur, the first agent

explored24, only a few other dopants (In, Te, Er, and Ag), in limited

concentration ranges, were used until the last decade tomodify further

physical properties for nonlinear optical applications19,21,25,26. In

addition, these studies are mostly related to the physical properties

of the ordinary light waves. Regardless, impressive technological pro-

gress in GaSe doping has been achieved and intensive studies of the

physical properties have been performed during the last decade by a

few research teams, showing a number of detailed results that have not

typically been systematically studied. However, there are some serious

contradictions in these results. While mid-IR applications and THz

generation by optical rectification and down-conversion in GaSe have

been studied in detail5,12,14,15,27,28, very few works are devoted to the

experimental study of THz emission generation in doped GaSe. In this

regard, a topical issue is the need to summarize and analyze the

obtained data on the physical properties of doped GaSe crystals. In

this review, we present the progress in the modification of the physical

properties of GaSe crystals by light and heavy doping or solid solution

crystal growth as well as the application of GaSe crystals for frequency

conversion. We hope these data can be used for further modification

of the GaSe physical properties and will aid in the crystal selection for

and optimization of parametric frequency converters.

CRYSTAL GROWTH AND SAMPLE FABRICATION

Pure and doped GaSe crystals are obtained by different methods, but

the most common method is the vertical Bridgman method29,30. We

proposed the use of a single-zone furnace while gradually moving the

ampoule inside16. This technique seems more reliable because the

vapor pressure inside the ampoule may be estimated visually by its

color. To improve the optical quality of the synthesized material, the

synthesis may be conducted in quartz ampoules that are heavily

charged, up to 65% by volume, to decrease the quantity of rest gases

(Figure 1a).

The constituent materials were preliminary purified by multiple re-

melting. Synthesized material is then stored in sealed ampoules

(Figure 1b) before being transferred into a single- or double-wall

ampoule for crystal growth.

The growth ampoules coated with pyrolytic carbon are used

to prevent interaction with the quartz walls. Both unseeded31 and

seed-aided32 growth produce single crystals with (0001) layers parallel

to the growth axis because layered crystals tend to grow along the

primary thermal gradient. Thus, most of the GaSe crystals grown were

naturally oriented with the (0001) plane along the growth axis

(Figure 2), which is inconvenient in practice.

We demonstrated that application of a rotating heat field33 helps

considerably in resolving this problem. As a result, a set of GaSe

crystals with sub-orthogonal orientation of the cleavage plane to the

growth axis was obtained34–36.

The doping of GaSe is achieved by intercalation techniques (ion

implantation or laser intercalation)37,38, annealing in the presence of

a doping agent vapor39, direct thermal diffusion from dopants in

contact with the crystal, or its direct addition into the melt. We found

that the doping effect on the physical properties strongly depends on

the dopant group, the dopant’s ability to form isostructural binary

compounds, the number of dopants incorporated and their concen-

trations, as well on the doping method used. To study all the possibil-

ities, extended sets of doped GaSe crystals were grown from the melts

by the vertical Bridgman method incorporating heat field rotation at

the Institute of Geology and Mineralogy of SB RAS, Novosibirsk,

which were then processed and used for laser frequency conversion.

Some of the crystals grown were doped with isovalent elements S, In,

and Te, which form isostructural binary compounds, GaS, InSe, and

GaTe, respectively. Namely, GaSe:S (0.05, 0.15, 0.3, 0.5, 0.9, 1, 2, 2.3

2.5, 3, 4, 5, 7, 10, 10.2, 11, and 100 mass.%) or GaSe12xSx (x5 0.002,

0.007, 0.014, 0.023, 0.04, 0.046, 0.09, 0.103, 0.112, 0.133, 0.175, 0.216,

0.294, 0.406, 0.412, 0.44, and 1), GaSe:In (0.01, 0.1, 0.5, 1, 2, 3, and 5

mass.%) or Ga12xInxSe (x 5 0.0001, 0.001, 0.007, 0.013, 0.026, 0.04,

and 0.07), and GaSe:Teb (0.05, 0.1, 0.5, 1, 2, 5, and 10 mass.%) or

GaSe12xTex, (x 5 0.0006, 0.001, 0.06, 0.012, 0.024, 0.06, and 0.12)

crystals were formed by charge composition. This type of doping was

also realized in another way, i.e., via growth from the melt of binary

compounds, such as GaSe:InSe (1, 5, 20 mass.%), GaSe:InS (1, 5, 20

mass.%) or GaSe:GaS (1, 5, 20 mass.%). Doping was also performed

with isovalent Al, which does not form a binary compoundAlSe40, and

Er, whose binary compound ErSe does not form an isostructural (but a

cubic) lattice41. As a result, GaSe:Al (0.01, 0.05, 0.2, 0.5, 1, 2 at.%) and

GaSe:Er (0.025, 0.1, 0.5, 1, 2 at. %) crystals were also grown. Doping

with non-isovalent Ag is achieved by growth from the melt

GaSe:AgGaSe2 (10 mass.%). Two-element doped GaSe was grown

from the melt with two isovalent elements, one of which (Al) does

not form a binary compound: GaSe:In (0.75 mass.%):Al (0.02 at.%),

as well from the melt with one isovalent (S) and one non-isovalent

(Ag) element: GaSe:AgGaS2 (10.6 mass.%). We found that all the

doped GaSe crystals still belong to the e-polytype point group and

possess a layered structure, with higher hardness and a lower propen-

sity to cleavage. The layer orientation for the doped crystals is quasi-

orthogonal to the growth direction, similar to that of the GaSe crystals.

Visual inspection of as-grown crystals did not show any color differ-

ences between the initial and final sections of the boules; the high

optical quality of the crystals can be estimated by the naked eye, evid-

ent by its transparency and homogeneity (Figure 3).

No eutectic aggregate was found on the top surfaces of the boules

(Figure 3a), indicating that all additional components are distributed

inside the crystal. This observation confirms that the application of the

rotating heat field method is effective in improving convection in the

vertical Bridgman technique.

Two types of sample were fabricated and studied. One type was

cleaved from the as-grown boules, i.e., had faces orthogonal to the

c-axis, so that the incident light beam was parallel to the (0001) axis.

a

b

Figure 1 (a) Ampoules with as-synthesized polycrystalline GaSe:S (3 mass.%)

and (b) GaSe:S (5 mass.%) in a store.
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ITRI SEI 15.0 kV X5,000 1 μm WD 12.2 mm

ba

Figure 2 (a) External view at a cleaved GaSe single crystalline boule and (b) SEM image of a side view of its layered structure (the balls are precipitated Ga drops).

a b

dc

Figure 3 External view of boules of (a) GaSe:S (0.15 mass.%), (b) GaSe:S (11mass.%), and (c) GaSe:In (0.75mass.%):Al (0.02 at.%), (d) view through a 1-cm thick

GaSe crystal of daylight lamps.
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The samples were easily cleaved with high-quality surfaces until the

end of the crystals. The second type of sample was mechanically pro-

cessed. First, a section of a GaSe12xSx boule was immersed in a mono-

mer (polymethyl acrylate) mixed with a thermoinitiator and then

placed in an oven for polymerization for 2 hours (Figure 4a).

The surface quality of the cut and polished samples was found to

be suitable for e-wave studies (Figure 4b and 4c). Thinner samples

possess high concentrations of defects (cracks and deformations) and

were useless for these studies; some samples were polished with large

diameter (9 mm) polishing powder for comparison.

CRYSTAL CHARACTERIZATION

The accuracy of modern facilities for composition determination,

such as Inductively Coupled Plasma – Optical Emission

Spectrometers (ICP-OES) iCAP 6500, Thermo Scientific, were found

to be inadequate to determine the presence of low solubility dopants,

such as Ag, Al, or Er36,42–44, in quantities that, though small, may still

greatly influence the physical properties of the crystals. Thus, these

current techniques do not allow for establishment of the dependence

of optical quality of doped GaSe on the Ag, Al, or Er contents.

In some papers, the concentration of well-incorporated dopants in

GaSe was found to depend on the charge39,45,46; however, this finding

is only valid for noticeable dopant concentrations. For small quantities

of volatile dopants, a significant proportion can interact with the

ampoule wall. Moreover, a segregation phenomenon was observed

for In-doped GaSe; solid solutions can also be present in dissimilar

crystallized phases, depending upon their tendency toward differing

compositions29. For solid solutions, the segregation process is often a

common feature due to the different solidification temperatures for

the parent crystals. This feature leads to variability in the composition

over the crystal bulk, which should be determined and accounted for

in studies and applications47,48, as well as when identifying the poly-

typic composition. As a result, we label crystals in accord with their

charge composition.

Due to the limited penetration of X-rays, polytype composition of

GaSe cannot be established by X-ray methods throughout the bulk

crystals17. Thus, to minimize the discrepancies between the data on

doped GaSe properties, it is necessary to estimate the crystal composi-

tion and structure for every sample, even if it is only of micrometer-

scale thickness, for THz applications. The polytype structure of the

observed specimens in our study was identified by a proposed non-

linear method17, through a comparison of the Q-angle dependence of

frequency conversion efficiencies for different types of three wave

interactions. In Ref. 17, a nonlinear method for determining optical

uniformity is also presented.

The absorption coefficient for themaximal transparency window of

the grown crystals was estimated to be up to 2–3 times lower (f0.03–

0.06 cm21) than that for crystals grown by the conventional Bridgman

method. Therefore, for sub-mm-thick andmm-thick samples, the best

quality crystals cannot be selected, due to the limited absorptivity. We

proposed a selection criteria, determined by an absorption measure-

ment outside of the maximal transparency range, by examining the

parameters of the exciton and phonon absorption peaks: the larger the

peak magnitude and the narrower the spectral bandwidth, the better

the quality49,50. To determine adequate absorption coefficients and

refractive indices by THz-TDS, a criterion was proposed based on

the interference pattern shape-form in the recorded spectra51,52. The

validity of this method was confirmed by the efficiency of different

frequency conversion processes.

SPECIFIC FEATURES OF THE GROWN CRYSTALS

We found that the prospects for modifying GaSe physical properties

are strongly dependent on the dopant ability to form a binary isostruc-

tural compound. S and Te (anions) and In (cation), generating binary

isostructural compounds GaS, GaTe, and InSe, respectively, may form

solid solution crystals GaSe12xSx
24,53–62, GaSe12xTex

46,49,56,61–66
, and

Ga12xInxSe
19,25,26,67–69, where x is themixing ratio of the parent binary

compounds. The closer thematch in the atomic size of the substituting

atoms, the larger the mixing ratio of solid solution crystals that may be

grownwith suitable optical quality, as in the following: GaSe12xSxwith

xf 0.44 (11 mass. % of S)51, Ga12xInxSe with x5 0.03 (2.32 mass.%)

of In55, and GaSe12xTex with x 5 0.012 (1 mass.%)49. In turn, the

higher the permitted limit in the mixing ratio, the wider the variation

in the optical and mechanical properties that can be achieved.

Moreover, substitution, vacancy occupations, interstitials, and inter-

layer intercalation70, all influence the physical properties in intricate

ways.

We found that the inability to form binary (AlSe) or isostructural

binary (ErSe) compounds leads to an inability to form solid solution

crystals. Therefore, the solubility of the following types of dopants is

very limited and is difficult to measure accurately: f8 3 1022 for

Al36,42,50 and 5 3 1024 for Er21. The available data for 0.5 at.% Er

doping of GaSe by charge composition is claimed to have resulted in

a 24% increase in the intrinsic nonlinearity71; this result appears to be

inconsistent, as Er has such low solubility. Regardless, an improvement

in the optical quality with Al and Er doping was also observed.

a b c

Figure 4 (a) GaS (on top) and GaSe:S (11 mass.%) (on bottom) in polymethyl acrylate holders and their processed sections; the layer directions are denoted by

punctures, (b) the surfacemorphology with a spatial resolution 10 mm for GaSe:S (11mass.%) processed orthogonal to the layer structure, (c) view through processed

GaSe:S (2 mass.%) crystal of a daylight lamp.
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Because dopants can occupy vacancies, generate interstitials or interlayer

intercalations70, or formprecipitations,wepropose that, in this case, only

the vacancy occupation process may lead to improvement in optical

quality. The decreased vacancy concentration may also cause a decrease

in the stacking fault density and further improve the optical quality.

Recently, doping with isovalent elements was achieved by adding

the charge isostructural binary compounds: InSe43, InS34, and GaS72.

Doping with InSe or GaS is found to be similar to In or S

doping, respectively, or the growth of ternary solid solution crystals

Ga12xInxSex or GaSe12xSx; somewhat better dopant distributions were

established for the case of doping with InSe or GaS. Doping with InS is

equivalent to two-element doping or the growth of quaternary solid

solution Ga12yInySe12xSx crystals, which resulted in approximately

12% higher In solubility for GaSe:InSe (5 mass.%)34. Doped crystals

were also grown from the melt of GaSe and other structure ternary

compounds: GaSe:AgGaSe2
26,44,73 and GaSe:AgGaS2

42. GaSe:AgGaSe2
(10 mass.%) are identified as GaSe doped with 0.04 mass.% Ag but

GaSe:AgGaS2 (10.6 mass.%) as GaSe doped with 1.94 mass.% S and

0.06 mass.% of Ag. Thus, the solubility of non-isovalent Ag is close

to that for Al, which does not form binary compounds and Er that does

not form isostructural compounds, resulting in an almost identical

effect on the optical properties. This result is possibly due to vacancy

occupation and a decrease in stacking fault density. This result stimu-

lated us to study other combinations of two dopants: In and Al

(Figure 3), aswell S andAl-dopedGaSe crystals, whichwere thengrown.

OPTICAL PROPERTIES OF GaSe DOPED WITH ISOVALENT
ELEMENTS FORMING ISOSTRUCTURAL BINARY
COMPOUNDS
S-doped GaSe

Incorporation of the small atoms of S, which form an isostructural

binary compound GaS, into GaSe can be easily identified from differ-

ent optical spectra and even estimated quantitatively. In Figure 5, a

regular transformation of shape forms and a linear spectral shift of

Raman scattering peaks is observed with increasing of S-content.

The regular transformation is in effect up until the sulfur content of

11mass.%; this result indicates that these S-doped crystals are of the e-
polytype structure similar to that of GaSe and useful for nonlinear

applications. Figure 6 demonstrates a linear spectral shift of maximal

transparency edges for GaSe versus S-content, which is extremely

important in practice.

The short-wave edge shifts from 620 nm down to approximately

540 nm (Figure 6b). This shift almost removes the nonlinear two

photon absorption for a near-IR laser pump7,74,75 and shifts the PM

curves for parametric frequency conversion processes in the same

direction, allowing for optimization by S-content control. However,

the short-wave shift of the PM curves results in the necessity to design

dispersion equations as a function of the mixing ratio55. In addition,

the shift of the long-wave edge from 20 mm down to 14 mm limits the

long-wave cutoff of difference frequency generation (DFG).

In- and Te-doped GaSe

Limited incorporation of heavier In-atoms in GaSe leads to an insig-

nificant shift of absorption edges toward the long wave69 and a small

change of the PM conditions. Very small incorporation of heavy Te

atoms, with consideration for a wavelength accuracy of 61 nm in

common commercial spectrometers, results in a barely resolved shift

of absorption edges (Figure 7) and Raman peaks (Figure 8) toward the

long wave.

Taking into account the small concentration of incorporated Te, we

propose that the noticeable shift in Figure 7a of the short-wave edge for
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Figure 5 Raman scattering spectra for GaS, GaSe, and solid solutions

GaSe12xSx.

b

GaSe:S (0.5 mass.%)
GaSe

GaSe:S (3 mass.%)
GaSe:S (5 mass.%)
GaSe:S (10 mass.%)
GaS

8
0

5

10

15

20

A
bs

or
pt

io
n 

co
ef

fic
ie

nt
 (c

m
–1

)

a

A
bs

or
pt

io
n 

co
ef

fic
ie

nt
 (c

m
–1

) 25

30
1400

1200

1000

800

600

400

200

0
10 12 14 16

Wavelength (μm)
18 20 22400 450 500 550 600

Wavelength (nm)
650 700 750 800

Figure 6 (a) Short- and (b) long-wave edge absorption spectra for GaSe, GaS, and solid solutions GaSe12xSx.

Doped GaSe for frequency conversion
J Guo et al

5

doi:10.1038/lsa.2015.135 Light: Science & Applications



heavily doped GaSe:Te (5 mass.%) is caused by the presence of other

crystal phases. For GaSe doped with isovalent elements, forming iso-

structural binary compounds, the absorption spectra are found to be

independent of the doping method. For In- and Te-doped crystals,

new dispersion equations should be designed with consideration of

frequency conversion processes of thewavelengths interacting near the

PM cutoff.

Small spectral shifts in the Raman scattering peaks with doping

(Figure 8), as well as barely observable changes in the shapes of multi-

photon absorption peaks, labeled in Figure 7b by arrows, confirmonce

more the weak Te incorporation in GaSe. Figure 5 shows, for example,

that the Raman spectra for GaSe:S (2 mass.%) and GaSe:S (1.94

mass.%):Ag (0.06 mass.%) are quite similar, in spite of the small

difference in Ag content.

MID-IR PROPERTIES OF Al-, Er-, AND Ag-DOPED CRYSTALS
No shift was detected in the short- and long-wave edges in the absorp-

tion spectra for isovalent Al-doped crystals, which does not form

binary compounds. Nevertheless, the transformation of the profiles

of the short wave (exciton) (Figure 9) and the Raman (at 213 cm21,

Figure 10) peaks confirm the increasing incorporation of Al with its

increased concentration in the charge. The transformation of the

Raman peak, at 213 cm21 with increasing Al content (Figure 10 inset)

is classified as being related to the impurity levels76.

Exciton spectra in point-to-point measurements were not repro-

duced well. We propose that this lack of reproducibility is a result of

poor technological control of Al-doping levels and uniformity of dis-

tribution, as illustrated in the Figure 9a inset. In the inset of the second

harmonic generation (SHG) PM curve, no differences in CO2 laser

SHG PM angles for GaSe and GaSe:Al is observed, which confirms

once again that there is no shift in the transparency range.

GaSe:Al possesses Raman spectra very similar to that of GaSe doped

with isovalent Er (Figure 10b) whose binary compound is not iso-

structural to GaSe.

In the second case, possibly due to the much larger atomic size of Er

atoms compared to Al atoms, some transformation in 248 cm21 peak

with increasing Er content can be seen in Figure 10. This peak is

attributed to defect levels resulting from impurities also76, again con-

firming Er incorporation. Very similar optical properties to that for

Al- and Er-doped crystals were observed for GaSe doped with not

isovalent Ag, which does not form binary isostructural compounds.

OPTICAL PROPERTIES IN THE THz REGIME

Very recently, for the first time, dispersions and anisotropy of absorp-

tion coefficient for pure and S-dopedGaSewere studied in detail in the

THz regime, using both cleaved and processed samples51.With further

study, the extraordinary refractive index for GaSe was found to be

significantly lower, and the birefringence was found to be larger, than

those values calculated using data from (Figure 11).3,77,78 The disper-

sion equations for the ordinary refractive index referred to in

papers3,77,78 have a common origin in Palik’s paper79,which resulted

in the similarity of the calculated curves (Figure 11a).

Extraordinary dispersion is determined primarily by a semi-

empirical method using PM data measured at different experimental

conditions, which resulted in inconsistent dispersion equations. In

particular, a pair of Vodopyanov’s dispersion equations77 recom-

mended by the widely used Handbook5 demonstrates a maximal

difference in THz birefringence, B 5 0.49, to that calculated using

other dispersion equations (Figure 11a) or known experimental

data, B 5 0.794,80. It was established by comparison that the best
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dispersion equations for THz range have been proposed by Chen et

al.3 The ordinary and extraordinary refractive indices for solid solu-

tions GaSe12xSx decrease in proportion to the mixing ratio magni-

tudes, from GaSe to GaS. Thus, the S-content in GaSe can be

estimated from the refractive indices.

One of the most attractive results of the study is the possibility of

engineering the dispersion properties in the THz range, independent

of the dispersion properties within themaximal transparency window.

Any doping in GaSe, a p-type semiconductor crystal, results in a

change in the free charge carrier concentration, which affects the

THz o-wave absorption coefficient, and furthermore, the ordinary

refractive index (Figure 11b). Surprisingly, doping with Al leads to

an extremely large, from five to seven orders of magnitude, decrease in

the free charge carrier concentration. In turn, doping with Al leads to a

large shift of the plasma frequency toward the long wave, as well a

decrease of the plasma absorption coefficient36,42. As a result of the

negative input of the plasma, the dielectric response of GaSe in the

THz range significantly decreases, and the ordinary refractive index

grows markedly (Figure 11b), as well as birefringence (Figure 12a).

Nevertheless, the extraordinary index remains almost unchanged,

similar to the lack of change in the e-wave absorption coefficient

due to the strong absorption anisotropy of plasma.

Moreover, the dispersion properties in the visible to mid-IR ranges

remain almost independent of the plasma input. This result suggests a

very attractive possibility for PM control and optimization, as well for

applications in polarization optics. Additional control of THz disper-

sions was achieved by temperature tuning (Figure 12b). Notably, the

phonon absorption structure and peaks in doped GaSe are trans-

formed with increasing dopant concentration49,51, which should be

reflected in changes of the dispersion properties. As a result, the widely

used formulae for estimating dispersion properties of solid solution

crystals, from the visible to mid-IR range, calculated from the disper-

sions data of parent crystals81 cannot be applied to estimations in the

THz range.

PHASE MATCHING
Pure and doped GaSe have the advantage that they can be used

to construct a simple mid-IR or THz-wave generation system, as

collinear phase-matched DFG eliminates the complexity of angle tun-

ing both the input and output beams. Moreover, not only pure, but

even heavily doped, GaSe crystals have rich possibilities for PM

(Figure 13); specially designed dispersion equations were used in these

calculations35.

Figure 13a shows that a forward-wave optical parametric generator

(OPG), under CO2 laser pumping can cover almost the entire longer

wavelength range by continuously tunable emission. Six types of fre-

quency interactions can be realized in such an OPG, providing rich

possibilities for maximizing generation efficiency, especially if we bear
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in mind the strong anisotropy of the mid-IR82 and THz51 absorption,

and the possibility of temperature controlled tuning. Moreover, the

uncommon ee-e type of three-wave interaction can be realized80.

Figure 13b shows the PM for ee-e type DFG, by a two-frequency

CO2 laser, is realized at large PM angles, i.e., with low efficiency due

to the GaSe lattice symmetry. Short-wave pumping should be much

more efficient (Figure 13c); shorter-wave pumping is also preferable

from the practical point of view. Figure 13d demonstrates significant

changes in SHG and DFG PM angles; the SHG efficiency can be

significantly improved for long-wave pumping. For appropriately

chosen crystals, temperature controlled PM can be realized for the

uncommon oo-o type of three-wave interaction. Moreover, thermo-

optical coupling in GaSe was studied by modeling for the first time,

taking into account its prodigious birefringence and huge thermal

anisotropy83.

FREQUENCY CONVERSION: OPTIMAL DOPING

The second-order nonlinear susceptibility coefficient for GaSe heavily

(10mass %) doped with light S or for solid solution GaSe0.6S0.4 crystal

grown by conventional technology is only 0.31 of that for GaSe24. As

large an increase in the efficient second-order nonlinear susceptibility

coefficient for GaSe as from 37 to 51 pm V21 is observed for GaSe

doped with heavier In due to improved optical quality19. The coef-

ficient was further increased up to 75 pm V21 by Ag doping19. GaSe

doped with 0.5 at.% of Er in charge composition demonstrated a 24%

increase in the intrinsic nonlinearity71. Bearing in mind the low Er

solubility21, the increase appears to be due largely to the improved

optical quality.

It was established properly that the maximal transparency win-

dow42,49,55,61,69 and THz range51 absorption coefficients for all prop-

erly doped crystals grown by themodified method, i.e., with a rotating

heat field, are 2–3 times lower (f0.03–0.06 cm21) than those for

crystals grown by the conventional vertical Bridgman method. These

data are confirmed by the increased frequency conversion efficiency.

Further doping decreases the optical quality, indicating that there

exists an optimal doping level. Measurement by the proposedmethod,

i.e., outside of maximal transparency range49, allows us to determine

the optimal doping concentrations as:2–3 mass.% of S in GaSe55,61,

0.5–1 mass.% of In69, 0.07–0.38 mass.% of Te49,61, 0.01–0.02 mass.%

of Al36,42, and 0.5 mass.% of Er12, by charge composition. In all cases,

the optimal doping concentration was again confirmed experiment-

ally by direct comparison of frequency conversion efficiency in pure

and doped crystals at a fixed pump intensity. Independent of the

dopant, optimally doped crystals demonstrated from 1.5, and often

from 2.5–3 times larger efficiency than pure GaSe. In spite of the

decrease in the intrinsic nonlinearity, S-doped crystals show the high-

est efficiency is due to a set of modified physical properties that are

responsible for the efficiency of frequency conversion processes:

improved optical quality and thermal conductivity, decreased non-

linear absorption, varied PM angles, and decreased refractive indices.
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This result is well confirmed quantitatively by other groups of

researchers58,60.

OPTICAL DAMAGE THRESHOLD

Figure 14 illustrates the advantage of S-doped GaSe with respect to the

damage threshold under pumping by an ultrashort pulse Ti:Sapphire

laser system (Coherent) consisting of an Nd:YLF laser Verdi-5 V sup-

plied with a BBO SHG that pumps a master Ti:Sapphire laser Mira

900-B. Approximately 100 fs (full width at half maximum (FWHM))

master laser pulses were applied to pump a Ti:Sapphire optical para-

metric amplifier (OPA) Legend Elite operating at 800 nm. In turn, the

frequency doubled output of the OPA was used to pump in parallel

two tunable Ti:Sapphire OPG TOPAS-C (Coherent) emitting from 60

to 90 fs (FWHM) pulses, depending on the output wavelengths, at a

repetition rate of 1 kHz. The OPG operation ranges were 1.121.6 mm

(signal band) and 1.622.9 mm (idler band).

The transparency decrease to 10% under increased pump intensity

was found to be a reversible process. Moreover, it was established that

the visual criterion in the determination of the crystal damage thresh-

old is not consistent because observation of the black matter damage

spots on the crystal surfaces does not reduce noticeably either the

transparency or the frequency conversion efficiency. The black

matter, identified as amorphous selenium and cadmium, appeared

due to GaSe dissociation; these materials are transparent at the pump

wavelength. Real damage was identified as solidified well-cohesive Ga

structures on the crystal facets after higher exposure intensity. There is

no reason for such high intensity pumping or long-term exposure to
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lead to real damage because a dramatic decrease in the transparency,

and potential frequency conversion efficiency occurs at much lower

intensities and shorter exposure times. Therefore, we aim to determine

the limit on pump intensity that results in acceptable decrease in the

frequency conversion efficiency.

Figure 14 shows that the low solubility of larger sized In atoms sub-

stituting for Ga resulted in a small increase in the damage threshold

under 0.8 mm pumping compared to that of GaSe. Optimally S-doped

crystals have a damage threshold 4.5–5 times larger than undopedGaSe.

This result is due to very lownonlinear absorption and improvedoptical

quality caused by heavy doping, resulting in a short wave shift of the

absorption edge. Figure 14 also shows that, under 2-mm pump excita-

tion, the damage threshold is almost the same as for a 0.8-mm pump

excitation,which confirms the decreased nonlinear absorption for heav-

ily S-doped GaSe. The small difference between them at higher pump

intensity can be explained by differences in the beam parameters,

higher-order multiphoton absorption and transient transmissions.

Moreover, ns pulse pumping causes thermal effects, leading to GaSe

dissociation in the crystal bulk at the location of nano or micro defects,

eventually resulting in the local slicing off or breakdowns.

Ultimately, optimally doped crystals show up to 15 times greater

frequency conversion efficiencies under the limited pump intensity

than that of pure GaSe grown by conventional technology8,75.

Cascaded processes recently allowed for coverage of the 2.4–8.8 mm

range by frequency converted emission of a fs Ti:Sapphire laser in

doped GaSe crystals with the total photon efficiency of up to 50%84.

Nevertheless, negative effects of different dopants on the frequency

conversion efficiency have also been observed85.

CONCLUSION AND PERSPECTIVES

Modified synthesis and vertical Bridgman growth technology with

heat field rotation in the melt was designed. e-polytype, �6m2 point

group symmetry, GaSe crystals lightly and heavily doped with isova-

lent single chemical elements Al, S, In, Te, Er, S, and Ag are grown

using the modified technology. Crystals are grown also from the melts

of GaSe and isovalent Al, which do not form a binary compound,

isovalent Er, which does not form isostructural binary compound,

as well asnon-isovalent element Ag. Moreover, single- and double

(In and Al, and S and Al)-element doped GaSe crystals are grown from

themelt of GaSe and the isostructural binary compoundsGaS, InS, InS

or other (�42m) point group symmetry ternary compounds, AgGaSe2
and AgGaS2.

We verified that independent of the growth technology, heavily

In- and S-doped crystals are ternary solid solution crystals

Ga12xInxSe and GaSe12xSx. Crystals grown from the melt with Al,

Er, or Ag are respectively identified as light Al, Er, or Ag doped

GaSe due to their low solubility (below 0.1). Crystals grown from

the melt of GaSe and InS are ternary solid solution crystals

Ga12xInxSe12ySy. Double-element doped GaSe crystals are ternary

solid solution crystals Ga12xInxSe and GaSe12xSx doped with Al.

The modification of physical properties strongly depends on the

chosen dopant and its concentration. Maximal magnitudes of mixing

ratios x and y depend on the atomic size of the dopants: the closer in

size to substituted atom, the larger the mixing ratio. S-doping allowed

us to achieve a maximal mixing ratio of x 5 0.44, which lead to the

largest changes in optical properties and the greatest strengthening of

the GaSe structure.

Al, which has a small atomic size, appears as to be an extremely

efficient free electron donor that compensates for p-type GaSe con-

ductivity; it reduces the free carrier density by 5–7 orders ofmagnitude

and most efficiently strengthens the lattice structure, among all other

dopants. Moreover, Al-doping allows for control of the plasma input

to the dielectric response in the THz range, which occurs without

impact on the dielectric properties within the maximal transparency

window. Double-element doping results in an additive effect relative

to single element doping.

Themost attractive is dopingwith S andAl, which allows for control

of the optical properties and lattice strengthening within wide ranges.

Strengthened crystals allowed us to manufacture samples cut and

polished in an arbitrary direction. In turn, the cutting and polishing

the strengthened crystals allowed us to study for the first time the

optical properties of GaSe crystals for e-polarized light waves over

the entire transparency range.

Absorption coefficients for crystals grown by the modified techno-

logy are 2–3 times lower, across the entire transparency range, com-

pared to that of doped GaSe crystals grown by conventional

technology. The absorption coefficient decreased to 0.03–0.06 cm21

in the mid-IR and 1 cm21 in the THz range for optimally doped

crystals. Optimal doping concentrations were established as 2–3

mass.% of S in GaSe55,61, 0.5–1 mass.% of In69, 0.07–0.38 mass.% of

Te49,61, 0.01–0.02 mass % of Al36,42, and 0.5 mass.% of Er12, by charge

composition. Optimally doped crystals also have 2–3 times lower

absorption coefficients compared to that for undoped GaSe; down

to 0.2 cm21 in the THz range.

No increase in the intrinsic nonlinearity for doped crystals was

found. The intrinsic nonlinearity for S-doped GaSe is reduced in pro-

portion to the S-content. Nevertheless, all optimally doped crystals

demonstrate 1.5–3 times higher frequency conversion efficiency com-

pared to that for GaSe at a fixed pump intensity, due to the improved

optical properties. Notably, that S-doped crystals show 3 times higher

efficiency than that of pure GaSe, due to the full set of modified

physical properties. Moreover, optimally doped crystals show an

increased damage threshold over that for GaSe. Here again, a maximal

increase in the damage threshold, from 4.5 to 5 times, is demonstrated

by optimally S-doped crystals, due to the shift in the transparency

range toward the short wave and the related decrease in nonlinear

absorption. Thus, for maximal pumping intensity, S-doped crystals

show an improvement of up to 15 times in mid-IR frequency conver-

sion efficiency.

Further improvement in the frequency conversion efficiency is pos-

sible by exploiting new data on the physical properties developed for

grown crystals. In particular, e-wave absorption coefficients for the

THz range are a few times lower in comparison with o-wave coeffi-

cients, making e-wave generation of THz waves preferable. Established

anisotropic properties for absorption and dispersions allow for

adequate selection of the best type of the three frequency interactions

(even including the uncommon ee-e or oo-o type) and the optimiza-

tion of PM. Additional opportunities in PM optimization arise from

the possibility of independent engineering of THz dispersions by the

control of free charge carriers, through doping with Al or other ele-

ments and through temperature control. A detailed comparison of

forward, backward, and vector interactions is a promising method of

improving the frequency conversion efficiency. Outstanding physical

properties permit numerous other applications of dopedGaSe crystals,

such as in the design of dipole type emitters anddetectors, electro-optic

detectors, polarization optics, nuclear particle detectors, etc. As a result,

the applications of doped GaSe crystals are rapidly expanding.
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