На правах рукописи

КХЛИФ Незар

МИНЕРАЛЬНЫЙ СОСТАВ И ПРОИСХОЖДЕНИЕ СРЕДНЕКЕМБРИЙСКИХ ДИОПСИД-СОДЕРЖАЩИХ ЭФФУЗИВОВ УСТЬ-СЕМИНСКОЙ СВИТЫ И ИНТРУЗИЙ БАРАНГОЛЬСКОГО КОМПЛЕКСА (ГОРНЫЙ АЛТАЙ)

1.6.3 – петрология, вулканология

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание учёной степени кандидата геолого-минералогических наук

Новосибирск – 2022

Работа выполнена в Федеральном государственном бюджетной учреждении науки Институте геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук (ИГМ СО РАН), г. Новосибирск.

Научный руководитель:

Вишневский Андрей Владиславович, кандидат геолого-минералогических наук, старший научный сотрудник лаборатории петрологии и рудоносности магматических формаций Института геологии и минералогии им. В.С. Соболева СО РАН, г. Новосибирск.

Официальные оппоненты:

Пушкарев Евгений Владимирович, кандидат геолого-минералогических наук, заведующий лабораторией петрологии магматических формаций Института геологии и геохимии им. А.Н. Заварицкого Уральского отделения Российской академии наук, г. Екатеринбург.

Горнова Марина Аркадьевна, доктор геолого-минералогических наук, ведущий научный сотрудник лаборатории геохимии основного и ультраосновного магматизма, Федеральное государственное бюджетное учреждение науки Институт геохимии им. А.П. Виноградова Сибирского отделения Российской академии наук, г. Иркутск

Ведущая организация

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский государственный университет», г. Томск

Защита состоится 28 марта 2022 года в 11:00 на заседании диссертационного совета 24.1.050.01 при Федеральном государственном бюджетной учреждении науки Институте геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук, в конференц-зале.

Адрес: 630090, г. Новосибирск, просп. Академика Коптюга, д. 3. Факс: +7 (383) 333-2130; e-mail: turkina@igm.nsc.ru

С диссертацией можно ознакомиться в библиотеке и на сайте ИГМ СО РАН.

Автореферат разослан «24» февраля 2022 года.

Учёный секретарь диссертационного совета 24.1.050.01 доктор геолого-минералогических наук

О.М. Туркина

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность исследования. Происхождение и геодинамические условия формирования раннепалеозойских вулканогенных толщ и интрузивных комплексов в Горном Алтае является предметом активной дискуссии [Buslov et al., 1993; Buslov et al., 2001; Гибшер и др., 1997; Добрецов и др., 2004; Зыбин, 2006; Симонов и др., 2010; Сафонова и др., 2011; Крук и др., 2017]. В особенности это касается среднекембрийских эффузивов усть-семинской свиты и интрузий барангольского комплекса. Эффузивы усть-семинской свиты имеют необычный минеральный состав: они обогащены вкрапленниками клинопироксена и обладают повышенными концентрациями кремния При высоком содержании магния. По этой причине они были отнесены к бонинитам [Добрецов и др., 2004], хотя ранее рассматривались как диопсид-порфировые базальты [Гибшер и др., 1997]. Однако в этих работах не было принято во внимание повышенное содержание кальция и, соответственно, высокое CaO/Al₂O₃ отношение, типичное для вулканических пород, обогащённых вкрапленниками клинопироксена – анкарамитов [Della-Pasqua, Varne, 1997; Le Maitre, 2002].

Реконструкции геодинамической обстановки формирования этих вулканитов разнятся: исходя из анализа геологической позиции и ассоциации с вендраннекембрийскими базальтами рассматривается обстановка задугового палеобассейна [Гибшер и др., 1997], а на основании синтеза геохимических и геологических данных предполагается сложный процесс при погружении океанической литосферы в зону субдукции с последующим плавлением в надсубдукционной обстановке на границе коры и верхней мантии [Симонов и др., 2010; Сафонова и др., 2011]. Остаётся дискуссионным и вопрос о генезисе ультрамафитмафитовых интрузий барангольского комплекса, ассоциирующих с эффузивами устьсеминской свиты до сих пор не решён.

На основании проведения детальных минералого-петрографических, петрохимических и геохимических исследований пород усть-семинской свиты и барангольского комплекса становиться возможной оценка их взаимоотношений, генезиса и геодинамической обстановки формирования.

<u>Объектами исследования</u> являются среднекембрийские эффузивы устьсеминской свиты и интрузивные породы барангольского комплекса Горного Алтая.

<u>Целью исследования</u> является обоснование модели формировании эффузивов усть-семинской свиты и интрузий барангольского комплекса.

<u>Задачи исследования:</u> 1 – изучение литературы и составление обзора по анкарамитовому магматизму; 2 – формирование эталонной коллекции образцов пород усть-семинской свиты и барангольского комплекса; 3 – петрографическое исследование пород и определение состава породообразующих минералов; 4 – изучение редкоэлементного состава клинопироксена; 5 – проведение валового анализа пород (в том числе редких элементов) и их интерпретация; 6 – обобщение и анализ результатов проведённых исследований.

Фактический материал и методы исследования. Первичные материалы – породы усть-семинской свиты и барангольского комплекса были отобраны в ходе полевых работ сотрудниками лаборатории петрологии и рудоносности магматических формаций (лаборатория 211) Института геологии и минералогии им. В.С. Соболева (ИГМ СО РАН) А.В. Вишневским и Е.И. Михеевым в 2015-2017 гг. Дополнительные образцы получены автором при полевых работах в 2018 г. Коллекция состоит из 71 образца (42 из эффузивов усть-семинской свиты и 29 из интрузий барангольского комплекса).

Для минералого-петрографических исследований были изготовлены шлифы (37 шт.) и аншлифы (60 шт.). Отдельные зерна клинопироксена были смонтированы в шашки из эпоксидной смолы (16 шт.). Породообразующие минералы и состав основной массы в полированных пластинах и шашках были проанализированы с помощью ЭДС (Oxford X-Max 80) на сканирующем электронном микроскопе (Tescan Mira 3) в ЦКП МИИ СО РАН на базе ИГМ СО РАН, г. Новосибирск. Детальное изучение строения фенокристаллов клинопироксена и измерение концентраций основных компонентов в шашках (45 зёрен) и в полированных пластинках (56 зёрен) были проведены по профилям от центра к краю зёрен. Проводилось также картирование распределения элементов в зональных вкрапленниках.

Измерение концентраций редкоземельных и редких элементов для зёрен клинопироксена в полированных пластинах и шашках (54 зерна) проводилось на ИСП-МС NexION 300S (PerkinElmer) с приставкой для лазерной абляции NWR213 (ESI) в ЦКП «Геоаналитик» ИГГ УрО РАН, г. Екатеринбург. Помимо измерений микроэлементного состава клинопироксена в точке, проводился прожиг профилей (21 профиль) в крест зональности зёрен, либо через весь кристалл, либо от центральных частей ядра до внешней зоны.

Анализ валового состава пород (64 пробы) проводился методом РФА (ARL-9900XP (Thermo Fisher Scientific Ltd)) в ЦКП МИИ СО РАН на базе ИГМ СО РАН. Анализ редких элементов пород (26 проб) проводился методом ИСП-МС (Delta+ Advantadge Finigan MAT 252), в Южно-Уральском ЦКП по исследованию минерального сырья (ИМ УрО РАН), г. Миасс.

Научная новизна: 1 – определён микроэлементный состав зёрен клинопироксена в точке и профилями из пород усть-семинской свиты и барангольского комплекса; 2 – впервые среди пород усть-семинской свиты выделены анкарамиты и показана общая высококальциевая специфика минералов и пород; 3 – определён микроэлементный состав пород барангольского комплекса методом ИСП-МС; 4 – обоснована субдукционно-связанная геодинамическая обстановка формирования интрузивов барангольского комплекса; 5 – обоснована возможность отнесения интрузивов барангольского комплекса к Урало-Аляскинскому формационному типу.

Практическая значимость исследований. Доказанное проявление анкарамитового магматизма среди пород усть-семинской свиты и наличие ультрабазитбазитовых массивов барангольского комплекса, комагматичных этим вулканитам, указывают на возможность выделения интрузий, подобных массивам Уральско-Аляскинского типа в Алтае-Саянской складчатой области, что позволяет предполагать возможность обнаружения платинометальной, в т.ч. россыпной минерализации.

Основные защищаемые положения:

1. По совокупности минералого-петрографических особенностей и петрохимических характеристик, среди эффузивов усть-семинской свиты выделяются две группы пород. Первая группа с отношением CaO/Al₂O₃ >1, характеризующаяся обилием вкрапленников клинопироксена, классифицируется как анкарамиты, а породы второй группы с CaO/Al₂O₃ <1 и значительной долей плагиоклаза во вкрапленниках являются диопсид-порфировыми базальтами.

2. Клинопироксен из пород усть-семинской свиты и барангольского комплекса по составу основных компонентов и микроэлементов относится к одной популяции и не является ксеногенным как предполагалось paнee.

3. Минералого-петрографические особенности, петрохимический и редкоэлементный состав интрузивных пород барангольского комплекса показывают их родственность вулканитам усть-семинской свиты, и свидетельствуют о субдукционно-связанной обстановке их формирования.

<u>Апробация работы и публикации.</u> По теме диссертации были опубликованы пять работ, включая две статьи в рецензируемых журналах из списка ВАК. Результаты озвучены в докладах трёх конференций.

Структура и объем диссертации. Диссертация состоит из оглавления, введения, пяти глав, заключения, списка сокращений и списка литературы. Объём диссертации составляет 135 страниц, в том числе 30 рисунков и 9 таблиц. Список литературы включает 132 наименования.

Благодарности. Автор выражает глубокую признательность научному руководителю к.г.-м.н. А.В. Вишневскому и д.г.-м.н. профессору А.Э. Изоху за руководство и консультации, благодаря которым успешно удалось выполнить научную работу и опубликовать научные статьи и тезисы. Также выражается благодарность А.И. Ильину, Е.В. Михееву и Д.В. Элькиной, принимавшим участие в экспедиционных работах, М.В. Червяковской и И.А. Вишневской, способствовавших проведению анализа микроэлементного состава минералов методом ИСП-МС. Огромная благодарность моей семье за постоянную поддержку.

СОДЕРЖАНИЕ РАБОТЫ

В первой главе приведён литературный обзор по высококальциевому анкарамитовому магматизму. Анкарамитовые расплавы фиксируются как в виде непосредственно вулканических пород, так и в виде высококальциевых расплавных включений во вкрапленниках оливина и клинопироксена из анкарамитов или базальтов. Анкарамиты (как особый тип пород) – это оливин-клинопироксеновые высокомагнезиальные базальты с CaO/Al₂O₃ >1 (**Pис. 1***a*) [Della-Pasqua, Varne, 1997; Кхлиф и др., 2020]. Они характеризуются порфировой структурой с обилием вкрапленников высокомагнезиального клинопироксена (>25 об. %), представленного диопсидом и авгитом с магнезиальностью Mg# 63–94, где Mg#=100*Mg/(Mg+Fe), располагающихся в клинопироксен-плагиоклазовой микролитовой основной массе. Клинопироксены из анкарамитов внутриплитных обстановок в отличии от клинопироксенов из анкарамитов островных дуг характеризуются значительно более высокими содержаниями TiO₂, Al₂O₃ и Na₂O.

Помимо клинопироксена в анкарамитах наблюдаются вкрапленники магнезиального оливина (Fo₇₅₋₉₂; содержание CaO в нём достаточно высоко, до 0,53 мас. %; однако в большинстве случаев он отсутствует или полностью замещён вторичными продуктами), редкие вкрапленники основного плагиоклаза (An₄₉₋₉₃; в наиболее магнезиальных анкарамитах он отсутствует вовсе). Хромшпинель чаще всего присутствует в виде включений во вкрапленниках оливина или клинопироксена и характеризуется высокой хромистостью Cr# до 90 (где Cr# = 100*Cr/(Cr+Al)).

Общими петрохимическими чертами анкарамитов из разных проявлений являются высокие содержания (в мас. %) MgO 7,69–18,44, CaO 8,82–21,12, Cr₂O₃ до 0,3,

и высокое отношение CaO/Al₂O₃ >1 (1,0–3,3) (**Рис. 1**). Содержание TiO₂ позволяет достаточно уверенно отличать анкарамиты островных дуг (низкие значения) от анкарамитов внутриплитных обстановок (**Рис. 1***в*).

Рисунок 1. *а* – классификационная диаграмма TAS по [Le Maitre, 2002] и *б*–*г* – вариации состава MgO с CaO/Al₂O₃, TiO₂ и Na₂O для анкарамитов и гомогенизированных высококальциевых расплавных включений. Островодужные анкарамиты: Baнyary [Barsdell, 1988; Barsdell, Berry, 1990; Della-Pasqua, Varne, 1997], Зондская дуга [Della-Pasqua, Varne, 1997], Джунгария [Zhang et al., 2008], Южный Урал [Пушкарев и др., 2017], Восточное Среднегорье [Marchev et al., 2009], Авачинский вулкан (средний состав) [Portnyagin et al., 2005]; внутриплитные анкарамиты: Малагаскар [Lacroix, 1916]. Наби Матта [George et al., 2011] и Халеакала [Hammer et al., 2016]: гомогенизированные высококальциевые расплавные включения: в оливине из анкарамитов и базальтов [Schiano et al., 2000; Portnyagin et al., 2005] и в клинопироксене из анкарамитов [Della-1997]; анкарамиты усть-семинской свиты (данное Pasqua, Varne, исследование); гомогенизированные высококальциевые расплавные включения в клинопироксене из вулканитов усть-семинской свиты [Buslov et al., 1993; Симонов и др., 2010]. На диаграмме (г) отсутствие некоторых точек составов связано с тем, что данные по содержаниям хрома для них отсутствуют.

Проведённый обзор моделей генезиса анкарамитов показывает, что получить высококальциевый анкарамитовый расплав (c отношением $CaO/Al_2O_3 > 1$) непосредственно из обычных мантийных лерцолитов невозможно. Его можно получить либо счёт плавления верлитов или оливиновых клинопироксенитов, за присутствующих в мантии или в нижней коре, либо за счёт верлитизации литосферной мантии карбонатитовым расплавом или водно-углекислыми флюидами.

Вторая глава посвящена геологии и истории изучения объектов исследования (пород усть-семинской свиты и барангольского комплекса), её краткое содержание изложено ниже.

Породы усть-семинской свиты и барангольского комплекса входят в состав Катунского аккреционного комплекса северной части Горного Алтая (Рис. 2), сформировавшегося в результате, венд-среднекембрийской субдукции океанической коры Палеоазиатского океана и аккреции палеоокеанических островов к Кузнецко-Алтайской островной дуге [Добрецов и др., 2004]. В состав Катунского комплекса входят различные тектонические пластины, среди которых диагностируются осадочные отложения и фрагменты океанической коры (венд-раннекембрийские базальты типа MORB эсконгинской и улус-чергинской свит), палеосимаунты (раннекембрийские базальты типа-OIB манжерокской свиты), образования их склоновых фаций и карбонатных шапок (раннекембрийские известняки чепошской и шашкунарской свит) [Добрецов и др., 2004; Сафонова и др., 2011].

Рисунок 2. Геологическая схема северной части Горного Алтая [Государственная..., 2011] с упрощениями, *a*, *б* – геологические схемы Бийской и Усть-Семинской вулканических построек (**Приложение 1**).

Среднекембрийские вулканические и вулканогенно-осадочные породы устьсеминской свиты в виде лавовых потоков пироксен-порфировых и пироксенплагиоклаз-порфировых базальтов, кластолавов и туфов, а также даек, широко распространены по право- и левобережью реки Катунь, в бассейне её притоков – рек Сема и Бийка (**Рис. 2**, **Приложение 1**). Вулканиты усть-семинской свиты образуют несколько вулканических построек. Основной объём усть-семинской свиты сконцентрирован в двух палеовулканах центрального типа – Усть-Семинском в северозападной части Катунского комплекса и Бийском – в юго-восточной. Вулканиты слагают также Анос-Емурлинскую линейную вулканическую постройку между этими двумя палеовулканами. Кроме того, вулканиты усть-семинской свиты выходят в районах п. Камлак и п. Куюс. Образцы вулканитов были отобраны из Усть-Семинской постройки (13 образцов), из Анос-Емурлинской постройки (2 образца) и из Бийской постройки (20 образцов), а также из участка Камлак (5 образцов) и из участка Куюс (2 образца) (**Рис. 2, Приложение 1**).

Среднекембрийские гипабиссальные интрузии барангольского комплекса пространственно ассоциируют с вулканитами усть-семинской свиты (**Рис. 2**, **Приложение 1**). В составе этого комплекса были выделены массивы трех типов: дунитверлит-клинопироксенитовый Апшуяхтинский, габбро-монцогаббромонцодиоритовый Еландинский и диорит-пироксенит-габбровый Барангольский [Шокальский и др., 2000; Государственная..., 2011]. Кроме того, наблюдаются небольшие субвулканические интрузии, прорывающие вулканиты Бийской постройки, например, в районе р. Чобурак. Они представлены в основном габбро и монцогаббро. Образцы из интрузий барангольского комплекса были отобраны из Апшуяхтинского (14 образцов), Еландинского (3 образца) и Барангольского (9 образцов) массивов, а также из тел в районе р. Чобурак (3 образца) (**Рис. 2, Приложение 1**).

ОБОСНОВАНИЕ ЗАЩИЩАЕМЫХ ПОЛОЖЕНИЙ

Первое защищаемое положение. По совокупности минералогопетрографических особенностей и петрохимических характеристик, среди эффузивов усть-семинской свиты выделяются две группы пород. Первая группа с отношением CaO/Al₂O₃ >1, характеризующаяся обилием вкрапленников клинопироксена, классифицируется как анкарамиты, а породы второй группы с CaO/Al₂O₃ <1 и значительной долей плагиоклаза во вкрапленниках являются диопсид-порфировыми базальтами.

Вулканиты усть-семинской свиты характеризуются серым до тёмно-серого цвета с зелёным оттенком, массивной и реже миндалекаменной текстурами. Для них характерна порфировая структура с вкрапленниками клинопироксена, изменённого плагиоклаза, редко амфибола, гораздо реже полностью изменённого оливина и хромшпинели, располагающимися в микролитовой основной массе (**Рис. 3**).

Особенностью вулканитов усть-семинской свиты является большое количество вкрапленников клинопироксена (их объёмная доля составляет до 50 %). Вследствие этого, они были классифицированы ранее как диопсид-порфировые базальты (Гибшер и др., 1997), пироксеновые и пироксен-плагиоклазовые базальты (Зыбин, 2006).

В зависимости от объёмного содержания вкрапленников (в основном вкрапленники клинопироксена и плагиоклаза), нами были выделены две группы пород (**Рис. 3**). Первая группа (анкарамиты) характеризуется обилием вкрапленников высокомагнезиального клинопироксена (25–50 об. %) располагающихся в основной массе, состоящей из микролитов клинопироксена и плагиоклаза (**Рис. 3***a*,*s*). Хромшпинель в породах этой группы присутствует в виде мелких включений с высокой хромистостью Cr# 76–88 во вкрапленниках клинопироксена (**Приложение 2**).

По составу она представлена хромитом и магнезиохромитом. Породы этой группы встречаются в Усть-Семинской, Бийской и Анос-Емурлинской постройках, а также на участке Куюс.

Рисунок 3. Микрофотографии шлифов из первой (анкарамит, (*a*,*в*)) и второй (Diбазальт: диопсид-порфировый базальт (*б*,*г*)) групп пород усть-семинской свиты (николи скрещены). Индексы минералов: Cal – кальцит, Cpx – клинопироксен, Pl – плагиоклаз.

Для пород **второй группы** (диопсид-порфировые базальты: Di-базальты) характерно обилие вкрапленников соссюритизированого плагиоклаза (в редких сохранившихся вкрапленниках и реликтах он представлен лабрадором и битовнитом An_{49-68}) высокомагнезиального клинопироксена (Рис. 3б.г). амфибола (магнезиогастингсит и реже чермакит), полностью изменённые вкрапленники оливина (?) и очень редкие зерна хромшпинели. Хромшпинель в породах этой группы также присутствует в виде мелких включений с высокой хромистостью (80,0-83,8) во вкрапленниках клинопироксена (Приложение 2). Основная масса в них состоит преимущественно из микролитов клинопироксена и изменённого плагиоклаза (An₅₉₋₇₇), а также ксеноморфных выделений кали-натриевого полевого шпата, апатита, титанита и кальцита. Породы этой группы встречаются в Усть-Семинской и Бийской постройках, и также на участках Куюс и Камлак.

Точки составов пород усть-семинской свиты на классификационной диаграмме попадают в основном в поле базальтов, реже пикробазальтов (**Рис. 4***a*). Породы усть-семинской свиты преимущественно относятся к толеитовой серии, с небольшим смещением в сторону известково-щелочной и характеризуются широкими вариациями по всем петрогенным компонентам (**Рис. 4**).

Рисунок 4. Классификационная диаграмма TAS (*a*) по [Le Maitre, 2002] и вариации отношений MgO с CaO/Al₂O₃ (*b*), с TiO₂ (*b*), с Cr₂O₃ (*c*) для пород усть-семинской свиты. Анкарамиты островных дуг (см. рис. 1); толеитовые базальты Алеутской дуги [Kay, 1977; Singer et al., 1992; George et al., 2004; Singer et al., 2007]; толеитовые базальты плато Онтонг Джава [Mahoney et al., 1993]; толеитовые базальты срединно-океанических хребтов Атлантического океана [Dietrich et al., 1984]. I–II – поля состава гомогенизированных расплавных включений в клинопироксене: I – из анкарамитов [Della-Pasqua, Varne, 1997], II – из вулканитов усть-семинской свиты [Buslov et al., 1993; Симонов и др., 2010]. На диаграмме (*c*) отсутствует поле состава гомогенизированных дуг вануату и Зондской, так как данные по содержаниям хрома для них отсутствуют.

На вариационных диаграммах они показывают отрицательные корреляции содержания MgO с Al₂O₃, TiO₂, Na₂O и K₂O, и положительные корреляции с содержанием Cr₂O₃. По отношению CaO/Al₂O₃ и другим параметрам эти породы в целом образуют единый тренд, но, как уже упоминалось, среди них можно выделить две группы [Кхлиф и др., 2020; Khlif et al., 2022]: **первая группа** (анкарамиты) с высоким отношением CaO/Al₂O₃ >1 (1,0–1,6) и высокими содержаниями MgO 8,27–14,34 мас. %, CaO 11,34–14,48 мас. %, Cr₂O₃ 0,03–0,15 мас. % и **вторая** (Di-базальты) с отношением CaO/Al₂O₃ <1 (0,3–0,9), и относительно низкими содержаниями CaO 5,85–11,86 мас. %, MgO 4,41–10,18 мас. %, Cr₂O₃ 0,01–0,07 мас. % (**Рис.** 46, **Таблица 1**). Несколько образцов из Бийской и Усть-Семинской построек, и участка Камлак имеют высокие потери при прокаливании (5,65–12,89 мас. %), что частично связано с присутствием новообразованного кальцита в основной массе. Несмотря на высокое CaO/Al₂O₃, их следует относить ко второй группе (Di-базальты) пород.

Тип пород	SiO ₂	${\rm TiO}_2$	Al_2O_3	MgO	CaO	Na ₂ O	K_2O	Cr_2O_3	CaO/Al ₂ O ₃
Анкарамиты (<i>N</i> =7)	46,98	0,71	11,2	10,89	12,72	1,16	0,77	0,08	1,2
Диопсид- порфировые базальты (N =23)	47,63	0,86	16,08	7,03	9,76	2,32	1,35	0,03	0,6

Средний состав (в мас. %) двух групп эффузивов усть-семинской свиты

Примечание: *N* – число анализов.

Породы с отношением CaO/Al₂O₃ >1 в целом соответствуют первой группе, выделенной по минералого-петрографическим особенностям, характеризующейся обилием вкрапленников клинопироксена. Эти породы по вариациям всех петрогенных элементов и отношения CaO/Al₂O₃ отличаются от типичных толеитовых базальтов островных дуг, океанических плато и COX, и близки к анкарамитам островных дуг (**Рис. 4**). В первую очередь, это высокие содержания MgO, CaO, Cr₂O₃, и низкие Al₂O₃, Na₂O, TiO₂. Состав гомогенизированных расплавных включений, обнаруженных во вкрапленниках клинопироксена (Mg# >82) в породах усть-семинской свиты по [Buslov et al., 1993; Симонов и др., 2010] с отношением CaO/Al₂O₃ >1 (1,0–1,9) близок к составу гомогенизированных включений, обнаруженных в клинопироксене из островных дуг Вануату и Зондской, а также типичен для валового состава анкарамитов островных дуг (**Рис. 4**).

Аналогичным образом, породы второй группы с отношением $CaO/Al_2O_3 < 1$ соответствуют второй петрографической группе, характеризующейся обилием вкрапленников плагиоклаза и клинопироксена, и их нужно относить к базальтам, обогащённым вкрапленниками диопсида – диопсид-порфировым базальтам. Они близки к типичным толеитовым базальтам островных дуг, океанических плато и COX с небольшим отличием по содержаниям TiO₂ и CaO (**Puc. 4**).

Второе защищаемое положение. Клинопироксен из пород усть-семинской свиты и барангольского комплекса по составу основных компонентов и микроэлементов относится к одной популяции и не является ксеногенным как предполагалось ранее.

Клинопироксен, как уже было отмечено, является главным породообразующем минералом для эффузивов усть-семинской свиты. Кроме того, он широко распространён и сохранен в интрузивах барангольского комплекса, которые представлены в основном клинопироксенитами и габброидами (**Рис. 5**).

Клинопироксен из эффузивов усть-семинской свиты представлен крупными зональными идиоморфными вкрапленниками (2–20 мм, чаще 3–9 мм), мелкими кристаллами (0,5–1 мм) и микролитами основной массы. В интрузивах барангольского комплекса, он образует либо идиоморфные кристаллы, либо ксеноморфные выделения и в общем случае не обладает зональностью.

Рисунок 5. Микрофотографии шлифов пород барангольского комплекса (николи скрещены). Индексы минералов: Атр – амфибол, Ар – апатит, Срх – клинопироксен, Ol – оливин, Phl – флогопит, Pl – плагиоклаз.

Клинопироксены в вулканитах двух групп усть-семинской свиты и интрузивах барангольского комплекса по особенностям примесного и основного состава принципиально не различаются и могут быть отнесены к одной и той же популяции (Рис. 6,7). Их сходные черты включают: 1 – высокую магнезиальность – от Мg# 93,8-78,4 (где Mg#=100*Mg/(Mg+Fe) в атомных %) в ядрах вкрапленников из эффузивов усть-семинской свиты, флогопит-оливиновых клинопироксенитов и ксенолитов в пикритах Апшуяхтинского, меланогаббро Еландинского массивов и габбро (ядра кристаллов) Чобурака, до Мg# 83,0-50,3 в краевых частях фенокристаллов и микролитах основной массы из эффузивов усть-семинской свиты, амфиболовых клинопироксенитов Апшуяхтинского массива, габбро и монцодиоритов Еландинского массива, габбро и габбродиоритов Барангольского массива и габбро (край кристаллов) и монцогаббро Чобурака, 2 – преобладание диопсидового минала (Епз2-51 Wo28-52Fs3-25, Рис. 6); 3 – отрицательную корреляцию Mg# с содержаниями TiO₂, Al₂O₃, Na₂O и положительную с содержанием Cr2O3; 4 – сходные спектры распределения редкоземельных элементов, нормированные на валовый состав хондрита. показывающие положительный наклон для лёгких редкоземельных элементов с небольшим обеднением, прогиб для промежуточных и слабо отрицательный наклон или плоский спектр для тяжёлых редкоземельных элементов (Рис. 6a); 5 – выраженную отрицательную корреляцию Мg# с концентрациями редкоземельных элементов во вкрапленниках; 6 – отрицательные аномалии по высокозарядным (Zr, Hf, Nb, Ti) и крупноионным литофильным элементам (Ba, Rb) (**Рис. 6***б*).

Рисунок 6. Состав клинопироксенов из пород усть-семинской свиты и барангольского комплекса. Поля состава клинопироксенов из: интрузивов Урало-Аляскинского типа [Himmelberg, Loney, 1995; Пушкарев, 2000; Krause et al., 2007; Готтман, 2014; Khedr, Arai, 2016]; анкарамитов островных дуг [Barsdell, Berry 1990; Della-Pasqua, 1997; Portnyagin et al., 2005; Zhang et al., 2008; Marchev et al., 2009; Пушкарев и др., 2017]; толеитовых базальтов Алеутской дуги [Kay, Kay, 1982; 1985; Borsuk et al., 1985; Romick et al., 1990; Singer et al., 1992; Myers et al., 2002; Wade et al., 2008; Lloyd et al., 2016], толеитовых базальтов Плато Онтонг Джава [Frey et al., 1977; Frey et al., 1991]; ультрамафитовых кумулатов островодужных магматических камер Восточной Чукотки по [Леднева и др., 2020]; состав клинопироксена из мантийного лерцолита комплекса горы Солдатская офиолитов Камчатского Мыса [Батанова и др., 2014].

Рисунок 7. *а* – спектры распределения редкоземельных элементов в клинопироксене, нормированные на состав хондрита (C1) по [Boynton et al., 1984] и δ – мультиэлементные диаграммы, со значениями, нормированными по примитивной мантии (PM) по [Sun, McDonough, 1989] для клинопироксенов из вулканитов усть-семинской свиты и интрузивов барангольского комплекса. Поле состава клинопироксенов из интрузивов Урало-Аляскинского типа [Krause et al., 2007; Khedr, Arai, 2016]; поле состава клинопироксенов из анкарамитов островных дуг [Marchev et al., 2009; Portnyagin et al., 2005]; поле состава клинопироксенов из базальтов Алеутской дуги [Yogodzinsk, Kelemen, 1998); состав клинопироксена из мантийного лерцолита комплекса горы Солдатская офиолитов Камчатского Мыса [Батанова и др., 2014].

Сопоставление состава клинопироксенов из пород усть-семинской свиты и барангольского комплекса с составом клинопироксена из анкарамитов островных дуг и толеитовых базальтов Алеутской дуги, а также с составами клинопироксена из лерцолитов комплекса горы Солдатская офиолитов Камчатского Мыса [Батанова и др., 2014] показывает, что исследованные зерна кристаллизовались из базальтового расплава, и не являются захваченными базальтовым расплавом фрагментами мантийных верлитов или лерцолитов, как предполагалось некоторыми исследователями ранее [Гибшер и др., 1997] (Рис. 6,7). Основное отличие заключаются в том, что клинопироксен мантийных лерцолитов имеет более высокое содержание Al₂O₃ при высокой магнезиальности, сильно обеднён лёгкими редкоземельными элементами и характеризуется ярко проявленными отрицательными аномалиями по Sr. Напротив, однотипные спектры распределения редкоземельных элементов,

14

отрицательные аномалии по высокозарядным (Zr, Hf, Nb, Ti) и крупноионным литофильным элементам (Ba, Rb), а также сходные вариации Mg# с содержаниями TiO₂, Al₂O₃, Na₂O и Cr₂O₃, типичные и для клинопироксенов усть-семинской свиты и барангольского комплекса характерны для клинопироксена из базальтов и анкарамитов многих островных дуг.

Третье защищаемое положение. Минералого-петрографические особенности, петрохимический и редкоэлементный состав интрузивных пород барангольского комплекса показывают их родственность вулканитам усть-семинской свиты, и свидетельствуют о субдукционно-связанной обстановке их формирования.

В предыдущем разделе была показана близость состава клинопироксенов из пород усть-семинской свиты и барангольского комплекса. Состав плагиоклаза (Ап до 70) в габброидах также близок к составам плагиоклаза из пород усть-семинской свиты (Ап₄₉₋₆₈). Хромшпинель в виде включений в оливине и клинопироксене по составу соответствует хромитам, магнезиохромитам и герцинитам с широким диапазоном хромистости Cr# 42,1–87,4. Большая часть этих составов близка к составам хромшпинели (Cr# 75,6–88,1) из пород усть-семинской свиты (**Приложение 2**). Амфибол представлен в основном магнезиогастингситом и магнезиальной роговой обманкой и в общем близок к амфиболу по магнезиальности и содержаниям TiO₂ и Al₂O₃ из пород усть-семинской свиты.

Интрузивные породы барангольского комплекса по петрохимическим особенностям показывают широкие вариации по всем петрогенным компонентам, и для них характерны отрицательные корреляции содержания MgO с Al₂O₃, TiO₂, K₂O и Na₂O, и положительные корреляции с содержанием Cr₂O₃ (**Рис. 8**).

Породы Апшуяхтинского массива по нашим и литературным данным наиболее магнезиальны среди пород барангольского комплекса. С уменьшением содержания MgO в породах барангольского комплекса возрастают содержания Al₂O₃ и CaO, что обусловлено фракционированием оливина и клинопироксена. Таким образом, диопсидпорфировые базальты усть-семинской свиты близки по составу к габброидам барангольского комплекса, а анкарамиты занимают промежуточное положение между ними и наиболее примитивными разностями интрузивных пород - оливиновыми клинопироксенитами Апшуяхтинского массива (**Рис. 8**).

Спектры распределения редкоземельных элементов, нормированные на валовый состав хондрита для эффузивов усть-семинской свиты и интрузивов барангольского комплекса показывают общие особенности (**Рис.** 9*a,б*). Для них характерны слабоотрицательный наклон или плоский спектр для лёгких редкоземельных элементов и слабоотрицательный наклон с уменьшением содержаний тяжлых редкоземельных элементов. Они также характеризуются небольшим обогащением лёгкими редкоземельными элементами (La/Yb)_N = 0,9–3,3.

Рисунок 8. Вариации содержания MgO и других петрогенных компонентов в породах барангольского комплекса при сравнении с составом пород первой (анкарамиты) и второй (Diбазальты) групп усть-семинской свиты. Состав верлитов и пироксенсодержащих дунитов из Апшуяхтинского массива по [Гибшер и др., 1997]. Состав ультрамафит-мафитовых кумулатов островодужных магматических камер Восточной Чукотки по [Леднева и др., 2020]. Поля составов дунитов, верлитов, клинопироксенитов и габброидов из интрузивов Урало-Аляскинского типа по [Himmelberg, Loney, 1995; Пушкарев, 2000; Khedr, Arai, 2016]. Срх, Ol, Pl – состав клинопироксена, оливина и плагиоклаза (соответственно) из пород усть-семинской свиты и барангольского комплекса.

На мультиэлементных диаграммах, с значениями, нормированными по примитивной мантии, отчётливо выделяются общие особенности для всех пород устьсеминской свиты и интрузивов барангольского комплекса (**Рис.** 96,*г*). Наблюдаются отрицательные аномалии по высокозарядным элементам (Zr, Hf, Nb, Th) и положительные аномалии по крупноионным литофильным элементам (Ba, Sr), Pb и U. Эти особенности отличают исследованные породы от толеитовых базальтов океанических плато и COX и отвечают субдукционно-связанной обстановке их формирования, типичной для островодужных толеитовых базальтов (например, Алеутской дуги) и анкарамитов. Особенности состава гомогенизированных расплавных включений из клинопироксена пород усть-семинской свиты [Buslov et al., 1993; Симонов и др., 2010] согласуются с данными по валовому составу интрузивных и эффузивных пород (**Рис. 9**).

На дискриминационной диаграмме TiO₂-SiO₂/100-Na₂O по [Beccaluva et al. 1989], точки состава клинопироксена из эффузивов усть-семинской свиты и интрузивов барангольского комплекса попадают в поля анкарамитов и толеитовых базальтов островных дуг, что дополнительно подтверждает субдукционно-связную геодинамическую обстановку их формирования. [Khlif et al., 2022].

Рисунок 9. Микроэлементный состав пород усть-семинской свиты и барангольского комплекса. a, δ – спектры распределения редкоземельных элементов, нормированные на валовый состав хондрита (C1) по [Boynton et al., 1984] для пород усть-семинской свиты (a) и барангольского комплекса (б); ϵ , ϵ – мультиэлементная диаграмма, с значениями, нормированными по примитивной мантии (PM) по [Sun, McDonough, 1989] для пород устьсеминской свиты (в) и барангольского комплекса (г). Состав нормальных (N-MORB) и обогащённых (E-MORB) базальтов срединно-океанических хребтов по [Sun, McDonough, 1989]. Поле состава толеитовых базальтов Алеутской дуги по [Kay, 1977; Singer et al., 1992; George et al., 2004; Singer et al., 2007], поле состава толеитовых базальтов плато Онтонг Джава [Mahoney et al., 1993], поле состава анкарамитов островных дуг по [Barsdell, Berry 1990; Zhang et al., 2008; Marchev et al., 2009; Пушкарев и др., 2017], поле состава гомогенизированных расплавных включений в клинопироксенах из пород усть-семинской свиты по [Buslov et al., 1993; Симонов и др., 2010], Состав ультрамафит-мафитовых кумулатов островодужных магматических камер Восточной Чукотки по [Леднева и др., 2020], поля составов верлитов, клинопироксенитов и габброидов из интрузивов Урало-Аляскинского типа по [Himmelberg, Loney, 1995; Пушкарев, 2000; Khedr, Arai, 2016].

Необходимо отметить, что отличительные особенности вулканитов Бийской постройки и участка Куюс по составу клинопироксена, а именно, высокие содержания в нём TiO₂, и Al₂O₃ (**Рис.** *6в,d*), небольшое обогащение лёгкими редкоземельными

элементами (Рис. 7), а также высокое содержание TiO_2 в породах (Рис. 46*e*) и обогащение лёгкими редкоземельными элементами (Рис. 8*a*), вероятно, связано с взаимодействием с породами или расплавами, имеющими соответствующие характеристики, например такими как базальты океанических островов манжерокской свиты [Khlif et al., 2022].

Проявление анкарамитового магматизма усть-семинской свиты в ассоциации с ультрабазит-базитовыми массивами барангольского комплекса позволят задать следующий вопрос: возможно ли выделение интрузий подобных массивам Урало-Аляскинского типа в пределах Алтае-Саянской складчатой области? Оценить такую возможность можно при сопоставлении минерального состава, петрохимии и геохимии барангольского комплекса с составом эталонных объектов.

Сопоставление состава клинопироксенов из интрузивов барангольского комплекса с типичными для интрузивов Урало-Аляскинского типа, показывает общие включаюшие: высокую магнезиальность клинопироксена. особенности. отрицательную корреляцию Mg# с содержаниями TiO₂, Al₂O₃ и Na₂O, положительную корреляцию с содержанием Cr₂O₃, однотипные спектры распределения редкоземельных элементов и спайдер-диаграммы с отрицательными аномалиями по высокозарядным (Zr, Hf, Nb, Ti) и крупноионным литофильным элементам (Ba) (Рис. 6,7), а также совпадение с трендом островодужных кумулатов [Khlif et al., 2022]. Состав оливина из интрузивов барангольского комплекса типичен для оливина из интрузивов Урало-Аляскинского типа по вариациям форстеритового компонента (Fo) и его соотношениям с содержаниями NiO и CaO. Состав хромшпинелидов из интрузивов барангольского комплекса в целом типичен для интрузивов Урало-Аляскинского типа с небольшим отличием, заключавшемся в том, что часть хромшпинелидов из пород барангольского комплекса имеет более высокие Cr# и Моди и низкие содержания Al2O3 и TiO₂ (Приложение 2) [Khlif et al., 2022].

С точки зрения валового химического состава для пород барангольского комплекса при сравнении с составом интрузивов Урало-Аляскинского типа, наблюдается множество общих моментов. Так, для высокомагнезиальных пород характерно повышение содержания СаО при практически не увеличивающемся Al₂O₃ – следствие «клинопироксеновой» специфики пород и накопления алюминия в остаточном расплаве (**Рис. 8**). Схожи и спектры распределения редкоземельных элементов и спайдер-диаграммы с отрицательными аномалиями по высокозарядным (Zr, Hf, Nb, Ti) и положительными аномалиями по крупноионным литофильным элементам (Ba, Sr) и Pb (**Рис. 9**).

Таким образом породы барангольского комплекса по совокупности минералогических, петрохимических и геохимических критериев, можно считать родственными интрузивам Урало-Аляскинского типа, хотя они не обладают (по крайней мере, вскрытым эрозией) зональном строением, типичным для подобных массивов. Кроме того, интрузивы барангольского комплекса по минеральному, петрохимическому и редкоэлементному составу имеют общность с ультрамафитмафитовыми кумулатами островодужных магматических камер Восточной Чукотки (Чукотская складчатая система). Для них характерен более узкий диапазон вариаций Мg#, Al₂O₃, TiO₂, Na₂O, относительно низкие содержания Cr₂O₃ в клинопироксене, низкие содержания форстеритового компонента, NiO и CaO в оливине, повышенные концентрации Al₂O₃ в хромшпинелидах (**Рис. 6,8; Приложение 2**).

ЗАКЛЮЧЕНИЕ

Фракционирование оливина и клинопироксена играло важную роль при образовании пород усть-семинской свиты и барангольского комплекса. Вариации содержания Al₂O₃ с изменением Mg# в клинопироксенах из пород усть-семинской свиты подтверждают то, что анкарамиты являются наиболее примитивными, а диопсид-порфировые базальты, вероятно, образовались в результате эволюции (фракционирования) анкарамитового расплава в промежуточных камерах.

Можно предположить следующую модель формирования пород устьсеминской свиты и барангольского комплекса: исходный расплав для пород устьсеминской свиты и барангольского комплекса обладал высокими содержаниями (мас. %) MgO >14 и CaO >12, и высоким отношением CaO/Al₂O₃ >1, то есть имел анкарамитовый состав (Ol+Cpx+Cr-Spl). Этому составу, с некоторыми допущениями (оливин установлен в породах усть-семинской свиты по данным [Гибшер и др., 1997; Зыбин, 2006]), соответствуют вулканиты первой группы (анкарамиты) усть-семинской свиты. Анкарамитовый расплав образовался за счёт верлитизации надсубдукционной литосферной мантии

При подъёме вверх, в промежуточных камерах, при кристаллизации оливина, клинопироксена и хромита из этой магмы образуются породы интрузий Апшуяхтинского типа. Оценка температуры кристаллизации клинопироксена (по однопироксеновым термометру и барометру [Wang et al., 2021]) показывает диапазон температур 1090–1254 °С и давления не более 6 кбар для зёрен из пород Апшуяхтинского массива и ядер вкрапленников из вулканитов.

Формирование внешних зон кристаллов клинопироксена происходило из более фракционированного расплава при температурах 1026-1224 °С и давлениях не более 4,3 кбар в промежуточных камерах, либо при продвижении магмы к поверхности. Фракционная кристаллизация клинопироксена приводила к формированию магм, образовавших породы второй группы (диопсид-порфировые базальты) усть-семинской свиты и габброиды барангольского комплекса, обогащённые плагиоклазом. На этом этапе температура снизились до 755–946 °С, давление составляло в среднем 2–4 кбар (по амфиболовому термометру и барометру [Ridolfi, 2021]).

Статьи в рецензируемых научных журналах, рекомендованных ВАК:

1. Кхлиф Н., Вишневский А.В., Изох А.Э. Анкарамиты Горного Алтая: Минералого-петрографические и петрохимические особенности диопсид-порфировых базальтов усть-семинской свиты // Геология и геофизика, 2020, т. 61, № 3, с. 312 - 333.

2. Khlif N., Vishnevskiy A.V., Chervyakovskaya M.V., Izokh A.E. Mineral Chemistry and Trace Element Composition of Clinopyroxenes from the Middle Cambrian Ust'-Sema Formation Ankaramites and Diopside Porphyry Basalts and the Related Barangol Complex Intrusions, Gorny Altai, Russia // Minerals, 2022, v. 12, 113.

Тезисы докладов

3. Кхлиф Н., Вишневский А.В., Изох А.Э. Минералого-петрографические и петрохимические характеристики диопсидовых базальтов усть-семинской свиты Горного Алтая // IX Сибирская конференция молодых учёных по наукам о Земле: материалы конференции. Новосибирск: ИПЦ НГУ, 2018, С. 290-292.

4. Кхлиф Н., Вишневский А.В., Изох А.Э. Диопсидовые базальты устьсеминской свиты Горного Алтая: сопоставление состроводужными анкарамитами // Петрология магматических и метаморфических комплексов. Выпуск 10. Материалы X Всероссийской петрографической конференции с международным участием. Томск: Изд-во Томского ЦНТИ, 2018, С. 225-229.

5. Вишневский А.В., Кхлиф Н., Зайцева М.В., Изох А.Э. Особенности состава вкрапленников диопсида из высококальциевых базальтов и анкарамитов Бийской вулканической постройки усть-семинской свиты: средний кембрий Горного Алтая // Петрология магматических и метаморфических комплексов. Выпуск 10. Материалы Х Всероссийской петрографической конференции с международным участием. Томск: Изд-во Томского ЦНТИ, 2018, С. 60-62.

а – геологическая схема Бийской вулканической постройки усть-семинской свиты [Зыбин, 2006] с упрощениями, *б* – геологическая схема Усть-Семинской вулканической постройки усть-семинской свиты [Зыбин, 2006] с упрощениями.

Состав хромшпинели из пород усть-семинской свиты и барангольского комплекса. a – вариации Al₂O₃ и TiO₂ в связи с геодинамической обстановкой [Kamenetsky et al., 2001] и δ –. классификация шпинелидов по [Schulze, 2001] для хромшпинели из пород усть-семинской свиты и барангольского комплекса. Поле состава хромшпинели из: анкарамитов островных дуг [Della-Pasqua, 1997; Portnyagin et al., 2005; Zhang et al., 2008; Пушкарев и др., 2017] и интрузивов Урало-Аляскинского типа [Himmelberg, Loney 1995; Пушкарев, 2000; Khedr, Arai, 2016]. Состав хромшпинели из ультрамафит-мафитовых кумулатов островодужных магматических камер Восточной Чукотки по [Леднева и др., 2020]. IAB – базальты островных дуг; OIB – базальты океанических островов; MORB – базальты срединно-океанических хребтов; LIP – крупные магматические провинции.