ОТЗЫВ

официального оппонента на диссертацию Греку Евгения Дмитриевича на тему «Оруденение Акжал-Боко-Ашалинского золоторудного района (Восточный Казахстан): вещественный состав, этапы и время формирования», представленную на соискание ученой степени кандидата геолого-минералогических наук по специальности 1.6.10 – «Геология, поиски и разведка твердых полезных ископаемых, минерагения»

Актуальность избранной темы.

Орогенные месторождения золота (O3M) – один важнейших источников золота в мире и в РФ. Несмотря на многолетнее изучение месторождений этого типа, нет единой общепризнанной модели их рудогенеза, что сдерживает совершенствование и разработку эффективных методов прогноза и поисков месторождений. Для создания модели решающим является тщательное изучение минерального состава и возможных источников руд, эволюции рудообразования в контексте тектонического развития конкретного региона. Именно эти проблемы рассматриваются в диссертационной работе Греку Е. Д., выполненной на примере Акжал-Боко-Ашалинского золоторудного района (Восточный Казахстан), что определят несомненную ее актуальность. Представленные в диссертации новые результаты дополняют существующие представления о металлогенезе ОЗМ, их связи с метаморфизмом и магматизмом, что является фундаментальной основой разработки прогнозно-поисковых моделей.

Степень обоснованности положений, выводов и рекомендаций, апробация работы.

Работа основана на представительном фактическом материале, собранном в период с 2020 по 2025 гг., с участием Греку Е. Д. из горных выработок и коренных обнажений месторождений Акжал, Васильевское, Колорадо, Женишке, Южное, Южные Ашалы, Балажал и рудопроявлений Сергей-I, Акшкола, Койтас, Аскар, Каражал. Обработка материалов выполнялась в лаборатории прогнозно- металлогенических исследований ИГМ СО РАН им. В.С. Соболева в процессе выполнения НИР по государственному заданию.

Автором изучено 500 образцов руд и пород, изготовлено достаточное количество аншлифов (250), шлифов (25), шашек (16), выделено более 100 мономинеральных проб пирита, арсенопирита, циркона, серицита, кварца и углеродистого вещества.

По теме диссертации опубликовано 9 работ, из их 3 статьи в журналах из списка ВАК и 6 тезисов конференций. Основные результаты и защищаемые положения работы апробированы на конференциях: «X International Siberian Early Career GeoScientists

Сопference» (Новосибирск, ИГМ СО РАН, 2022), «Металлогения древних и современных океанов» (Миасс, ЮУ ФНЦ МиГ УрО РАН, 2023, 2025), «Новое в познании процессов рудообразования» (Москва, ИГЕМ РАН, 2023), «ХІ Сибирская конференция молодых ученых по наукам о земле» (Новосибирск, ИГМ СО РАН, 2024), «ХІV международная научно-практическая конференция «Геология, прогноз, поиски и оценка месторождений алмазов, благородных и цветных металлов» (Москва, ЦНИГРИ, 2025), «Международной научной студенческой конференции» (Новосибирск, НГУ, 2021, 2022).

Отмеченное не оставляет сомнений в высоком качестве исходного фактического материла, обоснованности положений, выводов и рекомендаций.

Достоверность и новизна результатов.

Достоверность результатов определяется значительным объемом и качеством минералогосовременных фактического материала, использованием комплекса изотопно-геохимических и изотопно-геохронологических геохимических, исследования, значительным объемом аналитических исследований, проведенных в ЦКП Многоэлементных и изотопных исследований СО РАН (г. Новосибирск). Химический состав минералов определён при помощи СЭМ (более 2-х тыс. анализов), РСМА (более 300 анализов и 45 поэлементных карт) и ЛА-ИСП-МС (> 100 анализов). Выполнено датирование 3 проб циркона (U-Pb LA-ICP-MS метод), слюд (Ar-Ar метод), установлен углерода $(\delta^{34}S)$ проб) сульфидов (17 И изотопный состав серы углеродистоговещества (3 пробы). Содержания Au и Ag в породах и мономинеральных фракциях определялись атомно-абсорбционным методом. Для обработки результатов применялись современные программные комплексы AutoCAD, CorelDraw, Isoplot 3, ArcGIS, QGIS 3.24.3, Google Earth Pro и TriQuick, STATISTICA 10, LADR v1.1.07 (2021-11-23).

Проведение исследований позволило получить следующие новые основные научные результаты: 1. Выделены золото-сульфидный и золото-сульфидно-кварцевый типы руд на месторождениях Акжал-Боко-Ашалинского золоторудного района. 2. Обоснована связь золото-сульфидного типа с метаморфогенно-гидротермальными процессами, золотосульфидно-кварцевого типа – с магматогенно-гидротермальными процессами. 3. РСМА и ЛА-ИСП-МС определены типоморфные и использованием методов топохимические характеристики разных генераций пирита и арсенопирита – минералов основных носителей золота. 4. Новые изотопно-геохронологические результаты позволили опередить время формирования магматических комплексов и рудных тел и их модель взаимоотношения. 5. Разработана структурно-вещественная месторождений Акжал-Боко-Ашалинского золоторудного район. Выделено шесть этапов

развития: 1 — седиментогенный (\sim 325-320 млн лет); 2 — метаморфогенный (\sim 320-315 млн лет); 3 — вулканогенный (\sim 315-310 млн лет); 4 — плутоногенный (\sim 310-298 млн лет); 5 — гидротермальный-I (\sim 284-276 млн лет); 6 — гидротермальный-II (\sim 260-254).

Новые научные результаты, представленные в диссертации, раскрывают особенности позднепалеозойского рудогенеза и золотоносности минеральных ассоциаций месторождений Акжал-Боко-Ашалинского район Западно-Калбинского пояса.

Практическая значимость.

Работа имеет практическую направленность. Полученные результаты востребованы недропользователями при планировании поисковых и разведочных работ на объектах исследования. Важным является также возможность использования данных о формах нахождения золота в рудах и золотоносности различных минеральных ассоциаций для совершенствования рациональных технологических схем переработки руд.

Содержание диссертационной работы.

Диссертация изложена на 177 стр., включает введение, семь глав, заключение, 60 рисунков, 17 таблиц, список литературы из 242 источников, список сокращений, условных обозначений, словарь терминов и 3 приложения.

Во Введении к диссертации (стр. 4-10) приводятся необходимые сведения об актуальности и объектах исследования, сформулированы основные цели и задачи, используемые фактический материал, методы и методика исследований и другая информация. Цель исследования – установление этапов рудообразования, выявление минералого-геохимических особенностей руд, определение их связи с магматизмом в Задачи исследования: 1) пределах Акжал-Боко-Ашалинского золоторудного района. проанализировать и обобщить литературные данные по золоторудным объектам АБАЗР; 2) изучить минералого-геохимические особенности руд месторождений и рудопроявлений «эталонные» акцентом на Акжал-Боко-Ашалинского золоторудного района, месторождения Акжал и Южные Ашалы; 3) выявить структурно-текстурные особенности и микроэлементный состав пирита, марказита и арсенопирита при помощи СЭМ (MIRA 3LMU), РСМА (JXA-8230) и ЛА-ИСП-МС анализов; 4) определить и уточнить возраст циркона из магматических образований и слюд (серицита и фуксита) из рудных ассоциаций месторождений Акжал, Васильевское и Южные Ашалы; 5) определить изотопный состав δ^{34} S сульфидов и δ^{13} C углеродистого веществ, отобранных в пределах месторождений и рудопроявлений рудного района; 6) создать концептуальную структурновещественную модель истории формирования месторождений Акжал-Боко-Ашалинского золоторудного района на основе полученных минералого-геохимических, изотопнопривлечением С изотопно-геохимических данных, геохронологических,

термобарогеохимических, структурно-тектонических и других материалов. Для ее решения был изучен минералого-геохимический состав руд месторождений и рудопроявлений, в т.ч. пирита и арсенопирита — минералов основных носителей «невидимого» золота, выполнено датирование магматических и рудных образований, определен изотопный состав δ^{34} S сульфидов и δ^{13} C углеродистого вещества, разработана модель формирования месторождений.

Замечания.

- 1. Следовало указать, что наряду с метаморфогенной и магматогенной гипотезами, особенно у зарубежных авторов, популярны представления связывающие формирования орогенных золоторудных месторождений с резервуарами в подкорковой литосферной мантии, обогащенных при субдукции слэба и вышележащих океанических отложений (Goldfarb and Groves, 2015; Groves et al., 2020; Deng et al., 2020; Yang et al., 2021; Zhao et al., 2022; Goryachev, Fridovsky, 2024; Fridovsky, Kudrin, 2025).
- 2. Не обоснован выбор объектов исследований. Почему решение дискуссионных вопросов формирования орогенных золоторудных месторождений выполнено на примере месторождений Акжал-Боко-Ашалинского золоторудного района?
- 3. По существу целью работы является разработка геолого-генетической модели месторождений Акжал-Боко-Ашалинского золоторудного района, что и следовало указать. В авторской редакции формулировка Цели, во-многом, повторяет задачи исследования.

Первая глава Региональное положение и геологическое строение Акжал-Боко-Ашалинского золоторудного района (стр.11-28) начинается с обзора изученности. Обстоятельно рассмотрены металлогеническое районирование и геологическое строение работ района. Завершается глава краткой характеристикой рудоконтролирующих факторов золоторудных месторождений и рудопроявлений, среди которых выделены литологостратиграфический, метаморфический и структурный факторы.

Замечания:

- 1. На рис. 1 названия некоторых месторождений приводятся на английском языке.
- 2. Автор чрезмерно увлекается использованием аббревиатур в названиях. Это можно видеть в заголовках глав и разделов, а также в тексте, например «АБАЗР приурочен к юго-восточной части ЗКЗП».
- 3. Автор рассматривает три варианта металлогенического районирования, но никак не обосновывает тот который он принимает.
- 4. Логичным было бы рассмотрение вначале раздела 1.2 геологического строения и только затем металлогенической характеристики района.
- 5. Обычно описание рудоконтролирующих факторов является логичным итогом исследований, учитывающих их результаты и помещается в конце рукописи. В

диссертации этот раздел находится в 1 главе и является обзорным, подготовленным, главным образом, по результатам ранее проведенных работ. В таком виде этот материал можно было рассмотреть в разделе 1.2.

Глава вторая **Краткая** геологическая характеристика месторождений и рудопроявлений (стр. 29-47) включает описание с использованием опубликованных и фондовых материалов и личных данных автора геологического строения месторождений и рудопроявлений Акжал, Южные Ашалы, Васильевское. Для каждого месторождения приводятся исчерпывающие сведения о тектоническом контроле оруденения, вмещающих породах, магматических образованиях, особенностях вещественного состава, флюидном режиме, минералогической зональности состава. В завершении обращено внимание на близкую металлогеническую и геологическую обстановки, сходные рудовмещающие структуры и типы оруденения месторождений и рудопроявлений Акжал, Сергей-I, Акшкола, Васильевское, Южное, Женишке, Койтас, Аскар, Южные Ашалы, Каражал, Балажал Акжал-Боко-Ашалинского золоторудного района АБАЗР.

Замечания.

- 1. На схемах геологического строения месторождений нет разрезов, на некоторых нет масштабной линейки (рис. 2.1).
- 2. На фотографиях обнажений отсутствуют элементы залегания рудных зон, структур, не показана ориентировка.
- В третьей главе Структурно-текстурные и минералого-геохимические особенности руд (стр. 48-85) рассмотрены основные результаты изучения вещественного состава минерализации.

Выделены и описаны вкрапленные и прожилковые, массивные, прожилкововкрапленные, брекчиевые и гнездовые текстуры и их сочетание, проявленность на различных глубинных уровнях. Обстоятельно охарактеризована рудная минерализация месторождения Акжал. Выделены две генерации пирита, различающиеся морфологией, Пирит-І кубического, особенностями, структурно-текстурными составом. кубоктаэдрического, октаэрического и пентагондодекаэдрического габитуса, ассоциирует с арсенопиритом, пирротином, марказитом, в нем обнаружены включения золота и халькопирита. Этот пирит зональный, ядро обеднено, периферия обогащена Аѕ. Пирит-ІІ халькопиритом, галенитом, ассоциациирует арсенопиритом-II, сульфосолями. Отмечено, что состав арсенопирита сходен с высокозолотоносным арсенопиритом месторождений Большевик, Суздаль и Жерек. Выделено 2 генерации арсенопирита. Детально рассмотрены их типоморфные и топохимические характеристики, элементы зональности зерен. Рассмотрены и другие минералы руд - галенит, сфалерит, халькопирит, блеклые руды, матильдит, бенлеонардит, полибазит, а также различающиеся пробностью две генерации самородного золота.

Изучение минералого-геохимических и структурно-текстурных особенностей руд Южные Ашалы позволило выделить четыре генерации и семь разновидностей пирита: фрамбоидальный пирит (Ру-Іа), округлый пирит (Ру-Іб), удлиненный пирит (Ру-Ів); удлиненный пористый пирит, слагающий ядерные части вкрапленных зерен (Ру-ІІ-я), субгедральный пирит с обилием микровключений, обогащенный Си (Ру-ІІа), эвгедральный пирит, обогащенный Аз (Ру-ІІб); эвгедральный пирит, обогащенный Ni (Ру-ІІІ) и ксеноморфный пирит (Ру-ІV). Охарактеризованы другие рудные минералы: марказит, арсенопирит, герсдорфит глаукодот, халькопирит, галенит, пирротин, сфалерит, тетраэдрит, бурнонит, самородное золото.

Детальный минералогический анализ этих и некоторых других месторождений и проявлений (Васильевское, Каражал, Женишке) позволил обосновать схемы последовательности минералообразования на месторождениях Акжал и Южные Ашалы. На месторождении Акжал выделено два гипогенных этапа рудообразования — золотосульфидный и золото-сульфидно-кварцевый, состоящий из двух стадий (сульфидной и полиметаллической). Процесс минералообразования на месторождении Южные Ашалы происходил в течении золото-сульфидного и золото-сульфидно-кварцевого этапов, состоящих соответственно из пиритовой и пирит-арсенопиритовой, сульфидной и полиметаллической стадий.

Замечания.

- 1. В главе 3 описание вещественного состава месторождений следовало начинать с таблицы, где перечислить вначале жильные, затем рудные и гипергенные минералы. После этого характеризовать типоморфные особенности минералов этих групп.
- 2. В названии главы присутствует термин структурные особенности руд, однако в тексте эта информации отсутствует.
- 3. Не удалось избежать повторов. Так в главе 2 (стр. 37-38) и главе 3 (стр. 48) обращается внимание на наличие минералогической зональности относительно Акжальского массива.
- 4. При характеристике отдельных минералов встречаются упоминания минеральных ассоциаций (золото-сульфидная и золото-сульфидно-кварцевая), которые еще нигде не описаны, а обоснование их выделения обсуждается только в разделе 3.4.
- 5. Для пирита-2 нет данных о составе, что важно для дополнительной аргументации его выделения и сравнения с пиритом-1 (эти сведения приведены только на стр. 89).

- 6. На стр. 55 автор при характеристике арсенопирита-II отмечает: «Предполагается, что минерал образовался в результате перекристаллизации и/или деформации арсенопирита-I». Никаких данных о микропримесном составе арсенопирита II не приводится. Эта информация могла быть решающим аргументом в обосновании выделения второй генерации арсенопирита.
 - 7. На микрофотографии не подписаны аббревиатуры минералов (рис. 3.3 а).
- 8. Не приводится описание нерудных минералов (кварц, доломит, сидерит, альбит, углеродистое вещество, серицит) и некоторых рудных минералов, упоминаемых в тексте и присутствующих на рис. 3.20. Закономерно возникает вопрос обоснованности выделения трёх генераций кварца и серицита, а также доломита, КПШ, хлорита.
- 9. Название золото-сульфидного этапа логично было бы золото-сульфиднокварцевый поскольку основной объем кварца, как следует из рис. 3.20 формировался на этом этапе.
- 10. Фрабмоиды, округлые стяжения, послойные скопления это различные морфологические формы пирита первой генерации, формирующиеся на одной стадии. Необходимо объяснить почему на рисунке 3.21 они показаны как последовательно формирующиеся.
- 11. В период седиментации осадочные толщи обогащались углеродистым веществом. Об этом автор пишет на стр. 123-124 «Полученные изотопные данные <u>ложатся</u> в достаточно узкий интервал значений $\delta^{13}C$ от -20,9 до -17,7 ‰, что соответствует осадочному углероду биогенного происхождения». Тогда почему на рисунке 3.21 «Схема последовательности рудообразования месторождения Южные Ашалы» углеродистое вещество связано с пирит-арсенопиритовой стадией?
- $12.\ Bыделено\ 2$ генерации самородного Au^0 , а разве нет структурно-связанной формы «невидимого» золота Au^+ . Такая форма присутствует на орогенных месторождениях золота, и ее необходимо было показать на схеме последовательности минералообразования.
- 13. Автору следует более внимательно выполнять вычисления эмпирических формул минералов. В частности, в табл. 3.8 для халькопирита (CuFeS₂) эмпирическая формула по данным этой таблицы $Cu_{0.99}Fe_{1.02}S_{2.00}$. В работе почему-то представлена формула $Cu_{0.74}Fe_{0.76}S_{1.5}$.

В четвертой главе **Микроэлементный состав сульфидных минералов** (стр. 86-104) приведены сведения о различном составе основных минералов-носителей «невидимого» золота. Такие исследования важны для понимания условий минералообразования и эволюции рудообразующей системы. Установлены геохимические особенности трех

генераций и семи разновидностях пирита месторождения Южные Ашалы. Состав Ру-І близок к стереохимическому. Пирит-II обеднен Fe и S, обогащён As (1,80-5,42 мас. %). Значимые примеси Ру-III – Ni (до 1,17 мас. %) и As (до 1,78 мас. %). Арсенопирит-I имеет несколько повышенные содержания Fe и S и пониженные As, отношение S/As составляет 0,7. Наглядными являются результаты картирования по данным РСМА распределения элементов Ni, Co, As, Au, Ag, Fe, Cu, S, Sb в сульфидах. Они позволили конкретизировать уровни концентраций и неоднородность распределения элементов в различных зонах роста зёрен пирита и арсенопирита месторождений Акжал и Южные Ашалы. Микроэлементный состав пирита и арсенопирита месторождения Южные Ашалы, изученный современным ЛА-ИСП-МС методом показал различные концентрации микроэлементов и золота, характерные для выделенных генераций пирита и арсенопирита. Выделены ассоциации элементов в пирите-I (Zn-Mo-Sn-W-Ba-V-Cr-Ti и Au-Ag-Bi-As-Sb-Co-Ni), пирите-II (Au-Sn-Tl-Ba-Cr-V), пирите-III (Ag-Bi-Pb-Sb). Эти результаты позволили обосновать формы нахождения золота в пирите и арсенопирите, предложить осадочнометаморфогенно-гидротермальную модель рудообразования месторождении Южные Ашалы. Отдельное внимание уделено интерпретации отношения Со/Ni, характерного для осадочного и гидротермального пирита.

Замечания.

- 1. Непонятно почему в главе 4 не приводятся данные по микроэлементному составу арсенопирита-II месторождения Южные Ашалы, который выделен и охарактеризован на стр. 70. Особенности микроэлементного состав отдельных минералов упоминаются в главе 3.
- 2. Для дополнительной аргументации происхождения пирита можно проанализировать соотношения Sb/Bi-As/Ag (Augustin and Gaboury, 2019) и Au/Ag (Large, Maslennikov, 2020).
- 3. Пробы Ру-1 и Ру-II отбирались из рудных зон месторождения Южные Ашалы. Для корректного анализа микроэлементного состава и золотоносности пирита необходимо было отобрать пробы за пределами известных месторождений. Получение результаты могут отражать наложенные рудообразующие процессы.
- 3. На рисунке 4.3 и 4.4 не указано название месторождений, на рис.4.4а не подписаны аббревиатуры минералов.
- В главе пять 5 **Геохронологические исследования** (стр. 105-120) приведены валидные результаты датирования U/Pb LA-ICP-MS методом циркона из магматических пород и Ar-Ar методом серицита из кварцевых жил и рудных метасоматитов. Такие исследования важны для возрастной корреляции рудообразующих процессов и

магматизма. Циркон из диорита Акжальского массива показал возраст $301,1\pm1,7$ млн лет. Близкий возраст (рубеж карбона и перми) формирования золото-сульфидно-кварцевой жилы месторождения Акжал получен при Ar-Ar датировании серицита – 298,0 ± 5,3 млн лет. Возраст плато составляет 298.0 ± 5.3 млн лет. В дайке гранодиорит-порфира определены две популяции цирконов с конкордатными возрастами $308,4\pm2,8$ и $294,4\pm1,8$ млн. Кристаллизация массива гранодиорит-сиенит-порфиров месторождения Южные Ашалы по данным датирования цирконов составляет 309,1 ±4,1 млн лет. При датировании порфирита установлено минерализованного андезитового плато, соответствующие 279.8 ± 4.3 млн лет. Сходные оценки (273 ± 5 млн лет) с учётом погрешности анализа получены для фуксита из кварц-карбонатного метасоматита с вкрапленной сульфидной минерализацией месторождения Васильевское. Эти результаты событий изученных позволили выполнить корреляцию тектонотермальных месторождений Акжал-Боко-Ашалинском золоторудного района.

В главе 6 Изотопно-геохимические исследования (стр.121-125) особое внимание уделено результатам анализа изотопного состава серы сульфидов и углерода углеродистого вещества. Осадочно-диагенетический пирит месторождения Южные Ашалы показал облегчённые значения $\delta^{34}S = -7$ ‰. Утяжелённые величины от 1,6 до 4,3 ‰ $\delta^{34}S$ имеет пирит-II и арсенопирит-I. Несколько определений изотопного состав $\delta^{34}S$ выполнено для пирита, сфалерита, галенита и арсенопирита месторождений Южное, Васильевское, Акжал, Бажал. Подчёркивается, что диапазон значений $\delta^{34}S$ до -2.7 +2.2‰ характерен для магматического источника, изотопный состав $\delta^{13}C$ от -20,9 до -17,7 ‰ – для углерода органического вещества.

Замечания.

1. Эту главу объёмом всего 5 страниц можно было объединить с главой 7. Тем более что изотопные исследования направлены на выяснение рудообразующих источников.

Глава 7 Источники и генезис месторождений Акжал-Боко-Ашалинского **золоторудного** существующих представлений района посвящена обзору золоторудных месторождений и обобщающей модели происхождении орогенных По литературным данным приведены формирования изученных месторождений. сведения о магматической, метаморфический, мантийной и осадочный моделях. Основной фокус сделан на осадочный и магматический источники золота и некоторых рудных геологических, минералогокомпонентов. Итогом выполненных комплексных геохимических, изотопно-геохимических, изотопно-геохронологических исследований формирования верифицированная эволюционная модель месторождений. Выделено и охарактеризовано шесть этапов развития. Первый этап -

седиментогенный (~325–320 млн лет), накопление углеродсодержащих терригенноосадочных толщ, формирование фрамбоидального (Ру-Iа) и округлого пирита (Ру-Iб).
Второй этап – метаморфогенный (~320–315 млн лет), происходит диагенез пород и
последующий метаморфизм зеленосланцевой фации, образуются агрегаты пирита Ру-Iв,
Ру-II и игольчатого арсенопиритам (Ару-I). Третий этап – вулканогенный (~315–310 млн
лет). Он характеризуется проявлением базальтов и андезибазальтов Сарыжал-Даубайского
вулканического прогиба. Четвертый этап – плутоногенный (~310–298 млн лет), интрузии
даек и малых тел кислого состава. Пятый этап – гидротермальный-I (~284–276 млн лет),
образование золото-сульфидно-кварцевых руд. Завершающий шестой этап
гидротермальный-II (~260–254 млн лет) развитие кварц-карбонатных прожилков.

Замечания.

- 1. На странице 132 подчёркивается, что разработанная структурно-вещественная модель истории развития месторождений увязывает рудные этапы с известными геодинамическими режимами в истории региона. Однако описания этих режимов не приводится ни в этой главе и нигде в диссертации. Осталось не ясным, с какими региональными аккреционно-коллизионными и посторогенными событиями коррелируются этапы рудообразования.
- 2. Для полноты представлений о возможных источниках рудообразующих элементов следовало более детально рассмотреть аргументы и контраргументы в отношении гипотезы об участии обогащенной субкоровой литосферной мантии в формирования орогенных золоторудных месторождений.
- 3. Необходимо объяснить факт значительной оторванности первого (14-22 млн лет) и особенно второго (28-44 млн лет) гидротермальных этапов от времени кристаллизации магматических комплексов, с которыми диссертант обосновывает связь оруденения.

В Заключение приведены основные научные результаты, полученные автором при подготовке диссертации. Подчёркивается схожесть условий металлогенеза и строения изученных месторождений и рудопроявлений Акжал-Боко-Ашалинского золоторудного района (Акжал, Сергей-I, Акшкола, Васильевское, Южное, Женишке, Койтас, Аскар, Южные Ашалы, Каражал, Балажал). Выделены золото-сульфидный и золото-сульфидно-кварцевый типы руд. С использованием современных аналитических методов СЭМ, РСМА, ЛА-ИСП-МС получены новые данные о минералого-геохимическом составе руд месторождений Акжал и Южные Ашалы. Обоснованы несколько генераций пирита и арсенопирита – минералов основных носителей Аи. Выяснены форма нахождения золота. Выполнено датирование U-Pb LA-ICP-MS методом циркона из интрузивных и

субвулканических пород, а также слюд Ar/Ar методом из жил и метасоматитов золоторудных месторождений. С учётом новых изотопно-геохимических данных обоснованы осадочный и магматический источники рудообразующих элементов. Результаты комплексных исследований позволили разработать схему этапности формирования месторождений и рудопроявлений Акжал-Боко-Ашалинского золоторудного района.

Замечания.

- 1. Непонятно зачем на страницах 140-143 приводится словарь некоторых терминов. Эти термины являются общеупотребляемыми и в описании их значения автор, во многих случаях, ссылается на «Геологический словарь, 2010».
- 2. Автору не удалось избежать орфографических, грамматических и стилистических ошибок (стр. 4, 17, 33, 35, 36, 51, 85,101, 115, 122, 123, 126, 131).

Защищаемые положения в полной мере подтверждаются результатами проведённых исследований. Первое защищаемое положение «В Акжал-Боко-Ашалинском золоторудном районе (Восточный Казахстан), выделяется два этапа рудообразования: золото-сульфидный (минерализованные зоны) – метаморфогенно-гидротермальный и золото-сульфидно-кварцевый (кварцевые жилы) – магматогенно-гидротермальный» обосновывается положениями, изложенными в главе 3. Второе защищаемое положение Ашалы, последовательные генерации месторождении Южные диагенетического (Ру-I), метаморфогенного (Ру-II, Ару-I) и гидротермального (Ру-III, Ару-II) пирита и арсенопирита различаются содержанием микроэлементов и характером микровключений. В осадочно-диагенетическом пирите накапливаются Au, As, Ag, Mo, Pb, Cu, Sb, Cr, Co. В метаморфогенном пирите от ядер к периферии увеличиваются концентрации As и Sb, при этом центр обогащен минеральными микровключениями (золота, халькопирита и блеклых руд), что связано с перераспределением элементов. В гидротермальном пирите повышены концентрации Ni и присутствуют микровключения хромита и сульфоарсенидов Fe-Ni-Co». Оно раскрывается материалами, изложенными в главе 4. Третье защищаемое положение «В Акжал-Боко-Ашалинском золоторудном районе золото-сульфидное оруденение сформировано на стадии орогенеза (до 315 млн лет), возраст золото-сульфидно-кварцевого оруденения оценивается в интервале 303-280 млн лет и близок времени гранитоидного и базитового магматизма -309-292 млн лет» аргументируется в главах 5 и 7.

Защищаемые положения достаточно аргументированы, обоснованы фактическим материалом и его корректной интерпретацией. Они основаны на детальном изучении геологических, минералого-геохимических, изотопно-геохимических, изотопно-

геохронологических характеристик рудопроявлений и месторождений Акжал-Боко-Ашалинского золоторудного района.

В завершении, оценивая работу в целом, необходимо подчеркнуть, что она является примером успешной реализации комплексного подхода к анализу золотоносности длительно развивающихся полигенных и полихронных рудно-магматических систем и выполнена на высоком профессиональном уровне. Работа хорошо структурирована, выводы изложены ясно, структура и содержание автореферата соответствуют основным требованиям Положения о порядке присуждения учёных степеней.

Следует отметить завершённость проведённого исследования, значительный вклад диссертанта в разработку научной проблемы. Содержание автореферата диссертации соответствуют материалам, изложенным в диссертации. Достоверность, обоснованность результатов и защищаемых положений сомнений не вызывает. Результаты исследований по теме диссертации опубликованы и обсуждались на научных конференциях. Цитирования на первоисточники корректны и включают современные публикации.

Представленная Греку Евгением Дмитриевичем диссертация на тему «Оруденение Акжал-Боко-Ашалинского золоторудного района (Восточный Казахстан): вещественный является законченным исследованием, состав, этапы и время формирования» выполненным на современном научно-методическом уровне и отвечает критериям, изложенным в п. 9 «Положения о порядке присуждения учёных степеней», утверждённого постановлением Правительства Российской Федерации от 24.03.2013 г. № 842, предъявляемым к диссертациям на соискание ученой степени кандидата наук. Содержание диссертации соответствует научной специальности 1.6.10 – геология, поиски и разведка твёрдых полезных ископаемых, минерагения, а ее автор Греку Евгений геологокандидата учёной степени Дмитриевич заслуживает присуждения минералогических наук.

Фридовский Валерий Юрьевич Официальный оппонент, доктор геолого-минералогических наук, профессор, чл.-корр. РАН, директор Федерального государственного бюджетного учреждения науки Институт геологии алмаза и благородных металлов СО РАН, специальность 1.6.10 — «Геология, поиски и разведка твердых полезных ископаемых, минерагения»

Почтовый адрес: 677980 г. Якутск, ул. Ленина, 39 Адрес электронной почты: <u>fridovsky a diamond.vsn.ru</u>

Телефон: 84112335708

Я, Фридовский Валерий Юрьевич, даю согласие на включение моих персональных данных в документы, связанные с работой диссертационного совета и их дальнейшую обработку.

Подпись Фридовского В.Ю. «заверяю» Начальник отдела общей документации, кадров и подготовки специалистов высшей квалификации ИГАБМ СО РАН

14 ноября 2025 г.

Окем. А.Н. Малгина