ОТЗЫВ ВЕДУЩЕЙ ОРГАНИЗАЦИИ

на диссертационную работу Киселевой Ольги Николаевны "Хромититы и платинометаллическая минерализация в оphiолитах юго-восточной части Восточного Саяна (Оспино-Китойский и Харанурский массивы)", представленную на соискание ученой степени кандидата геолого-минералогических наук по специальности 25.00.11. — "геология, поиски и разведка твердых полезных ископаемых, минералогия"

Представленная работа Киселевой О.Н. посвящена изучению хромититов и связанной с ними платинометаллической минерализацией из альпино-титановых гипербазитовых массивов Ильчирского оphiолитового пояса Восточного Саяна.

Актуальность избранной темы определяется тем, что, с одной стороны, хромититы это один из главных концентратов минералов ЭПГ (это азбучная истина), с другой, — вмещающие их рестицовые гипербазиты являются своеобразными «окнами в мантию», изучение которых позволяет реконструировать процессы, происходящие в верхней мантии, её состав, условия зарождения ультрамафитов и образования скоплений хромовой шпинели с платиновой минерализацией. Причинам концентрирования ЭПГ именно в хромититах посвящено огромное количество публикаций, как за рубежом, так и в нашей стране. Тем не менее по-прежнему остаются дискуссионными такие вопросы как зависимость парагенезиса минералов ЭПГ от степени плавления мантийных перидотитов, особенностей химического состава и условий образования хромшпинелидов, а также от геодинамических обстановок формирования рудовмещающих комплексов. Все эти вопросы в той или иной степени сонискатель попытался осветить в своей работе на примере хромитовых проявлений, выявленных в ультрамафитовых телах Оспино-Китойского и Харанурского массивов Ильчирского оphiолитового пояса.

Результаты такого комплексного изучения приобретают большое значение и в практическом плане, т.к. могут быть использованы для оценки хромитоносности и платиноносности оphiолитовых комплексов Восточного Саяна, а также при разработке технологических схем для извлечения платиновых металлов, в особенноности, тугоплавких платиноидов (Os, Ir, Ru), из хромититов.

Для выполнения этой многоплановой работы Ольга Николаевна использовала большой фактический материал, собранный при проведении полевых и камеральных исследований с использованием современных аналитических методов (атомно-
абсорбционный, ИСП АЭС, микрозвондовый, электронно-микроскопический, мёссбауэрская спектроскопия и др.). Как известно, определение концентрации ЭПГ в любой породе и руде имеет свои нюансы и сложности, особенно это касается хромитовых руд. Поэтому соискателем был применен комплекс методов, включающих атомно-абсорбционный, пробирно-масс-спектрометрический с индуктивно связанной плазмой и кинетический. Сравнительный анализ примененных методов в целом показал их удовлетворительную сходимость. Обработка аналитических данных и графические построения проводились с использованием пакета разнообразных компьютерных программ. Все это позволило диссертанту получить новую информацию, которые дополняются и результатами совместной научной работы с другими исследователями, а также глубокой проработкой опубликованных работ по данной тематике.

Диссертационная работа объемом 224 страницы состоит из 6 глав, Введения и Заключения, содержит 48 рисунков и 22 таблицы. Часть рисунков и таблиц оформлены в виде приложений. Список использованной литературы включает 218 работ. В результате выполненных исследований Ольгой Николаевной выдвинуто три защищаемых положения (1) о выделении двух типов хромититов с различными химическими характеристиками, локализованные в северной и южной ветвях Ильйских офилитовых пояса, (2) о выделении двух типов распределения ЭПГ в хромититах, представленных (Os-Ir-Ru) и (Pt-Pd) геохимическими типами и различающихся ассоциациями минералов ЭПГ, (3) о последовательности (многостадийности) формирования выделенных парагенезисов минералов ЭПГ в процессе образования и изменения хромиттов. На основе полученных данных каждое из защищаемых положений представляется хорошо обоснованным и достоверным.

Научная новизна выполненной работы заключается в том, что впервые проведено детальное изучение минерального состава хромититовых тел, их платиноносность с выявлением многообразной платиновой минерализации и проведен сравнительный анализ полученных данных Северной и Южной ветвей Ильйских офилитовых пояса. В хромититах на участке Зун-Оспа-Ильйчир впервые обнаружены уникальные зональные образования (Os-Ir-Ru) состава и предложен механизм их формирования.

Замечания к работе.

При разделении хромититовых проявлений по географическому признаку в Оспино-Китайском массиве, по-нашему мнению, допущены неточности. Так хромититовые проявления верховья р. Зун-Оспа, водораздела Зун-Оспа-Ильйчир и долины р. Ильйчир...
следует отнести не к Северной, а к Южной ветви Ильчирского пояса. Отсюда вытекает и не совсем корректная группировка хромшинелей по составу (два типа).

На фоне впечатляющих результатов в изучении минералогии и геохимии хромититов и ассоциирующих с ними платиноидов, других минералов, значительно слабее выглядит освещение вопросов геолого-tektonической обстановки формирования рудных тел. Это не позволило диссертанту создать корректную модель хромитаобразования, согласующуюся с установленными важными особенностями геологического строения Ильчирского офилитового пояса, в пределах которого расположены Оспино-Китойский и Харанурский массивы ультрабазитов.


В разделе 2.2.4 "Геологическая характеристика хромитовых rudопроявлений", впервые, следовало бы указать, какие из них не были известны ранее и выявлены автором. Во-вторых, подчеркнуть какие текстурно-структурные разновидности хромитовых руд и морфогенетические типы рудных залежей установлены автором диссертации. При чтении текста рассматриваемого раздела неясен личный вклад автора в геологическое изучение рудной минерализации.

Предложенная О.Н. Киселевой модель формирования подиорных хромититов, альтернативная рестито-метаморфогенной, не связана к тексто-метаморфическим (динамометаморфическим) преобразованиям, сопровождающих формирование тел реститовых ультрабазитов Ильчирского офилитового пояса в коровых условиях (ранняя
лизардитовая и поздняя антигортовая серпентинизация, меланжирование, рогинитизация, нефритообразование). Хорошую возможность для изучения эволюции состава хромшипинелидов из хромитовых руд представляют результаты исследования деформационных структур в ультрабазитах Осинно-Китойского и Харанурского массивов (Гончаренко, Чернышов, 1990). Выделив три этапа структурно-петроструктурной эволюции ультрабазитов, А.И. Гончаренко и А.И. Чернышов отметили, что уже на раннем (доконсолидационном) этапе пластические деформации гарцбургитов и дунитов вызывают изменения состава хромшипинелидов. К этому же выводу пришла в своей диссертации и Т.Н. Анцферова (2006).

За длительную историю изучения хромшипинелидов были предложены разные классификационные диаграммы их состава. Это классификация Е.С. Симпсона, А. Г. Бетехтина, Г.А. Соколова, С.Е. Хаггерти, В.Ф. Смолькина. Однако в настоящее время наиболее популярна классификация, предложенная Н.В. Павловым. Преимущество данной классификации заключается в возможности сопоставления состава хромшипинелидов по соотношению и размещению катионов в структуре минерала. Кроме того, существует модифицированный вариант этой диаграммы, когда к величине катионов Fe³⁺ добавляют удвоенное количество катионов Ti, с целью отражения составов титансодержащих шпинелей. Почему мы столь подробно остановились на этом? На рис. 3.2 приведена классификационная диаграмма Н.В. Павлова. Однако не понятно, как можно ей пользоваться, если не обозначены размерности сторон треугольника. По Н.В. Павлову каждая сторона треугольника разбита на 16 частей, согласно сумме 3-х валентных катионов (Cr, Al, Fe плюс удвоенный катион Ti) в формуле минерала и, соответственно, выделены поля разновидностей хромшипинелидов. И ещё. Впервые свою классификацию Н.В. Павлов опубликовал в статье: Химический состав хромшипинелидов в связи с петрографическим составом пород ультраосновных интрузий. Тр. Ин-та геол. наук. Серия руд. месторожд. 1949, вып. 103. № 3. 88 с.), а не в работе, на которую ссылается диссертант на рис. 3.2.

Используемая терминология в тексте, при описании минералов, часто используются не собственные имена минералов, а грунтовые названия — оливин, клинопироксен, амфибол и др. Однако из данных минералогических таблиц четко видно, что эти группы минералов включают конкретно форстерит, диопсид, авгит и т.д. Остается неясным, почему в анализах клинопироксенов (Приложение 1, табл. 1) отсутствуют содержания TiO₂, Al₂O₃, Cr₂O₃, Na₂O, так характерных для этих минералов в ультрафитовых породах. Может быть, причина кроется в особенностях их кристаллизации или в особенностях микрозволнового анализа? Вопрос остается открытым. Отметим, что такого минерала как “кеммерит” (стр. 36) не существует, в справочной литературе (см. Геологический словарь, 1973;
Минералогические таблицы, 1962 и др.) хромистая разновидность хлорита называется "кеммерерит". Данные по расчету формул минералов (Приложение 1, табл. 3), вероятно, напутаны. Так в моимашите почему-то появился цирконий, а фосфора - нет. Анализ 7 указан цирконом, а вместо Zr основным компонентом стоит Th. Это замечание, на наш взгляд, свидетельствует о довольно небрежном отношении диссертанта к оформлению работы. Поэтому такими данными вряд ли могут воспользоваться другие исследователи.

На некоторых геологических схемах (например, рис. 2.1, 2.2 и др.) отсутствует линейный масштаб, который является обязательным элементом для любой геологической схемы и карты. Схемы не сопровождаются геологическими разрезами, из-за чего они становятся "не живыми" и малоинформационными.

Несмотря на высказанные выше замечания, предложенная тема и содержание представленной работы, по-нашему мнению, полностью отвечает требованиям и критериям, приведенным в п. 10-14 раздела II «Положения о присуждении ученых степеней» предъявляемых к диссертационным работам. Основные положения работы опубликованы Ольгой Николаевной в двух статьях в рецензируемых журналах, в которых она является первым автором, неоднократно докладывались на всероссийских и международных совещаниях и конференциях. Представленный автореферат диссертации соответствует структуре и содержанию диссертационной работы.

Автор диссертационной работы, Киселева Ольга Николаевна, несомненно, заслуживает присуждения ученой степени кандидата геолого-минералогических наук по специальности 25.00.11 – геология, поиски и разведка твердых полезных ископаемых, минерагенция.

Оросов Дмитрий Анатольевич, к. г.-м. н.
Старший научный сотрудник,
Федеральное государственное бюджетное учреждение науки
Геологический институт СО РАН (ГИН СО РАН)
670047, Улан-Удэ, ул. Сахьяновой, 6а
Тел. раб. 8/(3012)434035
e-mail: magma@gin.bscnet.ru

«Я, Оросов Д.А., даю согласие на включение своих персональных данных в документы, связанные с работой диссертационного совета и их дальнейшую обработку».
«13» ноября 2014 г.

Подпись Оросева Д.А. заверено
Специалист по кадрам ГИН СО РАН

С.А. Зангеева

«13» ноября 2014 г.
Татаринов Александр Васильевич, д.г.-м.н.
Главный научный сотрудник
Федеральное государственное бюджетное учреждение науки
Геологический институт СО РАН (ГИН СО РАН)
670047, Улан-Удэ, ул. Сахьяновой, 6а
Тел. раб. 8/(3012)433013
e-mail: tatarinov@gin.bscnet.ru

«Я, Татаринов А.В., даю согласие на включение своих персональных данных в документы, связанные с работой диссертационного совета и их дальнейшую обработку».
«13» ноября 2014 г.

Подпись Татаринова А.В., заверяет
Специалист по кадрам ГИН СО РАН
С.А.Зангеева

«13» ноября 2014 г.

Отзыв заслушан и одобрен в качестве официального на заседании Ученого совета института (протокол № 12 от 13.11.2014)

Председатель Ученого совета,
д.г.-м.н.
Цыганков Андрей Александрович

Секретарь Ученого совета,
к. г.-м. н.
Анциферова Татьяна Николаевна

13 ноября 2014 г.