Инд. авторы: Safonova I.Y., Perfilova A.A., Kotler P.D., Obut O., Aoki S., Komiya T., Wang B., Sun M.
Заглавие: Traces of intra-oceanic arcs recorded in sandstones of eastern kazakhstan: implications from u–pb detrital zircon ages, geochemistry, and nd–hf isotopes
Библ. ссылка: Safonova I.Y., Perfilova A.A., Kotler P.D., Obut O., Aoki S., Komiya T., Wang B., Sun M. Traces of intra-oceanic arcs recorded in sandstones of eastern kazakhstan: implications from u–pb detrital zircon ages, geochemistry, and nd–hf isotopes // International Journal of Earth Sciences. - 2021. - ISSN 1437-3254. - EISSN 1437-3262.
Идентиф-ры: DOI: 10.1007/s00531-021-02059-z; РИНЦ: 46830520;
Реферат: eng: This paper presents first U–Pb detrital zircon ages, major and trace element geochemical data and whole-rock Nd and Hf-in-zircon isotope data from sandstones of the Char and Zharma zones of eastern Kazakhstan. Petrographically the sandstones represent greywackes. The U–Pb ages of detrital zircons show unimodal distributions peaked at 345–340 and 330–325 Ma indicating post-Early Carboniferous deposition. The sandstones have high CIA values (60–68), suggesting moderate to weak chemical weathering. Their high ICV values (1.1–1.3) and relatively high MgO and low Y, Nb indicate an immature probably mafic–intermediate igneous source (low La/Th, medium Hf). Positive whole-rock εNd(t) and zircon εHf(t) indicate dominantly juvenile character of igneous rocks in the provenance. In total, the unimodal character of U–Pb detrital zircon age patterns, the chemical composition of sandstones similar to that of associated volcanic rocks and the positive values of εNd(t) and εHf(t) suggest their derivation from one or more intra-oceanic arcs. The data from eastern Kazakhstan fit those obtained from late Paleozoic greywacke sandstones of NW China. The new geochemical and geochronological data from sandstones and published data from oceanic and supra-subduction ophiolites of eastern Kazakhstan suggest an extended Pacific-type subduction system in the western Paleo-Asian Ocean in Devonian–early Carboniferous time.
Ключевые слова: Zharma zone; U-Pb zircon geochronology; Paleo-Asian ocean; Char zone; Central-Asian orogenic belt; Arc-derived sediments;
Издано: 2021
Цитирование: 1. Belyaev S (1985) Tectonics of Chara zone (eastern Kazakhstan). IGiG SO AN SSSR, Novosibirsk (in Russian)
2. Berzin NA, Dobretsov NL (1994) Geodynamic evolution of Southern Siberia in Late Precambrian-Early Paleozoic time. In: Coleman RG (ed) Reconstruction of the Paleo-Asian Ocean. VSP International Sciences Publishers, Utrecht, pp 53–70
3. Bhatia MR (1985) Rare earth element geochemistry of Australian Paleozoic greywackes and mudrocks: provenance and tectonic control. Sediment Geol 45:97–113. 10.1016/0037-0738(85)90025-9 DOI: 10.1016/0037-0738(85)90025-9
4. Bhatia MR, Crook KAW (1986) Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contrib Mineral Petrol 92:181–193. 10.1007/BF00375292 DOI: 10.1007/BF00375292
5. Buslov MM, Safonova IY, Watanabe T, Obut O, Fujiwara Y, Iwata K, Semakov NN, Sugai Y, Smirnova LV, Kazansky AY (2001) Evolution of the Paleo-Asian Ocean (Altai-Sayan region, Central Asia) and collision of possible Gondwana-derived terranes with the southern marginal part of the Siberian continent. J Geosci 5:203–224. 10.1007/BF02910304 DOI: 10.1007/BF02910304
6. Buslov MM, Watanabe T, Smirnova LV, Fujiwara Y, Iwata K, De Grave J, Semakov NN, Travin AV, Kiryanova AP, Kokh DA (2003) Role of strike-slip faults in Paleozoic-Early Mesozoic tectonics and geodynamics of the Altai-Sayan and East Kazakhstan folded zone. Russ Geol Geophys 44:49–75
7. Buslov MM, Watanabe T, Fujiwara Y, Iwata K, Smirnova LV, Safonova IY, Semakov NN, Kiryanova AP (2004) Late Paleozoic faults of the Altai region, Central Asia: tectonic pattern and model of formation. J Asian Earth Sci 23:655–671. 10.1016/S1367-9120(03)00131-7 DOI: 10.1016/S1367-9120(03)00131-7
8. Buslov MM, Geng H, Travin AV et al (2013) Tectonics and geodynamics of Gorny Altai and adjacent structures of the Altai-Sayan folded area. Russ Geol Geophys 54:1250–1271. 10.1016/j.rgg.2013.09.009 DOI: 10.1016/j.rgg.2013.09.009
9. Bykova MS, Kushev GL (1974) Unsolved question of Carboniferous stratigraphy in East Kazakhstan. Stratigraphy of the Devonian. Carboniferous and Permian in Kazakhstan. Nauka KazSSR Publ, Alma-Ata, pp 73–79
10. Chen B, Jahn BM (2002) Geochemical and isotopic studies of the sedimentary and granitic rocks of the Altai orogen of northwest China and their tectonic implications. Geol Mag 139:1–13. 10.1017/S0016756801006100 DOI: 10.1017/S0016756801006100
11. Chen JF, Han BF, Ji JQ, Zhang L, Xu Z, He GQ, Wang T (2010) Zircon U-Pb ages and tectonic implications of Paleozoic plutons in northern West Junggar, North Xinjiang, China. Lithos 115:137–152. 10.1016/j.lithos.2009.11.014 DOI: 10.1016/j.lithos.2009.11.014
12. Chen Y, Xiao W, Windley BF, Zhang J, Zhou K, Sang M (2016) Structures and detrital zircon ages of the Devonian-Permian Tarbagatay accretionary complex in west Junggar, China: imbricated ocean plate stratigraphy and implications for amalgamation of the CAOB. Int Geol Rev 59:1097–1115. 10.1080/00206814.2016.1185652 DOI: 10.1080/00206814.2016.1185652
13. Chu NC, Taylor RN, Chavagnac V, Nesbitt RW, Boella RM, Milton JA, German CR, Bayon G, Burton K (2002) Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. J Anal at Spectrom 17:1567–1574. 10.1039/b206707b DOI: 10.1039/b206707b
14. Cox R, Lowe DR (1995) A conceptual review of regional-scale controls on the composition of clastic sediment and the co-evolution of continental blocks and their sedimentary cover. J Sediment Res 1:1–12. 10.1306/D4268009-2B26-11D7-8648000102C1865D DOI: 10.1306/D4268009-2B26-11D7-8648000102C1865D
15. Degtyarev KE (1999) Tectonic evolution of the Early Paleozoic active margin in Kazakhstan. Nauka, Moscow (in Russian)
16. Degtyarev KE (2011) Tectonic evolution of early Paleozoic island arc systems and continental crust formation in the Caledonides of Kazakhstan and the North Tien Shan. Geotectonics 45:23–50. 10.1134/S0016852111010031 DOI: 10.1134/S0016852111010031
17. Degtyarev KE, Ryazantsev AV (2007) Cambrian Arc-continent collision in the Paleozoides of Kazakhstan. Geotectonics 41:63–86. 10.1134/S0016852107010062 DOI: 10.1134/S0016852107010062
18. Degtyarev KE, Tolmacheva TYu, Ryazantsev AV, Tret’yakov AA, Yakubchuk AS, Kotov AB, Sal’nikova EB, Yakovleva SZ, Gorokhovskii BM (2012) Structure, age substantiation and tectonic setting of the Lower-Middle Ordovician volcanic-sedimentary and plutonic complexes of the western part of the Kyrgyz Range (Northern Tien Shan). Stratigr Geol Correl 20:317–345. 10.1134/S0869593812030033 DOI: 10.1134/S0869593812030033
19. Dickinson WR (1988) Provenance and sediment dispersal in relation to paleotectonics and paleogeography of sedimentary basins. In: Keinspehn KL, Paola C (eds) New perspectives in basin analysis. Springer, New York, pp 3–25. 10.1007/978-1-4612-3788-4_1 DOI: 10.1007/978-1-4612-3788-4_1
20. Dickinson WR, Berad LS, Brakenridge GR, Erjavec JL, Ferguson RC, Inman KF, Knepp RA, Lindberg FA, Ryberg PT (1983) Provenance of North American Phanerozoic sandstones in relation-to-tectonic-setting. GSA Bull 94:222–235. 10.1130/0016-7606(1983)94%3c222:PONAPS%3e2.0.CO;2 DOI: 10.1130/0016-7606(1983)94<222:PONAPS>2.0.CO;2
21. Didenko AN, Mossakovskiy AA, Pecherskiy DM, Ruzhentsev SG, Samygin SG, Kheraskova TN (1994) Geodynamics of Paleozoic oceans of Central Asia. Russ Geol Geophys 35:48–62
22. Dobretsov NL (1974) The U.S.S.R. glaucophane schist and eclogite glaucophane schist complexes. Nauka, Novosibirsk (in Russian)
23. Dobretsov NL (2003) Evolution of structures of the Urals, Kazakhstan, Tien Shan, and Altai-Sayan region within the Ural-Mongolian fold belt (Paleoasian ocean). Russ Geol Geophys 44:3–26
24. Dobretsov NL, Ponomareva AP (1969) New data on the composition and age of the Zaisan Geosyncline basement. Russ Geol Geophys 10:121–125
25. Dobretsov NL, Berzin NA, Buslov MM (1995) Opening and tectonic evolution of the Paleo-Asian Ocean. Int Geol Rev 37:335–360. 10.1080/00206819509465407 DOI: 10.1080/00206819509465407
26. Dobretsov NL, Buslov MM, Rubanova ES, Vasilevsky AN, Kulikova AV (2017) Middle-Late Paleozoic complexes and structure of Gorny Altaiand their record in gravity data. Russ Geol Geophys 58:1277–1288. 10.1016/j.rgg.2016.12.012 DOI: 10.1016/j.rgg.2016.12.012
27. Ermolov PV, Izokh EP, Ponomareva AP, Tian VD (1977) Gabbro Granite Series in the Western Zaisan Fold System. Nauka, Novosibirsk (in Russian)
28. Ermolov PV, Dobretsov NL, Polyansky NV, Klenina NL, Khomyakov VD, Kuzebny VS, Revyakin PS, Bortsov VD (1981) Ophiolites of the Chara zone. In: Abdulin AA, Patalakha EI (eds) Ophiolites. Nauka KazSSR, Alma-Ata, pp 103–178 (in Russian)
29. Fedo CM, Nesbitt HW, Young GM (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosoils, with implications for paleoweathering conditions and provenance. Geology 23:921–924. 10.1130/0091-7613(1995)023%3c0921:UTEOPM%3e2.3.CO;2 DOI: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2
30. Filippova I, Bush V, Didenko A (2001) Middle Paleozoic subduction belts: the leading factor in the formation of the Central Asian fold-and-thrust belt. Russ Geol Geophys 3:405–426. 10.2205/2001ES000073 DOI: 10.2205/2001ES000073
31. Folk RL (1980) Petrology of sedimentary rocks. Hemphill, Austin
32. Goldstein SJ, Jacobsen SB (1988) Nd and Sr isotopic systematics of river water suspended material: implication for crustal evolution. Earth Planet Sci Lett 87:249–265. 10.1016/0012-821X(88)90013-1 DOI: 10.1016/0012-821X(88)90013-1
33. Herron MM (1988) Geochemical classification of terrigenous sands and shales from core or log data. J Sediment Res 58:820–829. 10.1306/212F8E77-2B24-11D7-8648000102C1865D DOI: 10.1306/212F8E77-2B24-11D7-8648000102C1865D
34. Hong T, Klemd R, Gao J, Xiang P, Xua XW, You J, Wang XS, Wu C, Li H, Ke Q (2017) The tectonic evolution of the Irtysh tectonic belt: new zircon U-Pb ages of arcrelated and collisional granitoids in the Kalaxiangar tectonic belt, NW China. Lithos 272–273:46–68. 10.1016/j.lithos.2016.12.001 DOI: 10.1016/j.lithos.2016.12.001
35. Isozaki Y, Maruyama Sh, Fukuoka F (1990) Accreted oceanic materials in Japan. Tectonophysics 181:179–205. 10.1016/0040-1951(90)90016-2 DOI: 10.1016/0040-1951(90)90016-2
36. Iwata K, Obut OT, Buslov MM (1997) Devonian and Lower Carboniferous radiolaria from the Chara ophiolite belt, East Kazakhstan. News of Osaka Micropaleontologist 10:27–32
37. Izokh NG, Obut OT (2020) New finds Upper Devonian and Carboniferous conodonts from Char folded belt of East Kazakhstan. Bull Mosc Soc Nat Geol Ser 95:42–50
38. Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol 211:47–69. 10.1016/j.chemgeo.2004.06.017 DOI: 10.1016/j.chemgeo.2004.06.017
39. Jacobsen SB, Wasserburg GJ (1984) Sm-Nd evolution of chondrites and achondrites. Earth Planet Sci Lett 67:137–150. 10.1016/0012-821X(84)90109-2 DOI: 10.1016/0012-821X(84)90109-2
40. Jaffey AH, Flynn KF, Glendenin LE, Bentley WC, Essling AM (1971) Precision measurements of half-lives and specific activities of 235U and 238U. Phys Rev C 4:1889–1906. 10.1103/PhysRevC.4.1889 DOI: 10.1103/PhysRevC.4.1889
41. Jahn BM (2004) The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. In: Malpas J, Fletcher CJN, Ali JR, Aitchison JC (eds) Aspects of the tectonic evolution of China. Geological Society, London, pp 73–100
42. Jahn B, Wu F, Chen B (2000) Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Trans R Soc Edinburgh 91:181–193. 10.1017/S0263593300007367 DOI: 10.1017/S0263593300007367
43. Jochum KP, Nohl U (2008) Reference materials in geochemistry and environmental research and the GeoReM database. Chem Geol 253:50–53. 10.1016/j.chemgeo.2008.04.002 DOI: 10.1016/j.chemgeo.2008.04.002
44. Kasapoğlu B, Ersoy YE, Uysal İ, Palmer MR, Zack T, Koralay EO, Karlsson A (2016) The petrology of Paleogene volcanism in the Central Sakarya, Nallıhan Region: implications for the initiation and evolution of post-collisional, slab break-off-related magmatic activity. Lithos 246:81–98. 10.1016/j.lithos.2015.12.024 DOI: 10.1016/j.lithos.2015.12.024
45. Khromykh SV, Kotler PD, Izokh AE, Kruk NN (2019) A review of Early Permian (300–270 Ma) magmatism in eastern Kazakhstan and implications for plate tectonics and plume interplay. Geodyn Tectonophys 10:79–99. 10.5800/GT-2019-10-1-0405 DOI: 10.5800/GT-2019-10-1-0405
46. Khromykh SV, Semenova DV, Kotler PD, Gurova AV, Mikheev EI, Perfilova AA (2020) Orogenic volcanism in Eastern Kazakhstan: composition, age, and geodynamic position. Geotectonics 54:510–528. 10.1134/S0016852120040044 DOI: 10.1134/S0016852120040044
47. Klepikov NA (2008) Geological map, Zaysan series, Sheet M-44-XXII (Charsk), scale 1/200,000
48. Kojima S, Kemkin IV, Kametaka M, Ando A (2000) A correlation of accretionary complexes of southern Sikhote-Alin of Russia and the Inner zone of southern Japan. J Geosci 4:175–185. 10.1007/BF02910136 DOI: 10.1007/BF02910136
49. Kovalenko VI, Yarmolyuk VV, Kovach VP, Kotov AB, Kozakov IK, Salnikova EB, Larin AM (2004) Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian mobile belt: geological and isotopic evidence. J Asian Earth Sci 23:605–627. 10.1016/S1367-9120(03)00130-5 DOI: 10.1016/S1367-9120(03)00130-5
50. Kovalev AA, Karyakin YV (1975) Zaisan Fold system (a new concept of evolution). Sovremennye problemy tektoniki Kazakhstana (Modern Problems of Kazakhstan Tectonics). Nauka, Alma-Ata, pp 75–85 (in Russian)
51. Kröner A, Windley B, Badarch G, Tomurtogoo O, Hegner E, Jahn BM, Gruschka S, Khain EV, Demoux A, Wingate MTD (2007) Accretionary growth and crust formation in the Central Asian orogenic belt and comparison with the Arabian-Nubian shield. In: Hatcher RD, Carlson MP, McBride JH, Martinez Catalan JR (eds) Framework of continental crust. Geological Society of America, Boulder, pp 181–209 DOI: 10.1130/2007.1200(11)
52. Kröner A, Kovach V, Belousova E, Hegner E, Armstrong R, Dolgopolova A, Seltmann R, Alexeiev DV, Hofmann JE, Wong J, Sun M, Cai K, Wang T, Tong Y, Wilde SA, Degtyarev KE, Rytsk E (2014) Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Res 25:103–125. 10.1016/j.gr.2012.12.023 DOI: 10.1016/j.gr.2012.12.023
53. Kröner A, Kovach V, Alexeiev D, Wang KL, Wong J, Degtyarev K, Kozakov I (2017) No excessive crustal growth in the Central Asian Orogenic Belt: further evidence from field relationships and isotopic data. Gondwana Res 50:135–166. 10.1016/j.gr.2017.04.006 DOI: 10.1016/j.gr.2017.04.006
54. Kurganskaya EV, Safonova IY, Simonov VA (2014) Geochemistry and petrogenesis of suprasubduction volcanic complexes of the Char strike-slip zone, eastern Kazakhstan. Russ Geol Geophys 55:69–84. 10.1016/j.rgg.2013.12.005 DOI: 10.1016/j.rgg.2013.12.005
55. Kusky T, Windley B, Safonova I, Wakita K, Wakabayashi J, Polat A, Santosh M (2013) Recognition of Ocean Plate Stratigraphy in accretionary orogens through Earth history: A record of 3.8 billion years of sea floor spreading, subduction, and accretion. Gondwana Res 24:501–547. 10.1016/j.gr.2013.01.004 DOI: 10.1016/j.gr.2013.01.004
56. Liu YS, Hu ZC, Li M, Gao S (2010) Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Sci Bull 55:1535–1546. 10.1007/s11434-010-3052-4 DOI: 10.1007/s11434-010-3052-4
57. Long XP, Yuan C, Sun M, Xiao WJ, Zhao GC, Wang YJ, Cai KD, Xia XP, Xie LW (2010) Detrital zircon ages and Hf isotopes of the early Paleozoic flysch sequence in the Chinese Altai, NW China: new constraints on depositional age, provenance and tectonic evolution. Tectonophysics 180:213–231. 10.1016/j.tecto.2009.10.013 DOI: 10.1016/j.tecto.2009.10.013
58. Long X, Yuan C, Sun M, Safonova I, Xiao W, Wang Y (2012) Geochemistry and U-Pb detrital zircon dating of Paleozoic graywackes in East Junggar, NW China: Insights into subduction–accretion processes in the southern Central Asian Orogenic Belt. Gondwana Res 21:637–653. 10.1016/j.gr.2011.05.015 DOI: 10.1016/j.gr.2011.05.015
59. Ludwig KR (2012) User`s manua for Isoplot Version 3.75–4.15: A geochronological toolkit for Microsoft Excel. Berkeley Geochronological Center, Berkeley
60. Machado N, Simonetti A (2001) U-Pb dating and Hf isotopic composition of zircon by laser-ablation-MC-ICP-MS. Laser-Ablation-ICP MS in the Earth sciences: principles and applications. Mineral Assoc Can 29:121–146
61. Makhlina MK, Alekseev AS, Goreva NV, Gorjunova RV, Isakova TN, Kossovaya OL, Lazarev SS, Lebedev OA, Shkolin AA (2001) Middle Carboniferous of Moscow Syneclise (southern part), Volume 2. Biostratigraphy, vol 2. Scientific World, Moscow (in Russian)
62. Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717. 10.1038/299715a0 DOI: 10.1038/299715a0
63. Nikolaeva IV, Palesskii SV, Chirko OS, Chernonozhkin SM (2012) Identification of major and trace elements in silicate rocks by mass spectrometry with inductively coupled plasma after fusion with LiBO2. Analytics and Control 16:134–142
64. Pettijohn FJ (1975) Sedimentary rocks. 2nd edn, Harper and Row Publishers, New York, 628 p
65. Pettijohn FJ, Potter PE, Siever R (1987) Sand and sandstone. 2nd edn, Springer, New York, 553 p DOI: 10.1007/978-1-4612-1066-5
66. Polyanskiy NV, Dobretsov NL, Yermolov PV, Kuzebnyi VS (1979) The structure and history of the Char ophiolite belt. Geol Geofiz 16:52–62 (in Russian)
67. Rotarash IL, Gredyushko EA (1974) The history and structure of serpentinite melange of the Zaisan orogenic area. Geotektonika 4:73–79 (in Russian)
68. Safonova I (2014) The Russian-Kazakh Altai Orogen: an overview and main debatable issues: Geosci Front 5:537–552 DOI: 10.1016/j.gsf.2013.12.003
69. Safonova IY (2017) Juvenile versus recycled crust in the Central Asian Orogenic Belt: implications from ocean plate stratigraphy, blueschist belts and intra-oceanic arcs. Gondwana Res 47:6–27. 10.1016/j.gr.2016.09.003 DOI: 10.1016/j.gr.2016.09.003
70. Safonova IY, Utsunomiya A, Kojima S, Nakae S, Tomurtogoo O, Filippov AN, Koizumi K (2009) Pacific superplume-related oceanic basalts hosted by accretionary complexes of Central Asia, Russian Far East and Japan. Gondwana Res 16:587–608. 10.1016/j.gr.2009.02.008 DOI: 10.1016/j.gr.2009.02.008
71. Safonova IY, Sennikov NV, Komiya T, Bychkova YV, Kurganskaya EV (2011) Geochemical diversity in oceanic basalts hosted by the Zasur’ya accretionary complex, NW Russian Altai, Central Asia: implications from trace elements and Nd isotopes. J Asian Earth Sci 42:191–207. 10.1016/j.jseaes.2011.02.010 DOI: 10.1016/j.jseaes.2011.02.010
72. Safonova IY, Simonov VA, Obut OT, Kurganskaya EV, Romer R, Seltmann R (2012) Late Paleozoic oceanic basalts hosted by the Char suture-shear zone, East Kazakhstan: geological position, geochemistry, petrogenesis and tectonic setting. J Asian Earth Sci 49:20–39. 10.1016/j.jseaes.2011.11.015 DOI: 10.1016/j.jseaes.2011.11.015
73. Safonova I, Biske G, Romer RL, Seltmann R, Simonov V, Maruyama S (2016) Middle Paleozoic mafic magmatism and ocean plate stratigraphy of the South Tianshan, Kyrgyzstan. Gondwana Res 30:236–256. 10.1016/j.gr.2015.03.006 DOI: 10.1016/j.gr.2015.03.006
74. Safonova I, Komiya T, Romer R, Simonov V, Seltmann R, Rudnev S, Yamamoto S, Sun M (2018) Supra-subduction igneous formations of the Char ophiolite belt, East Kazakhstan. Gondwana Res 59:159–179. 10.1016/j.gr.2018.04.001 DOI: 10.1016/j.gr.2018.04.001
75. Safonova I, Savinskiy I, Perfilova A, Gurova A, Maruyama S, Tsujimori T (2020) The Itmurundy Pacific-type orogenic belt in northern Balkhash, central Kazakhstan: revisited plus first U-Pb age, geochemical and Nd isotope data from igneous rocks. Gondwana Res 79:49–69. 10.1016/j.gr.2019.09.004 DOI: 10.1016/j.gr.2019.09.004
76. Sakata S, Hirakawa S, Iwano H, Danhara T, Guillong M, Hirata T (2017) A new approach for constraining the magnitude of initial disequilibrium in Quaternary zircons by coupled uranium and thorium decay series dating. Quat Geochronol 38:1–12. 10.1016/j.quageo.2016.11.002 DOI: 10.1016/j.quageo.2016.11.002
77. Sennikov NV, Iwata K, Ermikov VD, Obut OT, Khlebnikova TV (2003) Oceanic sedimentation settings and fauna associations in the Paleozoic on the southern framing of the West Siberian Plate. Russ Geol Geophys 44:156–171
78. Shirey SB, Hanson GN (1986) Mantle heterogeneity and crustal recycling in Archaean granite-greenstone belts: evidence from Nd isotopes and trace elements in the Rainy Lake province, Ontario, Canada. Geochim Cosmochim Acta 50:2631–2651. 10.1016/0016-7037(86)90215-2 DOI: 10.1016/0016-7037(86)90215-2
79. Shutov VD (1967) Classification of sandstones. Litologiya I Poleznyie Iskopaemyie 5:86–102 (in Russian)
80. Sokratov GI (1962) Geological map of the USSR, scale 1:200 000. Chingiz-Saur Series. In: Nikolskii AP (ed) Explanatory Note. Nedra, Moscow (in Russian)
81. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a 2-stage model. Earth Planet Sci Lett 26:207–221. 10.1016/0012-821X(75)90088-6 DOI: 10.1016/0012-821X(75)90088-6
82. Stern RA (1997) The GSC sensitive high resolution ion microprobe (SHRIMP): analytical techniques of zircon UTh- Pb age determinatinos and performance evalutiaon: geological survey of Canada current research. Radiogen Age Isot Stud Rep 10:1–32
83. Stern R (2010) The anatomy and ontogeny of modern intra-oceanic arc systems. In: Kusky TM, Zhai MG, Xiao W (eds) The evolving continents: understanding processes of continental growth. Geol Soc London Spec Publ, London, pp 7–34. 10.1144/SP338.2 DOI: 10.1144/SP338.2
84. Sun S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins. Geol Soc London Spec Publ, London, pp 313–345. 10.1144/GSL.SP.1989.042.01.19 DOI: 10.1144/GSL.SP.1989.042.01.19
85. Taylor ST, McLennan SM (1985) The continental crust: composition and evolution. Blackwell, Oxford. 10.1017/S0016756800032167 DOI: 10.1017/S0016756800032167
86. Vladimirov AG, Kruk NN, Khromykh SV, Polyansky OP, Chervov VV, Vladimirov VG, Travin AV, Babin GA, Kuibida ML, Khomyakov VD (2008) Permian magmatism and lithospheric deformation in the Altai caused by crustal and mantle thermal processes. Russ Geol Geophys 49:468–479. 10.1016/j.rgg.2008.06.006 DOI: 10.1016/j.rgg.2008.06.006
87. Volkova N, Tarasova E, Polyanskii N, Vladimirov A, Khomyakov V (2008) High-pressure rocks in the serpentinite melange of the Chara zone, Eastern Kazakhstan; geochemistry, petrology, and age. Geochem Int 46:386–401. 10.1134/S0016702908040071 DOI: 10.1134/S0016702908040071
88. Wakita K (2012) Mappable features of mélanges derived from ocean plate stratigraphy in the Jurassic accretionary complexes of Mino and Chichibu terranes, Southwest Japan. Tectonophysics 568–569:74–85. 10.1016/j.tecto.2011.10.019 DOI: 10.1016/j.tecto.2011.10.019
89. Wakita K, Metcalfe I (2005) Ocean plate stratigraphy in East and Southeast Asia. J Asian Earth Sci 24:679–702. 10.1016/j.jseaes.2004.04.004 DOI: 10.1016/j.jseaes.2004.04.004
90. Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand Newsl 19:1–23. 10.1111/j.1751-908X.1995.tb00147.x DOI: 10.1111/j.1751-908X.1995.tb00147.x
91. Wiedenbeck M, Hanchar JM, Peck WH, Sylvester P, Valley J, Whitehouse M, Zheng YF (2004) Further characterisation of the 91500 zircon crystal. Geostand Geoanal Res 28(1):9–39 DOI: 10.1111/j.1751-908X.2004.tb01041.x
92. Windley BF, Alexeiev D, Xiao W, Kröner A, Badarch G (2007) Tectonic models for accretion of the Central Asian Orogenic Belt. J Geol Soc Lond 164:31–47. 10.1144/0016-76492006-022 DOI: 10.1144/0016-76492006-022
93. Xia X, Sun M, Geng H, Sun Y, Wang Y, Zhao G (2011) Quasi-simultaneous determination of U-Pb and Hf isotope compositions of zircon by excimer laser-ablation multiple-collector ICPMS. J Anal At Spectrom 26:1868–1871 DOI: 10.1039/c1ja10116a
94. Yarmolyuk VV, Kovach VP, Kozakov IK, Kozlovsky AM, Kotov AB, Rytsk EY (2012) Mechanisms of continental crust formation in the Central Asian Foldbelt. Geotectonics 46:251–272. 10.1134/S001685211204005X DOI: 10.1134/S001685211204005X
95. Zonenshain LP, Kuzmin MI, Natapov LM (1990) Geology of the USSR: a plate tectonic synthesis. AGU Geodynamic Series, Washington DOI: 10.1029/GD021