Инд. авторы: Prokopyev I.R, Doroshkevich A.G., Zhumadilova D.V., Starikova A.E., Nugumanova Y.N., Vladykin N.V.
Заглавие: Petrogenesis of zr–nb (ree) carbonatites from the arbarastakh complex (aldan shield, russia): mineralogy and inclusion data
Библ. ссылка: Prokopyev I.R, Doroshkevich A.G., Zhumadilova D.V., Starikova A.E., Nugumanova Y.N., Vladykin N.V. Petrogenesis of zr–nb (ree) carbonatites from the arbarastakh complex (aldan shield, russia): mineralogy and inclusion data // Ore Geology Reviews. - 2021. - Vol.131. - Art.104042. - ISSN 0169-1368.
Идентиф-ры: DOI: 10.1016/j.oregeorev.2021.104042; РИНЦ: 46751112;
Реферат: eng: The Arbarastakh Neoproterozoic ultramafic carbonatite complex is located in the southwestern part of the Siberian Craton (Aldan Shield) and contains ore-bearing Zr–Nb (REE) carbonatites and phoscorites. Carbonatites are mainly represented by calcite and silicocarbonatite varieties. The primary minerals composing the carbonatites are calcite and dolomite, as well as phlogopite, clinopyroxene, fluorapatite, amphibole, fluorite, K-feldspar and feldspathoids. Olivine (forsterite), Ti-magnetite, apatite, phlogopite, calcite, dolomite and the minor spinel group minerals form the primary phoscorites. The ore-bearing Zr–Nb mineral assemblages of the phoscorites and carbonatites include accessory zircon, zirconolite, perovskite, pyrochlore and baddeleyite. The Ba–Sr–REE hydrothermal mineralisation consists of ancylite-(Ce), bastnaesite-(Ce) and burbankite, as well as barite-celestite, strontianite, barytocalcite, and rare Cu–Fe sulphides. The silicocarbonatites and carbonatites formed in multiple stages from a single alkaline Ca–Na–K–silicocarbonatite melt, while the phoscorites are products of differentiation of the carbonatitic melt and were crystallised from an Fe-rich phosphate–carbonate melt at temperatures of more than 720 °C. The silicate–phosphate–carbonate melts were responsible for the Zr–Nb mineralisation of the carbonatites at temperatures of more than 540–575 °C; the hydrothermal REE-bearing mineral assemblages crystallised from saline (60–70 wt%) carbonatitic fluids of Na–Ca–Mg–F–carbonate composition at a minimum temperature range of 350–300 °C. The Ca–Sr-carbonate as well as the Na–hydro–carbonate fluids were responsible for the Ba–Sr–REE mineralisation of the phoscorites at ~500–480 and 450–430 °C.
Ключевые слова: Aldan shield; carbonatites; phoscorites; Siberian Craton;
Издано: 2021
Физ. хар-ка: 104042
Цитирование: 1. Altmaier, M., Neck, V., Fanghanel, T., Solubility and colloid formation of Th(IV) in concentrated NaCl and MgCl2 solution. Radiochim. Acta 92 (2004), 537–543.
2. Andreeva, I.A., Kovalenko, V.I., Nikiforov, A.V., Kononkova, N.N., Compositions of magmas, formation conditions, and genesis of carbonate-bearing ijolites and carbonatites of the Belaya Zima alkaline carbonatite complex, Eastern Sayan. J. Petrol. 15 (2007), 551–574, 10.1134/S0869591107060033.
3. Andreeva, I.A., Carbonatitic melts in olivine and magnetite from rare-metal carbonatite of the Belaya Zima alkaline carbonatite complex (East Sayan, Russia). Dokl. Earth Sci. 455:2 (2014), 436–440, 10.1134/S1028334X14050018.
4. Ashchepkov, I., Zhmodik, S., Belyanin, D., Kiseleva, O.N., Medvedev, N., Travin, A., Yudin, D., Karmanov, N.S., Downes, H., Aillikites and alkali ultramafic lamprophyres of the beloziminsky alkaline ultrabasic-carbonatite massif: possible origin and relations with ore deposits. Minerals, 10, 2020, 404, 10.3390/min10050404.
5. Barbosa, E.S.R., Brod, J., Cordiero, P., et al. Phoscorites of the Salitre I complex: origin and petrogenetic implications. Chem. Geol., 535, 2020, 10.1016/j.chemgeo.2020.119463.
6. Bell, K., Kjarsgaard, B.A., Simonetti, A., Carbonatites into the twenty–first century. J. Petrol. 39 (1998), 1839–1845.
7. Belov, S.V., Lapin, A.V., Tolstov, A.V., Frolov, A.A., Metallogeny of Platform Magmatism (Traps, Carbonatites, Kimberlites). 2008, SO RAN, Novosibirsk [in Russian].
8. Brigatti, M.F., Medici, L., Saccani, E., Vaccaro, C., Crystal chemistry and petrologic significance of Fe3+-rich phlogopite from the Tapira carbonatite complex. Brazil. Am. Mineral. 81 (1996), 913–927.
9. Brod, J., Gaspar, J., De Araújo, D., Gibson, S., Thompson, R., Junqueira-Brod, T., Phlogopite and tetra-ferriphlogopite from Brazilian carbonatite complexes: petrogenetic constraints and implications for mineral-chemistry systematics. J. Asian Earth Sci. 19 (2001), 265–296.
10. Broom-Fendley, S., Styles, M.T., Appleton, J.D., Gunn, G., Wall, F., Evidence for dissolution-reprecipitation of apatite and preferential LREE mobility in carbonatite-derived late-stage hydrothermal processes. Am. Mineral. 101 (2016), 596–611, 10.2138/am-2016-5502CCBY.
11. Broom-Fendley, S., Brady, A.E., Wall, F., Gunn, G., Dawes, W., REE minerals at the Songwe Hill carbonatite, Malawi: HREE-enrichment in late-stage apatite. Ore Geol. Rev. 81 (2017), 23–41, 10.1016/j.oregeorev.2016.10.019.
12. Brown, P.E., FLINCOR: a microcomputer program for the reduction and investigation of fluid-inclusion data. Am. Mineral. 74:11 (1989), 1390–1393.
13. Bulakh, A.G., Ivanikov, V.V., Orlova, M.P., 2004. Overview of carbonatite–phoscorite complexes of the Kola Alkaline Province in the context of a Scandinavian North Atlantic Alkaline Province. In: Wall, F., Zaitsev, A.N. (Eds.), Phoscorites and Carbonatites from Mantle toMine: the Key Example of the Kola Alkaline Province. Mineral. Soc., London, pp. 1–43.
14. Chakhmouradian, A.R., High-field-strength elements in carbonatitic rocks: geochemistry, crystal chemistry and significance for constraining the sources of carbonatites. Chem. Geol. 235 (2006), 138–160.
15. Chakhmouradian, A.R., Wall, F., Rare earth elements: minerals, mines, magnets (and more). Elements 8 (2012), 333–340.
16. Chakhmouradian, A.R., Reguir, E.P., Kressall, R.D., Crozier, J., Pisiak, L.K., Sidhu, R., Yang, P., Carbonatite-hosted niobium deposit at Aley, northern British Columbia (Canada): mineralogy, geochemistry and petrogenesis. Ore Geol. Rev. 64 (2015), 642–666, 10.1016/j.oregeorev.2014.04.020.
17. Chakhmouradian, A.R., Reguir, E.P., Zaitsev, A.N., Couëslan, C., Xu, C., Kynický, J., Mumin, A.H., Yang, P., Apatite in carbonatitic rocks: compositional variation, zoning, element partitioning and petrogenetic significance. Lithos 274 (2017), 188–213.
18. Cooper, A.F., Collins, A.K., Palin, J.M., Spratt, J., Mineralogical evolution and REE mobility during crystallisation of ancylite-bearing ferrocarbonatite, Haast River, New Zealand. Lithos 217 (2015), 324–337, 10.1016/j.lithos.2015.01.005.
19. Dalton, J.A., Wood, B.J., The compositions of primary carbonate melts and their evolution through wall rock reaction in the mantle. Earth and Planet. Sci. Letters. 119 (1993), 511–525.
20. Doroshkevich, A.G., Ripp, G.S., Moore, K.R., Genesis of the Khaluta alkaline-basic Ba-Sr carbonatite complex (west Transbaikala, Russia). Mineral Petrol 98 (2010), 245–268.
21. Doroshkevich, A.G., Veksler, I.V., Izbrodin, I.A., Ripp, G.S., Khromova, E.A., Posokhov, V.F., Travin, A.V., Vladykin, N.V., Stable isotope composition of minerals in the Belaya Zima plutonic complex, Russia: implications for the sources of the parental magma and metasomatizing fluids. J. Asian Earth Sci. 116 (2016), 81–96, 10.1016/j.jseaes.2015.11.011.
22. Doroshkevich, A.G., Veksler, I.V., Klemd, R., Khromova, A.E., Izbrodin, I.A., Trace-element composition of minerals and rocks in the Belaya Zima carbonatite complex (Russia): implications for the mechanisms of magma evolution and carbonatite formation. Lithos 284–285 (2017), 91–108.
23. Doroshkevich, A.G., Chebotarev, D.A., Sharygin, V.V., Prokopyev, I.R., Nikolenko, A.M., Petrology of alkaline silicate rocks and carbonatites of the Chuktukon massif, Chadobets upland, Russia: sources, evolution and relation to the Triassic Siberian LIP. Lithos 332–333 (2019), 245–260.
24. Ernst, R.E., Bell, K., Large Igneous Provinces (LIPs) and Carbonatites:. Mineralogy and Petrology. Special issue dedicated to K. Bell and titled "Continental Flood Basalts and associated igneous complexes 98 (2010), 55–76, 10.1007/s00710-009-0074-1.
25. Ernst, R.E., Hamilton, M.A., Söderlund, U., Hanes, J.A., Gladkochub, D.P., Okrugin, A.V., Long-lived connection between southern Siberia and 714 northern Laurentia in the Proterozoic. Nat. Geosci. 96 (2016), 464–469, 10.1038/NGEO2700.
26. Frost, B.R., Avchenko, O.V., Chamberlain, K.R., Frost, C.D., Evidence for extensive proterozoic remobilization of the aldan shield and implications for proterozoic plate tectonic reconstructions of Siberia and Laurentia. Precambr Res 89 (1998), 1–23, 10.1016/s0301-9268(97)00074-0.
27. Giebel, R.J., Marks, M.A.W., Gauert, C.D.K., Markl, G., A model for the formation of carbonatite–phoscorite assemblages based on the compositional variations of mica and apatite from the Palabora Carbonatite Complex, South Africa. Lithos 324–325 (2019), 89–104.
28. Glagolev, A.A., Korchagin, A.M. and Kharchenkov, A.G., 1974. Arbarastakh and Inagli Alkaline-Ultrabasic Massifs. Nauka, Moscow, 175 pp. [in Russian].
29. Goroshko, M.V., Guryanov, V.A., Uranium-rare metal mineralisation in alkaline-ultrabasic masiffs of the south-eastern Siberian Platform. Tikhookeanskaya Geologiya 2 (2004), 76–91 [in Russian].
30. Guzmics, T., Zajacz. Z., 2013. Trace element partitioning between immsicible silicate and carbonate melts, based on natural melt inclusions from Kerimasi volcano, Tanzania. Goldschmidt Conference Abstracts: 1238.
31. Hamilton, D.L., Kjarsgaard, B.A., The immiscibility of silicate and carbonate liquids. Afr. Geol. 96:3 (1993), 139–142.
32. Harlov, D.E., Forster, H.J., Nijland, T.G., Fluid-induced nucleation of REE-phosphate minerals in apatite: nature and experiment. Part I. Chlorapatite. American Mineralogist 87 (2002), 245–261.
33. Harlov, D.E., Förster, H.-J., Fluid-induced nucleation of (Y+REE)-phosphate minerals within apatite: Nature and experiment. Part II. Fluorapatite. American Mineralogist 88 (2004), 1209–1229, 10.2138/am-2003-8-905.
34. Hetherington, C.J., Harlov, D.E., Metasomatic thorite and uraninite inclusions in xenotime and monazite from granitic pegmatites, Hidra anorthosite massif, southwestern Norway: mechanics and fluid chemistry. Am. Mineral. 93 (2008), 806–820.
35. Hogarth, D.D., Pyrochlore, apatite and amphibole: distinctive minerals in carbonatite. Bell, K., (eds.) Carbonatites, 1989, Genesis and Evolution, Unwin Hyman, London, 105–148.
36. Kogarko, L.N., The role of global fluids in the genesis of mantle heterogeneities and alkaline magmatism. Geol. Geofiz. 46:12 (2005), 1213–1224.
37. Kogarko, L.N, Kononova, V.A., Orlova, M.P., Woolley, A.R., 1995. Alkaline Rocks and Carbonatites of the World. Part 2: Former USSR. Chapman & Hall, London, 226.
38. Kogarko, L., Suddaby, P., Watkins, P., Geochemical evolution of carbonatite melts in Polar Siberia. Geochem. Int. 35 (1997), 113–118.
39. Kogarko, L.N., Kurat, G., Ntaflos, T., Henrymeyerite in the metasomatized upper mantle of eastern Antarctica. Canadian Mineralogist 45:3 (2007), 497–501, 10.2113/gscanmin.45.3.497.
40. Kogarko, L.N., Ryabchikov, I.D., Kuzmin, D.V., High-Ba mica in olivinites of the Guli massif (Maimecha–Kotui province, Siberia). Russ. Geol. Geophys. 53 (2012), 1209–1215.
41. Kotov, A.B., Glebovitskii, V.A., Kazanskii, V.I., Sal'nikova, E.B., Pertsev, N.N., Kovach, V.P., Yakovleva, S.Z., 2005. Age Boundaries of the Formation of Major Structures in the Central Aldan Shield. Dokl Akad Nauk 405(8):1155–1158 (Dokl. Earth Sci. (Engl. Transl.), 405 (8), 1155–1158.
42. Kotov, A.B., Salnikova, E.B., Glebovitskii, V.A., Kovach, V.P., Larin, A.M., Velikoslavinskii, S.D., Zagornaya, N.Yu., 2006. Sm–Nd Isotopic Provinces of the Aldan Shield. Dokl Akad Nauk 410(1):91–94 (Dokl. Earth Sci. (Engl. Transl.) 410 (7), 1066–1069).
43. Kotov, A.B., Skovitina, T.M., Kovach, V.P., Velikoslavinsky, S.D., Lopatin, D.V., Sklyarov, E.V., Tolmacheva, E.V., Bobrovskaya, O.V., 2017. New data on continental crust age in the western part of the Aldan Shield: results of Sm–Nd Isotopic Study of the Cenozoic Sand Deposits in the Chara and Tokkin Basins. Doklady Earth Sci 475(1):758–761 (Published in Doklady Akademii Nauk, 2015, Vol. 475, No. 3, pp. 291–294 [in Russian]).
44. Krasnova, N., Balaganskaya, E., Garcia, D., Kovdor - classic phoscorites and carbonatites. Wall, F., Zaitev, A.N., (eds.) Phoscorites and Carbonatites from Mantle to Mine: the Key Example of the Kola Alkaline Province, 2004, Mineralogical Society of Great Britain and Ireland, London, GB, 99–132.
45. Krasnova, N., Petrov, T., Balaganskaya, E., Garcia, D., Moutte, J., Zaitsev, A., Wall, F., Introduction to phoscorites: occurrence, composition, nomenclature and petrogenesis. Wall, F., Zaitev, A.N., (eds.) Phoscorites and Carbonatites from Mantle to Mine: the Key Example of the Kola Alkaline Province, 2004, The Mineralogical Society of Great Britain and Ireland, London, GB, 45–74.
46. Kuzmin, M.I., Yarmolyuk, V.V., Mantle plumes of Central Asia (Northeast Asia) and their role in forming endogenous deposits. Russ. Geol. Geophys. 55:2 (2014), 120–143, 10.1016/j.rgg.2014.01.002.
47. Larin, A.M., Kotov, A.B., Velikoslavinskii, S.D., Early Precambrian A-granitoids in the Aldan Shield and adjacent mobile belts: sources and geodynamic environments. Petrology 20 (2012), 218–239, 10.1134/S0869591112030034.
48. Le Maitre, R.W., Igneous Rocks. A Classification and Glossary of Terms, second ed., 2002, Cambridge University Press, Cambridge, UK, 236.
49. Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W., Youzhi, G., Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Am. Miner. 82 (1997), 1019–1037.
50. Le Bas, M.J., 1987. Nephelinites and carbonatites. In: Fitton, J. G. Carbonatites-Genesis and Evolution. London: Unwin Hyman, pp. 405- & Upton, B. G. J. (eds) Alkaline Igneous Rocks. Geological Society, London, 427. Special Publication 30, 85-94.
51. Lee, M.J., Garcia, D., Moutte, J., Lee, J.I., Phlogopite and tetraferriphlogopite from phoscorite and carbonatite associations in the Sokli massif, Northern Finland. Geosci. J. 7 (2003), 9–20.
52. Mann, U., Marks, M.A.W., Markl, G., Influence of oxygen fugacity on mineral compositions in peralkaline melts: the Katzenbuckel volcano, Southwest Germany. Lithos 91:2006 (2006), 262–285.
53. McCormick, G.R., Le Bas, M.J., Phlogopite crystallization in carbonatitic magmas from Uganda. Can. Mineral. 34 (1996), 469–478.
54. Mitchell, R.H., 1995. Kimberlite, Orangeites and Related Rocks. Plenum Press, New York.
55. Mitchell, R.H., Sylvite and fluorite microcrysts, and fluorite–nyerereite intergrowths from natrocarbonatite, Oldoinyo Lengai, Tanzania. Mineral. Mag. 70 (2006), 103–114.
56. Nikolenko, A.M., Redina, A.A., Doroshkevich, A.G., Prokopyev, I.R., Ragozin, A.L., Vladykin, N.V., The origin of magnetite-apatite rocks of Mushgai-Khudag Complex, South Mongolia: mineral chemistry and studies of melt and fluid inclusions. Lithos 320–321 (2018), 567–582, 10.1016/j.lithos.2018.08.030.
57. Nosova, A.A., Sazonova, L.V., Kargin, A.V., Smirnova, M.D., Lapin, A.V., Shcherbakov, V.D., Olivine in ultramafic lamprophyres: chemistry, crystallisation, and melt sources of Siberian Pre- and post-trap aillikites. Contrib. Mineral. Petrol., 173, 2018, 55, 10.1007/s00410-018-1480-3.
58. Nosova, A.A., Kargin, A.V., Sazonova, L.V., et al. Sr-Nd-Pb isotopic systematic and geochronology of ultramafic alkaline magmatism of the southwestern margin of the Siberian Craton: Metasomatism of the sub-continental lithospheric mantle related to subduction and plume events. Lithos, 2020, 10.1016/j.lithos.2020.105509.
59. Osorgin, N.Y., 1990. Chromatographic analysis of the gas phase in minerals (methods, equipment, metrology). Novosibirsk: Preprint N11: 32 [in Russian].
60. Parfenov, L.M., Kuzmin, M.I., Tectonics, geodynamics and metallogeny of the territory of the Republic of Sakha (Yakutia). 2001, Nauka/Interperiodika, Moscow [in Russian].
61. Priyatkina, N., Ernst, R., Khudoley, A., Precambrian Res., 340, 2020, 10.1016/j.precamres.2020.105645.
62. Prokopyev, I.R., Borisenko, A.S., Borovikov, A.A., Pavlova, G.G., Origin of REE-rich ferrocarbonatites in southern Siberia (Russia): implications based on melt and fluid inclusions. Mineral., 2016.
63. Prokopyev, I.R., Doroshkevich, A.G., Ponomarchuk, A.V., Sergeev, S.A., Mineralogy, age and genesis of apatite-dolomite ores at the Seligdar apatite deposit (Central Aldan, Russia). Ore Geol. Rev. 81 (2017), 296–308, 10.1007/s00710-016-0449-z.
64. Prokopyev, I.R., Starikova, A.E., Doroshkevich, A.G., Nugumanova, Y.N., Potapov, V.V., Petrogenesis of ultramafic lamprophyres from the terina complex (Chadobets upland, Russia): Mineralogy and melt inclusion composition. Minerals, 10(5), 2020, 419, 10.3390/min10050419.
65. Rankin, A.H., 2005. Carbonatite-associated rare metal deposits: composition and evolution of ore-forming fluids — the fluid inclusion evidence. In Rare-Element Geochemistry and Mineral Deposits. GAC Short Course Notes 17; Linnen, R. L., Samson, I. M., Eds.; Geological Association of Canada: Quebec, pp. 299–314 ISBN 978-1-897095-08-9.
66. Rass, I.T., Petrenko, D.B., Koval'chuk, E.V., Yakushev, A.I., Phoscorites and Carbonatites: Relations, Possible Petrogenetic Processes, and Parental Magma, with Reference to the Kovdor Massif, Kola Peninsula. Geochem. Int. 58:7 (2020), 753–778.
67. Roedder, E., 1984. Fluid inclusions. REVIEWS in MINERALOGY. Volume 12.; Ribbe, P. H., Ed.; Mineralogical Society of America: Blacksburg, Virginia, USA, 1984; ISBN 978-0-939950-16-4.
68. Ryabchikov, I.D., Solovova, I.P., Kogarko, L.N., Bray, G.P., Ntaflos, T., Simalin, S., Thermodynamic parameters of generation of meymechites and alkaline picrites in the Maimecha-Kotui Province: evidence from melt inclusions. Geochem. Int. 40:11 (2002), 1031–1041.
69. Rosen, O.M., Serenko, V.P., Spetsius, Z.V., Manakov, A.V., Zinchuk, N.N., Yakutian Kimberlite Province: position in the structure of the Siberian craton and composition of the upperand lower crust. Russ. Geol. Geophys. 43 (2002), 1–24.
70. Redina, A.A., Nikolenko, A.M., Doroshkevich, A.G., Prokopyev, I.R, Wohlgemuth-Ueberwasser, C., Vladykin, N.V., 2020. Conditions for the crystallization of fluorite in the Mushgai-Khudag complex (Southern Mongolia): Evidence from trace element geochemistry and fluid inclusions. Available online 12 June 2020, https://doi.org/10.1016/j.chemer.2020.125666.
71. Rimskaya-Korsakova, O., Sokolova, E., About the iron-magnesium micas with the reverse scheme of absorption. Zap. Vses. Mineral. O-va. 93 (1964), 411–423 [in Russian].
72. Rimskaya-Korsakova, O., Krasnova, N., Geology of the Deposits of Kovdor Massif. 2002, St. Petersburg State University, St. Petersburg, Russia 296 [in Russian].
73. Rock, N.M.S., The nature and origin of ultramafic lamprophyres: alnöites and allied rocks. J. Petrol. 27 (1986), 155–196.
74. Shironosova, G.P., Prokopyev, I.R., Coefficients of distribution of REE+Y between minerals and cooling rich sulfate fluid (thermodynamic modeling). Bull. Tomsk Polytech. Univ.-Geo Assets Eng. 329:10 (2018), 6–18.
75. Shironosova, G.P., Prokopyev, I.R., Thermodynamic modeling of REE+Y speciation in cooling sulfatebrich fluids. Bull. Tomsk Polytech. Univ.-Geo Assets Eng. 330:11 (2019), 7–18.
76. Shu, X., Liu, Y., Fluid inclusion constraints on the hydrothermal evolution of the Dalucao Carbonatite-related REE deposit, Sichuan Province. China. Ore Geol. Rev. 107 (2019), 41–57, 10.1016/j.oregeorev.2019.02.014.
77. Smith, M.P., Campbell, L.S., Kynicky, J., A review of the genesis of the world-class Bayan Obo Fe-REE-Nb deposits, Inner Mongolia, China: Multistage processes and outstanding questions. Ore Geol. Rev. 64 (2014), 459–476 in this issue.
78. Tappe, S., Foley, S.F., Jenner, G.A., Kjarsgaard, B.A., Integrating ultramafic lamprophyres into the IUGS classification of igneous rocks: rationale and implications. J. Petrol. 46 (2005), 1893–1900, 10.1093/petro logy/egi03 9.
79. Tappe, S., Foley, S.F., Jenner, G.A., et al. Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, labrador: a consequence of incipient lithospheric thinning beneath the North Atlantic Craton. J. Petrol. 47 (2006), 1261–1315, 10.1093/petro logy/egl00 8.
80. Tropper, P., Manning, C.E., Harlov, D.E., Solubility of CePO4 monazite and YPO4 xenotime in H2O and H2O–NaCl at 800°C and 1 GPa: implications for REE and Y transport during high-grade metamorphism. Chem. Geol. 282 (2011), 58–66.
81. Tropper, P., Manning, C.E., Harlov, D.E., Experimental determination of CePO4 and YPO4 solubilities in H2O–NaF at 800°C and 1 GPa: implications for rare earth element transport in high-grade metamorphic fluids. Geofluids 13 (2013), 372–380.
82. Veksler, I.V., Dorfman, A.M., Dulski, P., Kamenetsky, V.S., Danyushevsky, L.V., Jeffries, T., Dingwell, D.B., Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite. Geochim. Cosmochim. Acta 79 (2012), 20–40.
83. Velikoslavinskii, S.D., Kotov, A.B., Tolmacheva, E.V., et al. Early Precambrian granite-gneiss complexes in the Central Aldan Shield. Petrology 19 (2011), 382–398, 10.1134/S0869591111040060.
84. Wall, F., 2013. Critical metals handbook, 10.1002/9781118755341.ch13.
85. Wall, F., Zaitsev, A.N., 2004. Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province. Mineralogical Society Series, 10. Mineralogical Society, London, 498.
86. Weng, Z., Jowitt, S., Mudd, G., Haqoe, N., A detailed assessment of global rare earth element resources: opportunities and challenges. Econ. Geol. 110:8 (2015), 1925–1952, 10.2113/econgeo.110.8.1925.
87. Whitney, D.L., Evans, B.W., Abbreviations for Names of Rock-Forming Minerals. Am. Mineral. 95:1 (2010), 185–187, 10.2138/am.2010.3371.
88. Williams-Jones, A.E., Migdisov, A.A., Samson, I.M., Hydrothermal mobilization of the rare earth elements-a tale of “Ceria” and “Yttria”. Elements 8 (2012), 355–360.
89. Woolley, A.R., Kempe D.R.C., 1989. Carbonatites: Nomenclature, average chemical compositions and element distribution. In Carbonatites: Genesis and Evolution. / Unwin Hyman, London, red. Bell K., 1-14.
90. Woolley, A.R., Kjarsgaard, B.A., Paragenetic types of carbonatite as indicated by the diversity and relative abundances of associated silicate rocks: evidence from a global database. Can. Mineral. 46 (2008), 741–752, 10.3749/canmin.46.4.
91. Xie, Y., Hou, Z., Yin, S., Dominy, S.C., Xu, J., Tian, S., Xu, W., Continuous carbonatitic melt–fluid evolution of a REE mineralization system: Evidence from inclusions in the Maoniuping REE Deposit, Western Sichuan. China. Ore Geol. Rev. 36 (2009), 90–105, 10.1016/j.oregeorev.2008.10.006.
92. Yarmolyuk, V.V., Kovalenko, V.I., Sal'nikova, E.B., Nikiforov, A.V., Kotov, A.B., Vladykin, N.V., Late Riphean rifting and breakup of Laurasia: data on geochronological studies of ultramafic alkaline complexes in the southern framing of the Siberian craton. Dokl. Earth Sci. 404:7 (2005), 1031–1037.
93. Zheng, X., Liu, Y., Mechanisms of element precipitation in carbonatite-related rare-earth element deposits: evidence from fluid inclusions in the Maoniuping deposit, Sichuan Province, southwestern China. Ore Geol. Rev. 107 (2019), 218–238, 10.1016/j.oregeorev.2019.02.021.