Инд. авторы: Kuznetsov A.B., Kokh K.A., Kaneva E.V., Svetlichnyi V.A., Kononova N.G., Shevchenko V.S., Rashchenko S.V., Kokh A.E.
Заглавие: Study of an eubo3–scbo3 system and eusc3(bo3)4, eusc(bo3)2 orthoborates
Библ. ссылка: Kuznetsov A.B., Kokh K.A., Kaneva E.V., Svetlichnyi V.A., Kononova N.G., Shevchenko V.S., Rashchenko S.V., Kokh A.E. Study of an eubo3–scbo3 system and eusc3(bo3)4, eusc(bo3)2 orthoborates // Dalton Transactions: An International Journal of Inorganic Chemistry. - 2021. - Vol.50. - Iss. 39. - P.13894-13901. - ISSN 1477-9226. - EISSN 1477-9234.
Идентиф-ры: DOI: 10.1039/d1dt02477a; РИНЦ: 47140362;
Реферат: eng: The EuBO3-ScBO3system was investigated by solid state synthesis and DSC methods. In this system, a new EuSc(BO3)2compound was found. It crystallizes in theR3̄ space group with unit cell parameters ofa= 4.8939(1) Å andc= 16.2663(5) Å. Whereas another compound in the system EuSc3(BO3)4possesses two modifications: a low-temperature α-C2/c(a= 7.687(1) Å,b= 9.810(2) Å,c= 12.021(2) Å, andβ= 105.379(4)°) and a high-temperature β-R32 (a= 9.7473(1) Å andc= 7.9205(2) Å). The α-EuSc3(BO3)4crystal was grown with LiBO2-LiF flux, and β-EuSc3(BO3)4was obtained by the solid state synthesis. All of the obtained crystals exhibited typical Eu3+luminescence spectra with peaks at 589 nm, 596 nm, 615 nm, 657 nm and 689 nm, which corresponded to the5D0→7FJ(J= 0, 1, 2 and 4) electron transitions. The strongest peak of luminescence was located at 615 nm and corresponded to the5D0→7F0transition.
Ключевые слова: Lows-temperatures; luminescence spectrum; Orthoborates; solid-state synthesis; Highest temperature; Unit cell parameters; space groups;
Издано: 2021
Физ. хар-ка: с.13894-13901
Цитирование: 1. Becker, P. Borate materials in nonlinear optics (1998) Advanced Materials, 10 (13), pp. 979-992. http://www3.interscience.wiley.com/journal/119030556/issue
2. Chen, C., Wu, Y., Li, R. The development of new NLO crystals in the borate series (1990) Journal of Crystal Growth, 99 (1-4), pp. 790-798.
3. Chen, Chuang-tian, Liu, Guang-zhao. RECENT ADVANCES IN NONLINEAR OPTICAL AND ELECTRO-OPTICAL MATERIALS (1986) Annual Review of Materials Science, 16, pp. 203-243. ISBN: 0824317165
4. Jacoby, M. (2017) Chem. Eng. News, 95, p. 12.
5. Keszler, D.A. Borates for optical frequency conversion (1996) Current Opinion in Solid State and Materials Science, 1 (2), pp. 204-211. https://www.journals.elsevier.com/current-opinion-in-solid-state-and-materials-science
6. Leonyuk, N. (2019) Crystals, 9, pp. 1-4.
7. Silver, M.A., Albrecht-Schmitt, T.E. Evaluation of f-element borate chemistry (2016) Coordination Chemistry Reviews, 323, pp. 36-51. http://www.journals.elsevier.com/coordination-chemistry-reviews
8. Tran, T.T., Yu, H., Rondinelli, J.M., Poeppelmeier, K.R., Halasyamani, P.S. Deep Ultraviolet Nonlinear Optical Materials (2016) Chemistry of Materials, 28 (15), pp. 5238-5258. http://pubs.acs.org/journal/cmatex
9. Fedorov, P.P. Morphotropism of Rare-Earth Orthoborates RBO3 (2019) Journal of Structural Chemistry, 60 (5), pp. 679-691. http://www.kluweronline.com/issn/0022-4766
10. Lemanceau, S., Bertrand-Chadeyron, G., Mahiou, R., El-Ghozzi, M., Cousseins, J.C., Conflant, P., Vannier, R.N. Synthesis and Characterization of H-LnBO3 Orthoborates (Ln = La, Nd, Sm, and Eu) (1999) Journal of Solid State Chemistry, 148 (2), pp. 229-235. http://www.elsevier.com/inca/publications/store/6/2/2/8/9/8/index.htt
11. NEWNHAM, R.E., REDMAN, M.J., SANTORO, R.P. Crystal Structure of Yttrium and Other Rare-Earth Borates (1963) Journal of the American Ceramic Society, 46 (6), pp. 253-256.
12. Velchuri, R., Kumar, B.V., Devi, V.R., Prasad, G., Prakash, D.J., Vithal, M. Preparation and characterization of rare earth orthoborates, LnBO 3 (Ln = Tb, La, Pr, Nd, Sm, Eu, Gd, Dy, Y) and LaBO3:Gd, Tb, Eu by metathesis reaction: ESR of LaBO3:Gd and luminescence of LaBO3:Tb, Eu (2011) Materials Research Bulletin, 46 (8), pp. 1219-1226.
13. Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides (1976) Acta Crystallographica Section A, 32 (5), pp. 751-767.
14. Balcerzyk, M., Gontarz, Z., Moszynski, M., Kapusta, M. Future hosts for fast and high light output cerium-doped scintillator (2000) Journal of Luminescence, 87, pp. 963-966.
15. Blasse, G., Dirksen, G.J. Scandium borate (ScBO3) as a host lattice for luminescent lanthanide and transition metal ions (1988) Inorganica Chimica Acta, 145 (2), pp. 303-308.
16. Dorenbos, P. Exchange and crystal field effects on the 4fn-15d levels of Tb3+ (2003) Journal of Physics Condensed Matter, 15 (36), pp. 6249-6268.
17. Gaewdang, T., Chaminade, J.P., Garcia, A., Pouchard, M., Hagenmuller, P., Jacquier, B. Luminescence of Ce3+ in the InxSC1 - xB03 (0 ≤ x ≤ 1) solid solution (1994) Journal of Physics and Chemistry of Solids, 55 (6), pp. 501-504.
18. Lu, D., Xu, T., Pan, Z., Yu, H., Zhang, H., Wang, J. (2015) Advanced Solid State Lasers, Optical Society of America. Berlin
19. Riedel, E.P. Effect of temperature on the quantum efficiency of Eu+3 flourescence in Y2O3, ScBO3 and LaBO3 (1970) Journal of Luminescence, 1-2 (C), pp. 176-190.
20. Lai, S.T., Chai, B.H.T., Long, M., Morris, R.C. ScBO3: Cr-A Room Temperature Near-Infrared Tunable Laser (1986) IEEE Journal of Quantum Electronics, 22 (10), pp. 1931-1933.
21. Sytsma, J., Meijer, A., Blasse, G. Spectroscopy of Gd3+ and Eu3+ in the calcite structure (1992) Journal of Solid State Chemistry, 99 (1), pp. 78-84.
22. Tkachenko, E.A., Fedorov, P.P., Kuznetsov, S.V., Voronov, V.V., Lavrishchev, S.V., Shukshin, V.E., Yarotskaya, I.V., (..), Kononova, N.G. Synthesis of scandium orthoborate powders (2006) Inorganic Materials, 42 (2), pp. 171-175.
23. Durmanov, S.T., Kuzmin, O.V., Kuzmicheva, G.M., Kutovoi, S.A., Martynov, A.A., Nesynov, E.K., Panyutin, V.L., (..), Chizhikov, V.I. Binary rare-earth scandium borates for diode-pumped lasers (2001) Optical Materials, 18 (2), pp. 243-284.
24. Eremin, E.V., Pavlovskiy, M.S., Gudim, I.A., Temerov, V., Molokeev, M., Andryushin, N.D., Bogdanov, E.V. Synthesis of NdSc3(BO3)4 single crystals and study of its structure properties (2020) Journal of Alloys and Compounds, 828, art. no. 154355. https://www.journals.elsevier.com/journal-of-alloys-and-compounds
25. Kuz'micheva, G.M., Rybakov, V.B., Kutovoǐ, S.A., Kuz'min, O.V., Panyutin, V.L. Morphotropic series of LnSc3(BO3)4 compounds (2000) Crystallography Reports, 45 (6), pp. 910-915. http://link.springer.com/journal/volumesAndIssues/11445
26. Kuz'Micheva, G.M., Kaurova, I.A., Rybakov, V.B., Podbel'Sky, V.V., Chuykin, N.K. Structural Instability in Single-Crystal Rare-Earth Scandium Borates RE Sc3(BO3)4 (2018) Crystal Growth and Design, 18 (3), pp. 1571-1580. http://pubs.acs.org/journal/cgdefu
27. Kuz'micheva, G.M., Kaurova, I.A., Rybakov, V.B., Podbel'skiy, V.V. (2019) Crystals, 9, p. 100.
28. Doi, Y., Satou, T., Hinatsu, Y. Crystal structures and magnetic properties of lanthanide containing borates LnM(BO3)2 (Ln=Y, Ho-Lu; M=Sc, Cr) (2013) Journal of Solid State Chemistry, 206, pp. 151-157.
29. Tyulyupa, A.G. (1990), p. 13. Collection of materials of the All-Union conference "Physics and alication of solid-state lasers" Moscow
30. Efryushina, N.P., Zhikhareva, E.A., Magunov, I.R., Zakolodyazhnaya, O.V., Magunov, R.L. (1986) Dopov. Akad. Nauk Ukr. RSR, Ser. B: Geol., Khim. Biol. Nauki, 5, pp. 36-38.
31. Kuznetsov, A.B., Kokh, K.A., Kononova, N.G., Shevchenko, V.S., Rashchenko, S.V., Lapin, I.N., Svetlichnyi, V.A., (..), Kokh, A.E. Study of an SmBO3-ScBO3system and new SmSc(BO3)2orthoborate (2021) CrystEngComm, 23 (6), pp. 1482-1488. http://pubs.rsc.org/en/journals/journal/ce
32. He, M., Wang, G., Lin, Z., Chen, W., Lu, S., Wu, Q. Structure of medium temperature phase β-LaSc3(BO3)4 crystal (1999) Materials Research Innovations, 2 (6), pp. 345-348. http://www.tandfonline.com/loi/ymri20#.VwHdSE1f1Qs
33. Fedorova, M.V., Kononova, N.G., Kokh, A.E., Shevchenko, V.S. (2013) Inorg. Mater., 49, pp. 505-509.
34. Rybakov, V.B., Kuzmicheva, G.M., Zharikov, E.V., Ageev, A.Yu., Kutovoi, S.A., Kuz'min, O.V. Crystal structure of NdSc3(BO3)4 (1997) Zhurnal Neorganicheskoj Khimii, 42 (10), pp. 1594-1601.
35. Reynolds, T.A. (1992) Ph.D. dissertation Oregon State University
36. Kuznetsov, A.B., Kokh, K.A., Kononova, N.G., Shevchenko, V.S., Rashchenko, S.V., Ezhov, D.M., Jamous, A.Y., (..), Kokh, A.E. Polymorphism in SmSc3(BO3)4: Crystal structure, luminescent and SHG properties (2021) Journal of Alloys and Compounds, 851, art. no. 156825. https://www.journals.elsevier.com/journal-of-alloys-and-compounds
37. Kokh, A.E., Kuznetsov, A.B., Pestryakov, E.V., Maillard, A., Maillard, R., Jobard, C., Kononova, N.G., (..), Kokh, K.A. Growth of the complex borates YxRySc2+z(BO3)4 (R = Nd, Pr, x + y + z = 2) with huntite structure (2017) Crystal Research and Technology, 52 (8), art. no. 1600371. http://www3.interscience.wiley.com/journal/117933211/grouphome/home.html
38. Kuznetsov, A., Kokh, A., Kononova, N., Shevchenko, V., Uralbekov, B., Ezhov, D., Svetlichnyi, V., (..), Kokh, K. New scandium borates RxLayScz(BO3)4 (x+y+z=4, R=Sm, Tb): Synthesis, growth, structure and optical properties (2020) Materials Research Bulletin, 126, art. no. 110850. http://www.sciencedirect.com/science/journal/00255408
39. Gheorghe, L., Khaled, F., Achim, A., Voicu, F., Loiseau, P., Aka, G. Czochralski Growth and Characterization of Incongruent Melting LaxGdyScz(BO3)4 (x + y + z = 4) Nonlinear Optical Crystal (2016) Crystal Growth and Design, 16 (6), pp. 3473-3479. http://pubs.acs.org/journal/cgdefu
40. Ye, N., Stone-Sundberg, J.L., Hruschka, M.A., Aka, G., Kong, W., Keszler, D.A. Nonlinear optical crystal Y xla ySc z(BO 3) 4 (x + y + z = 4) (2005) Chemistry of Materials, 17 (10), pp. 2687-2692.
41. Gagné, O.C., Hawthorne, F.C. Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen (2015) Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, Part 5 71, pp. 562-578. http://journals.iucr.org/b/services/authorbdy.html
42. Bruker (2016) APEX3 Version 2016.5-0. Bruker AXS Inc Madison Wisconsin USA
43. Bruker (2007) SAINT. Bruker AXS Inc. Madison Wisconsin USA
44. Bruker (2009) SADABS. Bruker AXS Inc Madison Wisconsin USA
45. Palatinus, L., Chapuis, G. SUPERFLIP - A computer program for the solution of crystal structures by charge flipping in arbitrary dimensions (2007) Journal of Applied Crystallography, 40 (4), pp. 786-790.
46. Betteridge, P.W., Carruthers, J.R., Cooper, R.I., Prout, K., Watkin, D.J. (2003) J. Appl. Crystallogr., 36, pp. 1487-1487.
47. Farrugia, L.J. WinGX and ORTEP for Windows: An update (2012) Journal of Applied Crystallography, 45 (4), pp. 849-854.
48. Toby, B.H., Von Dreele, R.B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package (2013) Journal of Applied Crystallography, 46 (2), pp. 544-549.