Инд. авторы: Kotler P.D., Khromykh S.V., Kruk N.N., Semenova D.V., Vladimirov A.G., Sun M., Li P., Khubanov V.
Заглавие: Granitoids of the kalba batholith, eastern kazakhstan: u–pb zircon age, petrogenesis and tectonic implications
Библ. ссылка: Kotler P.D., Khromykh S.V., Kruk N.N., Semenova D.V., Vladimirov A.G., Sun M., Li P., Khubanov V. Granitoids of the kalba batholith, eastern kazakhstan: u–pb zircon age, petrogenesis and tectonic implications // Lithos. - 2021. - Vol.388-389. - Art.106056. - ISSN 0024-4937. - EISSN 1872-6143.
Идентиф-ры: DOI: 10.1016/j.lithos.2021.106056; РИНЦ: 46756074;
Реферат: eng: This is a synthesis of published and new data on the Kalba batholith in Eastern Kazakhstan, the large granitic body in the western part of the Central Asian Orogenic Belt. The batholith consists of granodiorite-granite and leucogranite rocks discriminated on the basis of major- and trace-element chemistry and isotope systematics. The granodiorite-granite rocks, which form the bulk of the batholith, are compositionally variable and can be classified as mixed S-I-type granites. The leucogranites occurring as a few large intrusions in the northwestern part of the batholith have more stable compositions, with high contents of REE, HFSE, F, Li, and B, typical of A-granites. Judging by the isotope systematics of the Kalba granites, compared with that of their potential parent rocks from the Kalba-Narym zone and its surroundings, the two groups originated by different mechanisms in two magmatic events. The granodiorite-granites were produced by large-scale melting of crustal material, including the metabasaltic basement and overlying metavolcanic and metasedimentary rocks. The origin of leucogranites was associated with low-degree partial melting of the deepest Kalba-Narym sediments under the effect of fluoride fluids. The batholith formation spanned about 21 myr: granodiorites and granites formed in the 297–286 Ma interval and leucogranites between 288 and 276 Ma. The ages of the two events bracket the intraplate postorogenic stage of the CAOB history that was coeval to the formation of the Tarim large igneous province.
Ключевые слова: petrogenesis; Granite sources; granite batholith; Central Asian Orogenic Belt;
Издано: 2021
Физ. хар-ка: 106056
Цитирование: 1. Abdel-Fattah, M. Abdel-Rahman, Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas. J. Petrol. 35:2 (1994), 525–541.
2. Abramov, S.S., Formation of fluorine-rich magmas by fluid filtration through silicic magmas: Petrological and geochemical evidence of metamagmatism. Petrology 12:1 (2004), 17–36.
3. Aseri, A.A., Linnen, R.L., Xu, D.Ch., Thibault, Y., Holtz, F., Effects of fluorine on the solubilities of Nb, Ta, Zr and Hf minerals in highly fluxed water-saturated haplogranitic melts. Ore Geol. Rev. 64 (2015), 736–746.
4. Beard, J.S., Lofgren, G.E., Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kbar. J. Petrol. 32 (1991), 365–401.
5. Boynton, W.V., Cosmochemistry of the rare earth elements: meteorite studies. Rare Earth Element Geochemistry, 1984, Elsevier, Amsterdam, 63–114 et al.
6. Buslov, M.M., Watanabe, T., Smirnova, L.V., Fujiwara, I., Iwata, K., de Grave, I., Semakov, N.N., Travin, A.V., Kir'yanova, A.P., Kokh, D.A., Role of strike-slip faulting in late Paleozoic-early Mesozoic tectonics and geodynamics of the Altai-Sayan and East Kazakhstan regions. Russ. Geol. Geophys. 44:1–2 (2003), 47–71.
7. Chappell, B.W., Aluminum saturation in I- and S-type granites and the characterization of fractionated haplogranite. Lithos 46 (1999), 535–551.
8. Chappell, B.W., White, A.J.R., Two contrasting granite types. Pac. Geol. 8 (1974), 173–174.
9. Chen, G.-N., Grapes, R., Granite Genesis: In-Situ Melting and Crustal Evolution. 2007, Springer-Verlag, Berlin, Heidelberg, Dordrecht, 278.
10. Chen, B., Jahn, B., Geochemical and isotopic studies of the sedimentary and granitic rocks of the Altai orogen of Northwest China and their tectonic implications. Geol. Mag. 139:1 (2002), 1–13.
11. Chen, Y., Xiao, X., Windley, B.F., Zhang, J., Zhou, K., Late Devonian-early Permian subduction-accretion of the Zharma-Saur oceanic arc, West Junggar (NW China): Insights from field geology, geochemistry and geochronology. J. Asian Earth Sci. 145 (2017), 424–445.
12. Collins, W.J., Beams, S.D., White, A.J.R., Chappell, B.W., Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Mineral. Petrol. 80 (1982), 189–200.
13. DePaolo, D.J., Neodymium Isotope Geochemistry. 1988, Springer-Verlag, Berlin, Heidelberg, 187.
14. Dyachkov, B.A., Types of Rare-Metal Deposits in the Kalba–Narym Belt. 2012, EKSTU, Ust-Kamenogorsk, 130 (in Russian).
15. Dymek, R.F., Titanium, aluminum and interlayer cation substitutions in biotite from high-grade gneisses, West Greenland. Am. Mineral. 68:9–10 (1983), 880–899.
16. Eby, G.N., Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20 (1992), 641–644.
17. Ermolov, P.V., Isotope Geology and Metallogeny of Kazakhstan. 2013, Kazakhstan-Russian University, Astana, 206 (in Russian).
18. Ernst, R.E., Jowitt, S.M., Large Igneous Provinces (LIPs) and metallogeny. Society of Economic Geologists Special Publication 17, 2013, 17–51.
19. Foster, M.D., Interpretation of the composition of trioctahedral micas. U. S. Geol. Surv. Prof. Pap. 354-B (1960), 11–49.
20. Frost, C.D., Frost, B.R., On ferroan (A-type) granitoids: their compositional variability and modes of origin. J. Petrol. 52:1 (2011), 39–53.
21. Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., A geochemical classification for granitic rocks. J. Petrol. 42 (2001), 2033–2048.
22. Gao, R., Xiao, L., Pirajno, F., Wang, G.-C., He, X.-X., Yang, G., Yan, Sh.-W., Carboniferous–Permian extensive magmatism in the West Junggar, Xinjiang, northwestern China: its geochemistry, geochronology, and petrogenesis. Lithos 204 (2014), 125–143.
23. Gao, P., Yong-Fei, Zheng, Zi-Fu, Zhao, Experimental melts from crustal rocks: a lithochemical constraint on granite petrogenesis. Lithos 266 (2016), 133–157.
24. Goldstein, S.J., Jacobsen, S.B., Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution. Earth Planet. Sci. Lett. 87 (1988), 249–265.
25. Grebennikov, A.V., A-type granites and related rocks: Petrogenesis and classification. Russ. Geol. Geophys. 55:9 (2014), 1074–1086.
26. Hu, A., Jahn, B.M., Zhang, G., Chen, Y., Zhang, Q., Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotopic evidence. Part I. Isotopic characterization of basement rocks. Tectonophysics 328:1–2 (2000), 15–51.
27. Jacobsen, S.B., Wasserburg, G.J., Sm–Nd evolution of chondrites and achondrites. Earth Planet. Sci. Lett. 67 (1984), 137–150.
28. Keppler, H., Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks. Contrib. Mineral. Petrol. 114 (1993), 479–488.
29. Keto, L.S., Jacobsen, S.B., Nd and Sr isotopic variations of early Paleozoic oceans. Earth Planet. Sci. Lett. 84 (1987), 27–41.
30. Khromykh, S.V., Vladimirov, A.G., Izokh, A.E., Travin, A.V., Prokop'ev, I.R., Lobanov, S.S., Azimbaev, E., Petrology and geochemistry of gabbro and picrites from the Altai collisional system of Hercynides: evidence for the activity of the Tarim plume. Russ. Geol. Geophys. 54:10 (2013), 1288–1304.
31. Khromykh, S.V., Oitseva, T.A., Kotler, P.D., D'yachkov, B.A., Smirnov, S.Z., Travin, A.V., Vladimirov, A.G., Sokolova, E.N., Kuzmina, O.N., Mizernaya, M.A., Agaliyeva, B.B., Rare-Metal Pegmatite Deposits of the Kalba Region, Eastern Kazakhstan: Age, Composition and Petrogenetic Implications. Minerals, 10 (11), 2020, 1017, 10.3390/min10111017.
32. Khromykh, S.V., Semenova, D.V., Kotler, P.D., Gurova, A.V., Mikheev, E.I., Perfilova, A.A., Orogenic volcanism in Eastern Kazakhstan: composition, age, and geodynamic position. Geotectonics 54:4 (2020), 510–528.
33. Khromykh, S.V., Tsygankov, A.A., Kotler, P.D., Navozov, O.V., Kruk, N.N., Vladimirov, A.G., Travin, A.V., Yudin, D.S., Burmakina, G.N., Khubanov, V.B., Buyantuev, M.D., Antsiferova, T.N., Karavaeva, G.S., Late Paleozoic granitoid magmatism of Eastern Kazakhstan and Western Transbaikalia: Plume model test. Russ. Geol. Geophys. 57:5 (2016), 773–789.
34. Khromykh, S.V., Izokh, A.E., Gurova, A.V., Cherdantseva, M.V., Savinsky, I.A., Vishnevsky, A.V., Syncollisional gabbro in the Irtysh Shear Zone, Eastern Kazakhstan: compositions, geochronology, and geodynamic implications. Lithos 346-347 (2019), 105–144.
35. Khromykh, S.V., Kotler, P.D., Izokh, A.E., Kruk, N.N., A review of early Permian (300–270 Ma) magmatism in Eastern Kazakhstan and implications for plate tectonics and plume interplay. Geodyn. Tectonophys. 10:1 (2019), 79–99.
36. Khubanov, V.B., Buyantuev, M.D., Tsygankov, A.A., U–Pb dating of zircons from PZ3–MZ igneous complexes of Transbaikalia by sector-field mass spectrometry with laser sampling: technique and comparison with SHRIMP. Russ. Geol. Geophys. 57:1 (2016), 190–205.
37. Konopelko, D., Seltmann, R., Mamadjano, Y., Romer, R.L., Rojas-Agramonte, Y., Jeffries, T., Fidaev, D., Niyozov, A., A geotraverse across two paleo-subduction zones in Tien Shan, Tajikistan. Gondwana Res. 47 (2017), 110–130.
38. Konopelko, D., Wilde, S.A., Seltmann, R., Romer, R.L., Biske, Yu.S., Early Permian intrusions of the Alai range: Understanding tectonic settings of Hercynian post-collisional magmatism in the South Tien Shan, Kyrgyzstan. Lithos 302–303 (2018), 405–420.
39. Kotler, P.D., Kruk, N.N., Khromykh, S.V., Navozov, O.V., The composition and sources of Kalba-Narym terrain sediments (Eastern Kazakhstan). Tomsk State Univ. J. 400 (2015), 345–353.
40. Kotler, P.D., Khromykh, S.V., Vladimirov, A.G., Travin, A.V., Kruk, N.N., Murzintsev, N.G., Navozov, O.V., Karavaeva, G.S., New data on the age and geodynamic interpretation of the Kalba-Narym granitic batholith, eastern Kazakhstan. Dokl. Earth Sci. 462:2 (2015), 565–569.
41. Kozlovsky, A.M., Yarmolyuk, V.V., Salnikova, E.B., Travin, A.V., Kotov, A.B., Plotkina, Ju.V., Kudryashova, E.A., Savatenkov, V.M., Late Paleozoic anorogenic magmatism of the Gobi Altai (SW Mongolia): Tectonic position, geochronology and correlation with igneous activity of the Central Asian Orogenic Belt. J. Asian Earth Sci. 113 (2015), 524–541.
42. Kuibida, M.L., Kruk, N.N., Vladimirov, A.G., Polyanskii, N.V., Nikolaeva, I.V., U–Pb isotopic age, composition, and sources of the plagiogranites of the Kalba range, Eastern Kazakhstan. Dokl. Earth Sci. 424:1 (2009), 72–76.
43. Kuibida, M.L., Dyachkov, B.A., Vladimirov, A.G., Kruk, N.N., Khromykh, S.V., Kotler, P.D., Rudnev, S.N., Kruk, E.A., Kuibida, Y.V., Oitseva, T., Contrasting granitic magmatism of the Kalba fold belt (East Kazakhstan): evidence for late Paleozoic postorogenic events. J. Asian Earth Sci. 175 (2019), 178–198.
44. Li, X.H., Li, Z.X., Li, W.X., Liu, Y., Yuan, Ch., Wei, G., Qi, Ch., U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I and A-type granites from central Guangdong, SE China: A major igneous event in respond to foundering of a subducted flat-slab?. Lithos 96 (2007), 186–204.
45. Li, C.F., Li, X.H., Li, Q.L., Guo, J.H., Yang, Y.H., Rapid and precise determination of Sr and Nd isotopic ratios in geological samples from the same filament loading by thermal ionization mass spectrometry employing a single-step separation scheme. Anal. Chim. Acta 727:10 (2012), 54–60.
46. Li, Y.Q., Li, Z.L., Yu, X., Langmuir, Ch.H., Santosh, M., Yang, Sh.F., Chen, H.L., Tang, Zh.L., Song, B., Zou, S.Y., Origin of the early Permian zircons in Keping basalts and magma evolution of the Tarim large Igneous Province (northwestern China). Lithos 204 (2014), 47–58.
47. Li, P., Sun, M., Rosenbaum, G., Yuan, C., Safonova, I., Cai, K., Jiang, Y., Zhang, Y., Geometry, kinematics and tectonic models of the Kazakhstan Orocline, Central Asian Orogenic Belt. J. Asian Earth Sci. 153 (2018), 42–56.
48. Liu, Y., Li, W., Feng, Zh., Wen, Qu., Neubauer, F., Liang, Ch., A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt. Gondwana Res. 43 (2017), 123–148.
49. Long, M.D., Till, C.B., Druken, K.A., Carlson, R.W., Wagner, L.S., Fouch, M.J., James, D.E., Grove, T.L., Schmerr, N., Kincaid, C., Mantle dynamics beneath the Pacific Northwest and the generation of voluminous back-arc volcanism. Geochem. Geophys. Geosyst., 13(1), 2012 Q0AN01.
50. Lopatnikov, V.V., Izokh, E.P., Ermolov, P.V., Ponomareva, A.P., Stepanov, A.S., Magmatism and Metallogeny of the Kalba-Narym Zone, Eastern Kazakhstan. 1982, Nauka, Moscow, 248 (in Russian).
51. Lopez, S., Castro, A., Determination of the fluid–absent solidus and supersolidus phase relationships of MORB-derived amphibolites in the range 4–14 kbar. Am. Mineral. 86:11−12 (2001), 1396–1403.
52. Middlemost, E.A.K., Naming materials in the magma/igneous rock system. Earth Sci. Rev. 37 (1994), 215–224.
53. Navozov, O.V., Solyanik, V.P., Klepikov, N.A., Karavaeva, G.S., Unsolved problems of spatial and genetic relations of mineral deposits with intrusions of the Kalba–Narym and West Kalba zones of the Greater Altai. Geologiya i Okhrana Nedr 4 (2011), 66–72.
54. Nikolaeva, I.V., Palesskii, S.V., Chirko, O.S., Chernonozhkin, S.M., Inductively coupled mass-spectrometry for major and trace elements in silicate rocks after fusion with LiBO2. Analitika i Control 16:2 (2012), 134–142.
55. Oitseva, T.A., Dyachkov, B.A., Vladimirov, A.G., Kuzmina, O.N., Ageeva, O.V., New data on the substantial composition of Kalba rare metal deposits. IOP Conference Series: Earth and Environmental Science, 110, 2017, 012018.
56. Patino Douce, A.E., What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?. Geol. Soci. Lond. 168 (1999), 55–75.
57. Pearce, J.A., Harris, N.B.W., Tindle, A.G., Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 25 (1984), 956–983.
58. Plotnikov, A.V., Kruk, N.N., Vladimirov, A.G., Kovach, V.P., Zhuravlev, D.Z., Moroz, E.N., Sm–Nd isotope systematics of metamorphic rocks in the Western Altai–Sayan fold belt. Dokl. Earth Sci. 388:1 (2003), 63–67.
59. Rickwood, P.C., Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos 22 (1989), 247–263.
60. Rosen, O.M., Fedorovsky, V.S., Collisional granitoids and the Earth crust layering. 2001, Nauchnyi Mir, Moscow, 188 (in Russian).
61. Rushmer, T., Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions. Contrib. Mineral. Petrol. 107 (1991), 41–59.
62. Safonova, I.Y., Simonov, V.A., Kurganskaya, E.V., Obut, O.T., Romer, R.L., Seltmann, R., Late Paleozoic oceanic basalts hosted by the Char suture-shear zone, Eastern Kazakhstan: Geological position, geochemistry, petrogenesis and tectonic setting. J. Asian Earth Sci. 49 (2012), 20–39.
63. Safonova, I., Komiya, T., Romer, R.L., Simonov, V., Seltmann, R., Rudnev, S., Yamamoto, S., Sun, M., Supra-subduction igneous formations of the Char ophiolite belt, East Kazakhstan. Gondwana Res. 59 (2018), 159–179.
64. Savinskiy, I.A., Composition and isotopic characteristics Chechek granite-gneiss structure (Irtysh shear zone, East Kazakhstan). Lithosphere 5 (2016), 81–90 (in Russian).
65. Savinskiy, I.A., Vladimirov, V.G., Kotler, P.D., Substrate origin of metamorphic rocks and granitoid Chechek dome structure of Irtysh shear zone. Geol. Mineral Res. Siberia 2:26 (2016), 121–134.
66. Seltmann, R., Konopelko, D., Biske, G., Divaev, F., Sergeev, S., Hercynian post-collisional magmatism in the context of Paleozoic magmatic evolution of the Tien Shan orogenic belt. J. Asian Earth Sci. 42:5 (2011), 821–838.
67. Sengor, A.M.C., Natal'in, B.A., Palaeotectonics of Asia: Fragments of a synthesis. Yin, A., Harrison, M., (eds.) Tectonic Evolution of Asia, 1996, Cambridge University Press, Cambridge, 486–640.
68. Shcherba, G.N., Dyachkov, B.A., Stuchevsky, N.I., Nakhtigal, G.P., Antonenko, A.N., Lubetsky, V.N., 1998. Great Altai (Geology and Metallogeny). Book 1. Geological Structure. Gylym, Almaty, 304 pр. (in Russian).
69. Sokolova, E.N., Smirnov, S.Z., Khromykh, S.V., Conditions of crystallization, composition, and sources of rare-metal magmas forming ongonites in the Kalba—Narym zone, Eastern Kazakhstan. Petrology 24:2 (2016), 153–177.
70. Steager, R.H., Jäger, E., Subcommission on geochronology: Convention on the use of decay constants in geo-cosmochronology. Earth Planet. Sci. Lett. 36 (1977), 359–362.
71. Su, Y., Zheng, J., Liang, L., Dai, H., Zhao, J., Chen, M., Ping, X., Liu, Z., Wang, J., Derivation of A1-type granites by partial melting of newly underplated rocks related with the Tarim mantle plume. Geol. Mag. 156:3 (2017), 409–429.
72. Sun, S., McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. Lond., Spec. Publ. 42 (1989), 313–345.
73. Tanaka, T., Togashi, S., Kamioka, H., et al. Jndi-1: a neodymium isotopic reference in consistency with lajolla neodymium. Chem. Geol. 168:168 (2000), 279–281.
74. Taylor, S.R., McLennan, S.M., The Continental Crust: Its Evolution and Composition. vol. 312, 1985, Blackwell, London.
75. Thirlwall, M.F., Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis. Chem. Geol. 94:2 (1991), 85–104.
76. Tian, W., Campbell, I.H., Allen, C.M., Guan, P., Pan, W.Q., Chen, M.M., Yu, H.J., Zhu, W.P., The Tarim picrite-basalt-rhyolite suite, a Permian flood basalt from Northwest China with contrasting rhyolites produced by fractional crystallization and anataxis. Contrib. Mineral. Petrol. 160:3 (2010), 407–425.
77. Vielzeuf, D., Montel, J.M., Partial melting of metagreywackes. Part I. Fluid-absent experiments and phase relationships. Contrib. Mineral. Petrol. 117 (1994), 375–393.
78. Vladimirov, A.G., Kruk, N.N., Rudnev, S.N., Khromykh, S.V., Geodynamics and granitoid magmatism of collisional orogens. Russ. Geol. Geophys. 44:2 (2003), 1275–1292.
79. Wan, B., Zhang, L.C., Peng, X., The Ashele VMS-type Cu-Zn deposit in Xinjiang, NW China formed in a rifted arc setting. Resour. Geol. 60:2 (2010), 150–164.
80. Wang, X., Wang, Z.C., Cheng, H., Foley, S., Xiong, L., Hu, Z.C., Early cretaceous lamprophyre dyke swarms in Jiaodong Peninsula, eastern North China Craton, and implications for mantle metasomatism related to subduction. Lithos 368-369 (2020), 1–15.
81. Wei, X., Xu, Y.-G., Feng, Y.-X., Zhao, J.-X., Plume-lithosphere interaction in the generation of the Tarim large Igneous Province, NW China: geochronological and geochemical constraints. Am. J. Sci. 314:1 (2014), 314–356.
82. Whalen, J.B., Currie, K.L., Chappell, B.W., A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 95 (1987), 407–419.
83. Windley, B.F., Alexeiev, D., Xiao, W., Kröner, A., Badarch, G., Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. 164:1 (2007), 31–47.
84. Xiao, W.J., Santosh, M., The western Central Asian Orogenic Belt: a window to accretionary orogenesis and continental growth. Gondwana Res. 25:2014 (2014), 1429–1444.
85. Xiao, W.J., Huang, B., Han, C., Sun, S., Li, J., A review of the western part of the Altaids: a key to understanding the architecture of accretionary orogens. Gondwana Res. 18 (2010), 253–273.
86. Xu, Y.-G., Wei, X., Luo, Z.-Y., Liu, H.-Q., Cao, J., The early Permian Tarim large Igneous Province: main characteristics and a plume incubation model. Lithos 204 (2014), 20–35.
87. Yarmolyuk, V.V., Kuzmin, M.I., Ernst, R.E., Intraplate geodynamics and magmatism in the evolution of the Central Asian Orogenic Belt. J. Asian Earth Sci. 93 (2014), 158–179.
88. Yarmolyuk, V.V., Kozlovsky, A.M., Salnikova, E.B., Riftogenic magmatism of western part of the early Mesozoic Mongolian–Transbaikalian igneous province: results of geochronological studies. Dokl. Earth Sci. 475 (2017), 872–876.
89. Yavuz, F., Evaluating micas in petrologic and metallogenic aspect: I–definitions and structure of the computer program MICA+. Comput. Geosci. 29 (2003), 1203–1213.
90. Yu, X., Yang, S.F., Chen, H.L., Li, Z.L., Li, Y.Q., Petrogenetic model of the Permian Tarim large Igneous Province. China Earth Sci. 60:10 (2017), 1805–1816.
91. Zak, A.A., Shabanova, E.V., Vasil'eva, I.E., New capabilities of multichannel spectrometer «Kolibri-2» for analysis of geological samples. Lab. Diagn. Mater. 83:1, Part II (2017), 38–45 (in Russian).
92. Zhang, Yunying, Li, Pengfei, Sun, Min, Yuan, Chao, Late Paleozoic to early Triassic granitoids from the Rudny Altai, Central Asian Orogenic Belt: Petrogenesis and implications for continental crustal evolution. Solid Earth Sciences 5 (2020), 115–129, 10.1016/j.sesci.2020.05.001.
93. Zhang, Ch.L., Zou, H.B., Yao, Ch.Y., Dong, Y.G., Origin of Permian gabbroic intrusions in the southern margin of the Altai Orogenic belt: a possible link to the Permian Tarim mantle plume?. Lithos 204 (2014), 112–124.