Инд. авторы: Gavryushkin P.N., Sagatova D.N, Sagatov N.E., Litasov K.D.
Заглавие: Orthocarbonates of ca, sr, and ba - the appearance of sp3-hybridized carbon at a low pressure of 5 gpa and dynamic stability at ambient pressure
Библ. ссылка: Gavryushkin P.N., Sagatova D.N, Sagatov N.E., Litasov K.D. Orthocarbonates of ca, sr, and ba - the appearance of sp3-hybridized carbon at a low pressure of 5 gpa and dynamic stability at ambient pressure // ACS Earth and Space Chemistry. - 2021. - Vol.5. - Iss. 8. - P.1948-1957. - ISSN 2472-3452.
Идентиф-ры: DOI: 10.1021/acsearthspacechem.1c00084; РИНЦ: 46946963;
Реферат: eng: Orthocarbonates are a newly discovered class of compounds that are stable at high pressures. The presence of sp3-hybridized carbon, having structural similarity to orthosilicates, and their potential participation in the global planetary carbon cycle have triggered intensive theoretical and experimental investigations into these compounds. Here, based on the density functional theory and crystal structure prediction calculations, we predict new stable crystal structures of the orthocarbonates Sr3CO5-Cmcm, Sr3CO5-I4/mcm, Ba2CO4-Pnma, and Ba3CO5-I4/mcm. Summarizing the obtained data, we show that orthocarbonates of alkaline-earth metals are isotypic to ambient-pressure orthosilicates with only rare exceptions. The lower-pressure stability limit for Ba-orthocarbonates is around 5 GPa. However, the stability limit increases with decreasing cation radius and reaches 13 GPa for Ca-orthocarbonates. Based on the calculations of Gibbs free energies with the quasi-harmonic approximation, the reaction 2M2CO4 = M3CO5 + MCO3 (M = Sr and Ba) is established. At 20 GPa, this reaction is realized at temperatures above 1080 K for Sr2CO4 and above 740 K for Ba2CO4, and the Clapeyron slope is positive in both cases. The obtained P-T diagrams for SrCO3 and BaCO3 show that equilibrium between the structures of aragonite and postaragonite is observed at 15-17 GPa for SrCO3 and 5-7 GPa for BaCO3. The transition pressure is almost independent of temperature. No other more favorable structures than postaragonite have been found for these compounds in the considered pressure range, up to 200 GPa. Thus, in contrast to CaCO3 and MgCO3, the transition from sp2 to sp3 hybridization is not realized for these compounds. Two of the found structures, Sr2CO4-Pnma and Sr3CO5-Cmcm, are dynamically stable at ambient pressure. This indicates the possibility of recovering the crystals from a high-pressure environment and conducting further laboratory investigation.
Ключевые слова: transition zone; phase diagram; mantle; global carbon cycle; crystallchemistry; antiperovskite; anion-centered polyhedra; ab initio calculations;
Издано: 2021
Физ. хар-ка: с.1948-1957
Цитирование: 1. Oganov, A. R.; Glass, C. W.; Ono, S. High-pressure phases of CaCO3: Crystal structure prediction and experiment. Earth Planet. Sci. Lett. 2006, 241, 95-103, 10.1016/j.epsl.2005.10.014
2. Pickard, C. J.; Needs, R. J. Structures and stability of calcium and magnesium carbonates at mantle pressures. Phys. Rev. B 2015, 91, 104101 10.1103/PhysRevB.91.104101
3. Lobanov, S. S.; Dong, X.; Martirosyan, N. S.; Samtsevich, A. I.; Stevanovic, V.; Gavryushkin, P. N.; Litasov, K. D.; Greenberg, E.; Prakapenka, V. B.; Oganov, A. R. et al. Raman spectroscopy and X-ray diffraction of sp3CaCO3at lower mantle pressures. Phys. Rev. B 2017, 96, 104101 10.1103/PhysRevB.96.104101
4. Ono, S.; Kikegawa, T.; Ohishi, Y. High-pressure transition of CaCO3. Am. Mineral. 2007, 92, 1246-1249, 10.2138/am.2007.2649
5. Oganov, A. R.; Ono, S.; Ma, Y.; Glass, C. W.; Garcia, A. Novel high-pressure structures of MgCO3, CaCO3and CO2and their role in Earth's lower mantle. Earth Planet. Sci. Lett. 2008, 273, 38-47, 10.1016/j.epsl.2008.06.005
6. Maeda, F.; Ohtani, E.; Kamada, S.; Sakamaki, T.; Hirao, N.; Ohishi, Y. Diamond formation in the deep lower mantle: a high-pressure reaction of MgCO3and SiO2. Sci. Rep. 2017, 7, 40602 10.1038/srep40602
7. Boulard, E.; Gloter, A.; Corgne, A.; Antonangeli, D.; Auzende, A.-L.; Perrillat, J.-P.; Guyot, F.; Fiquet, G. New host for carbon in the deep Earth. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 5184-5187, 10.1073/pnas.1016934108
8. Boulard, E.; Pan, D.; Galli, G.; Liu, Z.; Mao, W. L. Tetrahedrally coordinated carbonates in Earth's lower mantle. Nat. Commun. 2015, 6, 6311 10.1038/ncomms7311
9. Čančarević, Ž. P.; Schoen, J. C.; Jansen, M. Possible existence of alkali metal orthocarbonates at high pressure. Chem.-Eur. J 2007, 13, 7330-7348, 10.1002/chem.200601637
10. Sagatova, D.; Shatskiy, A.; Sagatov, N.; Gavryushkin, P. N.; Litasov, K. D. Calcium orthocarbonate, Ca2CO4-Pnma: A potential host for subducting carbon in the transition zone and lower mantle. Lithos 2020, 370-371, 105637 10.1016/j.lithos.2020.105637
11. Binck, J.; Laniel, D.; L, B.; Khandarkhaeva, S.; Fedotenko, T.; Aslandukov, A.; Glazyrin, K.; Milman, V.; Chariton, S.; Prakapenka, V. B.; Dubrovinskaia, N.; Dubrovinsky, L.; Winkler, B. Synthesis of calcium orthocarbonate, Ca2CO4-Pnma at p,T-conditions of Earth's transition zone and lower mantle. Am. Mineral. 2021, 10.2138/am-2021-7872
12. Gavryushkin, P. N.; Sagatova, D. N.; Sagatov, N.; Litasov, K. D. The formation of Mg-orthocarbonate through the reaction MgCO3+ MgO = Mg2CO4at Earth's lower mantle P-T conditions. Cryst. Growth Des. 2021, 21, 2986-2992, 10.1021/acs.cgd.1c00140
13. Gavryushkin, P.; Sagatova, D.; Sagatov, N.; Banaev, M. Silicate-Like Crystallchemistry for Carbonates at High Pressure. Reality or Not. In Book of Abstracts IV Conference and School for Young Scientists Non-Ambient Diffraction and Nanomaterials; Saint Petersburg State University, 2020; p 38.
14. Laniel, D.; Binck, J.; Winkler, B.; Vogel, S.; Fedotenko, T.; Chariton, S.; Prakapenka, V.; Milman, V.; Schnick, W.; Dubrovinsky, L.; Dubrovinskaia, N. Synthesis, crystal structure and structure-property relations of strontium orthocarbonate, Sr2CO4. Acta Crystallogr. B 2021, 77, 131-137, 10.1107/S2052520620016650
15. Jansen, M. Zur natur von trinatriumorthonitrat. Z. Anorg. Allg. Chem. 1982, 491, 175-183, 10.1002/zaac.19824910122
16. Quesada-Cabrera, R.; Sella, A.; Bailey, E.; Leynaud, O.; McMillan, P. High-pressure synthesis and structural behavior of sodium orthonitrate Na3NO4. J. Solid State Chem. 2011, 184, 915-920, 10.1016/j.jssc.2011.02.013
17. Gao, L.; Zhang, H.; Wang, Y.; Li, S.; Zhao, R.; Wang, Y.; Gao, S.; He, L.; Song, H.-F.; Zou, R.; Zhao, Y. Mechanism of enhanced ionic conductivity by rotational nitrite group in antiperovskite Na3ONO2. J. Mater. Chem. A 2020, 8, 21265-21272, 10.1039/D0TA07110B
18. Bremm, T.; Jansen, M. Einkristallzüchtung und strukturanalyse von trikaliumorthonitrat. Z. Anorg. Allg. Chem. 1992, 608, 56-59, 10.1002/zaac.19926080209
19. Bremm, T.; Jansen, M. Synthese und strukturanalyse des gemischten alkalimetallorthonitrats Na3K3(NO4)2/Synthesis and X-ray structure determination of the mixed alkali metal orthonitrate Na3K3(NO4)2. Z. Naturforsch., B 1991, 46, 1031-1034, 10.1515/znb-1991-0810
20. Range, K.-J.; Wildenauer, M.; Heyns, A. M. Extremely short non-bonding oxygen-oxygen distances: The crystal structures of NbBO4, NaNb3O8, and NaTa3O8. Angew. Chem., Int. Ed. 1988, 27, 969-971, 10.1002/anie.198809691
21. Range, K.-J.; Wildenauerand, M.; Andratschke, M. Crystal structure of tantalum orthoborate, TaBO4. Z. Kristallogr.-Cryst. Mater. 1996, 211, 815-815, 10.1524/zkri.1996.211.11.815
22. Ross, S. The vibrational spectra of some minerals containing tetrahedrally co-ordinated boron. Spectrochim. Acta, Part A 1972, 28, 1555-1561, 10.1016/0584-8539(72)80126-0
23. Diehl, R.; Brandt, G. Refinement of the crystal structure of Fe3BO6. Acta Crystallogr. B 1975, 31, 1662-1665, 10.1107/S0567740875005870
24. Santamaría-Pérez, D.; Errandonea, D.; Gomis, O.; Sans, J.; Pereira, A.; Manjón, F.; Popescu, C.; Rodríguez-Hernández, P.; Muñoz, A. Crystal structure of sinhalite MgAlBO4under high pressure. J. Phys. Chem. C 2015, 119, 6777-6784, 10.1021/jp512131e
25. Pickard, C. J.; Needs, R. J. High-pressure phases of silane. Phys. Rev. Lett. 2006, 97, 045504 10.1103/PhysRevLett.97.045504
26. Pickard, C. J.; Needs, R. J. Ab initio random structure searching. J. Phys.: Condens. Matter 2011, 23, 053201 10.1088/0953-8984/23/5/053201
27. Oganov, A. R.; Glass, C. W. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J. Chem. Phys. 2006, 124, 244704 10.1063/1.2210932
28. Oganov, A. R.; Lyakhov, A. O.; Valle, M. How evolutionary crystal structure prediction works-and why. Acc. Chem. Res. 2011, 44, 227-237, 10.1021/ar1001318
29. Lyakhov, A. O.; Oganov, A. R.; Stokes, H. T.; Zhu, Q. New developments in evolutionary structure prediction algorithm uspex. Comput. Phys. Commun. 2013, 184, 1172-1182, 10.1016/j.cpc.2012.12.009
30. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996, 54, 11169 10.1103/PhysRevB.54.11169
31. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50, 10.1016/0927-0256(96)00008-0
32. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865 10.1103/PhysRevLett.77.3865
33. Antao, S. M.; Hassan, I. The orthorhombic structure of CaCO3, SrCO3, PbCO3and BaCO3: Linear structural trends. Can. Mineral. 2009, 47, 1245-1255, 10.3749/canmin.47.5.1245
34. Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; Persson, K. A. Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002 10.1063/1.4812323
35. Alfredsson, M.; Brodholt, J. P.; Wilson, P.; Price, G. D.; Cora, F.; Calleja, M.; Bruin, R.; Blanshard, L.; Tyer, R. Structural and magnetic phase transitions in simple oxides using hybrid functionals. Mol. Simul. 2005, 31, 367-377, 10.1080/08927020500066684
36. Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1-5, 10.1016/j.scriptamat.2015.07.021
37. Gavryushkin, P. N.; Bekhtenova, A.; Lobanov, S. S.; Shatskiy, A.; Likhacheva, A. Y.; Sagatova, D.; Sagatov, N.; Rashchenko, S. V.; Litasov, K. D.; Sharygin, I. S. et al. High-pressure phase diagrams of Na2CO3and K2CO3. Minerals 2019, 9, 599 10.3390/min9100599
38. Gavryushkin, P. N.; Sagatov, N.; Belonoshko, A. B.; Banaev, M. V.; Litasov, K. D. Disordered aragonite: The new high-pressure, high-temperature phase of CaCO3. J. Phys. Chem. C 2020, 124, 26467-26473, 10.1021/acs.jpcc.0c08309
39. Gavryushkin, P. N.; Martirosyan, N. S.; Inerbaev, T. M.; Popov, Z. I.; Rashchenko, S. V.; Likhacheva, A. Y.; Lobanov, S. S.; Goncharov, A. F.; Prakapenka, V. B.; Litasov, K. D. Aragonite-II and CaCO3-VII: New high-pressure, high-temperature polymorphs of CaCO3. Cryst. Growth Des. 2017, 17, 6291-6296, 10.1021/acs.cgd.7b00977
40. Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272-1276, 10.1107/S0021889811038970
41. Stokes, H. T.; Hatch, D. M. FINDSYM: program for identifying the space-group symmetry of a crystal. J. Appl. Crystallogr. 2005, 38, 237-238, 10.1107/S0021889804031528
42. Blatov, V. A.; Shevchenko, A. P.; Proserpio, D. M. Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des. 2014, 14, 3576-3586, 10.1021/cg500498k
43. Yao, X.; Xie, C.; Dong, X.; Oganov, A. R.; Zeng, Q. Novel high-pressure calcium carbonates. Phys. Rev. B 2018, 98, 014108 10.1103/PhysRevB.98.014108
44. Wang, M.; Liu, Q.; Nie, S.; Li, B.; Wu, Y.; Gao, J.; Wei, X.; Wu, X. High-pressure phase transitions and compressibilities of aragonite-structure carbonates: SrCO3and BaCO3. Phys. Chem. Miner. 2015, 42, 517-527, 10.1007/s00269-015-0740-2
45. Biedermann, N.; Speziale, S.; Winkler, B.; Reichmann, H. J.; Koch-Müller, M.; Heide, G. High-pressure phase behavior of SrCO3: an experimental and computational Raman scattering study. Phys. Chem. Miner. 2017, 44, 335-343, 10.1007/s00269-016-0861-2
46. Biedermann, N.; Bykova, E.; Morgenroth, W.; Efthimiopoulos, I.; Mueller, J.; Spiekermann, G.; Glazyrin, K.; Pakhomova, A.; Appel, K.; Wilke, M. Equation of state and high-pressure phase behaviour of SrCO3. Eur. J. Mineral. 2020, 32, 575-586, 10.5194/ejm-32-575-2020
47. Townsend, J. P.; Chang, Y.-Y.; Lou, X.; Merino, M.; Kirklin, S. J.; Doak, J. W.; Issa, A.; Wolverton, C.; Tkachev, S. N.; Dera, P. et al. Stability and equation of state of post-aragonite BaCO3. Phys. Chem. Miner. 2013, 40, 447-453, 10.1007/s00269-013-0582-8
48. Krivovichev, S. V. Minerals with antiperovskite structure: a review. Z. Kristallogr.-Cryst. Mater. 2008, 223, 109-113, 10.1524/zkri.2008.0008
49. Uchikawa, H.; Tsukiyama, K. Indexing of the powder X-ray diffraction patterns and precise determination of the crystal structure of Ba2SiO4. J. Ceram. Assoc. Jpn. 1965, 73, 106-110, 10.2109/jcersj1950.73.837_106
50. Porras-Vázquez, J. M.; Losilla, E. R.; León-Reina, L.; Martínez-Lara, M.; Aranda, M. A. Synthesis and characterization of a new family of mixed oxide-proton conductors based on tristrontium oxysilicate. Chem. Mater. 2008, 20, 2026-2034, 10.1021/cm703079d
51. Tillmanns, E.; Grosse, H.-P. Refinement of tribarium silicate. Acta Crystallogr. B 1978, 34, 649-651, 10.1107/S0567740878003696
52. Smith, D.; Lawler, K. V.; Martinez-Canales, M.; Daykin, A. W.; Fussell, Z.; Smith, G. A.; Childs, C.; Smith, J. S.; Pickard, C. J.; Salamat, A. Postaragonite phases of CaCO3at lower mantle pressures. Phys. Rev. Mater. 2018, 2, 013605 10.1103/PhysRevMaterials.2.013605
53. Binck, J.; Bayarjargal, L.; Lobanov, S. S.; Morgenroth, W.; Luchitskaia, R.; Pickard, C. J.; Milman, V.; Refson, K.; Jochym, D. B.; Byrne, P. et al. Phase stabilities of MgCO3and MgCO3-II studied by Raman spectroscopy, X-ray diffraction, and density functional theory calculations. Phys. Rev. Mater. 2020, 4, 055001 10.1103/PhysRevMaterials.4.055001
54. Spahr, D.; Binck, J.; Bayarjargal, L.; Luchitskaia, R.; Morgenroth, W.; Comboni, D.; Milman, V.; Winkler, B. Tetrahedrally coordinated sp3-hybridized carbon in Sr2CO4orthocarbonate at ambient conditions. Inorg. Chem. 2021, 60, 5419-5422, 10.1021/acs.inorgchem.1c00159