Инд. авторы: Sagatov N.E., Bekker T.B., Podborodnikov I.V., Litasov K.D.
Заглавие: First-Principles investigation of Pressure-Induced structural transformations of barium borates in the BaO-B2O3-BaF2 system in the range of 0-10 GPa
Библ. ссылка: Sagatov N.E., Bekker T.B., Podborodnikov I.V., Litasov K.D. First-Principles investigation of Pressure-Induced structural transformations of barium borates in the BaO-B2O3-BaF2 system in the range of 0-10 GPa // COMPUTATIONAL MATERIALS SCIENCE. - 2021. - Vol.199. - Art.110735. - ISSN 0927-0256.
Идентиф-ры: DOI: 10.1016/j.commatsci.2021.110735; РИНЦ: 46922401; WoS: 000692247600006;
Реферат: eng: First-principles calculations within the density functional theory of the stability of barium borates of the BaOB2O3-BaF2 ternary system have been performed at the pressure of up to 10 GPa. A brief summary on the known structures of ambient and high-pressure phases in the BaO-B2O3 and BaF2-Ba3B2O6 subsystems has been provided. In the BaO-B2O3 subsystem the Ba3B2O6, BaB2O4, and BaB4O7 phases tentatively are stable at up to 10 GPa, while the other known ambient-pressure borates Ba5B4O11, Ba2B6O11, and BaB8O13 decompose under the pressure of above 7.1, 0.6, and 2 GPa, respectively. Two new high-pressure polymorphic modifications of BaB2O4 compound, BaB2O4-Pna21 and BaB2O4-Pa3, stable above 1.0 and 6.1 GPa, respectively, have been predicted. In the BaF2-Ba3B2O6 subsystem Ba7(BO3)4-xF2+3x solid solution is suggested to be stable in the considered pressure range, and Ba5(BO3)3F is suggested to decompose into Ba3B2O6 and Ba7(BO3)4-xF2+3x at pressures above 3-5 GPa. It has been shown that the enthalpy of Ba7(BO3)4-xF2+3x strongly depends on the distribution of the [(BO3)F]4and [F4]4- groups in the structure. We consider the results obtained as a necessary basis for an experimental study aimed at obtaining barium borates under pressures of up to 10 GPa and studying their structure and properties.
Ключевые слова: BAF2; TETRABORATE; COORDINATION; FORM; BETA-BAB2O4; PHASE-TRANSITIONS; CRYSTAL-STRUCTURE; Phase transitions; Density functional theory; Barium borates; LATTICE; B2O3;
Издано: 2021
Физ. хар-ка: 110735
Цитирование: 1. R. Bubnova, S. Filatov, High-temperature crystal chemistry of borates and borosilicates, Science, Saint Petersburg (2008).
2. Bubnova, R.S., Filatov, S.K., High-temperature borate crystal chemistry. Z. Kristallogr. Cryst. Mater. 228 (2013), 395–428.
3. Leonyuk, N.I., Maltsev, V.V., Volkova, E.A., Crystal chemistry of high-temperature borates. Molecules, 25, 2020, 2450.
4. Knyrim, J.S., Römer, S.R., Schnick, W., Huppertz, H., High-pressure synthesis and characterization of the alkaline earth borate β-BaB4O7. Solid State Sci. 11:2 (2009), 336–342.
5. Sohr, G., Ciaghi, N., Schauperl, M., Wurst, K., Liedl, K.R., Huppertz, H., High-pressure synthesis of Cd(NH3)2[B3O5(NH3)]2: pioneering the way to the substance class of ammine borates. Angew. Chem. Int. Ed. 54 (2015), 6360–6363.
6. Schmitt, M.K., Janka, O., Niehaus, O., Dresselhaus, T., Pöttgen, R., Pielnhofer, F., Weihrich, R., Krzhizhanovskaya, M., Filatov, S., Bubnova, R., Bayarjargal, L., Winkler, B., Glaum, R., Huppertz, H., Synthesis and characterization of the high-pressure nickel borate γ-NiB4O7. Inorg. Chem. 56:7 (2017), 4217–4228.
7. Schmitt, M.K., Podewitz, M., Liedl, K.R., Huppertz, H., High-pressure synthesis and characterization of the ammonium yttrium borate (NH4)YB8O14. Inorg. Chem. 56:22 (2017), 14291–14299.
8. Schmitt, M.K., Janka, O., Pöttgen, R., Benndorf, C., de Oliveira, M., Eckert, H., Pielnhofer, F., Tragl, A.-S., Weihrich, R., Joachim, B., Johrendt, D., Huppertz, H., Mo2B4O9—Connecting borate and metal-cluster chemistry. Angew. Chem. Int. Ed. 56 (2017), 6449–6453.
9. Vitzthum, D., Wurst, K., Pann, J.M., Brüggeller, P., Seibald, M., Huppertz, H., Exploration into the syntheses of gallium- and Indiumborates under extreme conditions: M5B12O25(OH): structure, luminescence, and surprising Photocatalytic properties. Angew. Chem. Int. Ed. 57 (2018), 11451–11455.
10. Glätzle, M., Pitscheider, A., Oeckler, O., Wurst, K., Huppertz, H., A high-pressure praseodymium fluoride borate linking multiple structural features of apatite-type compounds. Chemistry 25 (2019), 1767–1772.
11. Lu, J.Q., Lan, G.X., Li, B., Yang, Y.Y., Wang, H.F., Chang Wu, B., Raman scattering study of the single crystal β-BaB2O4 under high pressure. J. Phys. Chem. Solids 49 (1988), 519–527.
12. Lin, Y., Cai, Q., Lant, G., Wang, H., High-pressure Raman study of the β-BaB2O4 crystal and pressure-induced phase transitions. Spectrochim. Acta A 48:5 (1992), 653–657.
13. Dong, H., Oganov, A.R., Brazhkin, V.V., Wang, Q., Zhang, J., Davari Esfahani, M.M., Zhou, X.-F., Wu, F., Zhu, Q., Boron oxides under pressure: prediction of the hardest oxides. Phys. Rev. B, 98, 2018, 174109.
14. Osugi, J., Shimizu, K., Inoue, K., Yasunami, K., A compact cubic anvil high pressure apparatus. Rev. Phys. Chem. Jpn 34 (1964), 1–6.
15. Podborodnikov, I.V., Shatskiy, A., Arefiev, A.V., Bekhtenova, A., Litasov, K.D., New data on the system Na2CO3–CaCO3–MgCO3 at 6 GPa with implications to the composition and stability of carbonatite melts at the base of continental lithosphere. Chem. Geol. 515 (2019), 50–60.
16. Chen, C., Sasaki, T., Li, R., Wu, Y., Lin, Z., Mori, Y., Hu, Z., Wang, J., Aka, G., Yoshimura, M., Nonlinear Optical Borate Crystals: Principals and Applications. 2012, John Wiley & Sons.
17. Bekker, T.B., Rashchenko, S.V., Bakakin, V.V., Seryotkin, Yu.V., Fedorov, P.P., Kokh, A.E., Stonoga, S.Y., Phase formation in the BaB2O4–BaF2–BaO system and new non-centrosymmetric solid-solution series Ba7(BO3)4−xF2+3x. CrystEngComm, 14(20), 2012, 6910, 10.1039/c2ce26122g.
18. Bekker, T.B., Rashchenko, S.V., Seryotkin, Y.V., Kokh, A.E., Davydov, A.V., Fedorov, P.P., BaO−B2O3 system and its mysterious member Ba3B2O6. J. Am. Ceram. Soc. 101:1 (2018), 450–457.
19. Rashchenko, S.V., Bekker, T.B., Bakakin, V.V., Seryotkin, Y.V., Simonova, E.A., Goryainov, S.V., New fluoride borate with ‘anti-zeolite’ structure: a possible link to Ba3(BO3)2. J. Alloy. Compd. 694 (2017), 1196–1200.
20. Bekker, T.B., Solntsev, V.P., Yelisseyev, A.P., Rashchenko, S.V., Fluoride Borates with [(BO3)F]4– ↔ [F4]4– Anionic Isomorphism and X-ray Sensitivity. Cryst. Growth Des. 16:8 (2016), 4493–4499.
21. Bekker, T., Solntsev, V., Yelisseyev, A., Davydov, A., Rashchenko, S., Crystal chemical design of functional fluoride borates with “Antizeolite” structure. Cryst. Growth Des. 20:6 (2020), 4100–4107.
22. Rashchenko, S.V., Bekker, T.B., Bakakin, V.V., Seryotkin, Y.V., Kokh, A.E., Gille, P., Popov, A.I., Fedorov, P.P., A new mechanism of anionic substitution in fluoride borates. J. Appl. Crystallogr. 46:4 (2013), 1081–1084.
23. K. Hubner, Ueber die Borate 2BaO•5B2O3, tief-BaO• B2O3, 2BaO• B2O3 und 4BaO• B2O3, Neues Jahrb. Mineral., Monatsch (1969) 335-343.
24. Furmanova, N.G., Maksimov, B.A., Molchanov, V.N., Kokh, A.E., Kononova, N.G., Fedorov, P.P., Crystal structure of the new barium borate Ba5(BO3)2(B2O5). Crystallogr. Rep. 51:2 (2006), 219–224.
25. Mighell, A.D., Perloff, A., Block, S., The crystal structure of the high temperature form of barium borate, BaO.B2O3. Acta Crystallogr. 20:6 (1966), 819–823.
26. Solé, R., Nikolov, V., Pujol, M.C., Gavaldà, J., Ruiz, X., Massons, J., Aguiló, M., Dı́az, F., Stabilization of β-BaB2O4 in the system BaB2O4–Na2O–Nd2O3. J. Cryst. Growth 207:1-2 (1999), 104–111.
27. Meshalkin, A.B., Kaplun, A.B., Study of phase equilibria in system BaO–B2O3 from 32 to 67mol% B2O3. J. Cryst. Growth 275:1-2 (2005), e301–e305.
28. Liu, L., Yang, Y., Dong, X., Lei, C., Han, S., Pan, S., Ba2B6O11, a member of the BaO-B2O3 family, featuring a layer framework. Eur. J. Inorg. Chem. 2015:20 (2015), 3328–3335.
29. Block, S., Perloff, A., The crystal structure of barium tetraborate, BaO.2B2O3. Acta Crystallogr. 19:3 (1965), 297–300.
30. Stone-Sundberg, J., Keszler, D., Aka, G., Kahn-Harari, A., Reynolds, T., Nonlinear Optical Borate Crystal Ba2B10O17. 2001, SPIE.
31. Liu, L., Su, X., Yang, Y., Pan, S., Dong, X., Han, S., Zhang, M., Kang, J., Yang, Z., Ba2B10O17: a new centrosymmetric alkaline-earth metal borate with a deep-UV cut-off edge. Dalton Trans. 43 (2014), 8905–8910.
32. Robbins, C.R., Levin, E.M., Phase transformation in barium Tetraborate. J. Res. Natl. Bur. Stand. A, 73A(6), 1969, 615, 10.6028/jres.073A.048.
33. Krogh-Moe, J., Ihara, M., On the crystal structure of barium tetraborate, BaO.4B2O3. Acta Crystallogr. B 25:10 (1969), 2153–2154.
34. Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 1996, 3865.
35. Monkhorst, H.J., Pack, J.D., Special points for Brillouin-zone integrations. Phys. Rev. B, 13, 1976, 5188.
36. Gerlach, Walther, Die gitterstruktur der erdalkalioxyde. Z. Phys. 9:1 (1922), 184–192.
37. Weir, S.T., Vohra, Y.K., Ruoff, A.L., High-pressure phase transitions and the equations of state of BaS and BaO. Phys. Rev. B 33:6 (1986), 4221–4226.
38. Effenberger, H., Lengauer, C.L., Parthé, E., Trigonal B2O3 with higher space-group symmetry: results of a reevaluation. Monatsh. Chem. 132 (2001), 1515–1517.
39. Prewitt, C.T., Shannon, R.D., Crystal structure of a high-pressure form of B2O3. Acta Crystallogr. B 24:6 (1968), 869–874.
40. Pan, S., Smit, J.P., Lanier, C.H., Marvel, M.R., Marks, L.D., Poeppelmeier, K.R., Optical Floating Zone Growth of β-BaB2O4 from a LiBa2B5O10-Based Solvent. Cryst. Growth Des. 7:8 (2007), 1561–1564.
41. Vegas, A., Cano, F.H., García-Blanco, S., The crystal structure of calcium orthoborate: a redetermination. Acta Crystallogr. B 31:5 (1975), 1416–1419.
42. Zachariasen, W.H., The crystal lattice of calcium metaborate, CaB2O4. Proc. Natl. Acad. Sci., 17, 1931, 617.
43. Marezio, M., Remeika, J.P., Dernier, P.D., The crystal structure of the high-pressure phase CaB2O4(III). Acta Crystallogr. B 25:5 (1969), 955–964.
44. Marezio, M., Remeika, J.P., Dernier, P.D., The crystal structure of the high-pressure phase CaB2O4(IV), and polymorphism in CaB2O4. Acta Crystallogr. B 25:5 (1969), 965–970.
45. Huppertz, H., β-CaB4O7: a new polymorph synthesized under high-pressure/high-temperature conditions. Z. Naturforsch. B 58 (2003), 257–265.
46. Kanchana, V., Vaitheeswaran, G., Rajagopalan, M., Pressure induced structural phase transitions and metallization of BaF2. J. Alloy. Compd. 359:1-2 (2003), 66–72.
47. Uludoğan, M., ÇağIn, T., Strachan, A., Goddard, W.A., Ab-initio studies of pressure induced phase transitions in BaO. J. Comput. Aided Mol. Des. 8 (2001), 193–202.
48. Liu, L.-g., Bassett, W.A., Effect of pressure on the crystal structure and the lattice parameters of BaO. J. Geophys. Res. 77:26 (1972), 4934–4937.
49. Dachille, F., Roy, R., A new high-pressure form of B2O3 and inferences on cation coordination from infrared spectroscopy. J. Am. Ceram. Soc. 42:2 (1959), 78–80.
50. Leger, J.M., Haines, J., Atouf, A., Schulte, O., Hull, S., High-pressure X-ray- and neutron-diffraction studies of BaF2: An example of a coordination number of 11 in AX2 compounds. Phys. Rev. B 52 (1995), 13247–13256.
51. Ayala, A P, Atomistic simulations of the pressure-induced phase transitions in BaF2 crystals. J. Phys. Condens. Matter 13:50 (2001), 11741–11749.