Инд. авторы: Smirnov S.Z., Nizametdinov I.R., Timina T.Yu, Kotov A.A., Sekisova V.S, Kuzmin D.V., Kalacheva E.G., Rashidov V.A., Rybin A.V., Lavrenchuk A.V., Degterev A.V., Maksimovich I.A., Abersteiner A.
Заглавие: High explosivity of the June 21, 2019 eruption of Raikoke volcano (Central Kuril Islands); mineralogical and petrological constraints on the pyroclastic materials
Библ. ссылка: Smirnov S.Z., Nizametdinov I.R., Timina T.Yu, Kotov A.A., Sekisova V.S, Kuzmin D.V., Kalacheva E.G., Rashidov V.A., Rybin A.V., Lavrenchuk A.V., Degterev A.V., Maksimovich I.A., Abersteiner A. High explosivity of the June 21, 2019 eruption of Raikoke volcano (Central Kuril Islands); mineralogical and petrological constraints on the pyroclastic materials // JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH. - 2021. - Vol.418. - Art.107346. - ISSN 0377-0273.
Идентиф-ры: DOI: 10.1016/j.jvolgeores.2021.107346; РИНЦ: 46923127; WoS: 000683566500005;
Реферат: eng: The small volcanic islands of the central Greater Kuril Chain (GKC) produce strong explosive eruptions, two of which occurred in the recent years. The latest eruption took place at Raikoke volcano, which occurred on June 21-25 (2019) and was one of the largest on the Kuril Islands in the 21st century. This study presents mineralogical, petrographic and geochemical data on the air fall ash and pyroclastic density current deposits to elucidate the causes of high explosivity of this eruption. The magma involved in the Raikoke volcanic eruption is likely to have had a mantle origin and basaltic composition. Prior to forming a near-surface reservoir, the magma fractionated (i.e. due to crystallization of olivine and pyroxene) at depths of about 26 km, which is close to the Moho discontinuity in the middle part of GKC. The presence of amphibole among the 2019 pyroclastic minerals indicates that the magma contained significant (i.e. no less than 4 wt%) amounts of water at depth. This magma was degassed prior to intrusion into a shallower reservoir. The magma in the shallow reservoir had high crystallinity and contained viscous felsic residual melts, which prevented the development of effusive eruptions or Strombolian explosions. It is likely that magmatic fluid bubbles were still present, but their abundance was insufficient for lava fragmentation in the conduit. This led to low degree of vesiculation of the erupting melts. The results of this study demonstrate that the explosivity of the eruption is most likely related to the interaction in the volcanic edifice between meteoric waters and the magma, which was largely degassed and contained significant amounts of crystals and felsic melt (i.e. had high viscosity and low mobility). (c) 2021 Elsevier B.V. All rights reserved.
Ключевые слова: OLIVINE; AMPHIBOLE; MECHANISMS; ORIGIN; Petrology; Mineralogy; Phreatomagmatic eruption; Kuril Islands; Raikoke volcano; ACCRETIONARY LAPILLI; MAGMAS;
Издано: 2021
Физ. хар-ка: 107346
Цитирование: 1. Avdeiko, G.P., Volynets, O.N., Antonov, Y.A., Bondarenko, V.I., Rashidov, V.A., Tsvetkov, A.A., Gladkov, N.G., Markov, I.A., Paluyeva, A.A., Submarine Volcanism and Zoning of the Kuril Island Arc [in Russian]. 1992, Nauka, Moscow.
2. Baker, D.R., Eggler, D.H., Fractionation paths of Atka (Aleutians) high-alumina basalts: Constraints from phase relations. J. Volcanol. Geotherm. Res. 18 (1983), 387–404, 10.1016/0377-0273(83)90017-3.
3. Baker, D.R., Eggler, D.H., Compositions of anhydrous and hydrous melts coexisting with plagioclase, augite and olivine or low-Ca pyroxene from 1 atm and 9 kbar: application to the volcanic center of Atka. Am. Mineral. 72 (1987), 12–28.
4. Batanova, V.G., Sobolev, A.V., Kuzmin, D.V., Trace element analysis of olivine: High precision analytical method for JEOL JXA-8230 electron probe microanalyser. Сhem. Geol. 419 (2015), 149–157.
5. Brown, R.J., Branney, M.J., Maher, C., Davila-Harris, P., Origin of accretionary lapilli within ground-hugging density currents: evidence from pyroclastic couplets on Tenerife. Geol. Soc. Am. Bull. 122 (2010), 305–320, 10.1130/B26449.1.
6. Brown, R.J., Bonadonna, C., Durant, A.J., A review of volcanic ash aggregation. Phys. Chem. Earth 45–46 (2012), 65–78, 10.1016/j.pce.2011.11.001.
7. Degterev, A.V., Pyroclastic flows of the eruption of the Sarychev Peak volcano (Matua Island) in June 2009. J. Volcanol. Seismol. 4 (2011), 60–68.
8. Degtyarev, A.V., Chibisova, M.V., The eruption of Raikokevolcano in June of 2019 (Raikoke Island, Central Kuril Islands). Geosyst. Transit. Zo. 3 (2019), 304–309.
9. Firstov, P.P., Popov, O.E., Lobacheva, M.A., Budilov, I.D., Akbashev, R.R., Wave perturbations in the atmosphere accompanying the eruption of the Raykoke volcano (Kuril Islands) 21–22 June, 2019. Geosyst. Transit. Zo. 4 (2020), 71–81, 10.30730/2541-8912.2020.4.1.071-081.082-092.
10. Foden, J.D., Green, D.H., Possible role of amphibole in the origin of andesite: some experimental and natural evidence. Contrib. Mineral. Petrol. 109 (1992), 479–493, 10.1007/bf00306551.
11. Gilbert, J.S., Lane, S.J., The origin of accretionary lapilli. Bull. Volcanol. 56 (1994), 398–411.
12. Girina, O.A., Loupian, E.A., Uvarov, I.A., Kramareva, L.S., Raikoke volcano eruption on 21 June 2019 [In Russian]. Sovrem. Probl. distantsionnogo Zo. Zemli iz kosmosa 16 (2019), 303–307, 10.21046/2070-7401-2019-16-3-303-307.
13. Gorshkov, G.S., Active volcanoes of the Kuril island arc [in Russian]. Proceedings of the Laboratory of Volcanology. Issue 13 Young Volcanism of the USSR [in Russian]. Moscow, 1958, 5–70.
14. Gorshkov, G.S., Volcanism and the Upper Mantle. Investigations in the Kurile Island Arc. 1970, Plenum Press, New York.
15. Grilli, S.T., Tappin, D.R., Carey, S., Watt, S.F.L., Ward, S.N., Grilli, A.R., Engwell, S.L., Zhang, C., Kirby, J.T., Schambach, L., Muin, M., Modelling of the tsunami from the December 22, 2018 lateral collapse of Anak Krakatau volcano in the Sunda Straits, Indonesia. Sci. Rep., 9, 2019, 11946, 10.1038/s41598-019-48327-6.
16. Grishin, S.Y., GIrina, O.A., Vereschaga, E.M., Viter, I.V., Powerful eruption of Sarychev Peak volcano (Kuril Islands, 2009) and its impact on vegetation [in Russian with English abstract]. Vestn. Far East Branch Russ. Acad. Sci. 3 (2010), 40–50.
17. Kulinich, R.G., Valitov, M.G., Proshkina, Z.N., A comparative analysis of the seismic and density models for the Earth's crustof the Central Kurils. Russ. J. Pacific Geol. 34 (2015), 45–56.
18. Laverov, N.P., Dobretsov, N.L., Bondur, V.G., Karamurzov, B.S., Kovalenko, V.I., Melekestcev, I.V., Nechaev, Y.V., Ponomareva, V.V., Rogozhin, E.A., Sobisevich, A.L., Sobisevich, L.E., Fedotov, S.A., Khrenov, A.P., Yarmolyuk, V.V., The Newest and Modern Volcanism in Russia [in Russian]. 2005 Nauka, Moscow.
19. Levin, B.V., Rybina, A.V., Razzhigaeva, N.G., Vasilenko, N.F., Frolov, D.I., Major, A.Y., Salyuk, P.A., Zharkov, R.V., Prytkov, A.S., Kozlov, D.N., Chernov, A.G., Chibisova, M.V., Guryanov, V.B., Koroteev, I.G., Degtyarev, A.V., Complex expedition “Sarychev Volcano - 2009” (Matua Island, Kuril Islands) [in Russian with English abstract]. Vestn. Far East Branch Russ. Acad. Sci. 6 (2009), 98–103.
20. Levin, B.V., Melekestsev, I.V., Rybin, A.V., Razzhigaeva, N.G., Kravchunovskaya, E.A., Izbekov, P.E., Degtyarev, A.V., Zharkov, R.V., Kozlov, D.N., Chibisova, M.V., Vlasov, I.I., Guryanov, V.B., Koroteev, I.G., Kharlamov, A.A., McInnes, B., Expedition “Sarychev Peak Volcano-2010” (Kuril Islands) [in Russian with English abstract]. Vestn. Far East Branch Russ. Acad. Sci. 6 (2010), 151–158.
21. Martynov, Y.A., Rybin, A.V., Degtyarev, A.V., Ostapenko, D.S., Martynov, A.Y., Geochemical evolution of volcanism of Matua Island in the Central Kurils. Russ. J. Pacific Geol. 34 (2015), 13–33.
22. McDonough, W., Sun, S.S., The composition of the Earth. Chem. Geol. 67 (1995), 1050–1056, 10.1016/0009-2541(94)00140-4.
23. Melnikov, D.V., Ushakov, S.V., Girina, O.A., Manevich, A.G., Formation of new lakes in the Active funnel of Mutnovsky volcano and the crater of Raikoke volcano [in Russian]. Volcanism and Related Processes. XXIII Scientific Conference Dedicated to the Volcanologist Day, 2020, Institute of Volcanology and Seismology of the Far East Branch RAS, Petropavlovsk-Kamchatskiy, 42–44.
24. Moore, J.G., Peck, D.L., Accretionary lapilli in volcanic rocks of the western continental United States. J. Geol. 70 (1962), 182–193, 10.1086/626807.
25. Morrisey, M., Zimanowski, B., Wohletz, K.H., Buttner, R., Phreatomagmatic fragmentation. Sigurdsson, H., (eds.) The Encyclopedia of Volcanoes, 2000, Acdemic Press, London, 431–445.
26. Mueller, S.B., Kueppers, U., Ayris, P.M., Jacob, M., Dingwell, D.B., Experimental volcanic ash aggregation: internal structuring of accretionary lapilli and the role of liquid bonding. Earth Planet. Sci. Lett. 433 (2016), 232–240, 10.1016/j.epsl.2015.11.007.
27. Newhall, C.G., Self, S., The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism. J. Geophys. Res. 87 (1982), 1231–1238, 10.1029/JC087iC02p01231.
28. Plank, T., Kelley, K.A., Zimmer, M.M., Hauri, E.H., Wallace, P.J., Why do mafic arc magmas contain ~4wt% water on average? Earth Planet. Sci. Lett. 364 (2013), 168–179, 10.1016/j.epsl.2012.11.044.
29. Polonskiy, A.S., Kurile's [in Russian]. Notes Imp. Russ. Geogr. Soc. Dep. Ethnogr. [in Russ.] 4, 1871, 367–576.
30. Proshkina, Z.N., Structure, matter composition and deep structure of the oceanic slope of the Central Kuril Islands: new evidence [in Russian with English abstract]. Vestn. Far East Branch Russ. Acad. Sci. 5 (2016), 36–42.
31. Putirka, K., Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. Am. Mineral. 101 (2016), 841–858, 10.2138/am-2016-5506.
32. Rashidov, V.A., Girina, O.A., Ozerov, A.Y., Pavlov, N.N., The june 2019 eruption of Raikoke volcano (the Kurile islands). Bull. Kamchatka Reg. Assoc. “Educational-Scientific center”. Earth Sci. 42 (2019), 5–8.
33. Ridolfi, F., Renzulli, A., Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1,130°C and 2.2 GPa. Contrib. Mineral. Petrol. 163 (2012), 877–895, 10.1007/s00410-011-0704-6.
34. Ridolfi, F., Renzulli, A., Puerini, M., Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib. Mineral. Petrol. 160 (2010), 45–66, 10.1007/s00410-009-0465-7.
35. Rybin, A.V., Chibisova, M.V., Explosive eruption of Sarychev Peak volcano in June 2009 [in Russian]. Sakhalin Museum Bull. 1 (2010), 288–302.
36. Schumacher, R., Schmincke, H.-U., Models for the origin of accretionary lapilli. Bull. Volcanol. 56 (1995), 626–639, 10.1007/BF00301467.
37. Snow, H.J., Notes on the Kuril Islands. 1897, John Murray, London.
38. Sun, S.-S., McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 42 (1989), 313–345, 10.1144/gsl.sp.1989.042.01.19.
39. Tanakadate, H., The volcanic activity in Japan during 1914-1924. Bull. Volcanol. 1 (1925), 3–19.
40. Walter, T.R., Haghighi, M.H., Schneider, F.M., Coppola, D., Motagh, M., Saul, J., Babeyko, A., Dahm, T., Troll, V.R., Tilmann, F., Heimann, S., Valade, S., Triyono, R., Khomarudin, R., Kartadinata, N., Laiolo, M., Massimetti, F., Gaebler, P., Complex hazard cascade culminating in the Anak Krakatau sector collapse. Nat. Commun., 2019, 10.1038/s41467-019-12284-5.
41. White, J.D.L., Houghton, B.F., Primary volcaniclastic rocks. Geology 34 (2006), 677–680.
42. White, J.D.L., Valentine, G.A., Magmatic versus phreatomagmatic fragmentation: Absence of evidence is not evidence of absence. Geosphere 12 (2012), 1478–1488, 10.1130/ges01337.1.
43. Wohletz, K.H., Mechanisms of hydrovolcanic pyroclast formation - grain-size, scanning electron-microscopy, and experimental studies. J. Volcanol. Geotherm. Res. 17 (1983), 31–63, 10.1016/0377-0273(83)90061-6.
44. Wohletz, K.H., Zimanowski, B., Buttner, R., Magma-water interactions. Fagents, S.A., et al. (eds.) Modeling Volcanic Processes: The Physics and Mathematics of Volcanism, 2012, Cambridge University Press, London, 230–257, 10.1017/CBO9781139021562.011.
45. Zlobin, T.K., Zlobina, L.M., Earth's crust structure of the Kurile island system [in Russian]. Tikhookeanskaya Geol. 6 (1991), 24–35.
46. Zlobin, T.K., Kostyukevich, S.A., Zlobina, L.M., The Earth's crust structure of the Middle Kurils from seismic modeling. Geol. Pacific Ocean 17 (1998), 115–121.