Инд. авторы: Vetrov E.V., Vetrova N.I., Zhimulev F.I., Nachtergaele S., Mikhailova P.I.
Заглавие: Tectonic Evolution of the SE West Siberian Basin (Russia): Evidence from Apatite Fission Track Thermochronology of Its Exposed Crystalline Basement
Библ. ссылка: Vetrov E.V., Vetrova N.I., Zhimulev F.I., Nachtergaele S., Mikhailova P.I. Tectonic Evolution of the SE West Siberian Basin (Russia): Evidence from Apatite Fission Track Thermochronology of Its Exposed Crystalline Basement // MINERALS. - 2021. - Vol.11. - Iss. 6. - Art.604.
Идентиф-ры: DOI: 10.3390/min11060604; РИНЦ: 46788104; WoS: 000667035600001;
Реферат: eng: The West Siberian Basin (WSB) is one of the largest intracratonic Meso-Cenozoic basins in the world. Its evolution has been studied over the recent decades; however, some fundamental questions regarding the tectonic evolution of the WSB remain unresolved or unconfirmed by analytical data. A complete understanding of the evolution of the WSB during the Mesozoic and Cenozoic eras requires insights into the cooling history of the basement rocks as determined by low-temperature thermochronometry. We presented an apatite fission track (AFT) thermochronology study on the exposed parts of the WSB basement in order to distinguish tectonic activation episodes in an absolute timeframe. AFT dating of thirteen basement samples mainly yielded Cretaceous cooling ages and mean track lengths varied between 12.8 and 14.5 mu m. Thermal history modeling based on the AFT data demonstrates several Mesozoic and Cenozoic intracontinental tectonic reactivation episodes affected the WSB basement. We interpreted the episodes of tectonic activity accompanied by the WSB basement exhumation as a far-field effect from tectonic processes acting on the southern and eastern boundaries of Eurasia during the Mesozoic-Cenozoic eras.
Ключевые слова: apatite fission track thermochronology; thermo-tectonic evolution; exhumation; subsidence; ASIAN OROGENIC BELT; ALTAI MOUNTAINS; TIEN-SHAN; HISTORY; CONSTRAINTS; REGION; DEFORMATION; EXHUMATION; EMPLACEMENT; AGE; West Siberian Basin;
Издано: 2021
Физ. хар-ка: 604
Цитирование: 1. Ju, Y.; Wang, G.; Li, S.; Sun, Y.; Suo, Y.; Somerville, I.; Li, W.; He, B.; Zheng, M.; Yu, K. Geodynamic mechanism and classification of basins in the Earth system. Gondwana Res. 2020, in press. [CrossRef]
2. Allen, P.A.; Armitage, J.J. Cratonic Basins. In Tectonics of Sedimentary Basins: Recent Advances; Busby, C., Pérez, A.A., Eds.; John Wiley & Sons, Ltd.: West Sussex, UK, 2011; pp. 602–620.
3. Nikishin, A.M.; Ziegler, P.A.; Abbott, D.; Brunet, M.-F.; Cloetingh, S. Permo-Triassic intraplate magmatism and mangle dynamics. Tectonophysics 2002, 351, 3–39. [CrossRef]
4. Vyssotski, A.; Vyssotski, V.; Nezhdanov, A. Evolution of the West Siberian Basin. Mar. Pet. Geol. 2006, 23, 93–126. [CrossRef]
5. Kontorovich, A.E.; Nesterov, I.I.; Salmanov, F.K.; Surkov, V.S.; Trofimuk, A.A.; Ervye, Y. Geology of Oil and Gas of West Siberia; Nedra: Moscow, Russia, 1975; p. 679. (In Russian)
6. Vibe, Yu.; Bunge, H.-P.; Clark, S.R. Anomalous subsidence history of the West Siberian Basin as an indicator for episodes of mantle induced dynamic topography. Gondwana Res. 2018, 53, 99–109. [CrossRef]
7. Babin, G.A.; Chernyh, A.I.; Golovina, A.G.; Zhigalov, S.V.; Dolgushin, S.S.; Vetrov, E.V.; Korableva, T.V.; Bodina, N.A.; Svetlova, N.A.; Fedoseev, G.S.; et al. Explanation Note to the State Geological Map of Russian Federation, Scale 1:1 000 000 (Third Generation) Atai-Sayan Series, Sheet N-44 (Novosibirsk); Russian Geological Research Institute: Sankt Peterburg, Russia, 2015; p. 181. (In Russian)
8. Vetrov, E.V.; De Grave, J.; Kotler, P.D.; Kruk, N.N.; Zhigalov, S.V.; Babin, G.A.; Fedoseev, G.S.; Vetrova, N.I. Evolution of the Kolyvan-Tomsk granitoid magmatism (Central Siberia): Insights into the tectonic transition from post-collision to intraplate settings in the northwestern part of the Central Asian Orogenic Belt. Gondwana Res. 2021, 93, 26–47. [CrossRef]
9. Gusev, N.I.; Vovshin, Y.E.; Kruglova, A.A. Explanation Note to the State Geological Map of Russian Federation, Scale 1:1 000 000 (Third Generation) Atai-Sayan Series, Sheet M-44 (Rubtsovsk); Russian Geological Research Institute: Sankt Peterburg, Russia, 2015; p. 320. (In Russian)
10. Wagner, G.A.; Van den haute, P. Fission Track-Dating; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992; p. 285.
11. Dobretsov, N.L.; Buslov, M.M.; Vernikovsky, V.A. Neoproterozoic to Early Ordovician Evolution of the Paleo-Asian Ocean: Implications to the Break-up of Rodinia. Gondwana Res. 2003, 6, 143–159. [CrossRef]
12. Windley, B.F.; Alexeiev, D.; Xiao, W.; Kröner, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. 2007, 164, 31–47. [CrossRef]
13. Sengör, A.M.C.; Natal’in, B.A. Paleotectonics of Asia: Fragments of a synthesis. In The Tectonic Evolution of Asia; Yin, A., Harrison, T.M., Eds.; Cambridge University Press: New York, NY, USA, 1996; pp. 486–641.
14. Dobretsov, N.; Polyansky, O.; Reverdatto, V.; Babichev, A. Dynamics of the Arctic and adjacent petroleum basins: A record of plume and rifting activity. Russ. Geol. Geophys. 2013, 54, 888–902. [CrossRef]
15. Holt, P.J.; van Hunen, J.; Allen, M.B. Subsidence of theWest Siberian Basin: Effects of a mantle plume impact. Geology 2012, 40, 703–706. [CrossRef]
16. Reichow, M.K.; Saunders, A.D.; White, R.V.; Al’Mukhamedov, A.I.; Medvedev, A.Y. Geochemistry and petrogenesis of basalts from the West Siberian Basin: An extension of the Permo–Triassic Siberian Traps, Russia. Lithos 2005, 79, 425–452. [CrossRef]
17. Şengör, A.M.C.; Natal’in, B.A.; Burtman, V.S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 1993, 364, 299–307. [CrossRef]
18. Kröner, A.; Windley, B.F.; Badarch, G.; Tomurtogoo, O.; Hegner, E.; Jahn, B.M.; Gruschka, S.; Khain, E.V.; Demoux, A.; Wingate, M.T.D. Accretionary growth and crust formation in the Central Asian Orogenic Belt and comparison with the Arabian-Nubian shield. Geol. Soc. Am. Mem. Mem. 2007, 200, 181–209.
19. Xiao, W.; Windley, B.F.; Sun, S.; Li, J.; Huang, B.; Han, C.; Yuan, C.; Sun, M.; Chen, H. A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: Oroclines, sutures, and terminal accretion. Annu. Rev. Earth Planet. Sci. 2015, 43, 477–507. [CrossRef]
20. Sotnikov, V.I.; Fedoseev, G.S.; Ponomarchuk, V.A.; Borisenko, A.S.; Berzina, A.N. Granitoid complexes of the Kolyvan-Tomsk folded zone (West Siberia). Russ. Geol. Geophys. 2000, 41, 120–125.
21. Dobretsov, N.L.; Buslov, M.M.; Delvaux, D.; Berzin, N.A.; Ermikov, V.D. Meso and Cenozoic Tectonics of the Central Asian Mountain Belt: Effects of Lithospheric Plate Interaction and Mantle Plumes. Int. Geol. Rev. 1996, 38, 430–466. [CrossRef]
22. De Grave, J.; Buslov, M.M.; Haute, P.V.D. Distant effects of India-Eurasia convergence and Mesozoic intracontinental deformation in Central Asia: Constraints from apatite fission-track thermochronology. J. Asian Earth Sci. 2007, 29, 188–204. [CrossRef]
23. Jolivet, M.; De Boisgrolier, T.; Petit, C.; Fournier, M.; Sankov, V.A.; Ringenbach, J.-C.; Byzov, L.; Miroshnichenko, A.I.; Kovalenko, S.N.; Anisimova, S.V. How old is the Baikal Rift Zone? Insight from apatite fission track thermochronology. Tectonics 2009, 28, TC3008. [CrossRef]
24. Adamenko, O.M.; Portnova, E.A. The main features of the structure and conditions for the formation of the second structural (Lower Middle Jurassic) tier of the Kulundinskaya Depression. Russ. Geol. Geophys. 1967, 3, 12–21.
25. De Grave, J.; Buslov, M.M.; Van den haute, P.; Dehandschutter, B.; Delvaux, D. Meso-Cenozoic Evolution of Mountain Range-Intramontane Basin Systems in the Southern Siberian Altai Mountains by Apatite Fission-Track Thermochronology. In Thrust Belts and Foreland Basins; Lacombe, O., Lavé, J., Roure, F., Vergés, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2007.
26. Kazmina, T.A. Stratigraphy and Ostracods of the Pliocene and Early Pleistocene of the South of the West Siberian Plain; Nauka: Novosibirsk, Russia, 1975; p. 98. (In Russian)
27. Kulkova, I.A.; Volkova, V.S. Landscapes and climate of West Siberia in the Paleogene and Neogene. Russ. Geol. Geophys. 1997, 38, 581–595.
28. Cohen, K.M.; Finney, S.C.; Gibbard, P.L.; Fan, J.-X. The ICS International Chronostratigraphic Chart. Episodes 2013, 36, 199–204. [CrossRef]
29. Panova, L.A. Oligocene and Eocene of the West Siberian Lowland. Cenozoic Flora of Siberia According to Paleontological Data; Nauka: Moscow, Russia, 1971; pp. 40–50. (In Russian)
30. Arkhipov, S.A.; Vdovin, V.V.; Mizerov, B.V.; Nikolaev, V.A. West Siberian Plain; Nauka: Moscow, Russia, 1970; Volume 280. (In Russian)
31. Jolivet, M.; Ritz, J.-F.; Vassallo, R.; Larroque, C.; Braucher, R.; Todbileg, M.; Chauvet, A.; Sue, C.; Arnaud, N.; De Vicente, R.; et al. Mongolian summits: An uplifted, flat, old but still preserved erosion surface. Geology 2007, 35, 871–874. [CrossRef]
32. Jolivet, M.; Dominguez, S.; Charreau, J.; Chen, Y.; Li, Y.G.; Wang, Q.C. Mesozoic and Cenozoic tectonic history of the central Chinese Tian Shan: Reactivated tectonic structures and active deformation. Tectonics 2010, 29, TC6019. [CrossRef]
33. Zykin, V.S. Stratigraphy and Evolution of the Natural Environment and Climate in the Late Cenozoic South of Western Siberia; GEO: Novosibirsk, Russia, 2012; Volume 476. (In Russian)
34. Adamenko, O.M. Pre-Altai Depression and Problems of the Formation of Foothill Subsidence; Nauka: Novosibirsk, Russia, 1976; Volume 184. (In Russian)
35. De Grave, J.; Van den haute, P. Denudation and cooling of the Lake Teletskoye region in the Altai Mountains (South Siberia) as revealed by apatite fission-track thermochronology. Tectonophysics 2002, 349, 145–159. [CrossRef]
36. De Grave, J.; Buslov, M.M.; Haute, P.V.D.; Metcalf, J.; Dehandschutter, B.; McWilliams, M.O. Multi-method chronometry of the Teletskoye graben and its basement, Siberian Altai Mountains: New insights on its thermo-tectonic evolution. Geol. Soc. Lond. Spéc. Publ. 2009, 324, 237–259. [CrossRef]
37. De Grave, J.; Glorie, S.; Buslov, M.M.; Izmer, A.; Fournier-Carrie, A.; Elburg, M.; Batalev, V.Y.; Vanhaeke, F.; Van den haute, P. The thermo-tectonic history of the Song-Kul Plateau, Kyrgyz Tien Shan: Constraints by apatite and titanite thermo-chronometry and zircon U/Pb dating. Gondwana Res. 2011, 20, 745–763. [CrossRef]
38. Glorie, S.; De Grave, J.; Buslov, M.; Elburg, M.; Stockli, D.; Gerdes, A.; Van den Haute, P. Multi-method chronometric constraints on the evolution of the Northern Kyrgyz Tien Shan granitoids (Central Asian Orogenic Belt): From emplacement to exhumation. J. Asian Earth Sci. 2010, 38, 131–146. [CrossRef]
39. Van Ranst, G.; Carlos Pedrosa-Soares, A.P.; Novo, T.; Vermeesch, P.; De Grave, J. New insights from low-temperature ther-mochronology into the tectonic and geomorphologic evolution of the southeast Brazilian highlands and passive margin. Geosci. Front. 2020, 11, 303–324. [CrossRef]
40. Hurford, A.J.; Green, P.F. The zeta age calibration of fission-track dating. Chem. Geol. 1983, 41, 285–317. [CrossRef]
41. McDowell, F.W.; McIntosh, W.C.; Farley, K.A. A precise40Ar–39Ar reference age for the Durango apatite (U–Th)/He and fission-track dating standard. Chem. Geol. 2005, 214, 249–263. [CrossRef]
42. Hurford, A.J.; Hammerschmidt, K.40Ar/39Ar and K/Ar dating of the Bishop and Fish Canyon Tus: Calibration ages for fission-track dating standards. Chem. Geol. 1985, 58, 23–32. [CrossRef]
43. Donelick, R.A. Crystallographic orientation dependence of mean etchable fission track length in apatite: An empirical model and experimental observations. Am. Mineral. 1991, 76, 83–91.
44. Gallagher, K. Transdimensional inverse thermal history modeling for quantitative thermochronology. J. Geophys. Res. Space Phys. 2012, 2012, 1–16. [CrossRef]
45. Ketcham, R.A.; Carter, A.; Donelick, R.A.; Barbarand, J.; Hurford, A.J. Improved modeling of fission-track annealing in apatite. Am. Mineral. 2007, 92, 799–810. [CrossRef]
46. Carlson, W.D.; Donelick, R.A.; Ketcham, R.A. Variability of apatite fission-track annealing kinetics: I. Experimental results. Am. Mineral. 1999, 84, 1213–1223. [CrossRef]
47. Donelick, R.A.; O’Sullivan, P.B.; Ketcham, R.A. Apatite Fission-Track Analysis. Rev. Miner. Geochem. 2005, 58, 49–94. [CrossRef]
48. Green, P.F.; Duddyi, I.R.; Gleadow, A.J.W.; Tingate, P.R.; Laslett, G.M. Thermal annealing of fission tracks in apatite 1. A qualitative description. Chem. Geol. 1986, 59, 237–253. [CrossRef]
49. Gallagher, K.; Brown, R.; Johnson, C. Fission track analysis and its applications to geological problems. Annu. Rev. Earth Planet. Sci. 1998, 26, 519–572. [CrossRef]
50. De Grave, J.; De Pelsmaeker, E.; Zhimulev, F.I.; Glorie, S.; Buslov, M.M.; Van den haute, P. Meso-Cenozoic building of the northern Central Asian Orogenic Belt: Thermotectonic history of the Tuva region. Tectonophysics 2014, 621, 44–59. [CrossRef]
51. Vetrov, E.V.; De Grave, J.; Vetrova, N.I.; Zhimulev, F.I.; Nachtergaele, S.; Van Ranst, G.; Mikhailova, P.I. Tectonic history of the South Tannuol Fault Zone (Tuva Region of the Northern Central Asian Orogenic Belt, Russia): Constraints from multi-method geochronology. Minerals 2020, 10, 56. [CrossRef]
52. De Grave, J.; Glorie, S.; Zhimulev, F.I.; Buslov, M.M.; Elburg, M.; Van den Haute, P. Emplacement and exhumation of the Kuznetsk–Alatau basement (Siberia): Implications for the tectonic evolution of the Central Asian Orogenic Belt and sediment supply to the Kuznetsk, Minusa and West Siberian Basins. Terra Nova 2011, 23, 248–256. [CrossRef]
53. De Grave, J.; Van den haute, P.; Buslov, M.M.; Dehandschutter, B.; Glorie, S. Apatite fission track thermochronology applied to the Chulyshman Plateau, Siberian Altai Region. Radiat. Meas. 2008, 43, 38–42. [CrossRef]
54. Yuan, W.-M.; Carter, A.; Dong, J.-Q.; Bao, Z.; An, Y.; Guo, Z. Mesozoic-Tertiary exhumation history of the Altai Mountains, northern Xinjiang, China: New constraints from apatite fission track data. Tectonophysics 2006, 412, 183–193. [CrossRef]
55. Glorie, S.; De Grave, J.; Buslov, M.M.; Zhimulev, F.I.; Elburg, M.A.; Van den Haute, P. Structural control on Meso-Cenozoic tectonic reactivation and denudation in the Siberian Altai: Insights from multimethod thermochronometry. Tectonophysics 2012, 544–545, 75–92. [CrossRef]
56. Vetrov, E.; Buslov, M.; De Grave, J. Evolution of tectonic events and topography in southeastern Gorny Altai in the Late Mesozoic–Cenozoic (data from apatite fission track thermochronology). Russ. Geol. Geophys. 2016, 57, 95–110. [CrossRef]
57. Pullen, A.; Banaszynski, M.; Kapp, P.; Thomson, S.N.; Cai, F. A mid-cretaceous change from fast to slow exhumation of the western Chinese Altai mountains: A climate driven exhumation signal? J. Asian Earth Sci. 2020, 197, 104387. [CrossRef]
58. Vassallo, R.; Jolivet, M.; Ritz, J.-F.; Braucher, R.; Larroque, C.; Sue, C.; Todbileg, M.; Javkhlanbold, D. Uplift age and rates of the Gurvan Bogd system (Gobi-Altay) by apatite fission track analysis. Earth Planet. Sci. Lett. 2007, 259, 333–346. [CrossRef]
59. Jolivet, M.; Arzhannikov, S.; Arzhannikova, A.; Chauvet, A.; Vassallo, R.; Braucher, R. Geomorphic Mesozoic and Cenozoic evolution in the Oka-Jombolok region (East Sayan ranges, Siberia). J. Asian Earth Sci. 2013, 62, 117–133. [CrossRef]
60. Arzhannikova, A.; Jolivet, M.; Arzhannikov, S.; Vassallo, R.; Chauvet, A. The time of the formation and destruction of the Meso-Cenozoic peneplanation surface in East Sayan. Russ. Geol. Geophys. 2013, 54, 685–694. [CrossRef]
61. De Pelsmaeker, E.; Glorie, S.; Buslov, M.M.; Zhimulev, F.; Poujol, M.; Korobkin, V.V.; Vanhaecke, F.; Vetrov, E.V.; De Grave, J. Late-Paleozoic emplacement and Meso-Cenozoic reactivation of the southern Kazakhstan granitoid basement. Tectonophysics 2015, 662, 416–433. [CrossRef]
62. Glorie, S.; Otasevic, A.; Gillespie, J.; Jepson, G.; Danišík, M.; Zhimulev, F.I.; Gurevich, D.; Zhang, Z.; Song, D.; Xiao, W. Thermo-tectonic history of the Junggar Alatau within the Central Asian Orogenic Belt (SE Kazakhstan, NW China): Insights from integrated apatite U/Pb, fission track and (U-Th)/He thermochronology. Geosci. Front. 2019, 10, 2153–2166. [CrossRef]
63. Tian, Z.; Xiao, W.; Zhang, Z.; Lin, X. Fisson-track constrains on superposed folding in the Beishan orogenic belt, southernmost Altaids. Geosci. Front. 2016, 7, 181–196. [CrossRef]
64. Sobel, E.R.; Oskin, M.; Burbank, D.; Mikolaichuk, A. Exhumation of basement-cored uplifts: Example of the Kyrgyz Range quantified with apatite fission track thermochronology. Tectonics 2006, 25, TC2008. [CrossRef]
65. De Grave, J.; Glorie, S.; Buslov, M.M.; Stockli, D.F.; McWilliams, M.O.; Batalev, V.Y.; Van den haute, P. Thermo-tectonic history of the Issyk-Kul basement (Kyrgyz Northern Tien Shan, Central Asia). Gondwana Res. 2013, 23, 998–1020. [CrossRef]
66. Nachtergaele, S.; De Pelsmaeker, E.; Glorie, S.; Zhimulev, F.; Jolivet, M.; Danisík, M.; Buslov, M.M.; De Grave, J. Meso-Cenozoic tectonic evolution of the Talas-Fergana region of the Kyrgyz Tien Shan revealed by low-temperature basement and detrital thermochronology. Geosci. Front. 2018, 9, 1495–1514. [CrossRef]
67. Jepson, G.; Glorie, S.; Konopelko, D.; Mirkamalov, R.; Daniˇsík, M.; Collins, A.S. The low-temperature thermo-tectonic evolution of the western Tian Shan, Uzbekistan. Gondwana Res. 2018, 64, 122–136. [CrossRef]
68. Ehlers, T.A.; Farley, K.A. Apatite (U-Th)/He thermochronometry: Methods and applications to problems in tectonic and surface processes. Earth Planet. Sci. Lett. 2003, 206, 1–14. [CrossRef]
69. Haq, B.U.; Hardenbol, J.; Vail, P.R. Chronology of Fluctuating Sea Levels Since the Triassic. Science 1987, 235, 1156–1167. [CrossRef]
70. Kominz, M.A. Oceanic Ridge Volume and Sea-Level Change an Error Analysis. Interregional Unconformities and Hydrocarbon Accumula-tion; American Association of Petroleum Geologists: Tulsa, OK, USA, 1984; pp. 109–127.
71. Müller, R.D.; Sdrolias, M.; Gaina, C.; Roest, W.R. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem. Geophys. Geosyst. 2008, 9, Q04006. [CrossRef]
72. Pitman, W.C. Relationship between eustacy and stratigraphic sequences of passive margins. GSA Bull. 1978, 89, 1389–1403. [CrossRef]
73. Yang, Y.-T.; Song, C.-C.; He, S. Jurassic tectonostratigraphic evolution of the Junggar Basin, NW China: A record of Mesozoic intraplate deformation in Central Asia. Tectonics 2015, 34, 86–115. [CrossRef]
74. Jolivet, M.; Arzhannikova, N.; Frolov, A.O.; Arzhannikov, S.; Kulagina, N.; Akulova, V.; Vassallo, R. Late Jurassic-Early Cretaceous paleoenvironment evolution of the Transbaikal basins (SE Siberia): Implications for the Mongol-Okhotsk orogeny. Bulletin Société Géologique 2017, 188, 1–22.
75. Kapp, P.; DeCelles, P.G.; Gehrels, G.E.; Heizler, M.; Ding, L. Geological records of the Lhasa–Qiangtang and Indo–Asian collisions in the Nima area of central Tibet. Geol. Soc. Am. Bull. 2007, 119, 917–932. [CrossRef]
76. Zhu, D.C.; Zhao, Z.D.; Niu, Y.; Dilek, Y.; Hou, Z.Q.; Mo, X.X. The origin and preCenozoic evolution of the Tibetan Plateau. Gondwana Res. 2013, 23, 1429–1454. [CrossRef]
77. Zhu, D.-C.; Li, S.-M.; Cawood, P.A.; Wang, Q.; Zhao, Z.-D.; Liu, S.-A.; Wang, L.-Q. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos 2016, 245, 7–17. [CrossRef]
78. Glorie, S.; De Grave, J. Exhuming the Meso-Cenozoic Kyrgyz Tian Shan and Siberian Altai-Sayan: A review based on low-temperature thermochronology. Geosci. Front. 2016, 7, 155–170. [CrossRef]
79. Schwab, M.; Ratschbacher, L.; Siebel, W.; McWilliams, M.; Minaev, V.; Lutkov, V.; Chen, F.; Stanek, K.; Nelson, B.; Frisch, F.; et al. Assembly of the Pamirs: Age and origin of magmatic belts from the southern Tien Shan to the southern Pamirs and their relation to Tibet. Tectonics 2004, 23, 31. [CrossRef]
80. Sun, J.; Tappe, S.; Kostrovitsky, S.I.; Liu, C.-Z.; Skuzovatov, S.Y.; Wu, F.-Y. Mantle sources of kimberlites through time: A U-Pb and Lu-Hf isotope study of zircon megacrysts from the Siberian diamond fields. Chem. Geol. 2018, 479, 228–240. [CrossRef]
81. Sarsadskih, N.N.; Blagulkina, V.A.; Silin, Y.I. On the absolute age of the Yakutian kimberlites. Doklady Akademii Nauk SSSR 1966, 168, 420–423. (In Russian)
82. Tomurtogoo, O.; Windley, B.F.; Kroner, A.; Badarch, G.; Liu, D.Y. Zircon age and occurrence of the adaatsag ophiolite and muron shear zone, central Mongolia: Constraints on the evolution of the Mongol-Okhotsk ocean, suture and orogen. J. Geol. Soc. 2005, 162, 197–229. [CrossRef]
83. Zorin, Y. Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. Tectonophysics 1999, 306, 33–56. [CrossRef]
84. Nokleberg, W.J.; Parfenov, L.M.; Monger, J.W.H.; Norton, I.O.; Khanchuk, A.I.; Stone, D.B.; Scotese, C.R.; Scholl, D.W.; Fujita, K. Phanerozoic Tectonic Evolution of the Circum-North Pacific; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2000; p. 1626.
85. Yin, A.; Harrison, T.M. Geologic evolution of the Himalayan-Tibetan Orogen. Annu. Rev. Earth Planet. Sci. 2000, 28, 211–280. [CrossRef]
86. Green, O.R.; Searle, M.P.; Corfield, R.I.; Corfield, R.M. Cretaceous-Tertiary Carbonate Platform Evolution and the Age of the India-Asia Collision along the Ladakh Himalaya (Northwest India). J. Geol. 2008, 116, 331–353. [CrossRef]
87. Li, T.; Daukeev, S.Z.; Kim, B.C.; Tomurtogoo, O.; Petrov, O.V. (Eds.) Atlas of Geological Maps of Central Asia and Adjacent Areas, Scale 1:2 500 000; Beijing Publishing House: Beijing, China, 2008.
88. Jolivet, M.; Bourquin, S.; Heilbronn, G.; Robin, C.; Barrier, L.; Dabard, M.; Jia, Y.; De Pelsmaeker, E.; Fu, B. The Upper Jurassic– Lower Cretaceous alluvial-fan deposits of the Kalaza Formation (Central Asia): Tectonic pulse or increased aridity. In Geological Evolution of Central Asian Basins and the Western Tien Shan Range; Geological Society of London: London, UK, 2015; p. 427.
89. Parsons, A.J.; Hosseini, K.; Palin, R.M.; Karin Sigloch, K. Geological, geophysical and plate kinematic constraints for models of the India-Asia collision and the post-Triassic central Tethys oceans. Earth-Sci. Rev. 2020, 208, 103084. [CrossRef]