Инд. авторы: Sidorov E.G., Bukhanova D.S., Chubarov V.M., Borovikov A.A., Tolstykh N.D., Palyanova G.A.
Заглавие: Au (ag)-se-te-s-cu-sb-as-bi mineralization at the maletoyvayam deposit (central kamchatka, russia) and physicochemical conditions of its formation
Библ. ссылка: Sidorov E.G., Bukhanova D.S., Chubarov V.M., Borovikov A.A., Tolstykh N.D., Palyanova G.A. Au (ag)-se-te-s-cu-sb-as-bi mineralization at the maletoyvayam deposit (central kamchatka, russia) and physicochemical conditions of its formation // Minerals. - 2020. - Vol.10. - Iss. 12. - P.1-19. - EISSN 2075-163X.
Идентиф-ры: DOI: 10.3390/min10121093; РИНЦ: 45095400;
Реферат: eng: Microthermometry study of fluid inclusions in quartz veins of the Maletoyvayam deposit (Central Kamchatka, Russia) was carried out. This epithermal gold deposit contains unique Au compounds including maletoyvayamite, which has not been reported anywhere else. Two paragenetic mineral associations (pyrite-quartz and maletoyvayamite-quartz) with quartz of different generations corresponding to different pulses were also described. Only early generations of quartz (Q1) include ore minerals: pyrite for the first mineral assemblage, and in Au-bearing minerals, sulfosalts, bismuthinite, and others—for the second assemblage. A study on fluid inclusions in quartz showed a salinity (mainly NaCl + KCl) range from 0.2 to 4.3 wt.% NaCl eq., increasing from the first mineral association to the second due to boiling fluids. The obtained temperature variations for quartz crystallization were 295–135 °C, the fluid pressure ranged from 79 to 4 bar. On the other hand, the range of conditions obtained for the gold productive ore association is more narrow: salinity of the fluid inclusions is 4.3 wt.% NaCl eq., the temperatures vary from 255 °C to 245 °C, and the pressure from 39 to 32 bar. These physicochemical characteristics of the Maletoyvayam ore deposit greatly coincide with other HS-type epithermal deposits; however, within the Central Kamchatka Volcanic Belt it is so far the only deposit of this type reported.
Ключевые слова: Maletoyvayamite-quartz association; HS epithermal deposit; Central Kamchatka Volcanic Belt; gold; fluid inclusions;
Издано: 2020
Физ. хар-ка: с.1-19
Цитирование: 1. Lindgren, W. Mineral. Deposits; McGraw-Hill Book Company, Inc.: New York, NY, USA; London, UK, 1933; p. 930.
2. Heald, P.; Hayba, D.O.; Foley, N.K. Comparative anatomy of volcanic-hosted epithermal deposits: Acid-sulfate and adularia-sericite types. Econ. Geol. 1987, 82, 1–26.
3. Taylor, B.E. Epithermal gold deposits. In Mineral. Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods; Goodfellow, W.D., Ed.; Mineral Deposits Division, Special Publication; Geological Association of Canada: Saint John, NL, Canada, 2007; Volume 5, pp. 113–139.
4. Hedenquist, J.W.; Arribas, A.; Gonzalez-Urien, E. Exploration for epithermal gold deposits. Rev. Econ. Geol. 2000, 13, 245–277.
5. Hedenquist, J.W. Mineralization associated with volcanic-related hydrothermal systems in the Circum-Pacific basin. In Transactions of the Fourth Circum Pacific Conference on Energy and Mineral Resources Conference, Singapore; American Association of Petroleum Geologists: Tulsa, OK, USA, 1987; pp. 513–524.
6. Ashley, R.P. Occurrence model for enargite-gold deposits. In U.S. Geological Survey Open-File Report; Publisher: U.S. Department of the Interior, Geological Survey USA, Reston, VA, USA, 1982; 82-795, pp. 144– 147.
7. Bethke, P.M. Controls on base-and precious-metal mineralization in deeper epithermal environments. In US Geological Survey Open-File Report 84–890. Publisher: U.S. Dept. of the Interior, Geological Survey USA, Reston, VA, USA, 1984; 39 p.
8. Ransome, F.L. The association of alunite with gold in the Goldfield district, Nevada. Econ. Geol. 1907, 2, 801-803.
9. Bonham, H.F. Three major types of epithermal precious metal deposits. Geol. Soc. Am. Abstr. Programs 1984, 16, 449.
10. Bonham, H.F., Jr. Models for volcanic-hosted epithermal precious metal deposits: A review. In Proceedings Symposium 5th, Volcanism, Hydrothermal Systems and Related Mineralisation; International Volcanological Congress: Auckland, New Zealand, 1986; pp. 13–17.
11. Berger, B.R. Descriptive model of low-sulfide Au-quartz veins. In Mineral deposit models, US Geological Survey Bulletin; Publisher: United States government printing office, Washington, DC, USA, 1992, Bull. 1693, p. 239.
12. Berger, B.R.; Henley, R.W. Advances in the understanding of epithermal gold-silver deposits, with special reference to the western United States. Econ. Geol. Monogr. 1989, 6, 405–423.
13. Henley, R.W.; Ellis, A.J. Geothermal systems ancient and modern: A geochemical review. Earth Sci. Rev. 1983, 19, 1–50.
14. Arribas, A., Jr. Characteristics of high-sulfidation epithermal deposits, and their relation to magmatic fluid. Mineral. Assoc. Can. Short Course 1995, 23, 419–454.
15. Kubota, Y. Temporal and spatial relationship and significance of island arc junctions on Late Cenozoic gold deposits in the Japanese Islands. Res. Geol. 1994, 44, 17–24.
16. Okrugin, V.; Kokarev, S.; Okrugina, A.; Chubarov, V.; Shuvalov, R. An unusual example of the interaction of modern hydrothermal system with Au-Ag veins (Southern Kamchatka). Miner. Mag. 1994, 58A, 669–670.
17. Khanchuk, A.I.; Ivanov, V.V. Meso-Cenozoic geodynamic settings and gold mineralization of the Russian Far East. Russ. Geol. Geophys. 1999, 40, 1607–1617.
18. Konstantinov, M.M.; Vargunina, N.P.; Kosovets, T.N.; Struzhkov, S.F.; Syngaevskii, E.D.; Shishakova, L.N. Gold-Silver deposits. Series: Models of Noble-and Nonferrous-Metal. Deposits; TsNIGRI: Moscow, Russia, 2000; 239p. (In Russian)
19. Borovikov, A.A.; Lapukhov, A.S.; Borisenko, A.S.; Seryotkin, Y.V. The Asachinskoe epithermal Au-Ag deposit in southern Kamchatka: Physicochemical conditions of formation. Russ. Geol. Geophys. 2009, 50, 693–702.
20. Takahashi, R.; Matsueda, H.; Okrugin, V.M. Hydrothermal gold mineralization at the Rodnikovoe deposit in South Kamchatka, Russia. Res. Geol. 2002, 52, 359–369.
21. Takahashi, R.; Matsueda, H.; Okrugin, V.M.; Ono, S. Epithermal gold-silver mineralization of the Asachinskoe deposit in South Kamchatka, Russia. Resource Geology, 2007, 57 (4), 354–373.
22. Okrugin, V.M.; Shishkanova, K.O.; Yablokova, D.A. About ores of Amethystovoe deposits (Kamchatka) Mt. Bull. Kamchatka 2015 (3-4), 33-34. (In Russian)
23. Andreeva, E.D.; Matsueda, H.; Okrugin, V.M.; Takahashi, R.; Ono, S. Au–Ag–Te mineralization of the low-sulfidation epithermal Aginskoe deposit, Central Kamchatka, Russia. Res. Geol. 2013, 63, 337–349.
24. Golyakov, V.I. Geological Map of the USSR Scale 1: 200 000; Pogozhev, A.G., Ed.; Series Koryak; Sheets P-5 8-XXXIII, O-58-III.; VSEGEI Cartographic Factory: St.Peterburg, Russia, 1980. (In Russian)
25. Melkomukov, B.H.; Razumny, A.V.; Litvinov, A.P.; Lopatin, W.B. New highly promising gold objects of Koryakiya. Min. Bull. Kamchatka 2010, 14, 70–74. (In Russian)
26. Tolstykh, N.; Vymazalova, A.; Tuhy, M.; Shapovalova, M. Conditions of formation of Au-Se-Te mineralization in the Gaching ore occurrence (Maletoivayam ore field), Kamchatka, Russia. Min. Mag. 2018, 82, 649–674.
27. Volkov, A.V.; Sidorov, A.A.; Chizhova, I.A.; Alekseev, V.Y.; Savva, N.E.; Kolova, E.E. The Agan epithermal gold-silver deposit and prospects for the discovery of high-sulfidation mineralization in Northeast Russia. Geol. Ore Depos. 2015, 57, 21–41.
28. Goryachev, N.A.; Volkov, A.V.; Sidorov, A.A.; Gamyanin, G.N.; Savva, N.Ye.; Okrugin, V.M. Au-Ag-mineralization of volcanogenic belts of the northeast. Asia. Lithosphere 2010, 3, 36–50. (In Russian)
29. Palyanova, G.A. Gold and Silver Minerals in Sulfide Ore. Geol. Ore Depos. 2020, 62, 383–406.
30. Tolstykh, N.D. Gold ore mineralization of the Maletoyvayam ore occurrence. In Materials of the Anniversary Congress of the Russian Mineralogical Society “200 years of RMO”; Publisher: LLC Publishing House LEMA St.Peterburg, Russia, 2017; Volume 2., pp. 339–341.
31. Tolstykh, N.; Palyanova, G.; Bobrova, O.; Sidorov, E. Mustard gold of the Gaching ore occurrence (Maletoyvayam deposit, Kamchatka, Russia). Minerals 2019, 9, 489.
32. Tolstykh, N.D.; Tuhý, M.; Vymazalová, A.; Plášil, J.; Laufek, F.; Kasatkin, A.V.; Nestola, F.; Bobrova, O.V. Maletoyvayamite, Au3Se4Te6, a new mineral from Maletoyvayam deposit, Kamchatka peninsula, Russia. Min. Mag. 2020, 84, 117–123.
33. Shapovalova, M.; Tolstykh, N.; Bobrova, O. Chemical composition and varieties of sulfosalts from gold mineralization in the Gaching ore occurrence (Maletoyvayam ore field). IOP Conf. Ser. Earth Environ. Sci. 2019, 319, 012019.
34. Palyanova, G.A.; Tolstykh, N.D.; Zinina, V.Y.; Koh, K.A.; Seretkin, Y.V.; Bortnikov, N.S. Synthetic gold chalcogenides in the Au-Te-Se-S system and their natural analogs. Dokl. Earth Sci. 2019, 487, 929–934.
35. Palyanova, G.; Mikhlin, Y.; Zinina, V.; Kokh, K.; Seryotkin, Y.; Zhuravkova, T. New gold chalcogenides in the Au-Te-Se-S system. J. Phys. Chem. Solids. 2020, 138, 109276 doi:10.1016/j.jpcs.2019.109276.
36. Vlasov, G.M. Volcanic Sulfur Deposits and Some Problems of Hydrothermal ore Formation; Nauka: Moscow, Russia, 1971. (In Russian)
37. Stefanov, Y.M.; Schiroky, B.I. Metallogeny of the Upper Structural Floor of Kamchatka; Science: Moscow, Russia, 1980. (In Russian)
38. Melkomukov, V.N.; Amelin, S.A.; Razumny, A.V.; Kudrin, A.S. State Geological Map of the Russian Federation on a Scale of 1: 200 00; Lopatin, V.B., Ed.; Series Olyutorsky; Sheet P-58-XXXIII, O-58-III.; VSEGEI Cartographic Factory: St. Petersburg, Russia, 2010. (In Russian)
39. White, N.C.; Hedenquist, J.W. Epithermal gold deposits: Styles, characteristics and exploration. Publ. SEG Newsl. 1995, 23, 9–13.
40. Hedenquist, J.W.; Arribas, R.A. Epithermal ore deposits: First-order features relevant to exploration and assessment. Miner. Resour. Discov. Proceedings of the 14th SGA Biennial Meeting, Quebec: Canada, 2017, 1, 47–50.
41. Borisenko, A.S. Analysis of the salt composition of solutions of gas-liquid inclusions in minerals by cryometry. In The Use of Methods of Thermobarogeochemistry in the Search and Study of Ore Deposits; Nedra: Moscow, Russia, 1982; pp. 37–47. (In Russian)
42. Bodnar, R.J.; Vityk, M.O. Interpretation of microthermometric data for NaCl-H2O fluid inclusions. In Fluid Inclusions in Minerals: Methods and Applications; Virginia Polytechnic Institute State University: Blacksburg, VA, USA, 1994; pp. 117–131.
43. Bakker, R.J. AqSo_NaCl: Computer program to calculate p-T-V-x properties in the H2O-NaCl fluid system applied to fluid inclusion research and pore fluid calculation. Comput. Geosci. 2018, 115, 122–133.
44. Bakker, R.J. Fluids: New software package to handle microthermometric data and to calculate isochors. Mem. Geol. Soc. 2001, 23–25.
45. Brown, P.E. FLICOR: A microcomputer program for the reduction and investigation of fluid-inclusion data. Am. Min. 1989, 74, 1390–1393.
46. Voudouris, P.; Melfos, V.; Spry, P.G.; Moritz, R.; Papavassiliou, K.; Falalakis, G. Mineralogy and geochemical environment of formation of the Perama Hill high-sulfidation epithermal Au-Ag-Te-Se deposit, Petrota Graben, NE Greece. Min. Petrol. 2011, 103, 79–100.
47. Roedder, E. Fluid inclusions. In Reviews in Mineralogy; Mineralogical Society of America; Washington, DC, USA, 1984; Volume 12, pp. 79–108.
48. Ermakov, N.P. Geochemical Systems of Inclusions in Minerals; Nedra: Moscow, Russia, 1972. (In Russian)
49. Lecumberri-Sanchez, P.; Steele-MacInnis, M.; Bodnar, R.J. Synthetic fluid inclusions XIX. Experimental determination of the vapor-saturated liquidus of the system H2O–NaCl–FeCl2. Geochim. Cosmochim. Acta 2015, 148, 34–49.
50. Borovikov, A.A.; Gushchina, L.V.; Borisenko, A.S. Determination of iron (II, III) and zinc chlorides in solutions of fluid inclusions during cryometric studies. Geochemistry 2002, 1, 70–79. (In Russian)
51. Frezzotti, M.L.; Tecce, F.; Casagli, A. Raman spectroscopy for fluid inclusion analysis. J. Geochem Explor. 2012, 112, 1–20.
52. Spiridonov, E.M. Typomorphic specific features of Fahlore from some plutonogenic, volcanogenic, and telethermal gold deposits. Geol. Rudn. Mestorozhd. 1987, 29, 83–92. (In Russian)
53. Repstock, A.; Voudouris, P.; Kolitsch, U. New occurrences of watanabeite, colusite, "arsenosulvanite" and Cu-excess tetrahedrite-tennantite at the Pefka high-sulfidation epithermal deposit, northeastern Greece. Neues Jahrb. Fur Mineral. Abh. J. Mineral. Geochem. 2015, 192, 135–149.
54. Kovalenker, V.A.; Bortnikov, N.S. Chemical composition and mineral associations of sulphosalts in the precious metal deposits from different geological environment. Geol. Carpathica 1985, 36, 283–291.
55. Buchanan, L.J. Precious metal deposits associated with volcanic environments in the southwest. Ariz. Geol. Soc. Dig. 1981, 14, 237–262.
56. Hayba, D.O.; Bethke, P.M.; Heald, P.; Foley, N.K. Geologic, mineralogic and geochemical characteristics of volcanic-hosted epithermal precious metal deposits. Rev. Econ. Geol. 1985, 2, 129–167.
57. Corbett, G. Epithermal Au-Ag deposit types—Implications for exploration, 2005. Available online: https://www.researchgate.net/publication/237489786 (uploaded by Greg Corbett on August 30, 2014).
58. Jannas, R.; Bowers, T.S.; Petersen, U.; Beane, E. High-Sulfidation Deposit Types in the El Indio District, Chile. In Geology and Ore Deposits of the Central Andes; Skinner, B.J., Ed.; Society Economic Geologists Special Publication: Littleton, Colorado 80127, 1999; Volume 7, pp. 27–59.
59. Okrugin, V.M.; Andreeva, E.D.; Yablokova, D.A.; Okrugina, A.M.; Chubarov, V.M.; Ananiev, V.V. The new data on the ores of the Aginskoye gold-telluride deposit (Central Kamchatka). In “Volcanism and Its Associated Processes” Conference; Petropavlovsk-Kamchatsky: Kamchatka Krai, Russia, 2014; pp. 335–341. (In Russian)
60. Takahashi, R.; Matsueda, H.; Okrugin, V. Epithermal gold and silver mineralization at the Rodnikovoe deposit related to the hydrothermal activity in the Mutnovsko-Asachinskaya geothermal area, Southern Kamchatka, Russia. In Proceedings of the international symposium on gold and hydrothermal systems, Fukuoka, Japan, November 2001; pp. 51–57.
61. Mehrabi, B.; Siani, M.G. Intermediate sulfidation epithermal Pb-Zn-Cu (±Ag-Au) mineralization at Cheshmeh Hafez deposit, Semnan Province. J. Geol. Soc. India 2012, 80, 563–578.
62. Hedenquist, J.W.; Henley, R.W. Hydrothermal eruptions in the Waiotapu geothermal system, New Zealand: Their origin, associated breccias, and relation to precious metal mineralization. Econ. Geol. 1985, 80, 1640–1668.
63. Hedenquist, J.W.; Arribas, A.; Reynolds, T.J. Evolution of an intrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry andepithermal Cu-Au deposits, Philippines. Econ. Geol. 1998, 93, 373–404.
64. Heinrich, C.A.; Dreisner, T.; Steffánson, A.; Seward, T.M. Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits. Geology 2004, 32, 761–764.
65. Bruha, D.I.; Noble, D.C. Hypogenequartz-alunite±pyrite alteration formed by moderately saline, ascendant hydrothermal solutions. Geol. Soc. Am. Abstr. Programs 1983, 15, 325.
66. Jensen, M.L.; Ashley, R.P.; Albers, J.P. Primary and secondary sulfates at Goldfield, Nevada. Econ. Geol. 1971, 66, 618–626.
67. Kovalenker, V.A.; Plotinskaya, O.Y.; Prokofev, V.Y.; Gertman, Y.L.; Koneev, R.I.; Pomortsev, V.V. Mineralogy, geochemistry, and genesis of gold-sulfide-selenide-telluride ores from the Kairagach deposit (Uzbekistan). Geol. Ore Depos. 2003, 45, 171–200.
68. Mishin, L.F.; Berdnikov, N.V. Nature of high-alumina secondary quartzite by data of thermobarogeochemistry and isotopic analysis of oxygen and hydrogen. Russ. J. Pac. Geol. 2001, 20, 123– 139. (In Russian)
69. Nash, J.T. Fluid inclusion studies of vein, pipe, and replacement deposits, northwestern San Juan Mountains, Colorado. Econ. Geol. 1975, 70, 1448–1462.
70. Sahlstrom, F. The Mt Carlton high-sulfidation epithermal deposit, NE Australia: Geologic character, genesis and implications for exploration. PhD. Thesis, James Cook University, Singapore, 2018.
71. Mancano, D.P.; Campbell, A.R. Microthermometry of enargite-hosted fluid inclusions from the Lepanto, Philippines, high-sulfidation Cu-Au deposit. Geochim. Cosmochim. Acta 1995, 59, 3909–3916.
72. Lapukhov, A.S.; Borovikov, A.A.; Guzman, B.V.; Miroshnichenko, L.V.; Rasvorotneva, L.I. Hieratite in hydrothermally altered volcanic rocks of Danchenkovskoye deposit (the Urup Island). Zap. RMO 2012, 141, 52–59. (In Russian)
73. Arribas, A., Jr.; Cunningham, C.G.; Rytuba, J.J.; Rye, R.O.; Kelly, W.C.; Podwysocki, M.H.; McKee, E.H.; Tosdal, R.M. Geology, geochronology, fluid inclusions, and isotope geochemistry of the Rodalquilar gold-alunite deposit, Spain. Econ. Geol. 1995, 90, 795–822.
74. Sillitoe, R.H.; Hedenquist, J.W. Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits. In: Volcanic, Geothermal, and Ore-Forming Fluids: Rulers and Witnesses of Processes within the Earth; Simmons, S.F., Graham, I.J., Eds.; Society Economic Geologists Special Publication: Johnson Printing, Littleton, Colorado, 2003; Volume 10, pp. 315–343.
75. Prokof’ev, V.Y.; Ali, A.A.; Volkov, A.V.; Savva, N.E.; Kolova, E.E.; Sidorov, A.A. geochemical peculiarities of ore forming fluidof the juliette Au–Ag epithermal deposit (Northeastern Russia). Dokl. Earth Sci. 2015, 460, 87–91.
76. Cooke, D.R.; Simmons, S.F. Characteristics and genesis of epithermal gold deposits. Rev. Econ. Geol. 2000, 13, 221–244.
77. Sillitoe, R.H. Porphyry copper systems. Econ. Geol. 2010, 105, 3–41.