Инд. авторы: Nikolenko E.I., Lobov K.V., Agashev A.M., Tychkov N.S., Nikolenko A.M., Chervyakovskaya M.V., Sharygin I.S.
Заглавие: 40 ar/39ar geochronology and new mineralogical and geochemical data from lamprophyres of chompolo field (south yakutia, russia)
Библ. ссылка: Nikolenko E.I., Lobov K.V., Agashev A.M., Tychkov N.S., Nikolenko A.M., Chervyakovskaya M.V., Sharygin I.S. 40 ar/39ar geochronology and new mineralogical and geochemical data from lamprophyres of chompolo field (south yakutia, russia) // Minerals. - 2020. - Vol.10. - Iss. 10. - P.1-29. - EISSN 2075-163X.
Идентиф-ры: DOI: 10.3390/min10100886; РИНЦ: 45243314;
Реферат: eng: The alkaline igneous rocks of the Chompolo field (Aldan shield, Siberian craton), previously defined as kimberlites or lamproites, are more correctly classified as low-Ti lamprophyres. The emplacement age of the Ogonek pipe (137.8 ± 1.2 Ma) and the Aldanskaya dike (157.0 ± 1.6 Ma) was obtained using40Ar/39Ar K-richterite dating. The Chompolo rocks contain abundant xenocrysts of mantle minerals (chromium-rich pyropic garnets, Cr-diopsides, spinels, etc.). The composition of the mantle xenocrysts indicates the predominance of spinel and garnet– spinel lherzolites, while the presence of garnet lherzolites, dunites, harzburgites, and eclogites is minor. The Chompolo rocks are characterized by large-ion lithophile element (LILE) and Light Rare Earth Element (LREE) enrichments, and high field strength element (HFSE) depletions. The rocks of the Ogonek pipe have radiogenic Sr (87Sr/86Sr (t) = 0.70775 and 0.70954), and highly unradiogenic εNd(t) (−20.03 and −20.44) isotopic composition. The trace element and isotopic characteristics of the Chompolo rocks are indicative of the involvement of subducted materials in their ancient enriched lithospheric mantle source. The Chompolo rocks were formed at the stage when the Mesozoic igneous activity was triggered by global tectonic events. The Chompolo field of alkaline magmatism is one of the few available geological objects, which provides the opportunity to investigate the subcontinental lithospheric mantle beneath the south part of the Siberian craton.
Ключевые слова: trace elements; Siberian Craton; mantle source; lamprophyre; isotopic data; alkaline magmatism; Aldan shield;
Издано: 2020
Физ. хар-ка: с.1-29
Цитирование: 1. 1. Smith, M.; Moore, K.; Kavecsánszki, D.; Finch, A.A.; Kynicky, J.; Wall, F. From mantle to critical zone: A review of large and giant sized deposits of the rare earth elements. Geosci. Front. 2016, 7, 315–334, doi:10.1016/j.gsf.2015.12.006.
2. Goodenough, K.M.; Wall, F.; Merriman, D. The rare earth elements: Demand, global resources, and challenges for resourcing future generations. Nat. Resour. Res. 2018, 27, 201–216, doi:10.1007/s11053-017-9336-5.
3. Atkinson, W.; Smith, C.; Boxer, G. The discovery and geology of the Argyle diamond deposits, Kimberley, Western Australia. In Proceedings of the Darwin Conference, Australasian Institute of Mining and Metallurgy, Darwin City, Australia, 5–9 August, 1984; pp. 141–149.
4. Jaques, A.; Lewis, J.; Smith, C.; Gregory, G.; Ferguson, J.; Chappell, B.; McCulloch, M. The diamond-bearing ultrapotassic (lamproitic) rocks of the West Kimberley region, Western Australia. In Developments in Petrology; Elsevier: Amsterdam, The Netherlands, 1984; Volume 11, pp. 225–254.
5. Jaques, A.; Lewis, J.; Smith, C. The Kimberlites and Lamproites of Western Australia. Geol. Surv. West. Aust. Bull 1986, 132, 268.
6. Kaminsky, F.V. Non-kimberlitic diamondiferous igneous rocks: 25 years on. J.-Geol. Soc. India 2007, 69, 557.
7. Wyman, D.; Hollings, P.; Conceição, R. Geochemistry and radiogenic isotope characteristics of xenoliths in Archean diamondiferous lamprophyres: Implications for the Superior Province cratonic keel. Lithos 2015, 233, 111–130, doi:10.1016/j.lithos.2015.02.018.
8. Nelson, D.R. Isotopic characteristics of potassic rocks: Evidence for the involvement of subducted sediments in magma genesis. Lithos 1992, 28, 403–420, doi:10.1016/0024-4937(92)90016-R.
9. Vollmer, R. On the orgin of the Italian potassic magmas: 1. A discussion contribution. Chem. Geol. 1989, 74, 229–239.
10. Bogatikov, O.A.; Kononova, V.A.; Pervov, V.A.; Zhuravlev, D.Z. Petrogenesis of Mesozoic potassic magmatism of the Central Aldan: A Sr-Nd isotopic and geodynamic model. Int. Geol. Rev. 1994, 36, 629– 644, doi:10.1080/00206819409465479.
11. Davies, G.; Stolz, A.; Mahotkin, I.; Nowell, G.; Pearson, D. Trace element and Sr–Pb–Nd–Hf isotope evidence for ancient, fluid-dominated enrichment of the source of Aldan Shield lamproites. J. Petrol. 2006, 47, 1119–1146, doi:10.1093/petrology/egl005.
12. Maksimov, E.; Ugryumov, A. Mesozoic magmatic formations of the Aldan Shield. Sov. Geol. 1971, 7, 107– 119.
13. Mues-Schumacher, U.; Keller, J.; Kononova, V.; Suddaby, P. Mineral chemistry and geochronology of the potassic alkaline ultramafic Inagli complex, Aldan Shield, eastern Siberia. Mineral. Mag. 1996, 60, 711–730, doi:10.1180/minmag.1996.060.402.02.
14. Bogatikov, O.; Ryabchikov, I.; Kononova, V.; Makhotkin, I.; Novgorodova, M.; Solovova, I.; Galuskin, E.; Ganeev, I.; Girnis, A.; Eremeev, N.; et al. Lamproites. Priroda. Moscow. 1991, 1991, 302.
15. Kononova, V.; Bogatikov, O.; Kondrashov, I. Kimberlites and lamproites: Criteria for similarity and differences. Petrology 2011, 19, 34–54, doi:10.1134/S0869591111010024.
16. Panina, L.; Vladykin, N. Lamproitic rocks of the Murun Massif and their genesis. Russ. Geol. Geophys. 1994, 35, 100–113.
17. Vavilov, M.; Bazarova, Y.; Podgornykh, N.; Krivoputskaya, L.; Kuznetsova, I. Characteristics and formation conditions of potassic alkaline rocks of the Loman Massif. Russ. Geol. Geophys. 1986, 27, 40–46.
18. Vladykin, N. First find of lamproites in the USSR. Proc. Dokl. Akad. Nauk SSSR 1985, 280, 718–722.
19. Shilina, G.; Zeitlin, S. About the first finding of the kimberlites on Aldan shield. Sov. Geol. 1959, 10, 132– 136.
20. Ashchepkov, I.; Vladykin, N.; Ntaflos, T.; Kostrovitsky, S.; Prokopiev, S.; Downes, H.; Smelov, A.; Agashev, A.; Logvinova, A.; Kuligin, S.; et al. Layering of the lithospheric mantle beneath the Siberian Craton: Modeling using thermobarometry of mantle xenolith and xenocrysts. Tectonophysics 2014, 634, 55–75, doi:10.1016/j.tecto.2014.07.017.
21. Ashchepkov, I.; Pokhilenko, N.; Vladykin, N.; Logvinova, A.; Afanas’ev, V.; Pokhilenko, L.N.; Kuligin, S.S.; Malygina, E.V.; Alymova, N.A.; Kostrovitsky, S.I.; et al. Structure and evolution of the lithospheric mantle beneath Siberian craton, thermobarometric study. Tectonophysics 2010, 485, 17–41, doi:10.1016/j.tecto.2009.11.013.
22. Ashchepkov, I.; Gerasimov, P.; Khmel’nikova, O.; Anoshin, G.; Vladykin, N.; Saprykin, A. Temperature gradient and structure of the lithospheric block beneath the southeastern margin of the Siberian craton: Disintegrated xenolith evidence from kimberlitic pipes of the Aldan shield. In Doklady Earth Sciences; Pleiades Publishing, Ltd.: New York, NY, USA, 2001; Volume 378, pp. 495–499.
23. Kostrovitsky, S.; Garanin, V. High chromium titanates in pyropes dikes Aldan (Yakutia). Zap. RMO 1992, 121, 67–72.
24. Utrobin, D. On the Question of the Dismemberment of the Jurassic-Cretaceous Deposits of South Yakutia. In: Stratigraphy of the Precambrian and Phanerozoic of Transbaikalia and the south of the Far East. Earth sciences: Khabarovsk, Russia, 1990; pp. 223–225.
25. Kornilova, V. Petrography and mineralogy of the calc-alkaline lamprophyres and eruptive breccias at the basin of Chomppolo river. Otechestvennaya Geol. 1997, 9, 6–9.
26. Panina, L. Lamproite rocks of the Aldan and genetic criteria of lamproite melts. Russ. Geol. Geophys. 1993, 34, 82–94.
27. Rock, N. Nature and origin of calc-alkaline lamprophyres: Minettes, vogesites, kersantites and spessartites. Earth Environ. Sci. Trans. R. Soc. Edinb. 1984, 74, 193–227, doi:10.1017/S0263593300013663.
28. Paquette, J.-L.; Ionov, D.A.; Agashev, A.; Gannoun, A.; Nikolenko, E. Age, provenance and Precambrian evolution of the Anabar shield from U-Pb and Lu-Hf isotope data on detrital zircons, and the history of the northern and central Siberian craton. Precambrian Res. 2017, 301, 134–144, doi:10.1016/j.precamres.2017.09.008.
29. Rosen, O. Siberian craton-a fragment of a Paleoproterozoic supercontinent. Russ. J. Earth Sci. 2002, 4, 103– 119.
30. Smelov, A.P.; Timofeev, V.F. The age of the North Asian Cratonic basement: An overview. Gondwana Res. 2007, 12, 279–288, doi:10.1016/j.gr.2006.10.017.
31. Smelov, A.; Timofeev, V. The tectonics and metallogeny of the Precambrian of the Aldan-Stanovoy Shield. In Mineral Deposit Research: Meeting the Global Challenge; Springer: Berlin/Heidelberg, Germany, 2005; pp. 53–56.
32. Smelov, A.P.; Yan, H.; Timofeev, V.F.; Prokopiev, A.V.; Nokleberg, W.J. Archean through Mesoproterozoic metallogenesis and tectonics of northeast Asia; In Metallogenesis and Tectonics of Northeast Asia; US Geological Survey: Reston, VA, USA, 2010; Chapter 4.
33. Velikoslavinsky, S.; Kotov, A.; Sal’nikova, E.; Kovach, V.; Glebovitsky, V.; Zagornaya, N.Y.; Yakovleva, S.; Tolmacheva, E.; Anisimova, I.; Fedoseenko, A. Protoliths of the metamorphic rocks of the Fedorov Complex, Aldan Shield: Character, age, and geodynamic environments of origin. Petrology 2006, 14, 21–38, doi:10.1134/S0869591106010036.
34. Mues, U. Geochemische und Radiometrische Untersuchungen an Lamproiten und Anderen Alkaligesteinen von Yakokut und Inagli, Aldan-Schild, Ostsibirien. Ph.D. Thesis, University of Freiburg, Freiburg, Germany, 1993.
35. Kononova, V.; Bogatikov, O.; Pervov, V.; Eremeev, N.; Suddaby, P. Geochemistry and origin of the potassic magmatic rocks of the Central Aldan. Geokhimiya 1994, 7, 937–955.
36. Sorokin, A.A.; Zaika, V.A.; Kovach, V.P.; Kotov, A.B.; Xu, W.; Yang, H. Timing of closure of the eastern Mongol–Okhotsk Ocean: Constraints from U–Pb and Hf isotopic data of detrital zircons from metasediments along the Dzhagdy Transect. Gondwana Res. 2020, 81, 58–78.
37. Vladimirov, N.; Dauev, Y.; Zubarev, B. Geology and Genesis of Diamond Deposits; TsNIGRI: Moscow, Russia, 1989.
38. Mudrik, S.; Anashin M.; Pet’ko V. Report on the Results of Prospecting for Diamonds Held Alekseevskoy GPP on Ust-Tokkiskoy and Chompolinskoy Areas in 1986–1988 Years (unpublished); Yakutskgeology: Alekseevsk, Russia. 1988, 475.
39. Zaitsev, A.; Smelov, A. Isotope Geochronology of Kimberlite Rocks in the Yakutian Province; Ofset: Yakutsk, Russia, 2010, 108.
40. Lavrent’ev, Y.G.; Korolyuk, V.; Usova, L.; Nigmatulina, E. Electron probe microanalysis of rock-forming minerals with a JXA-8100 electron probe microanalyzer. Russ. Geol. Geophys. 2015, 56, 1428–1436, doi:10.1016/j.rgg.2015.09.005.
41. Nikolaeva, I.; Palesskii, S.; Koz’menko, O.; Anoshin, G. Analysis of geologic reference materials for REE and HFSE by inductively coupled plasma-mass spectrometry (ICP-MS). Geochem. Int. 2008, 46, 1016–1022, doi:10.1134/S0016702908100066.
42. Travin, A.; Yudin, D.; Vladimirov, A.; Khromykh, S.; Volkova, N.; Mekhonoshin, A.; Kolotilina, T.B. Thermochronology of the Chernorud granulite zone, Ol’khon Region, Western Baikal area. Geochem. Int. 2009, 47, 1107–1124, doi:10.1134/S0016702909110068.
43. Baksi, A.K.; Archibald, D.; Farrar, E. Intercalibration of 40Ar39Ar dating standards. Chem. Geol. 1996, 129, 307–324.
44. Lafuente, B.; Downs, R.; Yang, H.; Stone, N. The power of databases: The RRUFF project. In Highlights in Mineralogical Crystallography; Armbruster, T., Danisi, R.M., eds.; De Gruyter: Berlin, Germany, 2015.
45. Pin, C.; Joannon, S.; Bosq, C.; Le Fevre, B.; Gauthier, P.-J. Precise determination of Rb, Sr, Ba, and Pb in geological materials by isotope dilution and ICP-quadrupole mass spectrometry following selective separation of the analytes. J. Anal. Atom. Spectrom. 2003, 18, 135–141, doi:10.1039/B211832G.
46. Bouvier, A.; Vervoort, J.D.; Patchett, P.J. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 2008, 273, 48–57, doi:10.1016/j.epsl.2008.06.010.
47. Goldstein, S.J.; Jacobsen, S.B. Nd and Sr isotopic systematics of river water suspended material: Implications for crustal evolution. Earth Planet. Sci. Lett. 1988, 87, 249–265, doi:10.1016/0012-821X(88)90013-1.
48. Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95, 185– 187, doi:10.2138/am.2010.3371.
49. Khar’kiv, A.; Vishnevsky, A. Pyrope Megacrysts with the Features of Partial Melting from Yakutian Kimberlites. Mineral. Zhur. 1989, 11, 28–36.
50. Harrison, T.M. Diffusion of 40 Ar in hornblende. Contrib. Mineral. Petrol. 1982, 78, 324–331, doi:10.1007/BF00398927.
51. Whitehead, J.; Reynolds, P.H.; Spray, J.G. 40Ar/39Ar age constraints on Taconian and Acadian events in the Quebec Appalachians. Geology 1996, 24, 359–362, doi:10.1130/0091-7613(1996)024<0359:AAACOT>2.3. CO;2.
52. Rock, N. The International Mineralogical Association (IMA/CNMMN) pyroxene nomenclature scheme: Computerization and its consequences. Mineral. Petrol. 1990, 43, 99–119, doi:10.1007/BF01164304.
53. Mitchell, R.H. Kimberlites and orangeites. In Kimberlites, Orangeites, and Related Rocks; Springer: Berlin/Heidelberg, Germany, 1995; pp. 1–90.
54. Mitchell, R.H.; Bergman, S.C. Petrology of Lamproites; Springer Science & Business Media: Berlin, Germany, 1991.
55. Tappe, S.; Foley, S.F.; Jenner, G.A.; Heaman, L.M.; Kjarsgaard, B.A.; Romer, R.L.; Stracke, A.; Joyce, N.; Hoefs, J. Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, Labrador: A consequence of incipient lithospheric thinning beneath the North Atlantic craton. J. Petrol. 2006, 47, 1261–1315, doi:10.1093/petrology/egl008.
56. Grütter, H.S.; Gurney, J.J.; Menzies, A.H.; Winter, F. An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos 2004, 77, 841–857, doi:10.1016/j.lithos.2004.04.012.
57. Sobolev, N.; Lavrent’Ev, Y.G.; Pokhilenko, N.; Usova, L. Chrome-rich garnets from the kimberlites of Yakutia and their parageneses. Contrib. Mineral. Petrol. 1973, 40, 39–52, doi:10.1007/BF00371762.
58. Fitzpayne, A.; Giuliani, A.; Hergt, J.; Phillips, D.; Janney, P. New geochemical constraints on the origins of MARID and PIC rocks: Implications for mantle metasomatism and mantle-derived potassic magmatism. Lithos 2018, 318, 478–493, doi:10.1016/j.lithos.2018.08.036.
59. Wyman, D.; Kerrich, R. Archean shoshonitic lamprophyres of the Abitibi Subprovince, Canada: Petrogenesis, age, and tectonic setting. J. Petrol. 1993, 34, 1067–1109, doi:10.1093/petrology/34.6.1067.
60. Pandey, A.; Rao, N.C.; Pandit, D.; Pankaj, P.; Pandey, R.; Sahoo, S.; Kumar, A. Subduction–Tectonics in the evolution of the eastern Dharwar craton, southern India: Insights from the post-collisional calc-alkaline lamprophyres at the western margin of the Cuddapah basin. Precambrian Res. 2017, 298, 235–251, doi:10.1016/j.precamres.2017.06.004.
61. Pandey, A.; Rao, N.C.; Chakrabarti, R.; Pankaj, P.; Pandit, D.; Pandey, R.; Sahoo, S. Post-collisional calc-alkaline lamprophyres from the Kadiri greenstone belt: Evidence for the Neoarchean convergence-related evolution of the Eastern Dharwar Craton and its schist belts. Lithos 2018, 320, 105–117, doi:10.1016/j.lithos.2018.09.005.
62. Lanjewar, S.; Randive, K. Lamprophyres from the Harohalli dyke swarm in the Halaguru and Mysore areas, Southern India: Implications for backarc basin magmatism. J. Asian Earth Sci. 2018, 157, 329–347, doi:10.1016/j.jseaes.2017.11.031.
63. Choi, E.; Fiorentini, M.L.; Giuliani, A.; Foley, S.F.; Maas, R.; Taylor, W.R. Subduction-related petrogenesis of Late Archean calc-alkaline lamprophyres in the Yilgarn Craton (Western Australia). Precambrian Res. 2020, 338, 105550, doi:10.1016/j.precamres.2019.105550.
64. Carmichael, I.S. The mineralogy and petrology of the volcanic rocks from the Leucite Hills, Wyoming. Contrib. Mineral. Petrol. 1967, 15, 24–66, doi:10.1007/BF01167214.
65. Hwang, P.; Taylor, W.; Rocky, N.; Ramsay, R. Mineralogy, geochemistry and petrogenesis of the Metters Bore No. 1 lamproite pipe, Calwynyardah Field, West Kimberley Province, Western Australia. Miner. Petrol. 1994, 51, 195–226, doi:10.1007/BF01159727.
66. Reddy, T.A.K. Petrography and geochemistry of the Krishna lamproite field, Andhra Pradesh. J. Geol. Soc. India 2003, 61, 131–14.
67. Kravchenko, S. Porphyric alkaline-ultrabasic potassic rocks of the central Tomtor Massif (Arctic Siberia): Carbonatized lamproites. Russ. Geol. Geophys. 2003, 44, 906–918.
68. Rao, N.C.; Gibson, S.; Pyle, D.; Dickin, A. Petrogenesis of Proterozoic lamproites and kimberlites from the Cuddapah Basin and Dharwar craton, southern India. J. Petrol. 2004, 45, 907–948, doi:10.1093/petrology/egg116.
69. Rao, N.C.; Kamde, G.; Kale, H.; Dongre, A. Petrogenesis of the Mesoproterozoic lamproites from the Krishna valley, eastern Dharwar craton, southern India. Precambrian Res. 2010, 177, 103–130, doi:10.1016/j.precamres.2009.11.006.
70. Rukhlov, A.S.; Blinova, A.I.; Pawlowicz, J.G. Geochemistry, mineralogy and petrology of the Eocene potassic magmatism from the Milk River area, southern Alberta, and Sweet Grass Hills, northern Montana. Chem. Geol. 2013, 353, 280–302, doi:10.1016/j.chemgeo.2012.10.024.
71. Shaikh, A.M.; Patel, S.; Ravi, S.; Behera, D.; Pruseth, K. Mineralogy of the TK1 and TK4 ‘kimberlites’ in the Timmasamudram cluster, Wajrakarur Kimberlite Field, India: Implications for lamproite magmatism in a field of kimberlites and ultramafic lamprophyres. Chem. Geol. 2017, 455, 208–230, doi:10.1016/j.chemgeo.2016.10.030.
72. Talukdar, D.; Pandey, A.; Rao, N.C.; Kumar, A.; Pandit, D.; Belyatsky, B.; Lehmann, B. Petrology and geochemistry of the Mesoproterozoic Vattikod lamproites, Eastern Dharwar Craton, southern India: Evidence for multiple enrichment of sub-continental lithospheric mantle and links with amalgamation and break-up of the Columbia supercontinent. Contrib. Mineral. Petrol. 2018, 173, 67, doi:10.1007/s00410-018-1493-y.
73. Prelević, D.; Akal, C.; Foley, S.; Romer, R.; Stracke, A.; Van Den Bogaard, P. Ultrapotassic mafic rocks as geochemical proxies for post-collisional dynamics of orogenic lithospheric mantle: The case of southwestern Anatolia, Turkey. J. Petrol. 2012, 53, 1019–1055, doi:10.1093/petrology/egs008.
74. Çoban, H.; Flower, M.F. Mineral phase compositions in silica-undersaturated ‘leucite’ lamproites from the Bucak area, Isparta, SW Turkey. Lithos 2006, 89, 275–299, doi:10.1016/j.lithos.2005.12.006.
75. Akal, C. K-richterite–olivine–phlogopite–diopside–sanidine lamproites from the Afyon volcanic province, Turkey. Geol. Mag. 2008, 145, 570–585, doi:10.1017/S0016756808004536.
76. Tappe, S.; Foley, S.F.; Stracke, A.; Romer, R.L.; Kjarsgaard, B.A.; Heaman, L.M.; Joyce, N. Craton reactivation on the Labrador Sea margins: 40Ar/39Ar age and Sr–Nd–Hf–Pb isotope constraints from alkaline and carbonatite intrusives. Earth Planet. Sci. Lett. 2007, 256, 433–454, doi:10.1016/j.epsl.2007.01.036.
77. Nikolenko, E.; Afanas’ev, V.; Pokhilenko, N. Garnets of crustal parageneses in alluvial deposits of the eastern Siberian Platform: Genesis and search significance. Russ. Geol. Geophys. 2008, 49, 655–666, doi:10.1016/j.rgg.2007.07.006.
78. Tychkov, N.; Pokhilenko, N.; Kuligin, S.; Malygina, E. Composition and origin of peculiar pyropes from lherzolites: Evidence for the evolution of the lithospheric mantle of the Siberian Platform. Russ. Geol. Geophys. 2008, 49, 225–239, doi:10.1016/j.rgg.2007.11.009.
79. Sobolev, N.; Lavrent’ev, Y.; Pospelova, L.; Sobolev, E. Chrome pyropes from the diamonds of Yakutia. Dokl. Akad. Nauk Sssr 1969, 189, 162–165.
80. Schulze, D.J. A classification scheme for mantle-derived garnets in kimberlite: A tool for investigating the mantle and exploring for diamonds. Lithos 2003, 71, 195–213, doi:10.1016/S0024-4937(03)00113-0.
81. Sobolev, N. On mineralogical criteria of a diamond potential of kimberlites. Geol. I Geofiz. 1971, 12, 70–78.
82. Kampata, M.; Moreau, J.; Hertogen, J.; Demaiffe, D.; Condliffe, E.; Mvuemba, N. Megacrysts and ultramafic xenoliths from Kundelungu kimberlites (Shaba, Zaire). Mineral. Mag. 1995, 59, 661–676.
83. Robles-Cruz, S.E.; Watangua, M.; Isidoro, L.; Melgarejo, J.C.; Galí, S.; Olimpio, A. Contrasting compositions and textures of ilmenite in the Catoca kimberlite, Angola, and implications in exploration for diamond. Lithos 2009, 112, 966–975, doi:10.1016/j.lithos.2009.05.040.
84. Nikolenko, E.; Afanas’ev, V.; Pokhilenko, N. Peculiarities of the composition of zoned picroilmenites from the Massadou field (Giunea) and Dachnaya pipe (Yakutia) kimberlites. Dokl. Earth. Sci. 2010, 434, 1386, doi:10.1134/S1028334X10100223.
85. Foley, S.; Venturelli, G.; Green, D.; Toscani, L. The ultrapotassic rocks: Characteristics, classification, and constraints for petrogenetic models. Earth-Sci. Rev. 1987, 24, 81–134, doi:10.1016/0012-8252(87)90001-8.
86. Irvine, T.; Baragar, W. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. 1971, 8, 523–548, doi:10.1139/e71-055.
87. Kostrovitsky, S.; Morikiyo, T.; Serov, I.; Yakovlev, D.; Amirzhanov, A. Isotope-geochemical systematics of kimberlites and related rocks from the Siberian Platform. Russ. Geol. Geophys. 2007, 48, 272–290, doi:10.1016/j.rgg.2007.02.011.
88. Mirnejad, H.; Bell, K. Origin and source evolution of the Leucite Hills lamproites: Evidence from Sr–Nd– Pb–O isotopic compositions. J. Petrol. 2006, 47, 2463–2489, doi:10.1093/petrology/egl051.
89. Chen, Y.; Yao, S.; Pan, Y. Geochemistry of lamprophyres at the Daping gold deposit, Yunnan Province, China: Constraints on the timing of gold mineralization and evidence for mantle convection in the eastern Tibetan Plateau. J. Asian Earth Sci. 2014, 93, 129–145, doi:10.1016/j.jseaes.2014.07.033.
90. Chen, B.; Zhai, M. Geochemistry of late Mesozoic lamprophyre dykes from the Taihang Mountains, north China, and implications for the sub-continental lithospheric mantle. Geol. Mag. 2003, 140, 87–93, doi:10.1017/S0016756802007124.
91. Wyman, D.; Ayer, J.; Conceição, R.; Sage, R. Mantle processes in an Archean orogen: Evidence from 2.67 Ga diamond-bearing lamprophyres and xenoliths. Lithos 2006, 89, 300–328, doi:10.1016/j.lithos.2005.12.005.
92. Wyman, D.; Kerrich, R. Archean lamprophyre dikes of the Superior Province, Canada: Distribution, petrology, and geochemical characteristics. J. Goephys. Res.-Sol. Ea. 1989, 94, 4667–4696, doi:10.1029/JB094iB04p04667.
93. Leat, P.; Thompson, R.; Morrison, M.; Hendry, G.; Dickin, A. Silicic magmas derived by fractional crystallization from Miocene minette, Elkhead Mountains, Colorado. Mineral. Mag. 1988, 52, 577–585.
94. Sun, S.-S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. J. Geol. Soc. Lond. 1989, 42, 313–345, doi:10.1144/GSL.SP.1989.042.01.19.
95. McDonough, W.F.; Sun, S.-S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253, doi:10.1016/0009-2541(94)00140-4.
96. Kempton, P.; Fitton, J.; Hawkesworth, C.; Ormerod, D. Isotopic and trace element constraints on the composition and evolution of the lithosphere beneath the southwestern United States. J. Goephys. Res.-Sol. Ea. 1991, 96, 13713–13735, doi:10.1029/91JB00373.
97. Wannamaker, P.E.; Hulen, J.B.; Heizler, M.T. Early Miocene lamproite from the Colorado Plateau tectonic province, southeastern Utah, USA. J. Volcanol. Geotherm. Res. 2000, 96, 175–190, doi:10.1016/S0377-0273(99)00146-8.
98. Schleicher, H.; Lippolt, H.J.; Raczek, I. Rb-Sr systematics of Permian volcanites in the Schwarzwald (SW-Germany). Contrib. Mineral. Petrol. 1983, 84, 281–291, doi:10.1007/BF00371292.
99. Wright, J. The phonolite-trachyte spectrum. Lithos 1971, 4, 1–5, doi:10.1016/0024-4937(71)90110-1.
100. Ehrenberg, S.N. Garnetiferous ultramafic inclusions in minette from the Navajo volcanic field. Mantle Sample Incl. Kimberl. Other Volcan. 1979, 16, 330–344, doi:10.1029/SP016p0330.
101. Panina, L. Low-titanium Aldan lamproites (Siberia): Melt inclusions in minerals. Russ. Geol. Geophys. 1997, 38, 118–127.
102. Vladykin, N. Geochemistry and genesis of lamproites of the Aldan Shield. In Proceedings of the International Kimberlite Conference: Extended Abstracts, Novosibirsk, Russia, 19 September, 1995; Volume 6, pp. 660–662.
103. Nikolenko, E.I.; Sharygin, I.S.; Alifirova, T.A.; Korsakov, A.V.; Zelenovskiy, P.S.; Shur, V.Y. Graphite-bearing mineral assemblages in the mantle beneath Central Aldan superterrane of North Asian craton: Combined confocal micro-Raman and electron microprobe characterization. J. Raman Spectrosc. 2017, 48, 1597–1605.
104. Ashchepkov, I.; Vladykin, N.; Saprykin, A.; Khmelnikova, O.; Anoshin, G. Composition and thermal structure of the mantle in peripheral parts of Siberian craton. Rev. Bras. Geo. 2001, 31, 527–536.
105. Le Maitre, R.; Streckeisen, A.; Zanettin, B.; Le Bas, M.; Bonin, B.; Bateman, P. Igneous Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks; Cambridge University Press: Cambridge, UK, 2005.
106. Vasilenko, V.; Zinchuk, N.; Kuznetsova, L. Petrochemical Models for Diamond Deposits in Yakutia; Nauka Novosibirsk: Moscow, Russia, 1997. (In Russian)
107. Mitchell, R.H.; Giuliani, A.; O’Brien, H. What is a kimberlite? Petrology and mineralogy of hypabyssal kimberlites. Elem. Int. Mag. Mineral. Geochem. Petrol. 2019, 15, 381–386, doi:10.2138/gselements.15.6.381.
108. Cox, K.G. The Interpretation of Igneous Rocks; Springer Science & Business Media: Berlin, Germany, 2013.
109. Woolley, A.R.; Bergman, S.C.; Edgar, A.D.; Le Bas, M.J.; Mitchell, R.H.; Rock, N.M.; Scott Smith, B.H. Classification of lamprophyres, lamproites, kimberlites, and the kalsilitic, melilitic, and leucitic rocks. Can. Mineral. 1996, 34, 175–186.
110. Rock, N.; Bowes, D.; Wright, A. Lamprophyres; Blackie: Glasgow, UK, 1991.
111. Mitchell, R.H. Kimberlites: Mineralogy, Geochemistry, and Petrology; Springer Science & Business Media:: Berlin, Germany, 2013.
112. Nemec, D. Origin of syenite porphyries in the Central Bohemian Pluton by magma mixing. Neues Jahrb. Mineral. Abh. 1988, 159, 59–71.
113. Zliao, D.; Smitn, D.; Yang, J.; Deng, C.; Huang, Y. The Yinniugou lamproites in datong, Northern Shanxi province, China: First occurrence in the North China craton. In Proceedings of the Mid-Continent Diamonds: GAC-MAC Symposium Volume, Edmonton, Alberta, 17–18 May 1993; p. 139.
114. Sharygin, I.S.; Nikolenko, E.I.; Lobov, K.V. Carbonate inclusions in Cr-pyropes derived from the mantle beneath Central Aldan superterrane of Siberian craton. In Proceedings of the International Kimberlite Conference: Extended Abstracts, Gaborone, Botswana, 18–22 September, 2017; Volume 11, pp. 1–3.
115. Exley, R.; Smith, J. The role of apatite in mantle enrichment processes and in the petrogenesis of some alkali basalt suites. Geochim. Cosmochim. Acta 1982, 46, 1375–1384, doi:10.1016/0016-7037(82)90273-3.
116. Smith, B.S.; Skinner, E. A new look at Prairie Creek, Arkansas. In Developments in Petrology; Elsevier: Amsterdam, The Netherlands, 1984; Volume 11, pp. 255–283.
117. Soltys, A.; Giuliani, A.; Phillips, D. Apatite compositions and groundmass mineralogy record divergent melt/fluid evolution trajectories in coherent kimberlites caused by differing emplacement mechanisms. Contrib. Mineral. Petrol. 2020, 175, doi:10.1007/s00410-020-01686-0.
118. Dalton, H.; Giuliani, A.; O’Brien, H.; Phillips, D.; Hergt, J.; Maas, R. Petrogenesis of a hybrid cluster of evolved kimberlites and ultramafic lamprophyres in the Kuusamo area, Finland. J. Petrol. 2019, 60, 2025– 2050, doi:10.1093/petrology/egz062.
119. Bergman, S.C. Lamproites and other potassium-rich igneous rocks: A review of their occurrence, mineralogy and geochemistry. GSL SP 1987, 30, 103–190, doi:10.1144/GSL.SP.1987.030.01.08.
120. Rock, N.M. The nature and origin of lamprophyres: An overview. J. Geol. Soc. Lond. 1987, 30, 191–226, doi:10.1144/GSL.SP.1987.030.01.09.
121. Vladykin, N. Potassium alkaline lamproite-carbonatite complexes: Petrology, genesis, and ore reserves. Russ. Geol. Geophys. 2009, 50, 1119–1128, doi:10.1016/j.rgg.2009.11.010.
122. Doroshkevich, A.G.; Prokopyev, I.R.; Izokh, A.E.; Klemd, R.; Ponomarchuk, A.V.; Nikolaeva, I.V.; Vladykin, N.V. Isotopic and trace element geochemistry of the Seligdar magnesiocarbonatites (South Yakutia, Russia): Insights regarding the mantle evolution beneath the Aldan-Stanovoy shield. J. Asian Earth Sci. 2018, 154, 354–368, doi:10.1016/j.jseaes.2017.12.030.
123. Scambelluri, M.; Van Roermund, H.L.; Pettke, T. Mantle wedge peridotites: Fossil reservoirs of deep subduction zone processes: Inferences from high and ultrahigh-pressure rocks from Bardane (Western Norway) and Ulten (Italian Alps). Lithos 2010, 120, 186–201.
124. Bebout, G.E. Metasomatism in subduction zones of subducted oceanic slabs, mantle wedges, and the slab-mantle interface. In Metasomatism and the Chemical Transformation of Rock; Springer: Berlin, Germany, 2013; pp. 289–349.
125. Plank, T. Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. JPET 2005, 46, 921–944, doi:10.1093/petrology/egi005.
126. Pearce, J.A. Role of the sub-continental lithosphere in magma genesis at active continental margins. In Continental Basalts and Mantle Xenoliths; Shiva Publications: Nantwich, UK, 1983; pp. 230–249.
127. Rudnick, R.; Gao, S. Composition of the continental crust. Crust 2003, 3, 1–64, doi:10.1016/j.lithos.2010.03.001.
128. Pearce, J. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 2008, 14–48, doi:10.1016/j.lithos.2007.06.016.
129. Turner, S.; Arnaud, N.; Liu, J.; Rogers, N.; Hawkesworth, C.; Harris, N.; Kelley, S.; Van Calsteren, P.; Deng, W. Post-collision, shoshonitic volcanism on the Tibetan Plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts. J. Petrol. 1996, 37, 45–71, doi:10.1093/petrology/37.1.45.
130. Williams, H.M.; Turner, S.P.; Pearce, J.A.; Kelley, S.; Harris, N. Nature of the source regions for post-collisional, potassic magmatism in southern and northern Tibet from geochemical variations and inverse trace element modelling. J. Petrol. 2004, 45, 555–607, doi:10.1093/petrology/egg094.
131. Plank, T. The Chemical Composition of Subducting Sediments; Elsevier: Amsterdam, The Netherlands, 2014.
132. Guo, Z.; Wilson, M. The Himalayan leucogranites: Constraints on the nature of their crustal source region and geodynamic setting. Gondwana Res. 2012, 22, 360–376, doi:10.1016/j.gr.2011.07.027.
133. Kepezhinskas, P.; McDermott, F.; Defant, M.J.; Hochstaedter, A.; Drummond, M.S.; Hawkesworth, C.J.; Koloskov, A.; Maury, R.C.; Bellon, H. Trace element and Sr Nd Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis. Geochim. Cosmochim. Acta 1997, 61, 577–600, doi:10.1016/S0016-7037(96)00349-3.
134. Hofmann, A.W. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett. 1988, 90, 297–314, doi:10.1016/0012-821X(88)90132-X.
135. Bulatov, V.; Brey, G.; Girnis, A.; Gerdes, A.; Höfer, H. Carbonated sediment–peridotite interaction and melting at 7.5–12 GPa. Lithos 2014, 200, 368–385, doi:10.1016/j.lithos.2014.05.010.
136. Stalder, R.; Foley, S.; Brey, G.; Horn, I. Mineral-aqueous fluid partitioning of trace elements at 900–1200 C and 3.0–5.7 GPa: New experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism. Geochim. Cosmochim. Acta 1998, 62, 1781–1801, doi:10.1016/S0016-7037(98)00101-X.
137. Anders, E.; Grevesse, N. Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta 1989, 53, 197–214, doi:10.1016/0016-7037(89)90286-X.
138. Gao, Y.; Hou, Z.; Kamber, B.S.; Wei, R.; Meng, X.; Zhao, R. Lamproitic rocks from a continental collision zone: Evidence for recycling of subducted Tethyan oceanic sediments in the mantle beneath southern Tibet. J. Petrol. 2007, 48, 729–752, doi:10.1093/petrology/egl080.
139. Su, H.-M.; Jiang, S.-Y.; Zhang, D.-Y.; Wu, X.-K. Partial melting of subducted sediments produced early Mesozoic calc-alkaline lamprophyres from northern Guangxi Province, South China. Sci. Rep. 2017, doi:10.1038/s41598-017-05228-w.
140. Feldstein, S.N.; Lange, R.A. Pliocene potassic magmas from the Kings River region, Sierra Nevada, California: Evidence for melting of a subduction-modified mantle. J. Petrol. 1999, 40, 1301–1320, doi:10.1093/petroj/40.8.1301.
141. Furman, T.; Graham, D. Erosion of lithospheric mantle beneath the East African Rift system: Geochemical evidence from the Kivu volcanic province. In Developments in Geotectonics; Elsevier: Amsterdam, The Netherlands, 1999; Volume 24, pp. 237–262.
142. Guo, Z.; Hertogen, J.; Liu, J.; Pasteels, P.; Boven, A.; Punzalan, L.; He, H.; Luo, X.; Zhang, W. Potassic magmatism in western Sichuan and Yunnan provinces, SE Tibet, China: Petrological and geochemical constraints on petrogenesis. J. Petrol. 2004, 46, 33–78, doi:10.1093/petrology/egh061.
143. Konzett, J.; Wirth, R.; Hauzenberger, C.; Whitehouse, M. Two episodes of fluid migration in the Kaapvaal Craton lithospheric mantle associated with Cretaceous kimberlite activity: Evidence from a harzburgite containing a unique assemblage of metasomatic zirconium-phases. Lithos 2013, 182, 165–184, doi:10.1016/j.lithos.2013.10.005.
144. Rezvukhin, D.I.; Malkovets, V.G.; Sharygin, I.S.; Tretiakova, I.G.; Griffin, W.L.; O’Reilly, S.Y. Inclusions of crichtonite-group minerals in Cr-pyropes from the Internatsionalnaya kimberlite pipe, Siberian Craton: Crystal chemistry, parageneses and relationships to mantle metasomatism. Lithos 2018, 308, 181–195, doi:10.1016/j.lithos.2018.02.026.
145. Rezvukhin, D.; Nikolenko, E.; Sharygin, I.; Malkovets, V. Oxide mineral inclusions in Cr-pyropes from the Aldanskaya lamprophyre dyke, Yakutia. In Proceedings of the Magmatism of the Earth and Related Strategic Metal Deposits, Miass, Russia, 4–9 August 2017; pp. 205–208.
146. Alifirova, T.; Rezvukhin, D.; Nikolenko, E.; Pokhilenko, L.; Zelenovskiy, P.; Sharygin, I.; Korsakov, A.; Shur, V. Micro-Raman study of crichtonite group minerals enclosed into mantle garnet. J. Raman Spectrosc. 2020, 51, 1493–1512, doi:10.1002/jrs.5979.
147. Lustrino, M.; Agostini, S.; Chalal, Y.; Fedele, L.; Stagno, V.; Colombi, F.; Bouguerra, A. Exotic lamproites or normal ultrapotassic rocks? The Late Miocene volcanic rocks from Kef Hahouner, NE Algeria, in the frame of the circum-Mediterranean lamproites. J. Volcanol. Geotherm. Res. 2016, 327, 539–553, doi:10.1016/j.jvolgeores.2016.09.021.
148. Mitchell, R.; Smith, C.; Vladykin, N. Isotopic composition of strontium and neodymium in potassic rocks of the Little Murun complex, Aldan Shield, Siberia. Lithos 1994, 32, 243–248, doi:10.1016/0024-4937(94)90042-6.
149. Vladykin, N.; Morikiyo, T.; Miyazaki, T. Sr and Nd isotopes geochemistry of alkaline and carbonatite complexes of Siberia and Mongolia and some geodynamic consequences. In Proceedings of the 5th International Conference “Problems of Sources of Deep Magmatism and Plumes”, Petropavlovsk-Kamchatskiy, Russia, 23 October 2005; pp. 19–37.