Инд. авторы: Palyanova G.A., Sidorov E., Borovikov A.A., Seryotkin Y.V.
Заглавие: Copper-Containing Agates of the Avacha Bay (Eastern Kamchatka, Russia)
Библ. ссылка: Palyanova G.A., Sidorov E., Borovikov A.A., Seryotkin Y.V. Copper-Containing Agates of the Avacha Bay (Eastern Kamchatka, Russia) // MINERALS. - 2020. - Vol.10. - Iss. 12. - Art.1124.
Идентиф-ры: DOI: 10.3390/min10121124; РИНЦ: 45069258; WoS: 000602438200001;
Реферат: eng: The copper-containing agates of the Avacha Bay (Eastern Kamchatka, Russia) have been investigated in this study. Optical microscopy, scanning electron microscopy, electron microprobe analysis, X-ray powder diffraction, Raman spectroscopy, and fluid inclusions were used to investigate the samples. It was found that copper mineralization in agates is represented by native copper, copper sulphides (chalcocite, djurleite, digenite, anilite, yarrowite, rarely chalcopyrite) and cuprite. In addition to copper minerals, sphalerite and native silver were also found in the agates. Native copper is localized in a siliceous matrix in the form of inclusions usually less than 100 microns in size-rarely up to 1 mm-forming dendrites and crystals of a cubic system. Copper sulphides are found in the interstices of chalcedony often cementing the marginal parts of spherule aggregates of silica. In addition, they fill the micro veins, which occupy a cross-cutting position with respect to the concentric bands of chalcedony. The idiomorphic appearance of native copper crystals and clear boundaries with the silica matrix suggest their simultaneous crystallization. Copper sulphides, cuprite, and barite micro veins indicate a later deposition. Raman spectroscopy and X-ray powder diffraction results demonstrated that the Avacha Bay agates contained cristobalite in addition to quartz and moganite. The fluid inclusions study shows that the crystalline quartz in the center of the nodule in agates was formed with the participation of solutions containing a very low salt concentration (<0.3 wt.% NaCl equivalent) at the temperature range 110-50 degrees C and below. The main salt components were CaCl2 and NaCl, with a probable admixture of MgCl2. The copper mineralization in the agates of the Avacha Bay established in the volcanic strata can serve as a direct sign of their metallogenic specialization.
Ключевые слова: ORIGIN; BASALT; GROWTH; MOGANITE; CLASSIFICATION; GENESIS; QUARTZ; genesis; RS; XRD; EPMA; SEM; copper; Russia; Kamchatka; Avacha Bay; agate; inclusions; WATER;
Издано: 2020
Физ. хар-ка: 1124
Цитирование: 1. Tripp, R.B. The mineralogy of Warsaw Formation geodes. Iowa Acad. Sci. Proc. 1959, 66, 350–356.
2. Barsanov, G.P.; Yakovleva, M.E. Mineralogy, macro-and micromorphological features of agates. New Data Miner. 1982, 30, 3–26. (In Russian)
3. Godovikov, A.A.; Ripinen, O.I.; Motorin, S.G. Agates; Nedra: Moscow, Russia, 1987; p. 368. (In Russian)
4. Goncharov, V.I.; Gorodinsky, M.E.; Pavlov, G.F.; Savva, N.E.; Fadeev, A.P.; Vartanov, V.V.; Gunchenko, E.V. Chalcedony of North-East of the USSR; Science: Moscow, Russia, 1987; p. 192. (In Russian)
5. Heaney, P.J. A proposed mechanism for the growth of chalcedony. Am. Min. 1993, 115, 66–74. [CrossRef]
6. Graetsch, H. Structural characteristics of opaline and microcrystalline silica minerals. In Silica. Rev. Mineral. 1994, 29, 209–232.
7. Götze, J.; Tichomirow, M.; Fuchs, H.; Pilot, J.; Sharp, Z.D. Chemistry of agates: A trace element and stable isotope study. Chem. Geol. 2001, 523–541. [CrossRef]
8. Götze, J.; Möckel, R.; Pan, Y. Mineralogy, geochemistry and genesis of agate—A review. Minerals 2020, 10, 1037. [CrossRef]
9. Moxon, T.; Ríos, S. Moganite and water content as a function of age in agate: An XRD and thermogravimetric study. Eur. J. Mineral 2004, 16, 269–278. [CrossRef]
10. Moxon, T. Studies on Agate: Microscopy, Spectroscopy, Growth, High Temperature and Possible Origin; Terra Publications: Doncaster, UK, 2009; p. 96.
11. Lyashenko, E.A. Agates of Russia. Mineral. Alm. 2010, 15, 6–27. (In Russian)
12. Spiridonov, E.M.; Ladygin, V.M.; Yanakieva, D.Y.; Frolova, J.V.; Semikolennykh, E.S. Agates in metavolcanics. Bulletin of the Russian Federal Property Fund. 2014. Available online: https://www.rfbr.ru/rffi/ru/bulletin/o_ 1923809#8 (accessed on 22 October 2020).
13. Ottens, B.; Götze, J.; Schuster, R.; Krenn, K.; Hauzenberger, C.; Zsolt, B.; Vennemann, T. Exceptional multi-stage mineralization of secondary minerals in cavities of flood basalts from the Deccan Volcanic Province, India. Minerals 2019, 1019, 351. [CrossRef]
14. Gliozzo, E. Variations on the silica theme: Classification and provenance from Pliny to current supplies. EMU Notes Mineral. 2019, 2, 13–85.
15. Pršek, J.; Dumańska-Słowik, M.; Powolny, T.; Natkaniec-Nowak, L.; Toboła, T.; Zych, D.; Skrepnicka, D. Agates from Western Atlas (Morocco)—Constraints from mineralogical and microtextural characteristics. Minerals 2020, 10, 198. [CrossRef]
16. Moxon, T. A re-examination of water in agate and its bearing on the agate genesis enigma. Min. Mag. 2017, 81, 1223–1244. [CrossRef]
17. Zhang, X.; Ji, L.; He, X. Gemological characteristics and origin of the Zhanguohong agate from Beipiao, Liaoning province, China: A combined microscopic, X-ray diffraction, and Raman spectroscopic study. Minerals 2020, 10, 401. [CrossRef]
18. Yusupov, S.S. Thermobarogeochemical Conditions for the Formation of Agate Deposits in the Urals and Kazakhstan. In Questions of Mineralogy, Geochemistry and Genesis of Minerals of the Southern Urals; Bashk. Prince Publishing House: Ufa, Russia, 1982; pp. 92–99.
19. Rosemeyer, T. The Kearsarge copper-bearing amygdaloidal lode, Houghton and Keweenaw countries, Michigan. Rocks Miner. 2007, 82, 276–297. [CrossRef]
20. Rosemeyer, T. A spectacular find of amygdaloidal agates with native copper inclusions from Michigan’s Copper Country. Rocks Miner. 2001, 76, 403. [CrossRef]
21. Rosemeyer, T. Copper-banded Agates from the Kearsarge Copper-bearing Amygdaloidal Lode, Houghton County, Michigan. Rocks Miner. 2012, 87, 352–365. [CrossRef]
22. Radko, V.A. Agates, Carnelian, Jasperoids of Norilsk; GeoKniga: St. Petersburg, Russia, 2013; p. 128.
23. Dumańska-Słowik, M.; Natkaniec-Nowak, L.; Kotarba, M.J.; Sikorska, M.; Rzymełka, J.A.; Łoboda, A.; Gaweł, A. Mineralogical and geochemical characterization of the “bituminous” agates from Nowy Kościol Lower Silesia. N. Jb. Miner Mh. 2008, 184, 255–268. [CrossRef]
24. Nezafati, N.; Momenzadeh, M.; Pernicka, E. Darhand Copper Occurrence: An Example of Michigan-Type Native Copper Deposits in Central Iran. In Mineral Deposit Research: Meeting the Global Challenge; Mao, J., Bierlein, F.P., Eds.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2005; Volume 1, pp. 165–166.
25. Krawczyński, W. Native copper in agates from Rudno near Krzeszowice. Mineral. Pol. 1995, 26, 27–32.
26. Dumańska-Słowik, M.; Natkaniec-Nowak, L.; Weselucha-Birczyńska, A.; Gaweł, A.; Lankosz, M.; Wróbel, P. Agates from Sidi Rahal, in the Atlas Mountains of Morocco: Gemmological characteristics and proposed origin. Gems Gemol. 2013, 49, 148–159. [CrossRef]
27. Natkaniec-Nowak, L.; Dumańska-Słowik, M.; Pršek, J.; Lankosz, M.; Wróbel, P.; Gaweł, A.; Kowalczyk, J.; Kocemba, J. Agates from Kerrouchen (the Atlas Mountains, Morocco): Textural types and their gemological characteristics. Minerals 2016, 6, 77. [CrossRef]
28. Powolny, T.; Dumańska-Słowik, M.; Sikorska-Jaworowska, M.; Wójcik-Bania, M. Agate mineralization in spilitized Permian volcanics from “Borówno” quarry (Lower Silesia, Poland)—Microtextural, mineralogical, and geochemical constraints. Ore Geol. Rev. 2019, 114, 103–130. [CrossRef]
29. Sidorov, E.G.; Kutyev, F.T.; Anikin, P.P. Native Copper Agates of the Kuril-Kamchatka Province. In Native Metals in Postmagmatic Formations; Yakutsk Publishing House: Yakutsk, Russia, 1985; pp. 72–73. (In Russian)
30. Sheymovich, V.S. The State Geological Map of the Russian Federation, Scale 1:200,000; South-Kamchatka Series. Sheets N_57_XXI (Northern Koryaks), N_57_XXVII (Petropavlovsk-Kamchatsky), N_57_XXXIII (Mutnovskaya hill); Explanatory Note: Moscow, Russia, 2000; p. 302. (In Russian)
31. Savelyev, D.P.; Palechek, T.N.; Portnyagin, M.V. Campanian oceanic siliceous-volcanogenic deposits in the basement of the Eastern Kamchatka volcanic belt. Pac. Geol. 2005, 24, 46–54. (In Russian)
32. Frolova, Y.V.; Blyumkina, M.E.; Bolshakov, I.E.; Ermolinsky, A.B. Comparative Petrophysical Characteristics of Volcanic Rocks of the Cretaceous and Miocene Age of Avacha Bay. Volcanism and Related Processes; Materials of the XXIII Annual Scientific Conference Dedicated to the Volcanologist’s Day; IViS: Petropavlovsk-Kamchatsky, Russia, 2020; pp. 68–71.
33. Saveliev, D.P. A scattering of agates at Cape Vertikalny, Eastern Kamchatka. Bull. Kamchatka Reg. Assoc. Educ. Sci. Cent. Ser. Earth Sci. 2020, 47, 3. [CrossRef]
34. The Powder Diffraction File PDF-4þ; International Centre for Diffraction Data: Newtown Square, PA, USA, 2009.
35. Borisenko, A.S. Analysis of the Salt Composition of solutions of gas-liquid inclusions in minerals by cryometry. In The Use of Methods of Thermobarogeochemistry in the Search and Study of Ore Deposits; Laverova, N.P., Ed.; Nedra: Moscow, Russia, 1982; pp. 37–47. (In Russian)
36. Roedder, E. Fluid inclusions. Rev. Mineral. 1984, 12, 79–108.
37. Bodnar, R.J.; Vityk, M.O. Interpretation of microthermometric data for NaCl–H2O fluid inclusions. In Fluid Inclusions in Minerals: Methods and Applications; De Vivo, B., Frezzotti, M.L., Eds.; Virginia Polytechnic Inst State Univ: Blacksburg, VA, USA, 1994; pp. 117–131.
38. Dong, G.; Morrison, G.; Jaireth, S. Quartz textures in epithermal veins, Queensland; classification, origin, and implication. Econ. Geol. 1995, 90, 1841–1856. [CrossRef]
39. Lafuente, B.; Downs, R.T.; Yang, H.; Stone, N. The power of databases: The RRUFF project. In Highlights in Mineralogical Crystallography; Armbruster, T., Danisi, R.M., Eds.; W. De Gruyter: Berlin, Germany, 2015; pp. 1–30.
40. Götze, J.; Nasdala, L.; Kleeberg, R.; Wenzel, M. Occurrence and distribution of “moganite” in agate/chalcedony: A combined micro-Raman, Rietveld, and cathodoluminescence study. Contrib. Mineral. Petrol. 1998, 133, 96–105. [CrossRef]
41. Bodnar, R.J. Interpretation of data from aqueous-electrolyte fluid inclusions. In Fluid Inclusions: Analysis and Interpretation; Samson, I., Anderson, A., Marshall, D., Eds.; Short Course Series; Mineralogical Association of Canada: Ottawa, ON, Canada, 2003; pp. 81–100.
42. Goldstein, R.H.; Reynolds, T.J. Systematics of Fluid Inclusions in Diagenetic Minerals; SEPM Short Course: Tulsa, OK, USA, 1994; Volume 31, p. 199.
43. Hardie, L.A. Origin of CaCl2 brines by basalt-seawater interactions insights provided by some simple mass balance calculations. Contrib. Mineral. Petrol. 1983, 82, 205–213. [CrossRef]
44. Heaney, P.J.; Post, J.E. The Widespread Distribution of a Noel Silica Polymorph in Microcrystalline Quartz Varieties. Science 1992, 255, 441–443. [CrossRef]
45. Moxon, T.; Carpenter, M.A. Crystallite growth kinetics in nanocrystalline quartz (agate and chalcedony). Miner. Mag. 2009, 73, 551–568. [CrossRef]
46. Barton, P.B., Jr.; Skinner, R.J. Sulphide mineral stabilities. In Geochemistry of Hydrothermal Ore Deposits; Barnes, H.L., Ed.; Wiley: New York, NY, USA, 1979; pp. 278–403.
47. Cornwall, H.R. A summary of ideas on the origin of native copper deposits. Econ. Geol. 1956, 51, 615–631. [CrossRef]
48. Moxon, T.; Palyanova, G. Agate genesis: A continuing enigma. Minerals 2020, 10, 953. [CrossRef]
49. Gilg, H.A.; Morteani, G.; Kostitsyn, Y.; Preinfalk, C.; Gatter, I.; Strieder, A.J. Genesis of amethyst geodes in basaltic rocks of the Serra Geral Formation (Ametista do Sul, Rio Grande do Sul, Brazil): A fluid inclusion, REE, oxygen, carbon, and Sr isotope study on basalt, quartz, and calcite. Miner. Depos. 2003, 38, 1009–1025. [CrossRef]
50. Stoiber, R.E.; Davison, E.S. Amygdule mineral zoning in the Portage Lake lava series, Michigan copper district. Econ. Geol. 1959, 54, 1444–1460. [CrossRef]
51. Bornhorst, T.J. Tectonic context of native copper deposits of the North American Midcontinent rift system. Geol. Soc. Am. Spec. Pap. 1997, 312, 127–136.
52. Brown, A.C. Genesis of native copper lodes in the Keweenaw district, northern Michigan: A hybrid evolved meteoric and metamorphic model. Econ. Geol. 2006, 101, 1437–1444. [CrossRef]
53. Taylor, S.R. Abundance of chemical elements in the continental crust: A new table. Geochim. Cosmochim. Acta 1964, 28, 1273–1285. [CrossRef]
54. Savchuk, Y.S.; Volkov, A.V.; Aristov, V.V. Cupriferous basalts of the Northern Urals. Litosfera 2017, 17, 133–144.