Инд. авторы: Kiseleva O.N., Airiyants E.V., Belyanin D.K., Zhmodik S.M., Ashchepkov I.V., Kovalev S.A.
Заглавие: Multistage magmatism in ophiolites and associated metavolcanites of the ulan-sar’dag mélange (east sayan, russia)
Библ. ссылка: Kiseleva O.N., Airiyants E.V., Belyanin D.K., Zhmodik S.M., Ashchepkov I.V., Kovalev S.A. Multistage magmatism in ophiolites and associated metavolcanites of the ulan-sar’dag mélange (east sayan, russia) // Minerals. - 2020. - Vol.10. - Iss. 12. - P.1-29. - EISSN 2075-163X.
Идентиф-ры: DOI: 10.3390/min10121077; РИНЦ: 45115691;
Реферат: eng: We present new whole-rock major and trace element, mineral chemistry, and U-Pb isotope data for the Ulan-Sar’dag mélange, including different lithostratigraphic units: Ophiolitic, mafic rocks and metavolcanites. The Ulan-Sar’dag mélange comprises of a seafloor and island-arc system of remnants of the Paleo-Asian ocean. Detailed studies on the magmatic rocks led to the discovery of a rock association that possesses differing geochemical signatures within the studied area. The Ulan-Sar’dag mélange includes blocks of mantle peridotite, podiform chromitite, cumulate rocks, deep-water siliceous chert, and metavolcanic rocks of the Ilchir suite. The ophiolitic unit shows overturned pseudostratigraphy. The nappe of mantle tectonites is thrusted over the volcanicsedimentary sequence of the Ilchir suite. The metavolcanic series consist of basic, intermediate, and alkaline rocks. The mantle peridotite and cumulate rocks formed in a supra-subduction zone environment. The mafic and metavolcanic rocks belong to the following geochemical types: (1) Ensimatic island-arc boninites; (2) island-arc calc-alkaline andesitic basalts, andesites, and dacites; (3) tholeiitic basalts of mid-ocean ridges; and (4) oceanic island basalts. U–Pb dating of zircons from the trachyandesite, belonging to the second geochemical type, yielded a date of 833 ± 4 Ma which is interpreted as the crystallization age during mature island-arc and intra-arc rifting stages. The possible influence of later plume magmatic-hydrothermal activities led to the appearance of moderately alkaline igneous rocks (monzogabbro, trachybasalt, trachyandesite, subalkaline gabbro, and metasomatized peridotites) with a significant subduction geochemical fingerprint.
Ключевые слова: volcanic rocks; ophiolite; geochemistry; subduction; Plume magmatic-hydrothermal activity;
Издано: 2020
Физ. хар-ка: с.1-29
Цитирование: 1. Dobretsov, N.L. (Ed.) Geology and Metamorphism of East Sayan; Nauka Publ. House: Novosibirsk, Russia, 1988; p. 190. (In Russian)
2. Sengör, A.M.C.; Natal’in, B.A. Palaeotectonics of Asia: Fragments of a synthesis. In The Tectonic Evolution of Asia; Yin, A., Harrison, T.M., Eds.; Cambridge University Press: Cambridge, UK, 1996; pp. 486–640.
3. Torsvik, T.H.; Smethurst, M.A.; Meert, J.G.; Van der Voo, R.; McKerrow, W.S.; Brasier, M.D.; Sturt, B.A.; Walderhaug, H.J. Continental break-up and collision in the Neoproterozoic and Paleozoic—A tale of Baltica and Laurentia. Earth Sci. Rev. 1996, 40, 229–258.
4. Kuzmichev, A.B.; Sklyarov, E.V.; Letnikova, E.F.; Gladkochub, D.F.; Khain, E.V. Neoproterozoic ophiolite and sedimentary sequences of the Tuva-Mongolian superterrane. In Assembly and breakup of Rodinia supercontinent: Evidence from South Siberia; Sklyarov, E.V., Ed.; Guide-Book and Abstracts of the IGCP-440 Workshop; Irkutsk, Russia; 2001; pp. 71–92.
5. Dobretsov, N.L.; Buslov, M.M.; Vernikovsky, V.A. Neoproterozoic to Early Ordovician evolution of the Paleo-Asian ocean: Implications to the break-up of Rodinia. Gondwana Res. 2003, 6, 143–159.
6. Zhmodik, S.M.; Postnikov, A.A.; Buslov, M.M.; Mironov, A.G. Geodynamics of the Sayan-Baikal-Muya accretion-collision belt in the Neoproterozoic-early Paleozoic and regularities of the formation and localization of precious-metal mineralization. Russ. Geol. Geophys. 2006, 1, 183–198.
7. Windley, B.F.; Alexeiev, D.; Xiao, W.J.; Kröner, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. Lond. 2007, 164, 31–47.
8. Dobretsov, N.L.; Konnikov, E.G.; Dobretsov, N.N. Precambrian ophiolitic belts of Southern Siberia (Russia) and their metallogeny. Precambrian Res. 1992, 58, 427–446, doi:10.1016/0301-9268(92)90128-B.
9. Sklyarov, E.V.; Gladkochub, D.P.; Mazukabzov, A.M.; Men’shagin, Y.V.; Konstantinov, K.M.; Watanabe, T. Dike swarms of southern flank of Siberian craton—Indicators of Rodinia supercontinent breakup. Geotektonika 2000, 6, 59–70.
10. Buslov, M.M.; Saphonova, I.Y.; Watanabe, T.; Obut, O.T.; Fujiwara, Y.; Iwata, K.; Semakov, N.N.; Sugai, Y.; Smirnova, L.V.; Kazansky, A.Y. Evolution of the Paleo-Asian ocean (Altai–Sayan region, Central Asia) and collision of possible Gondwana-derived terranes with the southern marginal part of the Siberian continent. Geosci. J. 2001, 5, 203–224.
11. Meert, J.G.; Torsvik, T.H. The making and unmaking of a supercontinent: Rodinia revisited. Tectonophysics 2003, 375, 261–288.
12. Yarmolyuk, V.V.; Kovalenko, V.I. Late Riphean breakup between Siberia and Laurentia: Evidence from intraplate magmatism. Dokl. Earth Sci. 2001, 379, 525–552.
13. Yarmolyuk, V.V.; Kovalenko, V.I.; Kozlovsky, A.M.; Kudryashova, E.A.; Anisimova, I.V.; Sal’nikova, E.B.; Kovach, V.P.; Kozakov, I.K.; Kotov, A.B.; Plotkina, Y.V.; et al. Late Riphean alkali granites of the Zabhan microcontinent: Evidence for the timing of Rodinia breakup and formation of microcontinents in the Central Asian fold belt. Dokl. Earth Sci. 2008, 420, 583–588.
14. Xiao, W.J.; Han, C.M.; Yuan, C.; Sun, M.; Lin, S.F.; Chen, H.L.; Li, Z.L.; Li, J.L.; Sun, S. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia. J. Asian Earth Sci. 2008, 32, 102–117.
15. Xiao, W.J.; Kusky, T.M. Geodynamic processes and metallogenesis of the Central Asian and related orogenic belts: Introduction. Gondwana Res. 2009, 16, 167–169.
16. Xiao, W.J.; Huang, B.C.; Han, C.M.; Sun, S.; Li, J.L. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Res. 2010, 18, 253–273.
17. Dobretsov, N.L.; Buslov, M.M.; Safonova, I.Y.; Kokh, D.A. Fragments of oceanic islands in the Kurai and Katun’ accretionary wedges of Gorny Altai. Russ. Geol. Geophys. 2004, 45, 1325–1348.
18. Badarch, G.; Cunningham, W.D.; Windley, B.F. A new terrane subdivision for Mongolia: Implications for the Phanerozoic crustal growth of Central Asia. J. Asian Earth Sci. 2002, 21, 87–110.
19. Belichenko, V.G.; Letnikova, E.E.; Geletii, N.K. Geochemical features of carbonate sediments in the covers of the Tuva-Mongol microcontinent. Trans. Russ. Acad. Sci. 1999, 364, 80–83.
20. Letnikova, E.F.; Geletii, N.K.; Sklyarov, E.V. Lithological and Geochemical Features of Carbonate Rocks in the Sedimentary Cover of the Gargan Terrain, Southeastern East Sayan. Gondwana Res. 2001, 4, 680.
21. Kuzmichev, A.B.; Bibikova, E.V.; Zhuravlev, D.Z. Neoproterozoic (~800 Ma) orogeny in the Tuva– Mongolia Massif (Siberia): Island arc–continent collision at the northeast Rodinia margin. Precambrian Res. 2001, 110, 109–126.
22. Zonenshain, L.P.; Kuzmin, M.I.; Natapov, L.M. (Eds.) Geology of the USSR: A Plate-Tectonic Synthesis; Geodynamic Series; American Geophysical Union: Washington, DC, USA, 1990; p. 21.
23. Mossakovsky, A.A.; Ruzhentsev, S.V.; Samygin, S.G.; Kheraskova, T.N. Central Asian fold belt: Geodynamic evolution and history of formation. Geotectonics 1993, 6, 3–33.
24. Khain, E.V.; Bibikova, E.V.; Kröner, A.; Zhuravlev, D.Z.; Sklyarov, E.V.; Fedotova, A.A.; KravchenkoBerezhnoy, I.R. The most ancient ophiolite of the Central Asian fold belt: U–Pb and Pb–Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and geodynamic implications. Earth Planet. Sci. Lett. 2002, 199, 311–325, doi:10.1016/S0012-821X(02)00587-3.
25. Kuzmichev, A.B.; Larionov, A.N. Neoproterozoic island arcs of East Sayan: Duration of magmatism (from U-Pb zircon dating of volcanic clastics). Russ. Geol. Geophys. 2013, 54, 34–43.
26. Kiseleva, O.N.; Zhmodik, S.M.; Damdinov, B.B.; Agafonov, L.V.; Belyanin, D.K. Composition and evolution of PGE mineralization in chromite ores from the Il’chir ophiolite complex (Ospa–Kitoi and Khara-Nur areas, East Sayan). Russ. Geol. Geophys. 2014, 55, 259–272, doi:10.1016/j.rgg.2014.01.010.
27. Kiseleva, O.; Zhmodik, S. PGE mineralization and melt composition of chromitites in Proterozoic ophiolite complexes of Eastern Sayan, Southern Siberia. Geosci. Front. 2017, 8, 721–731, doi:10.1016/j.gsf.2016.04.003.
28. Fedorovskii, V.S.; Khain, E.V.; Vladimirov, A.G.; Kargopolov, S.A.; Gibsher, A.S.; Izokh, A.E. Tectonics, metamorphism, and magmatism of collisional zones of the Central Asian Caledonides. Geotectonics 1995, 29, 193–212.
29. Khain, E.; Gusev, G.S.; Khain, E.V.; Vernikovsky, V.A.; Volobuev, M.I. Circum-Siberian Neoproterozoic Ophiolite Belt. Ofioliti 1992, 22, 195–200.
30. Kuzmichev, A.V. The Central Asian Fold Belt. Geology, Evolution, Tectonics and Models; Kröner, A., Ed.; Burntraeger Science Publisher: Studgard, Germany, 2015.
31. Sklyarov, E.V.; Kovach, V.P.; Kotov, A.B.; Kuzmichev, A.B.; Lavrenchuk, A.V.; Perelyaev, V.I.; Shchipansky, A.A. Boninites and ophiolites: Problems of their relations and petrogenesis of boninites. Russ. Geol. Geophys. 2016, 57, 127–140, doi:10.1016/j.rgg.2016.01.009.
32. Belyaev, V.A.; Wang, K.-L.; Gornova, M.A.; Dril, S.I.; Karimov, A.A.; Medvedev, A.Y.; Noskova, Y.V. Geochemistry and origin of the Eastern Sayan ophiolites, Tuva-Mongolian microcontinent (Southern Siberia). Geodyn. Tectonophys. 2017, 8, 411415, doi:10.5800/GT-2017-8-3-0250.
33. Safonova, I.; Biske, G.; Romer, R.L.; Seltmann, R.; Simonov, V.; Maruyama, S. Middle Paleozoic mafic magmatism and ocean plate stratigraphy of the South Tianshan, Kyrgyzstan. Gondwana Res. 2016, 30, 236–256.
34. Kuzmichev, A.; Kröner, A.; Hegner, E.; Liu, D.Y.; Wan, Y.S. The Shishkhid ophiolite, northern Mongolia: A key to the reconstruction of a Neoproterozoic island-arc system in central Asia. Precambrian Res. 2005, 138, 125–150.
35. Kuzmichev, A.B.; Larionov, A.N. The Sarkhoi Group in East Sayan: Neoproterozoic (~770–800 Ma) volcanic belt of the Andean type. Russ. Geol. Geophys. 2011, 52, 685–700.
36. Kuzmichev, A.; Sklyarov, E.; Postnikov, A.; Bibikova, E. The Oka Belt (Southern Siberia and Northern Mongolia): A Neoproterozoic analog of the Japanese Shimanto Belt? Island Arc 2007, 16, 224–242.
37. Zhmodik, S.; Kiseleva, O.; Belyanin, D.; Damdinov, B.; Airiyants, E.; Zhmodik, A. PGE mineralization in ophiolites of the southeast part of the Eastern Sayan (Russia). In Proceedings of the 12th International Platinum Symposium, Abstracts, Russia, 11–14 August 2014; Anikina, E.V., Ariskin, A.A., Barnes, S.-J., Barnes, S.J., Borisov. A.A., Evstigneeva, T.L., Kinnaird, J.A., Latypov, R.M., Li, C., Maier, W.D., et al. Eds.; Institute of Geology and Geochemistry UB RAS: Yekaterinburg, Russia, 2014; pp. 221–225.
38. Gordienko, I.V.; Dobretsov, N.L.; Zhmodik, S.M.; Roschektayev, P.A. Multistage thrust and nappe tectonics on the southeastern part the eastern sayan and its role in the formation of large gold deposits. Russ. Geol. Geophys. 2021, 62, in press.
39. Kovalev, S.; Zhmodik, S.; Belyanin, D.; Airiyants, E.; Kiseleva, O.; Kulikov, Y.; Travin, A. Lamprophyres from Ospa ophiolite of the East Sayan (Russia). In Proceeding of the EGU Genera Assembly Conference Abstarct, Vienna, Austria, 2020; p. 926, doi:10.5194/egusphere-egu2020-926.
40. Roshchektaev, P.A.; Goneger, A.V. Neoproterozoic volcanism of the south-eastern East Sayan and gold mineralization associated with it. In Minerageny of the North East Asia, Proceedings of the III All-Russian Scientific and Practical Conference Dedicated to the 20th Anniversary of Geological Department, BSU, Ulan-Ude, Russia, 2012; 2012; pp. 136–140. (In Russian)
41. Zhang, J.-J.; Zheng, Y.-F.; Zhao, Z.-F. Geochemical evidence for interaction be-tween oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China. Lithos 2009, 110, 305–320.
42. Wang, Y.; Zhao, Z.-F.; Zheng, Y.-F.; Zhang, J.-J. Geochemical constraints on the nature of mantle source for Cenozoic continental basalts in east-central China. Lithos 2011, 125, 940–955.
43. Safonova, I.; Santosh, M. Accretionary complexes in the Asia-Pacific region: Tracing archives of ocean plate stratigraphy and tracking mantle plumes. Gondwana Res. 2014, 25, 126–158, doi:10.1016/j.gr.2012.10.008.
44. Kiseleva, O.N.; Airiyants, E.V.; Belyanin, D.K.; Zhmodik, S.M. Geochemical Features of Peridotites and Volcanogenic-Sedimentary Rocks of the Ultrabasic-Basitic Massif of Ulan Sar’dag (East Sayan, Russia); The Bulletin of Irkutsk State University: Irkutsk, Russia, 2019. (In Russian)
45. Kiseleva, O.N.; Airiyants, E.V.; Belyanin, D.K.; Zhmodik, S.M. Podiform chromitites and PGE mineralization in the Ulan-Sar’dag ophiolite (East Sayan, Russia). Minerals 2020, 10, 141, doi:10.3390/min10020141.
46. Wang, K.; Chu, Z.; Gornova, M.; Dril, S.; Belyaev, V.; Lin, K.; O’Reilly, S. Depleted SSZ type mantle peridotites in Proterozoic Eastern Sayan ophiolites in Siberia. Geodyn. Tectonophys. 2017, 8, 583–587, doi:10.5800/GT-2017-8-3-0298.
47. Nikolaeva, I.V.; Palesskii, S.V.; Koz’menko, O.A.; Anoshin, G.N. Analysis of geologic reference materials for REE and HFSE by inductively coupled plasma mass spectrometry (ICP-MS). Geochem. Int. 2008, 46, 1016–1022, doi:10.1134/S0016702908100066.
48. Compston, W.; Williams, I.S.; Kirschvink, J.L.; Zichao, Z.; Guogan, M.A. Zircon U-Pb ages for the Early Cambrian time-scale. J. Geol. Soc. 1992, 149, 171–184, doi:10.1144/gsjgs.149.2.0171.
49. Ludwig, K.R. Isoplot: Berkeley Geochronology Center; Special Publication: 2003; Volume 4, p. 72.
50. Morimoto, N. Nomenclature of pyroxenes. Mineral. Mag. 1988, 52, 535–550.
51. Deer, W.A.; Howie, R.A.; Zussman, J. Rock-Forming Minerals; Geological Society: London, UK, 1997.
52. Leake, B.E.; Woolley, A.R.; Arps, C.E.S.; Birch, W.D.; Gilbert, M.C.; Grice, J.D.; Hawthorne, F.C.; Kato, A.; Kisch, H.J.; Krivovichev, V.G.; et al. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Eur. J. Mineral. 1997, 9, 623–651.
53. Hughes, C.J. Spilites, keratophyres, and the igneous spectrum. Geol. Mag. 1973, 109, 513–527, doi:10.1017/S0016756800042795.
54. Pearce, J.A. Basalt geochemistry used to investigate past tectonic environments on Cyprus. Tectonophysics 1975, 25, 41–67, doi:10.1016/0040-1951(75)90010-4.
55. Ludden, J.; Gelinas, L.; Trudel, P. Archean metavolcanics from the Rouyn–Noranda district, Abitibi greenstone belt, Quebec. 2. Mobility of trace elements and petrogenetic constraints. Can. J. Earth Sci. 1982, 19, 2276–2287, doi:10. 1139/e82-200.
56. Dilek, Y.; Furnes, H. Ophiolite genesis and global tectonic: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol. Soc. Am. Bull. 2011, doi:10.1130/B30446.1.
57. Le Bas, M.; Le Maitre, R.; Streckeisen, A.; Zanettin, B. A chemical classification of volcanic rocks based on the total alkali–silica diagram. J. Petrol. 1986, 27, 745–750, doi:10.1093/petrology/27.3.745.
58. Floyd, P.A.; Winchester, J.A. Magma type and tectonic setting discrimination using immobile elements. Earth Planet. Sci. Lett. 1975, 27, 211–218, doi:10.1016/0012-821X(75)90031-X.
59. Ross, P.-S.; Bedard, J.H. Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams. Can. J. Earth Sci. 2009, 46, 823–839, doi:10.1139/E09-054.
60. Pearce, J.A.; Van der Laan, S.R.; Arculus, R.J.; Murton, B.J.; Ishii, T.; Peate, D.W.; Parkinson, I.J. Boninite and harzburgites from Leg 125 (Bonin-Mariana forearc): A case study of magma genesis during the initial stages of subduction. In Proceedings of the Ocean Drilling Program, 125, Scientific Results; Fryer, P., Pearce, J.A., Stokking, L.B., Ali, J.R., Arculus, R., Balotti, D., Burke, M.M., Ciampo, G., Haggerty, J.A., Haston, R.B., et al. Eds.; Ocean Drilling Program: College Station, TX, USA, 1992; Volume 125, pp. 623–659, doi:10.2973/odp.proc.sr.125.172.1992.
61. Rudnick, R.L.; Gao, S. Composition of the continental crust. Treatis Geochem. 2003, 3, 1–64.
62. Fitton, J.G.; Saunders, A.D.; Norry, M.J.; Hardarson, B.S.; Taylor, R.N. Thermal and chemical structure of the Iceland plume. Earth Planet. Sci. Lett. 1997, 153, 197–208, doi:10.1016/S0012-821X(97)00170-2.
63. Weaver, B.L. The origin of ocean island basalt and member compositions: Trace element and isotope constrains. Earth Planet. Sci. Lett .1991, 104, 381–397, doi:10.1016/0012-821X(91)90217-6.
64. Shchipansky, A.A. Subduction and Mantle-Plume Processes in Geodynamics of Formation of Archaean Greenstone Belts; Publishing House LCI: Moscow, Russia, 2008. (In Russian)
65. Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In Magmatism in the Ocean Basins; Saunders, A.D., Norry, M.J., Eds.; Geological Society: London, UK, 1989; Volume 42, pp. 313–345, doi:10.1144/GSL.SP.1989.042.01.19.
66. Ashchepkov, I.V.; Andre, L.; Downes, H.; Belyatsky, B.A. Pyroxenites and megacrysts from Vitim picritebasalts, Russia. Polybaric fractionation of rising melts in the mantle? J. Asian Earth Sci. 2011, 42, 14–37.
67. Franz, L.; Becker, K.-P.; Kramer, W.; Herzig, P.M. Metasomatic mantle xenolith from the Bismarck microplate (Papua New Guinea)—Thermal evolution, geochemistry and extent of slab-induced metasomatism. J. Petrol. 2002, 43, 315–343, doi:10.1093/petrology/43.2.315.
68. Liu, C.-Z.; Wu, F.-Y.; Wide, S.A.; Yu, L.-J.; Li, J.-L. Anorthitic plagioclase and pargasitic amphibole in mantle peridotites from the Yungwa ophiolite (southwestern Tibetan Plateau) formed by hydrous melt metasomatism. Lithos 2010, 114, 413–422.
69. Schmidt, M.W. Amphibole composition in tonalite as a function of pressure: An experimental calibration of the Al-in-hornblende barometer. Contrib. Mineral. Petrol. 1992, 110, 304–310, doi:10.1007/BF00310745.
70. Bazylev, В.А.; Silantyev, S.A.; Kononkova, N.N. Phlogopite and hornblende in spinel harzburgites from the Mid Atlantic Ridge: Mineral assemblages and origin. Ofioliti 1999, 24, 59–60, doi:10.4454/ofioliti.v24i1b.17.
71. Cassidy, K.F.; Groves, D.I.; Binns, R.A. Manganoan ilmenite formed during regional metamorphism of Archean mafic and ultramafic rocks fromWestern Australia. Can. Mineral. 1988, 26, 999–1012.
72. Hartopanu, P.; Cristea, C.; Stela, G. Pyrophanite of Delinesti (Semenic Mountains). Rom. J. Mineral. 1995, 77, 19–24.
73. Zaccarini, F.; Garuti, G.; Ortiz-Suarez, A.; Carugno-Duran, A. The paragenesis of pyrophanite from Sierra de Comechingones, Córdoba, Argentina. Can. Mineral. 2004, 42, 155–168.
74. Svetlitskaya, T.V.; Nevolko, P.A.; Fominykh, P.A. Fe-Ti Oxide Assemblages from the Contact Metamorphosed Mafic-Ultramafic Rocks of the Sedova Zaimka Intrusion (Western Siberia, Russia): The Tracking of Metamorphic Transformations. Minerals 2020, 10, 253, doi:10.3390/min10030253.
75. Yardley, B.W.D. An Introduction to Metamorphic Petrology; Longman Group: Harlow, UK, 1989; pp. 49–51.
76. Duncan, R.A.; Green, D.H. Role of multistage melting in the formation of oceanic crust. Geology 1980, 8, 22– 26, doi:10.1130/0091-7613(1980)8%3C22:ROMMIT%3E2.0.CO;2.
77. Duncan, R.A.; Green, D.H. The genesis of refractory melts in the formation of oceanic crust. Contrib. Mineral. Petrol. 1987, 96, 326–342, doi:10.1007/BF00371252.
78. Crawford, A.J.; Fallon, T.J.; Green, D.H. Classification, petrogenesis and tectonic setting of boninites. In Boninites and Related Rocks; Crawford, A.J., Ed.; Unwin Hyman: London, UK, 1989; pp. 1–49.
79. Le Bas, M.J. IUGS reclassification of the high-Mg and picritic volcanic rocks. J. Petrol. 2000, 41, 1467–1470, doi:10.1093/petrology/41.10.1467.
80. Gill, J.B. Orogenic andesites and plate tectonics. Geol. Mag. 1981, 119, 516–517, doi:10.1017/S0016756800026911.
81. Wood, D.A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas on the British Tertiary Volcanic Province. Earth Planet. Sci. Lett. 1980, 50, 11–30, doi:10.1016/0012-821 X (80)90116-8.
82. Geng, H.; Sun, M.; Yuan, C.; Zhao, G.; Xiao, W. Geochemical and geochronological study of early Carboniferous volcanic rocks from the West Junggar: Petrogenesis and tectonic implications. J. Asian Earth Sci. 2011, 42, 854–866, doi:10.1016/j.jseaes.2011.01.006.
83. Pearce, J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 2008, 100, 14–48, doi:10.1016/j.lithos.2007.06.016.
84. Saccani, E.; Principi, G. Petrological and tectono-magmatic significance of ophiolitic basalts from the Elba Island within the Alpine Corsica-Northern Apennine system. Mineral. Petrol. 2016, 110, 713–730, doi:10.1007/s00710-016-0445-3.
85. Hart, S.R.; Hauri, E.N.; Oschmann, L.A.; Whitehead, J.A. Mantle plumes and entrainment: Isotopic evidence. Science 1992, 256, 517–520, doi:10.1126/science.256.5056.517.
86. Wilson, M. Geochemical signatures of oceanic and continental basalts: A key to mantle dynamics? J. Geol. Soc. 1993, 150, 977–990, doi:10.1144/gsjgs.150.5.0977.
87. Gordienko, I.V.; Metelkin, D.V. The evolution of the subduction zone magmatism on the Neoproterozoic and Early Paleozoic active margins of the Paleoasian Ocean. Russ. Geol. Geophys. 2016, 57, 69–81, doi:10.1016/j.rgg.2016.01.005.
88. Gordienko, I.V.; Roshchektaev, P.A.; Gorokhovsky, D.V. Oka ore district of the Eastern Sayan: Geology, structural-metallogenic zonation, genetic types of ore deposits, their geodynamic formation conditions, and outlook for development. Geol. Ore Depos. 2016, 58, 361–382, doi:10.1134/S1075701516050044.
89. Dobretsov, N.L. Plate tectonics vs. Plume tectonic interplay: Possible model and typical cases. Russ. Geol. Geophys. 2020, 61, 617–647.
90. Gordienko, I.V. Relationship between subduction-related and plume magmatism at the active boundaries of lithospheric plates in the interaction zone of the Siberian continent and Paleoasian Ocean in the Neoproterozoic and Paleozoic. Geodyn. Tectonophys. 2019, 10, 405–457, doi:10.5800/GT-2019-10-2-0420.
91. Bogatikov, O.A.; Tsvetkov, A.A. Magmaticheskaya Evolyutsiya Ostrovnykh dug (Magmatic Evolution of Island Arcs), Moscow Nauka; 1988. (In Russian)
92. D’Orazio, M.; Agostini, S.; Mazzarini, F.; Innocenti, F.; Manetti, P.; Haller, M.J.; Lahsen, A. The PalilAike Volcanic Field, Patagonia: Slab-window magmatism near the tip of South America. Tectonophysics 2000, 321, 407–427.
93. D’Orazio, M.; Agostini, S.; Innocenti, F.; Haller, M.J.; Manetti, P.; Mazzarini, F. Slab window-related magmatism from southernmost South America: The Late Miocene mafic volcanics from the Estancia Glencross area (similar to 52 degrees S, Argentina–Chile). Lithos 2001, 57, 67–89.
94. Espinoza, F.; Morata, D.; Pelleter, E.; Maury, R.C.; Suarez, M.; Lagabrielle, Y.; Polve, M.; Bellon, H.; Cotten, J.; De la Cruz, R.; et al. Petrogenesis of the Eocene and Mio–Pliocene alkaline basaltic magmatism in Meseta Chile Chico, southern Patagonia, Chile: Evidence for the participation of two slab windows. Lithos 2005, 82, 315–343.
95. Churikova, T.; Dorendorf, F.; Worner, G. Sources and fluids in the mantle wedge below Kamchatka, evidence from across-arc geochemical variation. J. Petrol. 2001, 42, 1567–1593.
96. Yogodzinski, G.M.; Lees, J.M.; Churikova, T.G.; Dorendorf, F.; Worner, G.; Volynets, O.N. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature 2001, 409, 500–504.
97. Perepelov, A.B.; Antipin, V.S.; Kablukov, A.V.; Filosofova, T.M. Ultrapotassic Rhyolites of Southern Kamchatka: Geochemical and Petrological Evidence. Plumes and Problems of Deep Sources of Alkaline Magmatism; Irkutsk, Russia, 2003; pp. 171–183.
98. Kay, S.M.; Ardolino, A.A.; Gorring, M.; Ramos, V. The Somuncura Large igneous province in Patagônia: Interaction of a transient mantle thermal anomaly with a subducting slab. J. Petrol. 2007, 48, 43–77, doi:10.1093/petrology/egl053.
99. Hoernle, K.; Carracedo, J.C. Canary Islands, geology. In Cyclopedias of Islands (Encyclopedias of the Natural World); Gillespie, R.G., Clague, D.A., Eds.; University California Press: Berkeley, CA, USA, 2009; pp. 133–143.
100. Volynets, A.; Churikova, T.; Wörner, G. Mafic Late Miocene-Quaternary volcanic rocks in the Kamchatka back arc region: Implications for subduction geometry and slab history at the Pacific-Aleutian junction. Contrib. Mineral. Petrol. 2010, 159, 659–687.
101. Thorkelson, D. Subduction of diverging plates and the principles of slab window formation. Tectonophysics 1996, 255, 47–63, doi:10.1016/0040-1951(95)00106-9.
102. Dobretsov, N.L. Early Paleozoic tectonics and geodynamic of Central Asia: Role of mantle plumes. Russ. Geol. Geophys. 2011, 52, 1539–1552.
103. Aragón, E.; Pinotti, L.; D’Eramo, F.; Castro, A.; Rabbia, O.; Coniglio, J.; Demartis, M.; Hernando, I.; Cavarozzi, C.E.; Aguilera, Y.E. The Farallon-Aluk ridge collision with South America: Implications for the geochemical changes of slab window magmas from fore-to back-arc. Geosci. Front. 2013, 4, 377–388, doi:10.1016/j.gsf.2012.12.004.
104. Maruyama, S.; Sawaki, Y.; Ebisuzaki, T.; Ikoma, M.; Omori, S.; Komabayashi, T. Initiation of leaking Earth: An ultimate trigger of the Cambrian explosion. Gondwana Res. 2014, 25, 910–944, doi:10.1016/j.gr.2013.03.012.