Инд. авторы: Grigorieva V.D., Shlegel V.N., Borovlev Y.A., Bekker T.B., Borovkov V.I., Meshkov O.I., Barabash A.S., Konovalov S.I., Umatov V.I.
Заглавие: Li2100deplmoo4 crystals grown by low-thermal-gradient czochralski technique
Библ. ссылка: Grigorieva V.D., Shlegel V.N., Borovlev Y.A., Bekker T.B., Borovkov V.I., Meshkov O.I., Barabash A.S., Konovalov S.I., Umatov V.I. Li2100deplmoo4 crystals grown by low-thermal-gradient czochralski technique // Journal of Crystal Growth. - 2020. - Vol.552. - Art.125913. - ISSN 0022-0248. - EISSN 1873-5002.
Идентиф-ры: DOI: 10.1016/j.jcrysgro.2020.125913; РИНЦ: 45207594; SCOPUS: 2-s2.0-85093644530; WoS: 000589234500001;
Реферат: eng: For the first time, Li2MoO4crystals depleted in molybdenum-100 (100Mo) isotope were grown by Czochralski technique under low thermal gradient conditions (LTG Cz) that made it possible to obtain large crystals of given geometry and required quality. Depleted lithium molybdate crystals Li2deplMoO4 are excellent candidates for creating cryogenic scintillating bolometers with weight of up to 0.3 kg. Such bolometers can be used to reduce the internal radiation background of detectors and to increase sensitivity in physics and astrophysics experiments for rare events search. The grown Li2100deplMoO4 crystal was compared with the crystal samples of natural and enriched in 100Mo isotope in regard of their response to pulsed X-ray irradiation and Raman spectra.
Ключевые слова: B1. Low temperature detectors; A2. Growth from melt; A1. Li2MoO4 crystal; A1. Czochralski technique; B2. Optical materials;
Издано: 2020
Физ. хар-ка: 125913
Цитирование: 1. Pascoli, S., Petcov, S.T., Schwetz, T., The absolute neutrino mass scale, neutrino mass spectrum, Majorana CP-violation and neutrinoless double-beta decay. Nucl. Phys. B, 734, 2006, 24.
2. Bilenky, S.M., Giunti, C., Neutrinoless double-beta decay: A probe of physics beyond the Standard Model. Int. J. Mod. Phys. A, 30, 2015, 1530001.
3. Vergados, J.D., Ejiri, H., Simkovic, F., Neutrinoless double beta decay and neutrino mass. Int. J. Mod. Phys. E, 25, 2016, 1630007.
4. Barabash, A.S., Main features of detectors and isotopes to investigate double beta decay with increased sensitivity. Int. J. Mod. Phys. A, 33, 2018, 1843001, 10.1142/S0217751X18430017.
5. A.S. Barabash, Possibilities of future double beta decay experiments to investigate inverted and normal ordering region of neutrino mass. Front. Phys. 6 (2019) 00160. https://doi.org/10.3389/fphy.2018.00160.
6. Dolinski, M.J., Poon, A.W.P., Rodejohann, W., Neutrinoless double-beta decay: status and prospects. Annu. Rev. Nucl. Parti. Sci. 69 (2019), 219–251, 10.1146/annurev-nucl-101918-023407.
7. G. Wang et al., CUPID: CUORE (Cryogenic Underground Observatory for Rare Events) Upgrade with Particle Identification, arXiv: 1504.03599 (2015) [physics.ins-det].
8. G. Wang et al., R&D towards CUPID (CUORE Upgrade with Particle Identification), arXiv: 1504.03612 (2015) [physics.ins-det].
9. W.R. Armstrong, et al., CUPID pre-CDR, arXiv:1907.09376 (2019) [phys.ins-det].
10. Barinova, O.P., Danevich, F.A., Degoda, V.Ya., Kirsanova, S.V., Kudovbenko, V.M., Pirro, S., Tretyak, V.I., First test of Li2MoO4 crystal as a cryogenic scintillating bolometer. NuclInstrum. Methods Phys. Res. A 613 (2010), 54–57, 10.1016/j.nima.2009.11.059.
11. L. Cardani et al., Development of a Li2MoO4 scintillating bolometer for low background physics. JINST 2013, 8, P10002.
12. Barinova, O.P., et al. Properties of Li2MoO4 single crystals grown by Czochralski technique. J. Cryst. Growth, 401, 2014, 853, 10.1016/j.jcrysgro.2013.10.051.
13. Spassky, D.A., Nagirnyi, V., Aleksanyan, E., Savon, A.E., Barinova, O.P., Kirsanova, S.V., Grigorieva, V.D., Ivannikova, N.V., Shlegel, V.N., Belsky, A.N., Yelisseyev, A.P., Low temperature luminescence and charge carrier trapping in a cryogenic scintillator Li2MoO4. J. Luminescence 166 (2015), 195–202, 10.1016/j.jlumin.2015.05.042.
14. Bekker, T.B., Coron, N., Danevich, F.A., Degoda, V.Ya., Giuliani, A., Grigorieva, V.D., Ivannikova, N.V., Mancuso, M., de Marcillac, P., Moroz, I.M., Nones, C., Olivieri, E., Pessina, G., Poda, D.V., Shlegel, V.N., Tretyak, V.I., Velazquez, M., Aboveground test of an advanced Li2MoO4 scintillating bolometer to search for neutrinoless double beta decay of Mo-100. Astropart. Phys. 72 (2016), 38–45, 10.1016/j.astropartphys.2015.06.002.
15. Grigorieva, V.D., Shlegel, V.N., Bekker, T.B., Ivannikova, N.V., Giuliani, A., de Marcillac, P., et al. Li2MoO4 crystals grown by low thermal gradient Czochralski technique. J. Mat. Sci. Eng. B, 7, 2017, 63.
16. Armengaud, E., Augier, C., Barabash, A.S., et al. Development of 100Mo-containing scintillating bolometers for a high-sensitivity neutrinoless double-beta decay search. Eur. Phys. J. C, 77, 2017, 785, 10.1140/epjc/s10052-017-5343-2.
17. Armengaud, E., et al. Precise measurement of 2νββ decay of 100Mo with the CUPID-Mo detection technology. Eur. Phys. J. C, 80, 2020, 674.
18. Armengaud, E., Augier, C., Barabash, A.S., et al. The CUPID-Mo experiment for neutrinoless double-beta decay: performance and prospects. Eur. Phys. J. C, 80(1), 2020, 44.
19. A.H. Abdelhameed et al., First results on sub-GeV spin-dependent dark matter interactions with 7Li. Eur. Phys. J. C 2019, 79. 630.
20. V.D. Grigorieva, N.V. Ivannikova, I.M. Ivanov, E.P. Makarov, I.I. Novoselov, V.N. Shlegel, Precursors preparation for growth of low-background scintillation crystals, AIP Conference Proc. 1921 (2018) 080002. https://doi.org/10.1063/1.5019010.
21. Borovlev, Yu.A., Ivannikova, N.V., Shlegel, V.N., Vasiliev, Ya.V., Gusev, V.A., Progress in growth of large sized BGO crystals by the low thermal gradient Czochralski technique. J. Cryst. Growth 229 (2001), 305–311, 10.1016/S0022-0248(01)01162-9.
22. Shlegel, V.N., Borovlev, Yu.A., Grigoriev, D.N., Grigorieva, V.D., Danevich, F.A., Ivannikova, N.V., Postupaeva, A.G., Vasiliev, Ya.V., Recent progress in oxide scintillation crystals development by low-thermal gradient Czochralski technique for particle physics experiments. JINST, 12, 2017, 08011, 10.1088/1748-0221/12/08/C08011.
23. Barabash, A.S., et al. Enriched Zn100MoO4 scintillating bolometers to search for 0ν2β decay of 100Mo with the LUMINEU experiment. Eur. Phys. J. C, 74, 2014, 10.
24. Grigorieva, V.D., Shlegel, V.N., Ivannikova, N.V., Bekker, T.B., Yelisseyev, A.P., Kuznetsov, A.B., Na2Mo2O7 scintillating crystals: Growth, morphology and optical properties. J. Crystal Growth 507 (2019), 31–37.
25. Grigorieva, V.D., Shlegel, V.N., Borovlev, Y.A., Ryadun, A.A., Bekker, T.B., Bolometric molybdate crystals grown by low-thermal-gradient Czochralski technique. J. Crystal Growth, 523, 2019, 125144.
26. Anishchik, S.V., Grigoryants, V.M., Shebolaev, I.V., Chernousov, Y.D., Anisimov, O.A., Molin, Y.N., Pulsed X-ray fluorimeter with nanosecond resolution. Prib. Tekhn. Eksp. (in Russian) 4 (1989), 74–79.
27. Barinova, O., Sadovskiy, A., Ermochenkov, I., Kirsanova, S., Khomyakov, A., Zykova, M., Kuchuk, Zh., Avetissov, I., Solid solution Li2MoO4 – Li2WO4 crystal growth and characterization. J. Crystal Growth 468 (2017), 365–368, 10.1016/j.jcrysgro.2016.10.009.
28. Lai, Y., et al. The structure and microwave dielectric properties of Li2MoO4-SiO2 ceramics without addition of glass as sintering aids. Trans. Mat. Res. Japan 43 (2018), 1–5, 10.14723/tmrsj.43.1.
29. Xiao, B., Schlenz, H., Bosbach, D., Suleimanov, E.V., Alekseev, E.V., The structural effects of alkaline- and rare-earth element incorporation into thorium molybdates. CrystEngComm 18 (2016), 113–122, 10.1039/C5CE02040A.
30. Liu Xudong et al. Synthesis of one dimensional Li2MoO4. Nanostructures and their electrochemical performance as anode materials for lithium-ion batteries, Electrochim. Acta 174 (2015) 315-326. https://doi.org/10.1016/j.electacta.2015.05.174.
31. Rice, S.A., Diffusion-Controlled Reactions. 1985, Elsevier, Amsterdam.
32. Bandac, I.C., et al. The 0ν2β-decay CROSS experiment: preliminary results and prospects. JHEP, 01, 2020, 018.
33. M.H. Lee, AMoRE: A search for neutrinoless double-betadecay of 100Mo using low-temperature molybdenum-containing crystal detectors, arXiv: 2005.05567 (2020) [phys.ins-det/2005.05567].