Инд. авторы: Darin A.V., Babich V.V., Kalugin I.A., Markovich T.I., Rogozin D.Yu., Degermendzhi A.G., Meydus A.V., Rakshun Y.V., Darin F.A., Sorokoletov D.S., Gogin A.A., Senin R.A.
Заглавие: Traces of the tunguska event (1908) in sediments of zapovednoe lake based on sr–xrf data
Библ. ссылка: Darin A.V., Babich V.V., Kalugin I.A., Markovich T.I., Rogozin D.Yu., Degermendzhi A.G., Meydus A.V., Rakshun Y.V., Darin F.A., Sorokoletov D.S., Gogin A.A., Senin R.A. Traces of the tunguska event (1908) in sediments of zapovednoe lake based on sr–xrf data // Doklady Earth Sciences. - 2020. - Vol.492. - Iss. 2. - P.442-445. - ISSN 1028-334X. - EISSN 1531-8354.
Идентиф-ры: DOI: 10.1134/S1028334X20060045; РИНЦ: 45430366;
Реферат: eng: An anomalous layer enriched with chemical elements indicating the presence of terrigenous matter was discovered in the sediment core of Zapovednoe Lake located 60 km from the epicenter of the Tunguska event (1908) using synchrotron radiation X-ray fluorescence spectroscopy (SR–XRF). Radioisotope measurements indicate that the age of the layer is consistent with the date of the catastrophe. Apparently, the anomalous layer was formed as a result of an intense terrigenous matter inflow from the water catchment area due to massive forest falls and subsequent wildfires caused by the Tunguska event. Thus, it is established that targeted searches for microparticles of extraterrestrial origin can be carried out in the discovered and dated anomalous bottom sediment layer.
Ключевые слова: X-ray fluorescent analysis (XRF); Tunguska event 1908; lake sediments; Synchrotron radiation (SR); microelements;
Издано: 2020
Физ. хар-ка: с.442-445
Цитирование: 1. S. S. Grigoryan, F. S. Ibodov, and S. I. Ibadov, Vestn. RFFI, Nos. 1–2 (61–62), 56–71 (2009).
2. P. Vannucchi, J. P. Morgan, D. D. Lunga, C. L. Andronicos, and W. J. Morgan, Earth Planet. Sci. Lett. 409, 168–174 (2015). DOI: 10.1016/j.epsl.2014.11.001
3. V. Kvasnytsya, R. Wirth, L. Dobrzhinetskaya, J. Matzel, B. Jacobsen, I. Hutcheon, R. Tappero, and M. Kovalyukh, Planet. Space Sci. 84, 131–140 (2013). DOI: 10.1016/j.pss.2013.05.003
4. A. V. Dar’in, I. A. Kalugin, and Ya. V. Rakshun, Bull. Russ. Acad. Sci.: Phys. 77 (2), 182–185 (2013). DOI: 10.3103/S106287381302010X
5. A. V. Dar’in and Ya. V. Rakshun, Nauchn. Vestn. NGTU, No. 2 (51), 119–129 (2013).
6. D. Y. Rogozin, A. V. Darin, I. A. Kalugin, M. S. Melgunov, A. V. Meydus, and A. G. Degermendzhi, Dokl. Earth Sci. 476 (2), 1226–1229 (2017). https://elibrary.ru/item.asp?id=30267866. DOI: 10.1134/S1028334X17100269
7. V. M. Gavshin, F. V. Sukhorukov, V. A. Bobrov, M. S. Melgunov, L. V. Miroshnichenko, S. I. Kovalev, P. A. Romashkin, and J. Klerkx, Water, Air, Soil Pollut. 154 (1–4), 71–83 (2004). DOI: 10.1023/B:WATE.0000022929.61233.84
8. P. G. Appleby, Holocene 18 (1), 83–93 (2008). DOI: 10.1177/0959683607085598
9. L. Tositti, M. Mingozzi, S. Sandrini, L. Forlani, M. C. Buoso, M. De Poli, D. Cecatto, and D. Zafiropoulos, Global Planet. Change 53, 278–289 (2006). DOI: 10.1016/j.gloplacha.2006.03.010
10. L. Gasperini, E. Bonatti, S. Albertazzi, L. Forlani, C. A. Accorsi, G. Longo, M. Ravaioli, F. Alvisi, A. Polonia, and F. Sacchetti, Terra Nova 21 (6), 489–494 (2009). DOI: 10.1111/j.1365-3121.2009.00906.x