Инд. авторы: Bekker T.B., Inerbaev T.M., Yelisseyev A.P., Solntsev V.P., Rashchenko S.V., Davydov A.V., Shatskiy A.F., Litasov K.D.
Заглавие: Experimental and ab initio studies of intrinsic defects in "antizeolite" borates with a ba12(bo3)66+framework and their influence on properties
Библ. ссылка: Bekker T.B., Inerbaev T.M., Yelisseyev A.P., Solntsev V.P., Rashchenko S.V., Davydov A.V., Shatskiy A.F., Litasov K.D. Experimental and ab initio studies of intrinsic defects in "antizeolite" borates with a ba12(bo3)66+framework and their influence on properties // Inorganic Chemistry. - 2020. - Vol.59. - Iss. 18. - P.13598-13606. - ISSN 0020-1669. - EISSN 1520-510X.
Идентиф-ры: DOI: 10.1021/acs.inorgchem.0c01966; РИНЦ: 45315205;
Реферат: eng: The porous Ba12(BO3)66+ framework of the so-called "antizeolite"borates with channels along the c axis is capable of accommodating various guest anionic groups, e.g. [BO3]3-, [F2]2-, [F4]4-, and [(Li,Na)F4]3-. Taking as an example the Ba12(BO3)6[BO3][LiF4] crystal, we put forward the argument that the optical properties of "antizeolite"borates are strongly influenced by the degree of channel packing with anionic groups and, correspondingly, by the conjugated intrinsic defects. With the use of optical, electron-spin resonance, Raman spectroscopy, and ab initio calculations, it was shown that intrinsic defects largely impact the absorption of light in the visible and UV regions (the color of the bulk crystals can change from colorless to dark brown), absorption-edge position, dichroism, and other optical properties. The change in the optical absorption in the visible range is caused by the appearance of new states in the electronic structure inside the band gap, which are associated mainly with the presence of single and double F centers-fluorine vacancies that capture electrons-in [F4]4-, [F2]2-, and [LiF4]3- groups. The formation of F centers in the [F2]2- group is the most energetically favorable. It has been found that Ba12(BO3)6[BO3][LiF4] crystals are optically active gyrotropic with an isotropic point at 499 nm at 300 K and are of interest for practical application as narrow-band light filters.
Издано: 2020
Физ. хар-ка: с.13598-13606
Цитирование: 1. Chen, C.; Sasaki, T.; Li, R.; Wu, Z.; Lin, Z.; Mori, Y.; Hu, Z.; Wang, J.; Uda, S.; Yoshimura, M.; Kaneda, Y. Nonlinear Optical Borate Crystals, Principles and Applications; Wiley-VCH Verlag GmbH & Co. KGaA, 2012; 387 p.
2. Chen, C. T.; Wu, B. C.; Jiang, A. D.; You, G. M. A new Ultra-violet SHG Crystal: β-BaB2O4. Sci. Sin. B 1985, 28, 235-243
3. Chen, C. T.; Wu, Y. C.; Jiang, A. D.; Wu, B. C.; You, G.; Li, R. K.; Lin, S. J. New Nonlinear Optical Crystal LiB3O5. J. Opt. Soc. Am. B 1989, 6, 616-621, 10.1364/JOSAB.6.000616
4. Nikolov, I.; Perlov, D.; Livneh, S.; Sanchez, E.; Czechowicz, P.; Kondilenko, V.; Loiacono, D. Growth and Morphology of Large LiB3O5Single Crystals. J. Cryst. Growth 2011, 331, 1-3, 10.1016/j.jcrysgro.2011.07.008
5. Mori, Y.; Kuroda, I.; Nakajima, S.; Sasaki, T.; Nakai, S. New Nonlinear-optical Crystal: Cesium Lithium Borate. Appl. Phys. Lett. 1995, 67, 1818-1820, 10.1063/1.115413
6. Yuan, X.; Shen, G.; Wang, X.; Shen, D.; Wang, G.; Xu, Z. Growth and Characterization of Large CLBO Crystals. J. Cryst. Growth 2006, 293, 97-101, 10.1016/j.jcrysgro.2006.04.112
7. Appel, R.; Dyer, C. D.; Lockwood, J. N. Design of a Broadband UV-visible α-barium Borate Polarizer. Appl. Opt. 2002, 41, 2470-2480, 10.1364/AO.41.002470
8. Antsygin, V. D.; Mamrashev, A. A.; Nikolaev, N. A.; Potaturkin, O. I.; Bekker, T. B.; Solntsev, V. P. Optical Properties of Borate Crystals in Terahertz Region. Opt. Commun. 2013, 309, 333-337, 10.1016/j.optcom.2013.08.014
9. Zhang, H.; Zhang, M.; Pan, S.; Yang, Z.; Wang, Z.; Bian, Q.; Hou, X.; Yu, H.; Zhang, F.; Wu, K.; Yang, F.; Peng, Q.; Xu, Z.; Chang, K. B.; Poeppelmeier, K. R. Na3Ba2(B3O6)2F: Next Generation of Deep-ultraviolet Birefringent Materials. Cryst. Growth Des. 2015, 15, 523-529, 10.1021/cg5016912
10. Bekker, T. B.; Vedenyapin, V. N.; Khamoyan, A. G. Birefringence of the New Fluoride Borates Ba2Na3[B3O6]2F and Ba7(BO3)4-yF2+3yin the Na, Ba, B//O, F Quaternary Reciprocal System. Mater. Res. Bull. 2017, 91, 54-58, 10.1016/j.materresbull.2017.03.024
11. Bubnova, R. S.; Filatov, S. K. High-Temperature Crystal Chemistry of Borates and Borosilicates; Nauka: St. Petersburg, Russia, 2008; 760 p.
12. Becker, P. Borate Materials in Nonlinear Optics. Adv. Mater. 1998, 10, 979-992, 10.1002/(SICI)1521-4095(199809)10:13<979::AID-ADMA979>3.0.CO;2-N
13. Mutailipu, M.; Zhang, M.; Wu, H.; Yang, Z.; Shen, Y.; Sun, J.; Pan, S. Ba3Mg3(BO3)3F3Polymorphs with Reversible Phase Transition and High Performances as Ultraviolet Nonlinear Optical Materials. Nat. Commun. 2018, 9, 3089, 10.1038/s41467-018-05575-w
14. Geng, W.; Zhou, X.; Ding, J.; Wang, Y. Density-Functional Theory Calculations, Luminescence Properties and Fluorescence Ratiometric Thermo-Sensitivity for a Novel Borate Based Red Phosphor: NaBaSc(BO3)2:Ce3+, Mn2+. J. Mater. Chem. C 2019, 7, 1982-1990, 10.1039/C8TC06034G
15. Jiang, D.; Han, G.; Wang, Y.; Li, H.; Yang, Z.; Pan, S. Designing Three Fluorooxoborates with a Wide Transmittance Window by Anionic Group Substitution. Inorg. Chem. 2019, 58, 3596-3600, 10.1021/acs.inorgchem.9b00197
16. Zhou, J.; Wu, H.; Yu, H.; Hu, Z.; Wu, Y. Pb10O4(BO3)3I3: A New Noncentrosymmetric Oxyborate Iodide Synthesized by the Straightforward Hydrothermal Method. Dalton Trans. 2019, 48, 14996-15001, 10.1039/C9DT02579K
17. Huang, H.; Liu, L.; Jin, S.; Yao, W.; Zhang, Y.; Chen, C. Deep-ultraviolet Nonlinear Optical Materials: Na2Be4B4O11and LiNa5Be12B12O33. J. Am. Chem. Soc. 2013, 135, 18319-18322, 10.1021/ja410543w
18. Han, S.; Mutailipu, M.; Tudi, A.; Yang, Z.; Pan, S. PbB5O7F3: A High-Performing Short-Wavelength Nonlinear Optical Material. Chem. Mater. 2020, 32, 2172-2179, 10.1021/acs.chemmater.0c00150
19. Bekker, T. B.; Rashchenko, S. V.; Solntsev, V. P.; Yelisseyev, A. P.; Kragzhda, A. A.; Bakakin, V. V.; Seryotkin, Y. V.; Kokh, A. E.; Kokh, K. A.; Kuznetsov, A. B. Growth and Optical Properties of LixNa1-xBa12(BO3)7F4Fluoride Borates with 'Anti-zeolite' Structure. Inorg. Chem. 2017, 56, 5411-5419, 10.1021/acs.inorgchem.7b00520
20. Bekker, T. B.; Rashchenko, S. V.; Seryotkin, Y. V.; Kokh, A. E.; Davydov, A. V.; Fedorov, P. P. BaO-B2O3System and its Mysterious Member Ba3B2O6. J. Am. Ceram. Soc. 2018, 101, 450-457, 10.1111/jace.15194
21. Bekker, T. B.; Solntsev, V. P.; Rashchenko, S. V.; Yelisseyev, A. P.; Davydov, A. V.; Kragzhda, A. A.; Kokh, A. E.; Kuznetsov, A. B.; Park, S.-H. Nature of the Color of Borates with 'Anti-zeolite' Structure. Inorg. Chem. 2018, 57, 2744-2751, 10.1021/acs.inorgchem.7b03134
22. Solntsev, V. P.; Bekker, T. B.; Davydov, A. V.; Yelisseyev, A. P.; Rashchenko, S. V.; Kokh, A. E.; Grigorieva, V. D.; Park, S.-H. Optical and Magnetic Properties of Cu-containing Borates with 'Anti-zeolite' Structure. J. Phys. Chem. C 2019, 123, 4469-4474, 10.1021/acs.jpcc.9b00355
23. Bekker, T.; Solntsev, V.; Yelisseyev, A.; Davydov, A.; Rashchenko, S. Crystal Chemical Design of Functional Fluoride Borates with 'Antizeolite' Structure. Cryst. Growth Des. 2020, 20, 4100-4107, 10.1021/acs.cgd.0c00368
24. Zhao, J.; Li, R. K. Two New Barium Borate Fluorides AB12(BO3)7F4(A = Li and Na). Inorg. Chem. 2014, 53, 2501-2505, 10.1021/ic4025525
25. Bekker, T. B.; Solntsev, V. P.; Yelisseyev, A. P.; Rashchenko, S. V.; Davydov, A.V.; Kragzhda, A.A.; Kuznetsov, A.B. The Dichroic Material-Fluoroborate with an 'Anti-zeolitic' Structure. Patent 2689596 RU. Published 28.05.2019, Bulletin No. 16.
26. Palacios, L.; Cabeza, A.; Bruque, S.; Garciá-Granda, S.; Aranda, M. A. G. Structure and Electrons in Mayenite Electrides. Inorg. Chem. 2008, 47, 2661-2667, 10.1021/ic7021193
27. Lavrent'ev, Y. G.; Karmanov, N. S.; Usova, L. V. Electron Probe Microanalysis of Minerals: Microanalyzer or Scanning Electron Microscope?. Russ. Geol. Geophys. 2015, 56, 1154-1161, 10.1016/j.rgg.2015.07.006
28. Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 59, 1758-1775, 10.1103/PhysRevB.59.1758
29. Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-wave Basis Set. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 11169-11186, 10.1103/PhysRevB.54.11169
30. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1997, 78, 1396-1396, 10.1103/PhysRevLett.78.1396
31. Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid Functionals Based on a Screened Coulomb Potential. J. Chem. Phys. 2003, 118, 8207-8215, 10.1063/1.1564060
32. Blöchl, P. E. Projector Augmented-Wave Method. Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 50, 17953-17979, 10.1103/PhysRevB.50.17953
33. Momma, K.; Izumi, F. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. J. Appl. Crystallogr. 2011, 44, 1272-1276, 10.1107/S0021889811038970
34. Raymond, M. Electric-Field-Gradient Calculations in the Aluminum Silicates (Al2SiO5). Phys. Rev. B 1971, 3, 3692-3701, 10.1103/PhysRevB.3.3692
35. Whittaker, E. J. W. Madelung energies and site preferences in amphiboles. I. Am. Miner. 1971, 56, 980-996
36. Hobden, M. V. Optical Activity in a Non-Enantiomorphous Crystal Silver Gallium Sulphide. Nature 1967, 216, 678, 10.1038/216678a0
37. Hobden, M. V. Optical Activity in an Non-enantiomorphous Crystal of class-4: CdGa2S4. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1969, A25, 633-638, 10.1107/S0567739469001410
38. Burkov, V. I.; Kizel, V. A.; Leonyuk, N. I.; Sitnikov, N. M. Gyrotropy of Double Borates with Huntite Structure. Sov. Phys. Cryst. 1982, 27, 121-122
39. Burkov, V. I.; Kizel, V. A.; Leoniuk, N. I.; Sitnikov, N. M. Spectral and Gyroscopic Characteristics of EuAl3(BO3)4Crystals. Sov. Phys. Cryst. 1984, 29, 101-105
40. Kuzmenko, A. M.; Dziom, V.; Shuvaev, A.; Pimenov, A.; Szaller, D.; Mukhin, A. A.; Ivanov, V. Yu.; Pimenov, A. Sign Change of Polarization Rotation under Time or Space Inversion in Magnetoelectric YbAl3(BO3)4. Phys. Rev. B: Condens. Matter Mater. Phys. 2019, 99 (22), 224417, 10.1103/PhysRevB.99.224417
41. Hopfield, J. J.; Thomas, D. G. Polariton Absorption Lines. Phys. Rev. Lett. 1965, 15, 22, 10.1103/PhysRevLett.15.22
42. Laurenti, J. P.; Rustagi, K. C.; Rouzeyre, M. Optical Filters Using Coupled Light Waves in Mixed Crystals. Appl. Phys. Lett. 1976, 28, 212-213, 10.1063/1.88700
43. Bekker, T. B.; Solntsev, V. P.; Yelisseyev, A. P.; Rashchenko, S. V. Fluoride Borates with [(BO3)F]4-â†" [F4] 4-Anionic Isomorphism and X-ray Sensitivity. Cryst. Growth Des. 2016, 16, 4493-4499, 10.1021/acs.cgd.6b00615
44. Lv, X.; Yang, Y.; Liu, B.; Zhang, Y.; Wei, L.; Zhao, X.; Wang, X. Electronic Structure and Raman Spectroscopy Study of Dibarium Magnesium Orthoborate, Ba2Mg(BO3)2. Vib. Spectrosc. 2015, 80, 53-58, 10.1016/j.vibspec.2015.07.001
45. Zhao, J.; Li, R. K. Ba2(BO3)1-x(CO3)xCl1+x: A Mixed Borate and Carbonate Chloride Crystallized from High-Temperature Solution. Inorg. Chem. 2012, 51, 4568-4571, 10.1021/ic3005135
46. Sohr, G.; Clara, D.; Huppertz, H. Single-Crystal Structure Determination and Spectroscopic Characterization of KSr4(BO3)3. Z. Naturforsch., B: J. Chem. Sci. 2013, 68, 338-344, 10.5560/znb.2013-3074
47. Hybertsen, M. S.; Louie, S. G. Electron Correlation in Semiconductors and Insulators: Band Gaps and Quasiparticle Energies. Phys. Rev. B: Condens. Matter Mater. Phys. 1986, 34, 5390, 10.1103/PhysRevB.34.5390
48. Viñes, F.; Lamiel-Garciá, O.; Chul Ko, K.; Yong Lee, J.; Illas, F. Systematic Study of the Effect of HSE Functional Internal Parameters on the Electronic Structure and Band Gap of a Representative Set of Metal Oxides. J. Comput. Chem. 2017, 38, 781-789, 10.1002/jcc.24744
49. Fowler, W. B. Physics of Color Centers; Academic Press: New York, 1968; Chapters 2 and 4.