Инд. авторы: Bataleva Y.V., Kruk A.N., Novoselov I.D, Palyanov Y.N.
Заглавие: Formation of spessartine and co2 via rhodochrosite decarbonation along a hot subduction p-t path
Библ. ссылка: Bataleva Y.V., Kruk A.N., Novoselov I.D, Palyanov Y.N. Formation of spessartine and co2 via rhodochrosite decarbonation along a hot subduction p-t path // Minerals. - 2020. - Vol.10. - Iss. 8. - P.1-12. - EISSN 2075-163X.
Идентиф-ры: DOI: 10.3390/min10080703; РИНЦ: 45299637;
Реферат: eng: Experimental simulation of rhodochrosite-involving decarbonation reactions resulting in the formation of spessartine and CO2-fluid was performed in a wide range of pressures (P) and temperatures (T) corresponding to a hot subduction P-T path. Experiments were carried out using a multi-anvil high-pressure apparatus of a “split-sphere” type (BARS) in an MnCO3–SiO2–Al2O3 system (3.0–7.5 GPa, 850–1250 °C and 40–100 h.) with a specially designed high-pressure hematite buffered cell. It was experimentally demonstrated that decarbonation in the MnCO3–SiO2–Al2O3 system occurred at 870 ± 20 °С (3.0 GPa), 1070 ± 20 °С (6.3 GPa), and 1170 ± 20 °С (7.5 GPa). Main Raman spectroscopic modes of the synthesized spessartine were 349–350 (R), 552(υ2), and 906–907 (υ1) cm−1. As evidenced by mass spectrometry (IRMS) analysis, the fluid composition corresponded to pure CO2. It has been experimentally shown that rhodochrosite consumption to form spessartine + CO2 can occur at conditions close to those of a hot subduction P-T path but are 300–350 °C lower than pyrope + CO2 formation parameters at constant pressures. We suppose that the presence of rhodocrosite in the subducting slab, even as solid solution with Mg,Ca-carbonates, would result in a decrease of the decarbonation temperatures. Rhodochrosite decarbonation is an important reaction to explain the relationship between Mn-rich garnets and diamonds with subduction/crustal isotopic signature.
Ключевые слова: subduction; spessartine; rhodochrosite; mantle; manganese; high-pressure experiment; Decarbonation; CO2 fluid;
Издано: 2020
Физ. хар-ка: с.1-12
Цитирование: 1. Lyubetskaya, T.; Korenaga, J. Chemical composition of Earth’s primitive mantle and its variance: 1. Method and results. J. Geophys. Res. Space Phys. 2007, 112, 1–21, doi:10.1029/2005jb004223.
2. McDonough, W.F. The Composition of the Earth. Int. Geophys. 1995, 120, 223–253, doi:10.1016/s00746142(01)80077-2.
3. Wang, H.S.; Lineweaver, C.H.; Ireland, T.R. The elemental abundances (with uncertainties) of the most Earth-like planet. Icarus 2018, 299, 460–474, doi:10.1016/j.icarus.2017.08.024.
4. Allègre, C.J.; Manhes, G.; Lewin, É. Chemical composition of the Earth and the volatility control on planetary genetics. Earth Planet. Sci. Lett. 2001, 185, 49–69, doi:10.1016/s0012-821x(00)00359-9.
5. Margolis, S.V.; Burns, R.G. Pacific Deep-Sea Manganese Nodules: Their Distribution, Composition, and Origin. Annu. Rev. Earth Planet. Sci. 1976, 4, 229–263, doi:10.1146/annurev.ea.04.050176.001305.
6. Santillán, J.; Williams, Q. A high-pressure infrared and X ray study of FeCO3 and MnCO3: Comparison with CaMg (CO3)2-dolomite. Phys. Earth Planet. Inter. 2004, 143–144, 291–304.
7. Liu, L.-G.; Lin, C.-C.; Yang, Y.-J. Formation of diamond by decarbonation of MnCO3. Solid State Commun. 2001, 118, 195–198, doi:10.1016/s0038-1098(01)00068-0.
8. Ono, S. High-pressure phase transformation in MnCO3: A synchrotron XRD study. Miner. Mag. 2007, 71, 105–111, doi:10.1180/minmag.2007.071.1.105.
9. Farfan, G.A.; Boulard, E.; Wang, S.; Mao, W.L. Bonding and electronic changes in rhodochrosite at high pressure. Am. Miner. 2013, 98, 1817–1823, doi:10.2138/am.2013.4497.
10. Merlini, M.; Hanfland, M.; Gemmi, M. The MnCO3-II high-pressure polymorph of rhodocrosite. Am. Miner. 2015, 100, 2625–2629, doi:10.2138/am-2015-5320.
11. Boulard, E.; Goncharov, A.F.; Blanchard, M.O.; Mao, W.L. Pressure-induced phase transition in MnCO3 and its implications on the deep carbon cycle. J. Geophys. Res. Solid Earth 2015, 120, 4069–4079, doi:10.1002/2015jb011901.
12. Boulard, E.; Liu, Y.; Koh, A.L.; Reagan, M.M.; Stodolna, J.; Morard, G.; Mezouar, M.; Mao, W.L. Transformations and Decomposition of MnCO3 at Earth’s Lower Mantle Conditions. Front. Earth Sci. 2016, 4, 107, doi:10.3389/feart.2016.00107.
13. Appleyard, C.; Viljoen, K.; Dobbe, R. A study of eclogitic diamonds and their inclusions from the Finsch kimberlite pipe, South Africa. Lithos 2004, 77, 317–332, doi:10.1016/j.lithos.2004.04.023.
14. Deines, P.; Gurney, J.; Harris, J. Associated chemical and carbon isotopic composition variations in diamonds from Finsch and Premier kimberlite, South Africa. Geochim. Cosmochim. Acta 1984, 48, 325–342, doi:10.1016/0016-7037(84)90254-0.
15. Deines, P. The carbon isotope geochemistry of mantle xenoliths. Earth-Sci. Rev. 2002, 58, 247–278, doi:10.1016/s0012-8252(02)00064-8.
16. Smith, C.; Gurney, J.; Harris, J.; Otter, M.; Kirkley, M.; Jagoutz, E. Neodymium and strontium isotope systematics of eclogite and websterite paragenesis inclusions from single diamonds, Finsch and Kimberley Pool, RSA. Geochim. Cosmochim. Acta 1991, 55, 2579–2590, doi:10.1016/0016-7037(91)90374-e.
17. Smith, C.B.; Walter, M.J.; Bulanova, G.P.; Mikhail, S.; Burnham, A.D.; Gobbo, L.; Kohn, S.C. Diamonds from Dachine, French Guiana: A unique record of early Proterozoic subduction. Lithos 2016, 265, 82–95, doi:10.1016/j.lithos.2016.09.026.
18. Frezzotti, M.L.; Selverstone, J.; Sharp, Z.D.; Compagnoni, R. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nat. Geosci. 2011, 4, 703–706, doi:10.1038/ngeo1246.
19. Groppo, C.; Beltrando, M.; Compagnoni, R. P-T path of the UHP Lago di Cignana and adjoining HP metaophiolitic units: Insights into the evolution of subducting Tethyan slab. J. Metamorph. Geol. 2009, 27, 207– 231.
20. Glassley, W.E.; Korstgård, J.A.; Sørensen, K.; Platou, S.W. A new UHP metamorphic complex in the ~1.8 Ga Nagssugtoqidian Orogen of West Greenland. Am. Miner. 2014, 99, 1315–1334, doi:10.2138/am.2014.4726.
21. Sobolev, N.V.; Shatsky, V.S. Diamond inclusions in garnets from metamorphic rocks: A new environment for diamond formation. Nature 1990, 343, 742–746, doi:10.1038/343742a0.
22. Kaminsky, F.; Belousova, E. Manganoan ilmenite as kimberlite/diamond indicator mineral. Russ. Geol. Geophys. 2009, 50, 1212–1220, doi:10.1016/j.rgg.2009.11.019.
23. Knoche, R.; Sweeney, R.J.; Luth, R. Carbonation and decarbonation of eclogites: The role of garnet. Contrib. Miner. Pet. 1999, 135, 332–339, doi:10.1007/s004100050515.
24. Palyanov, Y.N.; Sokol, A.G.; Tomilenko, A.A.; Sobolev, N.V. Conditions of diamond formation through carbonate-silicate interaction. Eur. J. Miner. 2005, 17, 207–214, doi:10.1127/0935-1221/2005/0017-0207.
25. Bataleva, Yu.V.; Novoselov, I.D.; Kruk, A.N.; Furman, O.V.; Reutsky, V.N.; Palyanov, Yu.N. Experimental modeling of decarbonation reactions resulting in the formation of Mg, Fe-garnets and CO2-fluid under mantle P,T-parameters. Russ. Geol. Geophys. 2020, 61, 650–662.
26. Ogasawara, Y.; Liou, J.G.; Zhang, R.Y. Thermochemical calculation of logfO2-T-P stability relations of diamond-bearing assemblages in the model system CaO-MgO-SiO2-CO2-H2O. Russ. Geol. Geophys. 1997, 38, 546–557.
27. Berman, R.G. Thermobarometry using multiequilibrium calculations: A new technique with petrologic applications. Can. Mineral. 1991, 29, 833–855.
28. Ovsyannikov, S.V.; Abakumov, A.M.; Tsirlin, A.A.; Schnelle, W.; Egoavil, R.; Verbeeck, J.; Van Tendeloo, G.; Glazyrin, K.V.; Hanfland, M.; Dubrovinsky, L. Perovskite-like Mn2O3. A path to new manganites. Angew. Chem. Int. Ed. Eng. 2013, 52, 1494–1498.
29. Palyanov, Y.N.; Borzdov, Y.M.; Khokhryakov, A.F.; Kupriyanov, I.N.; Sokol, A.G. Effect of Nitrogen Impurity on Diamond Crystal Growth Processes. Cryst. Growth Des. 2010, 10, 3169–3175, doi:10.1021/cg100322p.
30. Palyanov, Y.N.; Kupriyanov, I.N.; Khokhryakov, A.F.; Borzdov, Y.M. High-pressure crystallization and properties of diamond from magnesium-based catalysts. CrystEngComm 2017, 19, 4459–4475, doi:10.1039/c7ce01083d.
31. Pal’Yanov, Y.N.; Sokol, A.G. The effect of composition of mantle fluids/melts on diamond formation processes. Lithos 2009, 112, 690–700, doi:10.1016/j.lithos.2009.03.018.
32. Sokol, A.; Borzdov, Y.M.; Palyanov, Y.N.; Khokhryakov, A.F. High-temperature calibration of a multi-anvil high pressure apparatus. High Press. Res. 2015, 35, 139–147, doi:10.1080/08957959.2015.1017819.
33. Sokol, A.; Khokhryakov, A.F.; Palyanov, Y.N. Composition of primary kimberlite magma: Constraints from melting and diamond dissolution experiments. Contrib. Miner. Pet. 2015, 170, 26, doi:10.1007/s00410-0151182-z.
34. Santamaria-Perez, D.; McGuire, C.; Makhluf, A.; Kavner, A.; Chuliá-Jordán, R.; Pellicer-Porres, J.; García, D.M.; Doran, A.; Kunz, M.; Rodriguez-Hernandez, P.; et al. Exploring the Chemical Reactivity between Carbon Dioxide and Three Transition Metals (Au, Pt, and Re) at High-Pressure, High-Temperature Conditions. Inorg. Chem. 2016, 55, 10793–10799, doi:10.1021/acs.inorgchem.6b01858.
35. Luth, R.W. Natural versus experimental control of oxidation state: Effects on the composition and speciation of C-O-H fluids. Am. Mineral. 1989, 74, 50–57.
36. Boettcher, A.L.; Mysen, B.O.; Allen, J.C. Techniques for the control of water fugacity and oxygen fugacity for experimentation in solid-media high-pressure apparatus. J. Geophys. Res. 1973, 78, 5898–5901, doi:10.1029/jb078i026p05898.
37. Reutsky, V.; Borzdov, Y.M.; Palyanov, Y.N. Carbon isotope fractionation associated with HPHT crystallization of diamond. Diam. Relat. Mater. 2008, 17, 1986–1989, doi:10.1016/j.diamond.2008.06.003.
38. Reutsky, V.; Borzdov, Y.; Palyanov, Y.; Sokol, A.; Izokh, O. Carbon isotope fractionation during experimental crystallisation of diamond from carbonate fluid at mantle conditions. Contrib. Miner. Pet. 2015, 170, 41, doi:10.1007/s00410-015-1197-5.
39. Luth, R.W. Experimental determination of the reaction dolomite + 2coesite = diopside + 2CO2 to 6GPa. Contrib. Miner. Pet. 1995, 122, 152–158, doi:10.1007/s004100050118.
40. Wyllie, P.; Huang, W.-L.; Otto, J.; Byrnes, A. Carbonation of peridotites and decarbonation of siliceous dolomites represented in the system CaO-MgO-SiO2-CO2 to 30 kbar. Tectonophys. 1983, 100, 359–388, doi:10.1016/0040-1951(83)90194-4.
41. Eggler, D.H. The effect of CO2 upon partial melting of peridotite in the system Na2O-CaO-Al2O3-MgOSiO2-CO2 to 35 kbar, with an analysis of melting in a peridotite-H2O-CO2 system. Am. J. Sci. 1978, 278, 305–343.
42. Newton, R.; Sharp, W. Stability of forsterite + CO2 and its bearing on the role of CO2 in the mantle. Earth Planet. Sci. Lett. 1975, 26, 239–244, doi:10.1016/0012-821x(75)90091-6.
43. Koziol, A.M.; Newton, R.C. Experimental determination of the reaction; magnesite + enstatite = forsterite + CO2 in the ranges 6–25 kbar and 700–1100°. Am. Miner. 1998, 83, 213–219, doi:10.2138/am-1998-3-403.
44. Shatskiy, A.; Litasov, K.D.; Palyanov, Y. Phase relations in carbonate systems at pressures and temperatures of lithospheric mantle: Review of experimental data. Russ. Geol. Geophys. 2015, 56, 113–142, doi:10.1016/j.rgg.2015.01.007.
45. Kennedy, C.S.; Kennedy, G.C. The equilibrium boundary between graphite and diamond. J. Geophys. Res. 1976, 81, 2467–2470, doi:10.1029/jb081i014p02467.
46. Kolesov, B.A.; Geiger, C.A. Raman spectra of silicate garnets. Phys. Chem. Miner. 1998, 25, 142–151, doi:10.1007/s002690050097.
47. Valenzano, L.; Meyer, A.; Demichelis, R.; Civalleri, B.; Dovesi, R. Quantum-mechanical ab initio simulation of the Raman and IR spectra of Mn3Al2Si3O12 spessartine. Phys. Chem. Miner. 2009, 36, 415–420, doi:10.1007/s00269-009-0287-1.
48. Connolly, J.A. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 2005, 236, 524–541, doi:10.1016/j.epsl.2005.04.033.
49. Gorman, P.J.; Kerrick, D.M.; Connolly, J.A.D. Modeling open system metamorphic decarbonation of subducting slabs. Geochem. Geophys. Geosystems 2006, 7, 04007, doi:10.1029/2005gc001125.
50. Molina, J.F. Carbonate stability and fluid composition in subducted oceanic crust: An experimental study on H2O–CO2-bearing basalts. Earth Planet. Sci. Lett. 2000, 176, 295–310, doi:10.1016/s0012-821x(00)00021-2.
51. Poli, S.; Franzolin, E.; Fumagalli, P.; Crottini, A. The transport of carbon and hydrogen in subducted oceanic crust: An experimental study to 5 GPa. Earth Planet. Sci. Lett. 2009, 278, 350–360, doi:10.1016/j.epsl.2008.12.022.
52. Bulanova, G. The formation of diamond. J. Geochem. Explor. 1995, 53, 1–23, doi:10.1016/0375-6742(94)000165.
53. Brenker, F.; Vollmer, C.; Vincze, L.; Vekemans, B.; Szymanski, A.; Janssens, K.; Szaloki, I.; Nasdala, L.; Joswig, W.; Kaminsky, F. Carbonates from the lower part of transition zone or even the lower mantle. Earth Planet. Sci. Lett. 2007, 260, 1–9, doi:10.1016/j.epsl.2007.02.038.
54. Izraeli, E.S.; Harris, J.W.; Navon, O. Brine inclusions in diamonds: A new upper mantle fluid. Earth Planet. Sci. Lett. 2001, 187, 323–332, doi:10.1016/s0012-821x(01)00291-6.
55. Kaminsky, F.; Wirth, R.; Schreiber, A. Carbonatitic inclusions in deep mantle diamond from juina, Brazil: New minerals in the carbonate-halide association. Can. Miner. 2013, 51, 669–688, doi:10.3749/canmin.51.5.669.
56. Wang, A.; Pasteris, J.D.; Meyer, H.O.; Dele-Duboi, M.L. Magnesite-bearing inclusion assemblage in natural diamond. Earth Planet. Sci. Lett. 1996, 141, 293–306, doi:10.1016/0012-821x(96)00053-2.
57. Navon, O.; Hutcheon, I.D.; Rossman, G.; Wasserburg, G.J. Mantle-derived fluids in diamond microinclusions. Nature 1988, 335, 784–789, doi:10.1038/335784a0.
58. Schrauder, M.; Navon, O. Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana. Geochim. Cosmochim. Acta 1994, 58, 761–771, doi:10.1016/0016-7037(94)90504-5.
59. Sobolev, N. Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia. Lithos 1997, 39, 135– 157, doi:10.1016/s0024-4937(96)00022-9.
60. Stachel, T.; Harris, J.W.; Brey, G.P. Rare and unusual mineral inclusions in diamonds from Mwadui, Tanzania. Contrib. Miner. Pet. 1998, 132, 34–47, doi:10.1007/s004100050403.
61. Abersteiner, A.; Kamenetsky, V.S.; Pearson, D.G.; Kamenetsky, M.; Goemann, K.; Courtney-Davies, L.; Rodemann, T. Monticellite in group-I kimberlites: Implications for evolution of parental melts and postemplacement CO2 degassing. Chem. Geol. 2018, 478, 76–88, doi:10.1016/j.chemgeo.2017.06.037.
62. Bussweiler, Y.; Stone, R.S.; Pearson, D.G.; Luth, R.W.; Stachel, T.; Kjarsgaard, B.A.; Menzies, A. The evolution of calcite-bearing kimberlites by melt-rock reaction: Evidence from polymineralic inclusions within clinopyroxene and garnet megacrysts from Lac de Gras kimberlites, Canada. Contrib. Miner. Pet. 2016, 171, 65, doi:10.1007/s00410-016-1275-3.
63. Giuliani, A. Insights into kimberlite petrogenesis and mantle metasomatism from a review of the compositional zoning of olivine in kimberlites worldwide. Lithos 2018, 322–342, doi:10.1016/j.lithos.2018.04.029.
64. Delaney, J.S.; Smith, J.V.; Dawson, J.B.; Nixon, P.H. Manganese thermometer for mantle peridotites. Contrib. Miner. Pet. 1979, 71, 157–169, doi:10.1007/bf00375432.
65. Creighton, S. A semi-empirical manganese-in-garnet single crystal thermometer. Lithos 2009, 112, 177–182, doi:10.1016/j.lithos.2009.05.011.
66. Schulze, D.J.; Harte, B.; Valley, J.W.; Channer, D.M. Evidence of subduction and crust–mantle mixing from a single diamond. Lithos 2004, 77, 349–358, doi:10.1016/j.lithos.2004.04.022.