Инд. авторы: Agatova A.R., Nepop R.K., Zhdanova A.N, Bronnikova M.A., Zazovskaya E.P., Moska P., Khazina I.V.
Заглавие: Problems of 14c dating in fossil soils within tectonically active highlands of russian altai in the chronological context of the late pleistocene megafloods
Библ. ссылка: Agatova A.R., Nepop R.K., Zhdanova A.N, Bronnikova M.A., Zazovskaya E.P., Moska P., Khazina I.V. Problems of 14c dating in fossil soils within tectonically active highlands of russian altai in the chronological context of the late pleistocene megafloods // Catena. - 2020. - Vol.195. - Art.104764. - ISSN 0341-8162. - EISSN 1872-6887.
Идентиф-ры: DOI: 10.1016/j.catena.2020.104764; РИНЦ: 45395590;
Реферат: eng: A complicated tectonic and sedimentation history of the high-mountainous south-eastern part of Russian Altai predetermined the presence of sources of ancient organic matter in the region. During the Pleistocene these deposits were affected by various exogenous processes that leads to mixing of young and old carbon in a unique (for each sample) ratio and strongly affects the results of radiocarbon dating. This paper presents the results of multidisciplinary investigations of pedosedimentary sequences and discusses 14C dating of heterochronous organic matter in paleosols of two locations within the Chuya basin in the chronological context of the late Pleistocene megafloods. In the Kamsug valley reasonable evidence of the oldest (Pleistocene) paleosols in the SE Altai is described for the first time. The mineral composition of sediments and the results of pollen analysis argue for a short-distant redeposition of the Paleogene-Neogene parental substrate. Later it was transformed by Pleistocene pedogenesis: cryogenic processes, particularly solifluction, redox fluctuations resulted in redistribution of Fe and Mn. The analysis of available radiocarbon dates indicates that the contamination of the samples by extraneous carbon and the insufficient data about the features of organic matter of the studied soils don't allow to draw a definite conclusion about the time of the Pleistocene pedogenesis in the region. The presented OSL age 37.0 ± 3.1 ka (GdTL 3424) predates pedogenesis in this location, as well as the last ice-dammed lake formation in the Chuya basin and its further cataclysmic draining followed by the deposition of cross-bedded gravels and pebbles. In the neighbouring Yamanterek valley radiocarbon dating result for paleosol returns erratic (aged) date due to the influx of ancient organic matter. Similarly, this date cannot serve as the upper chronological limit of ice-dammed lakes existence in the Chuya depression. The radiocarbon ages (9.7–11.3 ka cal BP) of charcoals from the underlying lens of humus sands postdate the last ice-dammed lake with the water level at least 1980 m a.s.l. It was demonstrated that short-distant redeposition of the Paleogene-Neogene sediments in the region preserves their main mineralogical and paleontological features. It gives an opportunity to recognise such redeposited sediments which contain geological carbon. Meanwhile the redeposition followed by pedogenesis introduces younger organic matter. Diagenesis of such originally different organic matter contributes the final pool of organic carbon and results in the formation of heterogenous and heterochronous organic matter. This should be taken into account while 14C dating and interpreting the obtained results.
Ключевые слова: Russian Altai; radiocarbon dating; paleosols; OSL dating; megafloods; Late Pleistocene ice-dammed lakes; Chuya Basin; Apparent14C ages;
Издано: 2020
Физ. хар-ка: 104764
Цитирование: 1. Agatova, A.R., Nepop, R.K., Pleistocene glaciations of the SE Altai, Russia, based on geomorphological data and absolute dating of glacial deposits in Chagan reference section. Geochronometria. 44:1 (2017), 49–65.
2. Agatova, A.R., Nepop, R.K., Bronnikova, M.A., Slyusarenko, I.Yu., Orlova, L.A., Human occupation of South Eastern Altai highlands (Russia) in the context of environmental changes. Archaeol. Anthropol Sci. 8 (2016), 419–440.
3. Agatova, A.R., Nepop, R.K., Rudaya, N.A., Khazina, I.V., Zhdanova, A.N., Bronnikova, M.A., Uspenskaya, O.N., Zazovskaya, E.P., Ovchinnikov, I.Y., Panov, V.S., Shurygin, B.N., Discovery of Upper Oligocene-Lower Miocene brown coal deposits (Kosh-Agach formation) in the Dzhazator River valley (Southeastern Russian Altai): Neotectonic and paleogeographical aspects. Dokl. Earth Sci. 475:2 (2017), 854–857.
4. Agatova, A.R., Nepop, R.K., Slyusarenko, I.Y., Archaeological sites As markers of hydrosystem transformation in the kurai and chuya basins, southeastern altai, in the late pleistocene and holocene. Summary of findings and paleogeographic reconstructions. Archaeol., Ethnol. Anthropol. Eurasia. 45:1 (2017), 25–35.
5. Agatova, A.R., Khazina, I.V., Bronnikova, M.A., Uspenskaya, O.N., Nepop, R.K., Reconstruction of postglacial landscape evolution within the eastern periphery of Chuya depression on the basis of multidisciplinary analysis of peats in Boguty river basin, SE Altai, Russia. IOP Conf. Series: Earth Environ. Sci., 138(1), 2018, 012001.
6. Agatova, A.R., Nepop, R.K., Zazovskaya, E.P., Ovchinnikov, I.Yu., Moska, P., Problems of developing the Pleistocene radiocarbon chronology within high mountain terrains by the example of Russian Altai. Radiocarbon 61:6 (2019), 2019–2028.
7. Agatova, A.R., Nepop, R.K., Carling, P.A., Bohorquez, P., Khazin, L.B., Zhdanova, A.N., Moska, P., Last ice-dammed lake in the Kuray basin, Russian Altai: new results from multidisciplinary research. Earth Sci. Rev., 2020, 10.1016/j.earscirev.2020.103183.
8. Aitken, M.J., 1998. An Introduction to Optical Dating. The Dating of Quaternary Sediments by the Use of Photon-stimulated Luminescence. Oxford University Press, Oxford.
9. Arinushkina, E.V., Handbook for Chemical Analysis of Soils. 1970, Moscow State University Publishing House, Moscow, 487.
10. Arslanov, A.A., Radiocarbon: Geochemistry and Geochronology. 1987, Leningrad State University Press, Leningrad (in Russian).
11. Baker, V.R., Benito, G., Rudoy, A.N., Palaeohydrology of Late Pleistocene superflooding, Altay Mountains. Siberia. Science. 259 (1993), 348–350.
12. Berger, G.W., An alternate form of probability- distribution plot for De values. Antient TL. 28 (2010), 11–22.
13. Beug, H.-J., Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. München, 2004, 524.
14. Blomdin, R., Stroeven, A.P., Harbor, J.M., Gribenski, N., Caffee, M.W., Heyman, J., Rogozhina, I., Ivanov, M.N., Petrakov, D.A., Walther, M., Rudoy, A.N., Zhang, W., Orkhonselenge, A., Hättestrand, C., Lifton, N.A., Jansson, K.N., Timing and dynamics of glaciation in the Ikh Turgen Mountains, Altai region, High Asia. Quaternary Geochronol. 47 (2018), 54–71.
15. Blyakharchuk, T., Wright, H., Borodavko, P., Knaap, W.O., van der Ammann, B., The role of pingos in the development of the Dzhangyskol lake-pingo complex, central Altai Mountains, southern Siberia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 257 (2008), 404–420.
16. Bohorquez, P., Jimenez-Ruiz, P.J., Carling, P.A., Revisiting the dynamics of catastrophic late Pleistocene glacial-lake drainage, Altai Mountains, central Asia. Earth Sci. Rev., 197, 2019, 102892.
17. Bogachkin, B.M., 1981. The history of tectonic development of Altai Mountains in the Cenozoic. Moscow: Science (in Russian).
18. Bøtter-Jensen, L., Bulur, E., Duller, G.A.T., Murray, A.S., Advances in luminescence instrument systems. Radiat. Meas. 32 (2000), 523–528.
19. Bronk Ramsey, C., Higham, T., Leach, P., Towards high-precision AMS; progress and limitations. Radiocarbon 46:1 (2004), 17–24.
20. Bronk Ramsey, C., Radiocarbon dating: Revolutions in understanding. Archaeometry. 50:2 (2008), 249–275.
21. Bronnikova, M.A., Agatova, A.R., Lebedeva, M.P., Nepop, R.K., Konoplianikova, Yu.V., Turova, I.V., Record of Holocene Changes in High-Mountain Landscapes of Southeastern Altai in the Soil-Sediment Sequence of the Boguty River Valley. Eurasian Soil Sci. 51:12 (2018), 1381–1396.
22. Bronnikova, M.A., Konoplianikova, Yu.V., Agatova, A.R., Nepop, R.K., Lebedeva, M.P., Holocene environmental change in south-east altai evidenced by soil record. Geography, Environ., Sustainab. 11:4 (2018), 100–111.
23. Buslov, M.M., Zykin, V.S., Novikov, I.S., Delvo, D., Structural and geodynamic features of Cenozoic formation of Chuya intermountain depressions, Gorny Altai. Russian Geol. Geophys. 40:12 (1999), 1720–1736.
24. Butvilovsky, V.V., 1993. Paleogeografiya poslednego oledenenija i golocena Altaja: Sobytijno-Katastroficheskaja model’ (Paleogeography of the Last Glaciation and the Holocene of Altai: A Catastrophic Events Model). Tomsk, Tomsk University Press: 253 pp (in Russian).
25. Campbell, I.B., Claridge, G.G.C., Antarctica: Soils, Weathering Processes and Environment. Developments in Soil Science, vol. 6, 1987, Elsevier, Amsterdam.
26. Carling, P.A., Morphology, sedimentology and palaeohydraulic significance of large gravel dunes, Altai Mountains, Siberia. Sedimentology. 43:4 (1996), 647–664.
27. Carling, P.A., Kirkbride, A.D., Parnachev, S., Borodavko, P.S., Berger, G.W., 2002. Late Quaternary catastrophic flooding in the Altai Mountains of south–central Siberia: A synoptic overview and introduction to flood deposit sedimentology. In: Martini, I.P., Baker, V.R., Garzón, G. (Eds.), Flood and Megaflood Processes and Deposits: Recent and Ancient Examples. International Association of Sedimentologists, Special Publication 32, pp. 17–35.
28. Carling, P.A., Bristow, C.S., Litvinov, A.S., Ground-penetrating radar stratigraphy and dynamics of megaflood gravel dunes. Journal of the Geological Society. 173:3 (2016), 550–559.
29. Cherkinsky, A., Prasad, R.G.V., Dvoracek, D., AMS measurement of samples smaller than 300 μg at Center for Applied Isotope Studies, University of Georgia. Nucl. Instrum. Methods Phys. Res., Sect. B 294 (2013), 87–90.
30. Chichagova, O.A., Cherkinsky, A.E., Problems in radiocarbon dating of soils. Radiocarbon 35:3 (1993), 351–362.
31. Chichagova, O.A., Zazovskaya, E.P., Radiocarbon dating: past, present-day and future - development of I.P. Gerasimov ideas. Dokuchaev Soil Bull. 81 (2015), 160–176 (in Russian).
32. Deev, E.V., Nevedrova, N.N., Zolnikov, I.D., Rusanov, G.G., Ponomarev, P.V., Geoelectrical studies of the Chuya basin sedimentary fill (Gorny Altai). Russ. Geol. Geophys. 53:1 (2012), 92–107.
33. Devyatkin, E.V., Cenozoic deposits and neotectonics of Southeastern Altai. 1965, USSR Academy of Science, Moscow (In Russian).
34. Derevyanko, A.P., Markin, S.V., Paleolit of the Chuya depression: Gorny Altai. 1987, Nauka, Novosibirsk (in Russian).
35. Dergunov, A.B., Shulgina, V.S., Kalganov, E.N., Gavrilova, V.N., Rakovets, O.A., Shaposhnikova, G.F., Gorelov, B.G., 1961. Geological map of the USSR 1: 200000. Series Gorno-Altayskaya. Sheet M-45-XVII. Explanatory note. Moscow: Nedra (in Russian).
36. Dobretsov, N.L., Buslov, M.M., Delvaux, D., Berzin, N.A., Ermikov, V.D., Meso- and Cenozoic tectonics of the Central Asian mountain belt: effects of lithospheric plate interaction and mantle plumes. Int. Geol. Rev. 38:5 (1996), 430–466.
37. Domínguez, E., Mercado, J., Quesada, M., Heredia, A., Pollen sporopollenin: degradation and structural elucidation. Sex. Plant Reprod. 12:3 (1999), 171–178.
38. Egli, M., Lessovaia, S.N., Chistyakov, K., Inozemzev, S., Polekhovsky, Y., Ganyushkin, D., Microclimate affects soil chemical and mineralogical properties of cold alpine soils of the Altai Mountains (Russia). J. Soils Sediments 15:6 (2015), 1420–1436.
39. Fagel, N., Thamó-Bózsó, E., Heime, B., Mineralogical signatures of Lake Baikal sediments: Sources of sediment supplies through Late Quaternary. Sed. Geol. 194 (2007), 37–59.
40. Fedak, S.I., Turkin, Yu.A., Gusev, A.I., Shokalsky, S.P., Rusanov, G.G., Borisov, B.A., Belyaev, G.M., Leonteva, E.M., 2011. State geological map of the Russian Federation. Scale 1: 1,000,000 (third edition). Series Altai-Sayan. Sheet M-45 - Gorno-Altaysk. Explanatory note. SPb.: Cartographic factory VSEGEI (in Russian).
41. Fægri, K., Iversen, J. Textbook of Pollen Analysis. (1989) 328 pp. Wiley, Chichester.
42. Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M., Optical dating of single and multiple grains of quartz from Jinminum Rock Shelter, Northern 12 Australia. Part I, experimental design and statistical models. Archaeometry. 41 (1999), 1835–1857.
43. Ganiushkin, D., Chistyakov, K., Kunaeva, E., Fluctuation of glaciers in the southeast Russian Altai and northwest Mongolia Mountains since the Little Ice Age maximum. Environ. Earth Sci. 3:74 (2015), 1883–1904.
44. Glazovskaya, M.A., The role and functions of the pedosphere in the geochemical cycles of carbon. Eurasian Soil Sci. 29:2 (1996), 152–164.
45. Glorie, S., De Grave, J., Buslov, M.M., Zhimulev, F.I., Izmer, A., Vandoorne, W., Ryabinin, A. Van den haute, P., Vanhaecke, F., Elburg, M.A., 2011. Formation and Palaeozoic evolution of the Gorny-Altai–Altai-Mongolia suture zone (South Siberia): Zircon U/Pb constraints on the igneous record. Gondwana Res. 20(2–3), 465–484.
46. Glorie, S., De Grave, J., Buslov, M.M., Zhimulev, F.I., Elburg, M.A., Structural control on Meso-Cenozoic tectonic reactivation and denudation in the Siberian Altai: Insights from multi-method thermochronometry. Tectonophysics 544 (2012), 75–92.
47. Gribenski, N., Jansson, K.N., Lukas, S., Stroeven, A.P., Harbor, J.M., Blomdin, R., Ivanov, M.N., Heyman, J., Petrakov, D.A., Rudoy, A., Clifton, T., Lifton, N.A., Caffee, M.W., Complex patterns of glacier advances during the late glacial in the Chagan Uzun Valley, Russian Altai. Quat. Sci. Rev. 149 (2016), 288–305.
48. Guerin, G., Mercier, N., Adamiec, G., Dose-rate conversion factors: update. Ancient TL. 29 (2011), 5–8.
49. Herget, J., 2005. Reconstruction of Pleistocene Ice-dammed Lake Outburst Floods in Altai-mountains, Siberia. Geological Society of America, Special Publication 386: 118 pp.
50. Herget, J., Agatova, A.R., Carling, P.A., Nepop, R.K., Altai megafloods - The temporal context. Earth Sci. Rev., 200, 2020, 102995.
51. Jankovska, V., Komarek, J., Indicative value of Pediastrum and other Coccal Green algae in palaeoecology. Folia Geobotanica. 35 (2000), 59–82.
52. Joussain, R., Colin, C., Liu, Z., Meynadier, L., Fournier, L., Fauquembergue, K., Zaragosi, S., Schmidt, F., Rojas, V., Bassinot, F., Climatic control of sediment transport from the Himalayas to the proximal NE Bengal Fan during the last glacial-interglacial cycle. Quat. Sci. Rev. 148 (2016), 1–16.
53. Khazin, L.B., Agatova, A.R., Nepop, R.K., Shurygin, B.N., The first data on the late pleistocene ostracodes of the Kuray depression (Gorny Altai). Dokl. Earth Sci. 486:4 (2019), 451–454.
54. Kuprianova, L.A., Alyoshina, L.A., Spore and Pollen of Plants in European Part of the USSR. 1972, Nauka, Leningrad (in Russian).
55. Lehmkuhl, F., Zander, A., Frechen, M., Luminescence chronology of fluvial and aeolian deposits in the Russian Altai (Southern Siberia). Quat. Geochronol. 2 (2007), 195–201.
56. Lungersgausen, G.F., Rakovets, O.A., Some new data on stratigraphy of tertiary deposits of the Altai Mountains. VAGT Proc. 4 (1958), 79–91 (in Russian).
57. Luzgin, B.N., Rusanov, G.G., Characteristics of formation of Neogenic deposits in the Southeastern Gorny Altai. Russ. Geol. Geophys. 33:4 (1992), 18–23.
58. Moore, D.M., Reynolds, R.C.J., X-ray Diffraction and the Identification and Analysis of Clay Minerals. 1997, Oxford University Press, Oxford-New York.
59. Murray, A.S., Wintle, A.G., Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat. Meas. 32:1 (2000), 57–73.
60. Narozhniy, Y., Zemtsov, V., Current state of the Altai glaciers (Russia) and trends over the period of instrumental observations 1952–2008. Ambio 40:6 (2011), 575–588.
61. Nazarov, A.N., Solomina, O.N., Myglan, V.S., Variations of the tree line and glaciers in the central and eastern Altai regions in the Holocene. Dokl. Earth Sci. 444 (2012), 787–790.
62. Nekhoroshev, V.P., Tectonics of Altai. 1966, Nedra, Moscow (in Russian).
63. Nepop, R.K., Agatova, A.R., Recurrence interval of strong earthquakes in the SE Altai, Russia revealed by tree-ring analysis and radiocarbon dating. Geochronometria. 454 (2018), 20–33.
64. Nevedrova, N.N., Epov, M.I., Antonov, E.Y., Dashevsky, Y.A., Duchkov, A.D., Deep structure of the Chuya basin (Gorny Altai), as imaged by TEM soundings. Russ. Geol. Geophys. 42:9 (2001), 1399–1416.
65. Novikov, I.S., Morphotectonics of the Altai Mountains. 2004, SB RAS Publisher, “Geo” Brunch, Novosibirsk (in Russian).
66. Okishev, P.A., The dynamics of glaciation in Altai during the Late Pleistocene and Holocene. 1982, Tomsk University Press, Tomsk (in Russian).
67. Okishev, P.A., Borodavko, P.S., New materials on the history of the Chuya-Kurai limnosystem. Issues Geography Siberia. 24 (2001), 18–27 (in Russian).
68. Olsson, I.U., Modern aspects of radiocarbon datings. Earth Sci. Rev. 4 (1968), 203–218.
69. Orlova L.A., Panychev V.A., 1982. Buried soils and the problem of reliability of their radiocarbon dating: in Arkhipov, S.A., Volkova, V.S., Troitskaja, T.S. (Eds.) Problems of the Pleistocene Stratigraphy and Paleogeography of the Siberia. Novosibirsk: Nauka, pp. 28–36 (in Russian).
70. Orlova, L.A., Panychev, V.A., The reliability of radiocarbon dating buried soils. Radiocarbon 35:3 (1993), 369–377.
71. Panin, A., Baryshnikov, G., 2015. Composition and geochronology of the low (Saldzhar) terrace at the Chuya River confluence. In: Baryshnikov, G., A. Agatova, P. Carling, J. Herget, A. Panin, G. Adamiec & R. Nepop (eds.): Russian Altai in the last Pleistocene and the Holocene - geomorphological catastrophes and landscape rebound (fieldtrip guide). Barnaul, pp. 68–72.
72. Parker, S.P., McGraw-Hill Dictionary of. 1997, Earth Science.
73. Permafrost-hydrogeological map (scale 1:200000), 1977. Novosibirsk, Department of funds, Western Siberian Geological Administration; Inv. No. 18195.
74. Polach, H.A., Golson, J., 1966. Collection of Specimens for Radiocarbon Dating and Interpretation of Results. Canberra, Australian Institute of Aboriginal Studies, Manual #2.
75. Prescott, J.R., Stephan, L.G., The contribution of cosmic radiation to the environmental dose for thermoluminescence dating. Latitude, altitude and depth dependencies. TLS II-1 (1982), 16–25.
76. Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Turney, C.S.M., Van der Plicht, J., IntCal13 and MARINE13 radiocarbon age calibration curves 0–50000 years cal BP. Radiocarbon 55:4 (2013), 1869–1887.
77. Reuther, A., Herget, J., Ivy-Ochs, S., Borodavko, P., Kubik, P.W., Heine, K., Constraining the timing of the most recent cataclysmic flood event from ice-dammed lakes in the Russian Altay Mountains, Siberia, using cosmogenic in-situ 10Be. Geology 34 (2006), 913–916.
78. Rogozhin, E.A., Ovsyuchenko, A.N., Marahanov, A.V., Major earthquakes of the southern Gorny Altai in the Holocene. Izvestiya. Phys. Solid Earth. 44:6 (2008), 469–486.
79. Rudoy, A.N., Geomorphological effect and hydraulics of the Late Pleistocene jökulhlaups of the ice-dammed lakes in Altai. Russian Geomorphol. 4 (1995), 61–76 (in Russian).
80. Rudoy, A.N., Glacier-Dammed Lakes and geological work of glacial superfloods in the Late Pleistocene, Southern Siberia, Altai Mountains. Quat. Int. 87:1 (2002), 119–140.
81. Rusanov, G.G., Mineralogical and geochemical features of the Neogene lake sediments in the Chuya and Kurai basins of Gorny Altai. Progress Modern Nat. Sci. 9 (2009), 25–29 (in Russian).
82. Rusanov, G.G., The Holocene climate changes in Chuya depression (Gorny Altai) on the basis of ostracod fauna analysis. Progress Modern Nat. Sci. 10 (2010), 20–25 (in Russian).
83. Selin, P.F., Goverdovsky, V.A., 2000. Coal deposits of the Altai Republic. The results and prospects of the geological study of the Altai Mountains. Gorno-Altaisk: Gorno-Altaisk Publishing House (in Russian).
84. Schoeneberger, P.J., Wysocki, D.A., Benham, E.C., and Soil Survey Staff, 2012. Field book for describing and sampling soils, Version 3.0. Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE.
85. Sheinkman, V.S., Testing the S-S technique of TL dating on the Dead Sea sections, its use in the Altai Mountains and palaeogeographic interpretation of results. Archaeol., Ethnol. Anthropol. Eurasia. 2:10 (2002), 22–37 (in Russian).
86. Shokalsky, S.P., Zybin, V.A., Sergeev, V.P., 1999. Legend of the Altai series of the State Geological Map of the Russian Federation - 1: 200000. Explanatory note. Novokuznetsk: OF FUGUP (in Russian).
87. Shumilovskikh, L.S., Schlütz, F., Achterberg, I., Bauerochse, A., Leuschner, H.H., Nonpollen palynomorphs from mid-Holocene peat of the raised bog Borsteler Moor (Lower Saxony, Germany). Stud. Quat. 32:1 (2015), 5–18.
88. Skripkin, V., Kovaliukh, N., Recent Developments in the Procedures Used at the SSCER Laboratory for the Routine Preparation of Lithium Carbide. Radiocarbon 40:1 (1997), 211–214.
89. Solotchina, E.P., Prokopenko, A.A., Vasilevsky, A.N., Gavshin, V.M., Kuzmin, M.I., Williams, D.F., Simulation of XRD patterns as an optimal technique for studying glacial and interglacial clay mineral associations in bottom sediments of Lake Baikal. Clay Miner. 37:1 (2002), 105–119.
90. Solotchina, E.P., 2009. Structural Typomorphism of Clay Minerals of Sedimentary Sections and Crusts of Weathering. Novosibirsk: Geo (in Russian).
91. Stoops, G., Guidelines for Analysis and Description of Soil and Regolith Thin Sections. 2003, Soil Science Society of America, Madison, 184.
92. Svitoch, A.A., Boyarskaya, T.D., Voskresenskaya, T.N., Glushankova, I.I., Evseev, A.V., Kursalova, V.I., Paramonova, N.N., Faustov, S.S., Khorev, V.S., The Sections of the Latest Deposits of Altai. 1978, MSU Publisher, Moscow (in Russian).
93. Torn, M.S., Swanston, C.W., Castanha, C., Trumbore., S.E., 2009. Storage and turnover of organic matter in soil. In Biophysico-chemical processes involving natural nonliving organic matter in environmental systems. Wiley, Hoboken, pp. 219–272.
94. Trumbore, S., Radiocarbon and soil carbon dynamics. Annu. Rev. Earth Planet. Sci. 37 (2009), 47–66.
95. Trumbore, S.E., Zheng, S.H., Comparison of fractionation methods for soil organic matter C-14 analysis. Radiocarbon 38 (1996), 219–229.
96. Van Vliet-Lanoë, B., Fox, C.A., 2018. Frost action. In: Stoops, G., Marcelino, V., Mees, F. (Eds.) Interpretation of micromorphological features of soils and regoliths. pp.575–603.
97. Wacker L, Němec M, Bourquin J., 2010. A revolutionary graphitisation system: fully automated, compact and simple. Nuclear Instruments and Methods Phys. Res. B 268(7–8), 931–934.
98. Wallinga, J., On the detection of OSL age overestimation using single-aliquot techniques. Geochronometria. 21 (2002), 17–26.
99. Wang, Y., Amundson, R., Trumbore, S., Radiocarbon dating of soil organic matter. Quat. Res. 45:3 (1996), 282–288.
100. Weatherbase, Kosh-Agach, Russia. http://www.weatherbase.com/weather/weather.php3?s=95263 (accessed 19 March 2020).
101. Zolnikov, I.D., Mistrukov, A.A., Quaternary Deposits and Relief of the Chuya and Katun Valleys. 2008, Parallel, Novosibirsk (in Russian).
102. Zolnikov, I.D., Deev, E.V., Kotler, S.A., Rusanov, G.G., Nazarov, D.V., New results of OSL dating of Quaternary sediments in the Upper Katun'valley (Gorny Altai) and adjacent area. Russ. Geol. Geophys. 57:6 (2016), 933–943.
103. Zykin, V.S., Stratigraphy and evolution of the natural environment and climate in the Late Cenozoic south of Western Siberia, 2012, Geo, Novosibirsk (in Russian).
104. Zykin, V.S., Kazansky, A.Yu., Stratigraphy and paleomagnetism of Cenozoic (pre-Quaternary) deposits of the Chuya depression in Gorny Altai. Russ. Geol. Geophys. 36:10 (1995), 75–90 (in Russian).
105. Zykin, V.S., Zykina, V.S., Chirkin, K.A., Smolyaninova, L.G., The Geologic Structure and Stratigraphy of the Upper Cenozoic Deposits in the Region of the Early Paleolithic Site Karama in the Upper Anui River Valley (Northwestern Altai). Archaeol., Ethnol. Anthropol. Eurasia. 3 (2005), 2–20.
106. Zykina, V.S., Zykin, V.S., Volvakh, A.O., Smolyaninova, L.G., Ovchinnikov, I.Y., The loess-paleosol sequence at the Krasnogorskoye section, the low-hill zone of the northeastern Altai Mountains. Archaeol., Ethnol. Anthropol. Eurasia. 47:1 (2019), 3–14.