Инд. авторы: Palyanova G.A., Borovikov A.A., Karmanov N.S., Murzin V., Kuznetsov S.
Заглавие: Native gold in the chudnoe au-pd-ree deposit (subpolar urals, russia): composition, minerals in intergrowth and genesis
Библ. ссылка: Palyanova G.A., Borovikov A.A., Karmanov N.S., Murzin V., Kuznetsov S. Native gold in the chudnoe au-pd-ree deposit (subpolar urals, russia): composition, minerals in intergrowth and genesis // Minerals. - 2021. - Vol.11. - Iss. 5. - EISSN 2075-163X.
Идентиф-ры: DOI: 10.3390/min11050451; РИНЦ: 46089610; WoS: 000662411000001;
Реферат: eng: Composition of native gold and minerals in intergrowth with rhyolites of the Chudnoe Au-Pd-REE deposit (Subpolar Urals, Russia) was studied using optical microscopy, scanning electron microscopy, and electron microprobe analysis. Five varieties of native gold have been identified, based on the set of impurity elements and their quantities, and on intergrown minerals. Native gold in rhyolites from the Ludnaya ore zone is homogeneous and contains only Ag (fineness 720‰, type I). It is in intergrowth with fuchsite or allanite and mertieite-II. In rhyolites from the Slavnaya ore zone, native gold is heterogeneous, has a higher fineness, different sets and contents of elements: Ag, Cu, 840–860‰ (type II); Ag, Cu, Pd, 830–890‰ (III); Ag, Pd, Cu, Hg, 840–870‰ (IV). It occurs in intergrowth with fuchsite, albite, and mertieite-II (type II), or albite, quartz, and atheneite (III), or quartz, albite, K-feldspar, and mertieite-II (IV). High fineness gold (930–1000‰, type V) with low contents of Ag, Cu, and Pd or their absence occurs in the form as microveins, fringes and microinclusions in native gold II–IV. Tetra-auricupride (AuCu) is presented as isometric inclusions in gold II and platelets in the decay structures in gold III and IV. The preliminary data of a fluid inclusions study showed that gold mineralization at the Chudnoe deposit could have been formed by chloride fluids of low and medium salinity at temperatures from 105 to 230 C and pressures from 5 to 115 MPa. The formation of native gold I is probably related to fuchsitization and allanitization of rhyolites. The formation of native gold II-V is also associated with the same processes, but it is more complicated and occurred later with a significant role of Na-, Si-, and K-metasomatism. The presence of Pd and Cu in the ores and Cr in fuchsite indicates the important role of mafic-ultramafic magmatism.
Ключевые слова: Chudnoe deposit (Russia); Chemistry of native gold; Au-Pd-REE mineralization; Au-Cu intermetallides; P,T,X parameters of ore-forming fluids;
Издано: 2021
Цитирование: 1. Tarbaev, M.B.; Kuznetsov, S.K.; Moralev, G.V.; Soboleva, A.A.; Laputina, I.P. New gold-palladium type of mineralization in the Kozhim Region of Circumpolar Ural (Russia). Geol. Ore Depos. 1996, 38, 11–25.
2. Galankina, O.L.; Gavrilenko, V.V.; Gaydamako, I.M. New data on mineralogy of hydrothermal gold-platinoid mineralization of the Subpolar Urals. Zapiski RMO 1998, 3, 72–78. (In Russian with English abstract)
3. Shumilov, I.K.; Ostashchenko, B.A. Mineralogical and Technological Peculiarities of Au-Pd-TR Metallization in the Subpolar Urals; Geoprint: Syktyvkar, Russia, 2000; p. 104.
4. Anikina, E.V.; Alekseev, A.V. Mineral-geochemical characteristic of gold-palladium mineralization in the Volkov gabbro massif (Platiniferous Urals Belt). Litosfera 2010, 5, 75–100. (In Russian with English abstract)
5. Borisov, A.V. Geological and Genetic Features of Au-Pd-REE Ore Occurrences in the Maldy-Nyrd Ridge (Subpolar Urals). Ph.D. Thesis, IGEM RAS, Moscow, Russia, 2005; p. 27. (In Russian)
6. Nikulova, N.Y.; Filippov, V.N. Native palladium in gold from conglomerates of the Telpos (O1TP) Formation Muldynyrd Ridge, Subpolar Urals. J. Proc. Komi Sci. Centre Ural Branch RAS 2009, 138, 69. (In Russian with English abstract)
7. Onishchenko, S.A.; Kuznetsov, S.K. Palladium-gold sulfide mineralization in andesites at the Chudnoe deposit (Subpolar Urals). J. Proc. Komi Sci. Centre Ural Branch RAS 2019, 294, 20–27. (In Russian with English abstract)
8. Kuznetsov, S.K.; Mayorova, T.P.; Shaibekov, R.I.; Sokerina, N.V.; Filippov, V.N. Mineral composition and conditions of formation of gold-platinum-palladium occurrences in the north of the Urals and Pai-Khoi. Geol. Miner. Resour. 2014, 3, 81–85. (In Russian with English abstract)
9. Pystin, A.M.; Potapov, I.L.; Pystina, Y.I.; Generalov, V.I.; Onishchenko, S.A.; Filippov, V.N.; Shloma, A.A.; Tereshko, V.V. Low-Sulfide Platinum-Metal Mineralization in the Polar Urals; Pystin, A.M., Ed.; Institute of Economics Ural Branch of RAS: Yekaterinburg, Russia, 2011; p. 150. (In Russian with English abstract)
10. Ozerov, V.S. Metamorfogennye rossypi zolota Pripolyarnogo Urala (Metamorphogenic gold placers in the Subpolar Urals). Ores Metals 1996, 4, 28–37. (In Russian)
11. Galankina, O.L. Peculiarities of Mineralogy of Palladium-Gold Occurrences of the Subpolar Urals. Ph.D. Thesis, St. PMU, Saint Petersburg, Russia, 2001; p. 156. (In Russian)
12. Surenkov, S.V. Formation Conditions and Sources of Ore Matter Au-PGE-REE of Ore Occurrences in Alkesvozhskaya Area (Subpolar Urals). Ph.D. Thesis, IGEM RAS, Moscow, Russia, 2003; p. 23. (In Russian)
13. Moralev, G.V.; Borisov, A.V.; Surenkov, S.V.; Tarbaev, M.B.; Ponomarchuk, V.A. First 39Ar-40Ar datings on micas from the Chudnoe Au-Pd-REE occurrence, Near-Polar Urals. Dokl. Earth Sci. 2005, 400, 109–112.
14. Kuznetsov, S.K.; Onishchenko, S.A. Gold content of local areas of metasomatic alteration of rhyolites of the Chudnoe deposit (Subpolar Urals). J. Proc. Komi Sci. Centre Ural Branch RAS 2018, 288, 39–45. (In Russian with English abstract)
15. Kuznetsov, S.; Mayorova, T.; Sokerina, N.; Glukhov, Y. Gold-bearing areas of the western slope of Northern Urals and Timan. J. Proc. Komi Sci. Centre Ural Branch RAS 2018, 4, 81–94. [CrossRef]
16. Onishchenko, S.A.; Kuznetsov, S.K.; Tropnikov, E.M. Epigenetic alteration of cupreous gold in the Au-Ag-Cu-Pd exsolution texture. Dokl. Earth Sci. 2020, 492, 418–421. [CrossRef]
17. Lafuente, B.; Downs, R.T.; Yang, H.; Stone, N. The power of databases: The RRUFF project. In Highlights in Mineralogical Crystallography; Armbruster, T., Danisi, R.M., Eds.; De Gruyter: Berlin, Germany, 2015; pp. 1–30.
18. Chernova, A.E.; Moralev, G.V.; Tarbaev, M.B.; Kuznetsov, S.K.; Wolfson, A.A. Distribution and forms of occurrence of mercury in the Au-Pd-REE ore occurrence Chudnoye, Kozhimsky region, Subpolar Urals. In The Main Problems of Teaching About Magmatoid Ore Deposits; IGEM RAS: Moscow, Russia, 1997; pp. 172–173. (In Russian)
19. Borisenko, A.S. Cryometric analysis of salt composition of solutions of gas-liquid inclusions in minerals. In Application of Therobarogeochemical Methods in Prospecting and Study of Ore Deposits; Nedra: Moscow, Russia, 1982; pp. 37–47. (In Russian)
20. Bodnar, R.J.; Vityk, M.O. Interpretation of microthermometric data for NaCl-H2 O fluid inclusions, Fluid Inclusions in Minerals. In Methods and Applications; De Vivo, B., Frezzotti, M.L., Eds.; Virginia Polytechnic Institute State University: Blacksburg, VA, USA, 1994; pp. 117–131.
21. Bakker, R.J. AqSo NaCl: Computer program to calculate p-T-V-x properties in the H2 O-NaCl fluid system applied to fluid inclusion research and pore fluid calculation. Comput. Geosci. 2018, 115, 122–133. [CrossRef]
22. Fisher, N.H. The fineness of gold, with special reference to the Morobe gold field, New Guinea. Econ. Geol. 1945, 40, 449–495. [CrossRef]
23. Morrison, G.W.; Rose, W.J.; Jaireth, S. Geological and geochemical controls on the silver content (fineness) of gold in gold-silver deposits. Ore Geol. Rev. 1991, 6, 333–364. [CrossRef]
24. Gammons, C.H.; Williams-Jones, A.E. Hydrothermal geochemistry of electrum; thermodynamic constraints. Econ. Geol. 1995, 90, 420–432. [CrossRef]
25. Pal'Yanova, G. Physicochemical modeling of the coupled behavior of gold and silver in hydrothermal processes: Gold fineness, Au/Ag ratios and their possible implications. Chem. Geol. 2008, 255, 399–413. [CrossRef]
26. Liang, Y.; Hoshino, K. Thermodynamic calculations of AuxAg1-x-Fluid equilibria and their applications for ore-forming conditions. Appl. Geochem. 2015, 52, 109–117. [CrossRef]
27. Palyanova, G.; Zinina, V.; Kokh, K.; Seryotkin, Y.; Zhuravkova, T.; Mikhlin, Y. New gold chalcogenides in the Au-Te-Se-S System. J. Phys. Chem. Solids 2020, 138, 109276. [CrossRef]
28. Chapman, R.J.; Banks, D.A.; Styles, M.T.; Walshaw, R.D.; Piazolo, S.; Morgan, D.J.; Grimshaw, M.R.; Spence-Jones, C.P.; Matthews, T.J.; Borovinskaya, O. Chemical and physical heterogeneity within native gold: Implications for the design of gold particle studies. Miner. Deposita 2021, 1–26. [CrossRef]
29. Letnikov, F.A. Fluid regime of endogenous processes and problems of ore genesis. Rus. Geol. Geophys. 2001, 47, 1296.
30. Williams-Jones, A.E.; Bowell, R.J.; Migdisov, A.A. Gold in Solution. Elements 2009, 5, 281–287. [CrossRef]
31. Murzin, V.V.; Sazonov, V.N. Origin of cupriferous gold mineralization in Alpine-type ultramafic rocks. Dokl. Earth Sci. 1999, 367, 634–635.
32. Duuring, P.; Hagemann, S.G.; Cassidy, K.F.; Johnson, C.A. Hydrothermal Alteration, Ore Fluid Characteristics, and Gold Depositional Processes along a Trondhjemite-Komatiite Contact at Tarmoola, Western Australia. Econ. Geol. 2004, 99, 423–451. [CrossRef]
33. Rauchenstein-Martinek, K.; Wagner, T.; Walle, M.; Heinrich, C.A. Gold concentrations in metamorphic fuids: A LA-ICPMS study. Chem. Geol. 2014, 385, 70–83. [CrossRef]
34. Prokof'ev, V.Y. Main Principles of Hydrothermal Deposit Typification Based on Fluid Inclusion Study: The Case of Gold. Trans. Rus. Acad. Sci. Earth Sci. Sect. 2003, 354, 2553–2555. (In Russian)
35. Mountain, B.W.; Wood, S.A. Chemical controls on the solubility, transport and deposition of platinum and palladium in hydrothermal solutions: A thermodynamic approach. Econ. Geol. 1988, 83, 492–510. [CrossRef]
36. Spiridonov, E. Ore-magmatic systems of the Noril'sk ore field. Russ. Geol. Geophys. 2010, 51, 1059–1077. [CrossRef]
37. Gorbachev, N.S.; Dadze, T.P.; Kashirtseva, G.A.; Kunts, A.F. Fluid transfer of gold, palladium, and rare earth elements and genesis of ore occurrences in the Subpolar Urals. Geol. Ore Deposits 2010, 52, 215–233. [CrossRef]
38. Olivo, R.; Gauthier, M.; Bardoux, M. Palladian gold from the Caue iron mine, Itabira District, Minas Gerais, Brazil. Mineral. Mag. 1994, 58, 579–587. [CrossRef]
39. Varajão, C.; Colin, F.; Vieillard, P.; Melfi, A.; Nahon, D. Early weathering of palladium gold under lateritic conditions, Maquiné Mine, Minas Gerais, Brazil. Appl. Geochem. 2000, 15, 245–263. [CrossRef]
40. Cabral, A.R.; Lehmann, B.; Kwitko, R.; Jones, R.D. Palladian gold and palladium arsenide-antimonide minerals from Gongo Soco iron ore mine, Quadrilátero Ferrífero, Minas Gerais, Brazil. Appl. Earth Sci. 2002, 111, 74–80. [CrossRef]
41. Chapman, R.J.; Leake, R.C.; Bond, D.P.G.; Stedra, V.; Fairgrieve, B. Chemical and Mineralogical Signatures of Gold Formed in Oxidizing Chloride Hydrothermal Systems and their Significance within Populations of Placer Gold Grains Collected during Reconnaissance. Econ. Geol. 2009, 104, 563–585. [CrossRef]
42. Chudnenko, K.V.; Palyanova, G.A.; Anisimova, G.S.; Moskvitin, S.G. Ag-Au-Hg solid solutions and physicochemical models of their formation in nature (Kyuchyus deposit as an example). Appl. Geochem. 2015, 55, 138–151. [CrossRef]
43. Palyanova, G.; Murzin, V.; Zhuravkova, T.; Varlamov, D. Au-Cu-Ag mineralization in rodingites and nephritoids of the Agardag ultramafic massif (southern Tuva, Russia). Russ. Geol. Geophys. 2018, 59, 238–256. [CrossRef]
44. Nielsen, T.F.D.; Andersen, J.C.O.; Holness, M.; Keiding, J.K.; Rudashevsky, N.S.; Rudashevsky, V.N.; Salmonsen, L.P.; Tegner, C.; Veksler, I.V. The Skaergaard PGE and Gold Deposit: The Result ofin situFractionation, Sulphide Saturation and Magma Chamber-scale Precious Metal Redistribution by Immiscible Ferich Melt. J. Pet. 2015, 56, 1643–1676. [CrossRef]
45. Rudashevsky, N.S.; Rudashevsky, V.N.; Nielsen, T.F.D.; Shebanov, A.D. Alloys and intermetallic compounds of gold and copper in gold-palladium ores of the Skaergard massif (Greenland). J. Proc. Komi Sci. Centre Ural Branch RAS 2014, 143, 1–23.
46. Sluzhenikin, S.F.; Mokhov, A.V. Gold and silver in PGE-Cu-Ni and PGE ores of the Noril'sk deposits, Russia. Miner. Depos. 2014, 50, 465–492. [CrossRef]
47. Palacios, C.; Hérail, G.; Townley, B.; Maksaev, V.; Sepulveda, F.; De Parseval, P.; Rivas, P.; Lahsen, A.; Parada, M.A. The composition of gold in the cerro casale gold-rich porphyry deposit, maricunga belt, Northern Chile. Can. Miner. 2001, 39, 907–915. [CrossRef]
48. Arif, J.; Baker, T. Gold paragenesis and chemistry at Batu Hijau, Indoneisa: Implications for gold-rich porphyry copper de-posits. Miner. Depos. 2004, 39, 523–535. [CrossRef]
49. Chudnenko, K.; Pal'yanova, G. Thermodynamic properties of solid solutions in the Ag-Au-Cu system. Russ. Geol. Geophys. 2014, 55, 349–360. [CrossRef]
50. Gas'kov, I.V. Major impurity elements in native gold and their association with gold mineralization settings in deposits of Asian fold belts. Russ. Geol. Geophys. 2017, 58, 1080–1092. [CrossRef]
51. Murzin, V.V.; Sustavov, S.G. Solid-phase transformation in natural cuprous gold. Izv. USSR Acad. Sci. Ser. Geol. 1989, 11, 94–104. (In Russian)
52. Okamoto, H.; Charkrabarti, D.J.; Laugylin, D.E.; Massalski, T.B. The Au-Cu (Gold-Copper) System. Bull. Alloy Ph. Diagr. 1987, 8, 454–473. [CrossRef]
53. Spiridonov, E.M.; Pletnev, P.A. Zolotaya Gora Cupriferous Gold Deposit “Gold-Rodingite” Formation; Spiridonov, E.M., Ed.; Nauchnyi Mir: Moscow, Russia, 2002; p. 220. (In Russian)
54. Murzin, V.V.; Chudnenko, K.V.; Palyanova, G.A.; Varlamov, D.A.; Naumov, E.A.; Pirajno, F. Physicochemical model of formation of Cu-Ag-Au-Hg solid solutions and intermetallic alloys in the rodingites of the Zolotaya Gora gold deposit (Urals, Russia). Ore Geol. Rev. 2018, 93, 81–97. [CrossRef]
55. Knight, J.; Leitch, C.H. Phase relations in the system Au-Cu-Ag at low temperatures, based on natural Assemblages. Can. Miner. 2001, 39, 889–905. [CrossRef]
56. Surenkov, S.V.; Moralev, G.V.; Borisov, A.V. Physicochemical Parameters of the Au-PGE-REE Mineralization of the Chudnoe and Nesterovskoe Ore Occurrences (Subpolar Urals); VII Student School Metallogeny of Ancient and Modern Oceans-2001; Institute of Mineralogy, Ural Branch of RAS: Miass, Russia, 2001; pp. 195–198. (In Russian with English abstract)
57. Omelyanenko, B.I. Near-Ore Hydrothermal Alteration of Rocks; Nedra: Moscow, Russia, 1978; p. 215. (In Russian)
58. Prokofiev, V.Y. Geochemical Features of Ore-Forming Fluids of Hydrothermal Gold Deposits of Various Genetic Types (According to the Study of Fluid Inclusions); Zorina, L.D., Ed.; Siberian Publishing Company “Science”: Novosibirsk, Russia, 2000; p. 192.
59. Berni, G.V.; Heinrich, C.A.; Wälle, M.; Wall, V.J. Fluid geochemistry of the Serra Pelada Au-Pd-Pt deposit, Carajás, Brazil: Exceptional metal enrichment caused by deep reaching hydrothermal oxidation. Ore Geol. Rev. 2019, 111, 102991. [CrossRef]
60. Barakat, A.; Marignac, C.; Boiron, M.-C.; Bouabdelli, M. Caractérisation des paragenèses et des paléocirculations fluides dans l'indice d'or de Bleïda (Anti-Atlas, Maroc). Comptes Rendus Geosci. 2002, 334, 35–41. [CrossRef]
61. El Ghorfi, M.; Oberthür, T.; Melcher, F.; Lüders, V.; Boukhari, A.; Maacha, L.; Ziadi, R.; Baoutoul, H. Gold–palladium mineralization at Bleïda Far West, Bou Azzer–El Graara Inlier, Anti-Atlas, Morocco. Miner. Depos. 2006, 41, 549–564. [CrossRef]
62. Berni, G.V.; Heinrich, C.A.; Lobato, L.M.; Wall, V. Ore mineralogy of the Serra Pelada Au-Pd-Pt deposit, Carajás, Brazil and implications for ore-forming processes. Miner. Deposita 2016, 51, 781–795. [CrossRef]
63. Palyanova, G.A. Gold and Silver Minerals in Sulfide Ore. Geol. Ore Depos. 2020, 62, 383–406. [CrossRef]
64. Zaccarini, F.; Pushkarev, E.; Fershtater, G.B.; Garuti, G. Composition and mineralogy of PGE-rich chromitites in the nurali lherzolite gabbro complex, Southern Urals, Russia. Can. Miner. 2004, 42, 545–562. [CrossRef]
65. Anikina, E.V.; Zaccarini, F.; Knauf, V.V.; Rusin, I.A.; Pushkarev, E.V.; Garouti, J. Palladium and gold minerals in the ores of the Baron ore occurrence, Volkovsky gabbro-diorite massif. Bull. Ural Dep. Rus. Mineral. Soc. 2005, 4, 5–25. (In Russian with English abstract)
66. Spiridonov, E.; Yanakieva, D. Modern mineralogy of gold: Overview and new data. ArchéoSciences 2009, 33, 67–73. [CrossRef]
67. Kuznetsov, S.K.; Tarbaev, M.B.; Moralev, G.V.; Soboleva, A.A.; Ivanova, T.I. Gold-platinoid mineralization in the Subpolar Urals. In Mater. Vseros. Conf. “Gold, Platinum and Diamonds of the Komi Republic and Adjacent Regions”; Institute of Geology, Komi Science Center: Syktyvkar, Russia, 1998; pp. 13–14. (In Russian with English abstract)
68. Buisson, G.; Leblanc, M. Gold bearing listwanites (carbonatized ultramafic rocks) in ophiolite complexes. In Metallogeny of Basic and Ultrabasic Rocks; Gallagher, J.M., Iscer, R.A., Neary, C.R., Prichard, H.M., Eds.; Institute of Mining and Metallurgy: London, UK, 1986; pp. 121–132.
69. Halls, C.; Zhao, R. Listvenite and related rocks: Perspectives on terminology and mineralogy with reference to an occurrence at Cregganbaum, Co., Mayo, Republic of Ireland. Miner. Depos. 1995, 30, 303–313. [CrossRef]
70. Azer, M.K. Evolution and economic significance of listwaenites associated with Neoproterozoic ophiolites in south Eastern Desert, Egypt. Geol. Acta 2013, 11, 113–128.
71. Belogub, E.V.; Melekestseva, I.Y.; Novoselov, K.A.; Zabotina, M.V.; Tret'Yakov, G.A.; Zaykov, V.V.; Yuminov, A.M. Listvenite-related gold deposits of the South Urals (Russia): A review. Ore Geol. Rev. 2017, 85, 247–270. [CrossRef]
72. Sazonov, V.N. Gold-Bearing Metasomatic Associations in Fold Belts; Institute of Geology and Geochemistry: Yekaterinburg, Russia, 1998; p. 181. (In Russian)
73. Zharikov, V.A.; Rusinov, V.L. Metasomatism and Metasomatic Rocks; Scientific World: Moscow, Russia, 1998; p. 492.
74. Harlov, D.E.; Austrheim, H. Metasomatism and the Chemical Transformation of Rock; Metzler, J.B., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; p. 806.