Инд. авторы: Nugumanova Y., Doroshkevich A.G., Prokopyev I.R, Starikova A.E.
Заглавие: Compositional variations of spinels from ultramafic lamprophyres of the chadobets complex (siberian craton, russia)
Библ. ссылка: Nugumanova Y., Doroshkevich A.G., Prokopyev I.R, Starikova A.E. Compositional variations of spinels from ultramafic lamprophyres of the chadobets complex (siberian craton, russia) // Minerals. - 2021. - Vol.11. - Iss. 5. - EISSN 2075-163X.
Идентиф-ры: DOI: 10.3390/min11050456; РИНЦ: 46055767; WoS: 000662378300001;
Реферат: eng: Ultramafic lamprophyres (UMLs) are mantle rocks that provide important information about the composition of specific carbonate–silicate alkaline melts in the mantle as well as the processes contributing to their origin. Minerals of the spinel group typically occur in UMLs and have a unique “genetic memory.” Investigations of the spinel minerals from the UMLs of the Chadobets complex show the physicochemical and thermodynamic features of the alkaline rocks’ crystalliza-tion. The spinels of these UMLs have four stages of crystallization. The first spinel xenocrysts were found only in damtjernite pipes, formed from mantle peridotite, and were captured during the ris-ing of the primary melt to the surface. The next stages of the spinel composition evolution are related to the high‐chromium spinel crystallization, which changed to a high‐alumina composition. The composition then changed to magnesian ulvöspinel–magnetites with strong decreases in the Al and Cr amounts caused by the release of carbon dioxide, rapid temperature changes, and crystallization of the main primary groundmass minerals such as phlogopite and carbonates. Melt inclusion analyses showed the predominance of aluminosilicate (phlogopite, clinopyroxene, and/or albite) and carbonate (calcite and dolomite) daughter phases in the inclusions that are consistent with the chemical evolution of the Cr‐spinel trend. The further evolution of the spinels from magnesian ulvöspinel–magnetite to Ti‐magnetite is accompanied by the formation of atoll structures caused by resorption of the spinel minerals.
Ключевые слова: ultramafic lamprophyre; Siberian Craton; Minerals of the spinel group; Damtjernite; Chadobets upland; Atoll spinel; aillikite; zoning;
Издано: 2021
Цитирование: 1. Chalapathi Rao, N.V.; Gibson, S.A.; Pyle, D.; Dickin, A.P. Petrogenesis of Proterozoic lamproites and kimberlites from the Cuddapah basin and Dharwar cratons, Southern India. J. Petrol. 2004, 45, 907–948.
2. Gaffney, A.M.; Blichert‐Toft, J.; Nelson, B.K.; Bizzarro, M.; Rosing, M.; Albarede, F. Constraints on source‐forming processes of West Greenland kimberlites inferred from Hf‐Nd isotope systematics. Geochim. Cosmochim. Acta 2007, 71, 2820–2836.
3. Tappe, S.; Foley, S.F.; Kjarsgaard, B.A.; Romer, R.L.; Heaman, L.M.; Stracke, A.; Jenner, G.A. Between carbonatite and lamproite-diamondiferous Torngat ultramafic lamprophyres formed by carbonate‐fluxed melting of cratonic MARID‐type metasomes. Geochim. Cosmochim. Acta 2008, 72, 3258–3286.
4. Bergman, S.C. Lamproites and other potassium‐rich igneous rocks: A review of their occurrence, mineralogy and geochemistry. In Alkaline Igneous Rocks; Fitton, J.G., Upton, B.G.J., Eds.; Geol Soc: London, UK, 1987; pp. 103–190.
5. Kumar, A.; Heaman, L.M.; Manikyamba, C. Mesoproterozoic kimberlites in South India: A possible link to ~1.1 Ga global-magmatism. Precambrian Res. 2007, 154, 192–204.
6. Mitchell, R.H. A review of the mineralogy of lamproites. Trans. Geol. Soc. S. Afr. 1985, 88, 411–437.
7. Mitchell, R.H.; Bergman, S.C. Petrology of Lamproites; Plenum Press: New York, NY, USA, 1991; 447p.
8. Mitchell, R.H. Accessory rare earth. strontium, barium and zirconium minerals in the benfontein and wesselton calcite kimber-lites, South Africa. In Kimberlites Related Rocks and Mantle Xenoliths 1; Meyer, H.O.A., Leonardos, O.H., Eds.; CPRM Special Publication: Araxa, Brazil, 1994; pp. 115–128.
9. Mitchell, R.H. Potassic magmas derived from metasomatized lithospheric mantle: Nomenclature and relevance to exploration for diamond bearing rocks. J. Geol. Soc. India 2006, 67, 317–327.
10. Mitchell, R.H. Petrology of hypabyssal kimberlites: Relevance to primary magma compositions. J. Volcanol. Geoth. Res. 2008, 174, 1–8.
11. Shoji, A.; Satoko, I. Zincian chromite inclusions in diamonds: Possibility of deep recycling origin. J. Mineral. Petrol. Sci. 2011, 106, 85–90.
12. Barnes, S.J.; Roedder, P.L. The range of spinel compositions in terrestrial mafic and ultramafic rocks. J. Petrol. 2001, 42, 2279– 2302.
13. Grütter, H.S.; Apter, D.B. Kimberlite and lamproite‐borne chromite phenocrysts with “diamond inclusion”‐type chemistries. In Extended Abstracts, 7th International Kimberlite Conference; University of Cape Town: Cape Town, South Africa, 11 April 1998; pp. 280–288.
14. Jaques, A.L. Major and trace element variations in oxide and titanate minerals in the West Kimberley lamproites, Western Aus-tralia. Mineral. Petrol. 2016, 110, 159–197.
15. Kamenetsky, V.M.; Crawford, A.J.; Meffre, S. Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr‐spinel and melt inclusions from primitive rocks. J. Petrol. 2001, 42, 655–671.
16. Klemme, S. The influence of Cr on the garnet–spinel transition in the Earth’s mantle: Experiments in the system MgO–Cr2O3– SiO2 and thermodynamic modeling. Lithos 2004, 77, 639–646.
17. Haggerty, S.E. The chemistry and genesis of opaque minerals in kimberlite. In Physics and Chemistry of the Earth; Ahrens, L.H., Dawson, J.B., Duncan, A.R., Erlank, A.J., Eds.; Pergamon Press: Oxford, UK, 1975; Volume 9, pp. 295–307.
18. Mitchell, R.H. Kimberlites: Mineralogy, Geochemistry, and Petrology; Plenum Press: New York, NY, USA, 1986; 442p.
19. Kamenetsky, V.S.; Golovin, A.V.; Maas, R.; Giuliani, A.; Kamenetsky, M.B.; Weiss, Y. Towards a new model for kimberlite petrogenesis: Evidence from unaltered kimberlites and mantle minerals. Earth Sci. Rev. 2014, 139, 145–167.
20. Kargin, A.V.; Sazonova, L.V.; Nosova, A.A.; Lebedeva, N.M.; Tretyachenko, V.V.; Abersteiner, A. Cr‐rich clinopyroxene meg-acrysts from the Grib kimberlite, Arkhangelsk province, Russia: Relation to clinopyroxene–phlogopite xenoliths and evidence for mantle metasomatism by kimberlite melts. Lithos 2017, 292–293, 34–48.
21. Krmíček, L.; Romer, R.L.; Ulrych, J.; Glodny, J.; Prelević, D. Petrogenesis of orogenic lamproites of the bohemian massif: Sr– Nd–Pb–Li isotope constraints for Variscan enrichment of ultradepleted mantle domains. Gondwana Res. 2016, 35, 198–216.
22. Kubínová, Š.; Faryad, S.W.; Verner, K.; Schmitz, M.; Holub, F. Ultrapotassic dykes in the Moldanubian zone and their significance for understanding of the post‐collisional mantle dynamics during Variscan orogeny in the bohemian massif. Lithos 2017, 272–273, 205–221.
23. Jaques, A.L.; Lewis, J.D.; Smith, C.B. The kimberlites and lamproites of Western Australia. Geol. Surv. West. Aust. Bull. 1986, 132, 65.
24. Rimsaite, J. Distribution of major and minor constituents between mica and host ultrabasic rocks, and between zoned mica and zoned spinel. Contrib. Mineral. Petrol. 1971, 33, 259–272.
25. Schulze, D.J. Origins of chromian and aluminous spinel macrocrysts from kimberlites in southern Africa. Can. Mineral. 2001, 39, 361–376.
26. Su, B.X.; Zhang, H.F.; Sakyi, P.A.; Yang, Y.‐H.; Ying, J.‐F.; Tang, Y.‐J.; Qin, K.‐Z.; Xiao, Y.; Zhao, X.‐M.; Mao, Q.; et al. The origin of spongy texture in minerals of mantle xenoliths from the Western Qinling, Central China. Contrib Mineral. Petrol. 2011, 161, 465–482.
27. Roeder, P.L.; Schulze, D.J. Crystallization of groundmass spinel in kimberlite. J. Petrol. 2008, 49, 1473–1495.
28. Tappe, S.; Foley, S.F.; Jenner, G.A.; Kjarsgaard, B.A. Integrating ultramafic lamprophyres into the IUGS classification of igneous rocks: Rational and implications. J. Petrol. 2005, 46, 1893–1900.
29. Doroshkevich, A.G.; Chebotarev, D.A.; Sharygin, V.V.; Prokopyev, I.R.; Nikolenko, A.M. Petrology of alkaline silicate rocks and carbonatites of the Chuktukon massif, Chadobets upland, Russia: Sources, evolution and relation to the Triassic Siberian LIP. Lithos 2019, 332–333, 245–260.
30. Lapin, A.V. About kimberlites of the Chadobets upland in connection with a problem of the formational‐metallogeny analysis of the platform alkaline ultrabasic magmatic rocks. Otechestvennaya Geol. 2001, 4, 30–35. (In Russian)
31. Nosova, A.A.; Kargin, A.V.; Sazonova, L.V.; Dubinina, E.O.; Chugaev, A.V.; Lebedeva, N.M.; Yudin, D.S.; Larionova, Y.O.; Abersteiner, A.; Gareev, B.I. Sr‐Nd‐Pb isotopic systematic and geochronology of ultramafic alkaline magmatism of the southwestern margin of the Siberian Craton: Metasomatism of the sub‐continental lithospheric mantle related to subduction and plume events. Lithos 2020, 364–365, 105509.
32. Chebotarev, D.A.; Doroshkevich, A.G.; Klemd, R.; Karmanov, N.S. Evolution of Nbmineralization in the Chuktukon carbonatite massif, Chadobets upland (Krasnoyarsk Territory, Russia). Period. Mineral. 2017, 86, 99–118, doi:10.2451/2017PM733.
33. Dashkevich, N.N. Regional prediction of kimberlite magmatism in the southwestern Siberian Platform. In Geologiya i poleznye iskopaemye Krasnoyarskogo kraya (Geology and Mineral Resources of Krasnoyarsk District); Krasnoyarsk Book Publishing House: Krasnoyarsk, Russia, 1999; pp 31–42. (In Russian)
34. Lapin, A.V.; Lisitzyn, D.V. About mineralogical typomorphism of alkaline ultrabasic magmatic rocks of Chadobets upland. Otechestvennaya Geol. 2004, 683, 93. (In Russian)
35. Lapin, A.V.; Pyatenko, I.K. Chadobets complex of ultrabasic alkaline rocks and carbonatites: New data about composition and condition of formation. Dokl. Earth Sci. 1992, 6, 88–101. (In Russian)
36. Lomayev, V.G.; Serdyuk, S.S. The Chuktukon Nb‐TR deposit—The priority object for modernization of the Russian rare‐earth industry. J. Sib. Fed. Univ. 2011, 4, 132–154.
37. Kirichenko, T.; Zuev, K.; Perfilova, O.Y.; Sosnovskaya, O.; Smokotina, I.; Markovich, L.A.; Borodin, M.E. State Geological Map of Russian Federation, Scale 1: 1000000 (Third Generation); Ser. Angaro‐Eniseysk. Sheet O‐47 Bratsk. Explanatory Note; Cartografic Factory of VSEGEI: St. Petersburg, Russia, 2012; pp. 163–179. (In Russian)
38. Chebotarev, D.A.; Doroshkevich, A.G.; Sharygin, V.V.; Yudin, D.S.; Ponomarchuk, A.V.; Sergeev, S.A. Geochronology of the Chuktukon carbonatite massif, Chadobets uplift (Krasnoyarsk Territory). Russ. Geol. Geophys. 2017, 58, 1222–1231.
39. Doroshkevich, A.G.; Sharygin, V.V.; Belousova, E.A.; Izbrodin, I.A.; Prokopyev, I.R. Zircon from the Chuktukon alkaline ultra-mafic carbonatite complex (Chadobets uplift, Siberian craton) as evidence of source heterogeneity. Lithos 2021. 382–383, 105957.
40. Prokopyev, I.; Starikova, A.; Doroshkevich, A.; Nugumanova, Y.; Potapov, V. Petrogenesis of Ultramafic Lamprophyres from the Terina Complex (Chadobets Upland, Russia): Mineralogy and Melt Inclusion Composition. Minerals 2020, 10, 419, doi:10.3390/min10050419.
41. Bosi, F.; Biagioni, C.; Pasero, M. Nomenclature and classification of the spinel supergroup. Eur. J. Mineral. 2019, 31, 183–192.
42. Mitchell, R.H. Kimberlites, Orangeites and Related Rocks; Plenum Press: New York, NY, USA, 1995; 410p.
43. Tappe, S.; Foley, S.F.; Jenner, G.A. Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, Labrador: A consequence of incipient lithospheric thinning beneath the North Atlantic craton. J. Petrol. 2006, 47, 1261–1315.
44. Upton, B.G.J.; Craven, J.A.; Kirstein, L.A. Crystallisation of mela‐aillikites of the Narsaq region, Gardar alkaline province, south Greenland and relationships to other aillikitic–carbonatitic associations in the province. Lithos 2006, 92, 300–319, doi:10.1016/j.li-thos.2006.03.046.
45. Roeder, P.L.; Poustovetov, A.; Oskarsson, N. Growth forms and composition of chromian spinel in MORB magma: Diffusion-controlled crystallization of chromian spinel. Can. Mineral. 2001, 39, 397–416.
46. Irvine, T.N. Chromian spinel as a petrogenetic indicator. Part, I. Theory. Can. J. Earth Sci. 1965, 2, 648–672.
47. Pasteris, J.D. Spinel zonation in the De beers kimberlite, South Africa: Possible role of phlogopite. Can Mineral. 1983, 21, 41–58.
48. Carpenter, R.L.; Edgar, A.D.; Thibault, Y. Origin of spongy textures in clinopyroxene and spinel from mantle xenoliths, hessian depression, Germany. Mineral. Petrol. 2002, 74, 149–162.
49. Kumar, S.P.; Shaikh, A.M.; Patel, S.C.; Sheikh, J.M.; Behera, D.; Pruseth, K.L.; Ravi, S.; Tappe, S. Multi‐stage magmatic history of olivine–leucite lamproite dykes from Banganapalle, Dharwar craton, India: Evidence from compositional zoning of spinel. Mineral. Petrol. 2020, 115, 87–112, doi:10.1007/s00710‐020‐00722‐y.
50. Streck, M.J. Mineral textures and zoning as evidence for open system processes. Rev. Mineral. Geochem 2008, 69, 595–622.
51. Armstrong, K.A.; Roeder, P.L.; Helmstaedt, H.H. Composition of spinels in the C14 kimberlite, Kirkland Lake, Ontario. Russ. Geol. Geophys. 1997, 38, 454–466.
52. Putnis, A. Mineral replacement reactions: From macroscopic observations to microscopic mechanisms. Mineral. Mag. 2002, 66, 689–708.
53. Putnis, A. Mineral replacement reactions. MSA Rev. Mineral. Geochem. 2009, 70, 87–124.
54. Putnis, C.V.; Mezger, K. A mechanism of mineral replacement: Isotope tracing in the model system KCl‐KBr‐H2O. Geochim. Cosmochim. Acta 2004, 68, 2839–2848.
55. Putnis, C.V.; Tsukamoto, K.; Nishimura, Y. Direct observations of pseudomorphism: Compositional and textural evolution at a fluid‐solid interface. Am. Mineral. 2005, 90, 1909–1912.
56. Watson, E.B.; Brenan, J.M. Fluids in the lithosphere, 1. Experimentally‐determined wetting characteristics of CO2‐H2O fluids and their implications for fluid transport, host‐rock physical properties and fluid inclusion formation. Earth Planet. Sci. Lett. 1987, 85, 497–515.
57. Watson, E.B.; Brenan, J.M.; Baker, D.R. Distribution of fluids in the mantle. In Continental Mantle; Menzies, M.A., Ed.; Clarendon: Oxford, UK, 1990.