Инд. авторы: Kuznetsov A.B., Kokh K.A., Kononova N.G., Shevchenko V.S., Rashchenko S.V., Kokh A.E., Ezhov D.M., Jamous A.Y., Svetlichnyi V.A., Bolatov A., Uralbekov B.
Заглавие: Polymorphism in smsc3(bo3)4: crystal structure, luminescent and shg properties
Библ. ссылка: Kuznetsov A.B., Kokh K.A., Kononova N.G., Shevchenko V.S., Rashchenko S.V., Kokh A.E., Ezhov D.M., Jamous A.Y., Svetlichnyi V.A., Bolatov A., Uralbekov B. Polymorphism in smsc3(bo3)4: crystal structure, luminescent and shg properties // Journal of Alloys and Compounds. - 2021. - Vol.851. - Art.156825. - ISSN 0925-8388. - EISSN 1873-4669.
Идентиф-ры: DOI: 10.1016/j.jallcom.2020.156825; РИНЦ: 45354841;
Реферат: eng: Low temperature C2/c and high temperature P321 modifications of SmxSc4-x (BO3)4 solid solutions were grown from LiBO2–LiF flux. These borates have typical luminescence for Sm3+ containing crystals with the two strongest peaks at 602 and 645 nm, which correspond to 4G5∕26H7∕2, 6H5∕2 electron transitions. In addition, the compounds were characterized by IR and Raman spectroscopy. SHG intensity for trigonal modification was found to be three times higher than that of KDP revealing its high potential for various NLO applications.
Ключевые слова: structure; solid state synthesis; Shg; Rare earth borate; luminescence; crystal growth;
Издано: 2021
Физ. хар-ка: 156825
Цитирование: 1. Yang, Y., Jiang, X., Lin, Z., Wu, Y., Borate-based ultraviolet and deep-ultraviolet nonlinear optical crystals. Crystals, 7(4), 2017.
2. Tran, T.T., Yu, H., Rondinelli, J.M., Poeppelmeier, K.R., Halasyamani, P.S., Deep ultraviolet nonlinear optical materials. Chem. Mater. 28:15 (2016), 5238–5258.
3. Silver, M.A., Albrecht-Schmitt, T.E., Evaluation of f-element borate chemistry. Coord. Chem. Rev. 323 (2016), 36–51.
4. Jacoby, M., New borate crystal boosts UV optical applications. Chem. Eng. News, 95(33), 2017, 12.
5. Chen, X., Zhang, B., Zhang, F., Wang, Y., Zhang, M., Yang, Z., Poeppelmeier, K.R., Pan, S., Designing an excellent deep-ultraviolet birefringent material for light polarization. J. Am. Chem. Soc. 140:47 (2018), 16311–16319.
6. Becker, P., Borate materials in nonlinear optics. Adv. Mater. 10:13 (1998), 979–992.
7. Allan, N.L., Dale, H.J.A., Hart, J.N., Claeyssens, F., Adventures in boron chemistry - the prediction of novel ultra-flexible boron oxide frameworks. Faraday Discuss 211 (2018), 569–591 0.
8. Yanagida, T., Study of rare-earth-doped scintillators. Opt. Mater. 35:11 (2013), 1987–1992.
9. Verma, S., Verma, K., Kumar, D., Chaudhary, B., Som, S., Sharma, V., Kumar, V., Swart, H.C., Recent advances in rare earth doped alkali-alkaline earth borates for solid state lighting applications. Phys. B Condens. Matter 535 (2018), 106–113.
10. Smentek, L., Andes Hess, B., Theory of host sensitized luminescence of rare earth doped materials. I. Parity considerations. J. Alloys Compd. 300–301 (2000), 165–173.
11. Kushida, T., Energy transfer and cooperative optical transitions in rare-earth doped inorganic materials. III. Dominant transfer mechanism. J. Phys. Soc. Jpn. 34:5 (1973), 1334–1337.
12. Kushida, T., Energy transfer and cooperative optical transitions in rare-earth doped inorganic materials. II. Comparison with experiments. J. Phys. Soc. Jpn. 34:5 (1973), 1327–1333.
13. Reisfeld, R., Saraidarov, T., Ziganski, E., Gaft, M., Lis, S., Pietraszkiewicz, M., Intensification of rare earths luminescence in glasses. J. Lumin. 102–103 (2003), 243–247.
14. Aitasalo, T., Dereń, P., Hölsä, J., Jungner, H., Krupa, J.C., Lastusaari, M., Legendziewicz, J., Niittykoski, J., Stręk, W., Persistent luminescence phenomena in materials doped with rare earth ions. J. Solid State Chem. 171:1 (2003), 114–122.
15. Ryba-Romanowski, W., Solarz, P., Dominiak-Dzik, G., Gusowski, M., New luminescent systems based on fluoride crystals doped with rare earth ions. Opt. Mater. 28:1 (2006), 77–84.
16. Krupa, J.C., Queffelec, M., UV and VUV optical excitations in wide band gap materials doped with rare earth ions: 4f–5d transitions. J. Alloys Compd. 250:1 (1997), 287–292.
17. Ma, B., Liu, B., Luminescence properties and crystal structure of Sr3Sc(PO4)3:Sm3+ as novel orange-red emitting phosphors. J. Lumin. 188 (2017), 54–59.
18. Ren, Q., Lin, F., Wu, X., Hai, O., Wei, T., Jiao, Y., Li, H., Synthesis and luminescent properties of KGd(MoO4)2:Sm3+ red phosphor for white light emitting diodes. Mater. Res. Bull. 90 (2017), 66–72.
19. Annadurai, G., Kennedy, S.M.M., Sivakumar, V., Photoluminescence properties of a novel orange-red emitting Ba2CaZn2Si6O17:Sm3+ phosphor. J. Rare Earths 34:6 (2016), 576–582.
20. Dalal, M., Taxak, V.B., Chahar, S., Khatkar, A., Khatkar, S.P., A promising novel orange–red emitting SrZnV2O7:Sm3+ nanophosphor for phosphor-converted white LEDs with near-ultraviolet excitation. J. Phys. Chem. Solid. 89 (2016), 45–52.
21. Bian, Q., Yang, Z., Dong, L., Pan, S., Zhang, H., Wu, H., Yu, H., Zhao, W., Jing, Q., First principle assisted prediction of the birefringence values of functional inorganic borate materials. J. Phys. Chem. C 118:44 (2014), 25651–25657.
22. Chen, C., Wu, Y., Li, R., The development of new NLO crystals in the borate series. J. Cryst. Growth 99:1–4 (1990), 790–798.
23. Chen, C.-t., Liu, G.-z., Recent advances in nonlinear optical and electro-optical materials. Annu. Rev. Mater. Sci. 16:1 (1986), 203–243.
24. Khamaganova, T.N., Structural specific features and properties of alkaline-earth and rare-earth metal borates. Russ. Chem. Bull. 66:2 (2017), 187–200.
25. Fedorov, P.P., Morphotropism of rare-earth orthoborates RBO3. J. Struct. Chem. 60:5 (2019), 679–691.
26. Ballman, A.A., A new series of synthetic borates isostructural with the carbonate mineral huntite. Am. Mineral. 47:11–12 (1962), 1380–1383.
27. He, M., Wang, G., Lin, Z., Chen, W., Lu, S., Wu, Q., Structure of medium temperature phase β-LaSc3(BO3)4 crystal. Mater. Res. Innovat. 2:6 (1999), 345–348.
28. Kuz'micheva, G.M., Kaurova, I.A., Rybakov, V.B., Podbel'sky, V.V., Chuykin, N.K., Structural instability in single-crystal rare-earth scandium borates RESc3(BO3)4. Cryst. Growth Des. 18:3 (2018), 1571–1580.
29. Leonyuk, N.I., Leonyuk, L.I., Growth and characterization of RM3(BO3)4 crystals. Prog. Cryst. Growth Char. Mater. 31:3 (1995), 179–278.
30. Rybakov, V.B., Kuzmicheva, G.M., Zharikov, E.V., Ageev, A.Y., Kutovoi, S.A., Kuz'min, O.V., Crystal structure of NdSc3(BO3)(4). Zh. Neorg. Khim. 42:10 (1997), 1594–1601.
31. Malashkevich, G.E., Sigaev, V.N., Golubev, N.V., Mamadzhanova, E.K., Danil'chik, A.V., Zubelevich, V.Z., Lutsenko, E.V., Rearrangement of optical centers and stimulated radiation of Eu3+ in polycrystalline huntite under optical and electron-beam excitation. JETP Lett. (Engl. Transl.) 92:8 (2010), 497–501.
32. Fedorova, M.V., Kononova, N.G., Kokh, A.E., Shevchenko, V.S., Growth of MBO3 (M-La,Sc,Y) and LaSc3(BO3)4 crystals from melt-solution LiBO2–LiF system. Inorganic chemistry (in Russian) 49:5 (2013), 505–509.
33. Kuz'micheva, G.M., Morphotropic series of LnSc[sub 3](BO[sub 3])[sub 4] compounds. Crystallogr. Rep. 45:6 (2000), 910–915.
34. Reynolds, T.A., Synthetic, Structural, and Spectroscopic Investigations of Acentric Laser Hosts and Ionic Optical Converters. 1992, Oregon State University.
35. Kurtz, S.K., Perry, T.T., A Powder Technique for the Evaluation of Nonlinear Optical Materials 39:8 (1968), 3798–3813.
36. Kuznetsov, A., Kokh, A., Kononova, N., Shevchenko, V., Uralbekov, B., Ezhov, D., Svetlichnyi, V., Goreiavcheva, A., Kokh, K., New scandium borates RxLayScz(BO3)4 (x+y+z=4, R=Sm, Tb): synthesis, growth, structure and optical properties. Mater. Res. Bull., 2020, 110850.
37. Kuznetsov, A.B., Ezhov, D.M., Kokh, K.A., Kononova, N.G., Shevchenko, V.S., Uralbekov, B., Bolatov, A., Svetlichnyi, V.A., Lapin, I.N., Simonova, E.A., Kokh, A.E., Nonlinear optical crystals K7CaR2(B5O10)3 (R = Nd, Yb), growth and properties. J. Cryst. Growth 519 (2019), 54–59.
38. Dmitriev, V.G.G.,G.G., Nikogosyan, D.N., Handbook of Nonlinear Optical Crystals, vol. 64, 1999, Springer Berlin Heidelberg, Berlin, Heidelberg.
39. Magunov, I.R.V.,S.V., Zhirnova, A.P., Zhikhareva, E.A., Efryushina, N.P., Synthesis and properties OF scandium and rare-earth (CE group) double borates. Neorg. Mater. 221:9 (1985), 1532–1610.
40. Filatov, S., Shepelev, Y., Bubnova, R., Sennova, N., Egorysheva, A.V., Kargin, Y.F., The study of Bi3B5O12: synthesis, crystal structure and thermal expansion of oxoborate Bi3B5O12. J. Solid State Chem. 177:2 (2004), 515–522.
41. Wei, L., Wang, G.-M., He, H., Yang, B.-F., Yang, G.-Y., Series of open-framework aluminoborates containing [B5O10] clusters. Dalton Trans. 44:3 (2015), 1420–1426.
42. Atuchin, V.V., Subanakov, A.K., Aleksandrovsky, A.S., Bazarov, B.G., Bazarova, J.G., Gavrilova, T.A., Krylov, A.S., Molokeev, M.S., Oreshonkov, A.S., Stefanovich, S.Y., Structural and spectroscopic properties of new noncentrosymmetric self-activated borate Rb3EuB6O12 with B5O10 units. Mater. Des. 140 (2018), 488–494.
43. Dobretsova, E.A., Borovikova, E.Y., Boldyrev, K.N., Kurazhkovskaya, V.S., Leonyuk, N.I., IR spectroscopy of rare-earth aluminum borates RAl3(BO3)4 (R = Y, Pr-Yb). Optic Spectrosc. 116:1 (2014), 77–83.
44. Oreshonkov, S.A., Roginskii, M.E., Shestakov, P.N., Gudim, A.I., Temerov, L.V., Nemtsev, V.I., Molokeev, S.M., Adichtchev, V.S., Pugachev, M.A., Denisenko, G.Y., Structural, electronic and vibrational properties of YAl3(BO3)4. Materials, 13(3), 2020.
45. Demesh, M.P., Dernovich, O.P., Gusakova, N.V., Yasukevich, A.S., Kornienko, A.A., Dunina, E.B., Fomicheva, L.A., Pavlyuk, A.A., Kuleshov, N.V., Growth and spectroscopic properties of Sm3+:KY(WO4)2 crystal. Opt. Mater. 75 (2018), 821–826.
46. Herrera, A., Fernandes, R.G., de Camargo, A.S.S., Hernandes, A.C., Buchner, S., Jacinto, C., Balzaretti, N.M., Visible–NIR emission and structural properties of Sm3+ doped heavy-metal oxide glass with composition B2O3–PbO–Bi2O3–GeO2. J. Lumin. 171 (2016), 106–111.
47. Chen, B.J., Shen, L.F., Pun, E.Y.B., Lin, H., Sm3+-doped germanate glass channel waveguide as light source for minimally invasive photodynamic therapy surgery. Optic Express 20:2 (2012), 879–889.