Инд. авторы: Kruk M.N., Doroshkevich A.G., Prokopyev I.R, Izbrodin I.A.
Заглавие: Mineralogy of phoscorites of the arbarastakh complex (republic of sakha, yakutia, russia)
Библ. ссылка: Kruk M.N., Doroshkevich A.G., Prokopyev I.R, Izbrodin I.A. Mineralogy of phoscorites of the arbarastakh complex (republic of sakha, yakutia, russia) // Minerals. - 2021. - Vol.11. - Iss. 6. - EISSN 2075-163X.
Идентиф-ры: DOI: 10.3390/min11060556; РИНЦ: 46094238; WoS: 000665943700001;
Реферат: eng: The Arbarastakh ultramafic carbonatite complex is located in the southwestern part of the Siberian Craton and contains ore-bearing carbonatites and phoscorites with Zr-Nb-REE mineralization. Based on the modal composition, textural features, and chemical compositions of minerals, the phoscorites from Arbarastakh can be subdivided into two groups: FOS 1 and FOS 2. FOS 1 contains the primary minerals olivine, magnetite with isomorphic Ti impurities, phlogopite replaced by tetraferriphlogopite along the rims, and apatite poorly enriched in REE. Baddeleyite predominates among the accessory minerals in FOS 1. Zirconolite enriched with REE and Nb and pyrochlore are found in smaller quantities. FOS 2 has a similar mineral composition but contains much less olivine, magnetite is enriched in Mg, and the phlogopite is enriched in Ba and Al. Of the accessory minerals, pyrochlore predominates and is enriched in Ta, Th, and U; baddeleyite is subordinate and enriched in Nb. Chemical and textural differences suggest that the phoscorites were formed by the sequential introduction of different portions of the melt. The melt that formed the FOS 1 was enriched in Zr and REE relative to the FOS 2 melt; the melt that formed the FOS 2 was enriched in Al, Ba, Nb, Ta, Th, U, and, to a lesser extent, Sr.
Ключевые слова: mineralogy; chemical evolution; Arbarastakh alkaline-ultrabasic carbonatite complex complex; Aldan shield; phoscorites;
Издано: 2021
Цитирование: 1. Wallace, M.E.; Green, D.H. An experimental determination of primary carbonatite magma composition. Nature 1988, 335, 343– 346.
2. Dalton, J.A.; Wood, B.J. The compositions of primary carbonate melts and their evolution through wall rock reaction in the mantle. Earth and Planet. Sci. Lett. 1993, 119, 511–525.
3. Harmer, R.E.; Gittins, J. The Case for Primary, Mantle-derived Carbonatite Magma. J. Petrol. 1998, 39, 1895–1903. doi:10.1093/petroj/39.11-12.1895.
4. Otto, J.W.; Wyllie, P.J. Relationships between silicate melts and carbonate-precipitating melts in CaO–MgO–SiO2–CO2–H2O at 2 kbar. Mineral. Petrol. 1993, 48, 343–365.
5. Kjarsgaard, B.; Hamilton, D.L. Carbonatite origin and diversity. Nature 1989, 338, 547–548.
6. Lee, W.; Wyllie, P.J. Petrogenesis of carbonatite magmas from mantle to crust, constrained by the system CaO-(MgO-FeO) (Na2O-K2O)-(SiO2-Al2O3-TiO2)-CO2. J. Petrol. 1998, 39, 495–517.
7. Wall, F.; Zaitsev, A.N. Phoscorites and Carbonatites from Mantle to Mine: The Key Example of the Kola Alkaline Province; Mineralogical Society: London, UK, 2004; p. 498, Series 10.
8. Chakhmouradian, A.R. High-field-strength elements in carbonatitic rocks: Geochemistry, crystal chemistry and significance for constraining the sources of carbonatites. Chem. Geol. 2006, 235, 138–160.
9. Chakhmouradian, A.R.; Wall, F. Rare earth elements: Minerals, mines, magnets (and more). Elements 2012, 8, 333–340.
10. Wall, F. Rare Earth Elements. Critical Metals Handbook; John Wiley & Sons: Hoboken, NJ, United States; 2013; doi:10.1002/9781118755341.ch13.
11. Smith, M.P.; Campbell, L.S.; Kynicky, J. A review of the genesis of the world-class Bayan Obo Fe-REE-Nb deposits, Inner Mongolia, China: Multistage processes and outstanding questions. Ore Geol. Rev. 2014, 64, 459–476.
12. Chakhmouradian, A.R.; Reguir, E.P.; Kressall, R.D.; Crozier, J.; Pisiak, L.K.; Sidhu, R.; Yang, P. Carbonatite-hosted niobium deposit at Aley, northern British Columbia (Canada): Mineralogy, geochemistry and petrogenesis. Ore Geol. Rev. 2015, 64, 642– 666, doi:10.1016/j.oregeorev.2014.04.020.
13. Giebel, R.J.; Marks, M.A.W.; Gauert, C.D.K.; Markl, G. A model for the formation of carbonatite–phoscorite assemblages based on the compositional variations of mica and apatite from the Palabora Carbonatite Complex, South Africa. Lithos 2019, 324, 89– 104.
14. Barbosa, E.S.R.; Brod, J.A.; Cordeiro, P.F.O.; Junqueira-Brod, T.C.; Santos, R.V.; Dantas, E.L. Phoscorites of the Salitre I complex: Origin and petrogenetic implications. Chem. Geol. 2020, 535, 119463, doi:10.1016/j.chemgeo.2020.119463.
15. Krasnova, N.; Petrov, T.; Balaganskaya, E.; Garcia, D.; Moutte, J.; Zaitsev, A.; Wall, F. Introduction to phoscorites: Occurrence, composition, nomenclature and petrogenesis. In Phoscorites and Carbonatites from Mantle to Mine: The Key Example of the Kola Alkaline Province; Wall, F., Zaitev, A.N., Eds.; The Mineralogical Society of Great Britain and Ireland: London, UK, 2004; pp. 45– 74.
16. Kukharenko, A.A.; Orlova, M.P.; Bulakh, A.G.; Bagdasarov, E.A.; Rimskaya-Korsakova, O.M.; Nefedov, E.I.; Ilinskiy, G.A.; Sergeev, A.S.; Abakumova, N.B. The Caledonian Complex of Ultramafic, Alkaline Rocks and Carbonatites of the Kola Peninsula and Northern Karelia. Nedra: Saint Petersburg, Russia, 1965; p. 772 (in Russian).
17. von Backstrom, J.W.; Jacob, R.E Uranium in South Africa and South West Africa (Namibia). Philos. Trans. R. Soc. Lond. 1979, 291, 307–319.
18. Lapin, A.V.; Vartiainen, H Orbicular and spherulitic carbonatites from Sokli and Vuorijarvi. Lithos 1983, 16, 53–60.
19. Klemme, S. Experimental constrains on the evolution of iron and phosphorus-rich melts: Experiments in the system CaO–MgO– Fe2O3–P2O5–SiO2–H2O–CO2. J. Mineral. Petrol. Sci. 2010, 105, 1–8.
20. Bell, K.; Kjarsgaard, B.A.; Simonetti, A. Carbonatites into the twenty–first century. J. Petrol. 1998, 39, 1839–1845.
21. Belov, S.V.; Lapin, A.V.; Tolstov, A.V.; Frolov, A.A. Metallogeny of Platform Magmatism (Traps, Carbonatites, Kimberlites). SO RAN, Novosibirsk, Russia 2008; p. 537 (in Russian).
22. Veksler, I.V.; Dorfman, A.M.; Dulski, P.; Kamenetsky, V.S.; Danyushevsky, L.V.; Jeffries, T.; Dingwell, D.B. Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite. Geochim. Cosmochim. Acta 2012, 79, 20–40.
23. Glagolev, A.A.; Korchagin, A.M.; Kharchenkov, A.G. Arbarastakh and Inagli Alkaline-Ultrabasic Massifs; Nauka, Moscow, Russia, 1974; p. 175 [in Russian].
24. Yarmolyuk, V.V.; Kovalenko, V.I.; Sal'nikova, E.B.; Nikiforov, A.V.; Kotov, A.B.; Vladykin, N.V. Late Riphean rifting and breakup of Laurasia: Data on geochronological studies of ultramafic alkaline complexes in the southern framing of the Siberian craton. Dokl. Earth Sci. 2005, 404, 1031–1037.
25. Prokopyev, I.R.; Doroshkevich, A.G.; Zhumadilova, D.V.; Starikova, A.E.; Nugumanova Ya, N.; Vladykin, N.V. Petrogenesis of Zr–Nb (REE) carbonatites and phoscorites from the Arbarastakh complex (Aldan Shield, Russia): Mineralogy and inclusion data. Ore Geol. Rev. 2021, 131, 104042, doi:10.1016/j.oregeorev.2021.104042.
26. Smelov, A.P.; Zedgenizov, A.N.; Timofeev, V.F. Aldan-Stanovoy shield//Tectonics, geodynamics and metallogeny of the territory of the Republic of Sakha (Yakutia). MAIK Science/Interperiodica: Moscow, Russia, 2001, p. 81–104 (in Russian).
27. Rieder, M.; Cavazzini, G.; D'Yakonov, Y.; Frank-Kamenetskii, V.A.; Guggenheim, S.; Koval, P.V.; Muller, G.; Neiva, A.M.R.; Radoslovich, E.W.; Robert, J.-L.; et al. Nomenclature of micas. Can. Mineral. 1998, 36, 905–912.
28. Brod, J.; Gaspar, J.; De Araújo, D.; Gibson, S.; Thompson, R.; Junqueira-Brod, T. Phlogopite and tetra-ferriphlogopite from Brazilian carbonatite complexes: Petrogenetic constraints and implications for mineral-chemistry systematics. J. Asian Earth Sci. 2001, 19, 265–296.
29. Atencio, D.; Andrade, M.; Christy, A.G.; Giere, R. The pyrochlore Supergroup of Minerals: Nomenclature. Can. Mineral. 2010, 48, 569–594.
30. Hogarth, D. Pyrochlore, apatite and amphibole: Distinctive minerals in carbonatite. In Carbonatites: Genesis and Evolution; Bell, K., Ed.; Unwin Hyman: London, UK, 1989; pp. 105–148.
31. Klemme, S.; Dalpé, C. Trace-element partitioning between apatite and carbonatite melt. Am. Miner. 2003, 88, 639–646.
32. Teiber, H.; Marks, M.A.; Arzamastsev, A.A.; Wenzel, T.; Markl, G. Compositional variation in apatite from various host rocks: Clues with regards to source composition and crystallization conditions. Neues Jahrb. Für Mineral. Abh. 2015, 192, 151–167.
33. Chakhmouradian, A.R.; Reguir, E.P.; Zaitsev, A.N.; Couëslan, C.; Xu, C.; Kynický, J.; Mumin, A.H.; Yang, P. Apatite in carbonatitic rocks: Compositional variation, zoning, element partitioning and petrogenetic significance. Lithos 2017, 274, 188–213.
34. Krasnova, N.; Balaganskaya, E.; Garcia, D. Kovdor—classic phoscorites and carbonatites. In Phoscorites and Carbonatites from Mantle to Mine: The Key Example of the Kola Alkaline Province; Wall, F., Zaitev, A.N., Eds.; Mineralogical Society of Great Britain and Ireland: London, UK, 2004; pp. 99–132.
35. Fleet, M.E. Sheet silicates: Micas. In Rock-Forming Minerals; Deer, W.A., Howie, R.A., Zussman, J., Eds.; Geological Society of London: London, UK, 2003; p. 765.
36. Williams, C.T.; Gieré, R. Zirconolite: A Review of Localities Worldwide, and a Compilation of its Chemical Compositions. Bull. Nat. Hist. Mus. Lond. 1996, 52, 1–24. Available online: http://repository.upenn.edu/ees_papers/95 (accessed on: 20 May 2021).
37. Chukanov, N.V.; Krivovichev, S.V.; Pakhomova, A.S.; Pekov, I.V.; Schafer, C.; Vigasina, M.F.; Van, K.V. Laachite, (Ca,Mn)2Zr2Nb2TiFeO14, a new zirconolite-related mineral from the Eifel volcanic region, Germany. Eur. J. Miner. 2014, 26, 103–111.
38. Zubkova, N.V.; Chukanov, N.V.; Pekov, I.V.; Ternes, B.; Schuller, W.; Ksenofontov, D.A.; Pushcharovsky, D.Y. The crystal structure of nonmetamict Nb-Rich zirconolite–3T from the Eifel paleovolcanic region, Germany. Zeitschrift Kristallographie 2018, 233, 463–468, doi:10.1515/zkri-2017-2133.
39. Chukanov, N.V.; Zubkova, N.V.; Britvin, S.N.; Pekov, I.V.; Vigasina, M.F.; Schafer, C.; Ternes, B.; Schuller, W.; Polekhovsky, Y.S.; Ermolaeva, V.N.; et al. Nöggerathite-(Ce),(Ce,Ca)2Zr2(Nb,Ti)(Ti,Nb)2Fe2+O14,a New Zirconolite-Related Mineral from the Eifel Volcanic Region, Germany. Minerals 2018, 8, 449.
40. Kogarko, L.N.; Sorokhtina, N.V.; Zaitsev, V.A.; Senin, V.G. Rare Metal Mineralization of Calcite Carbonatites from the Cape Verde Archipelago. Geochem. Int. 2008, 47, 531–549.
41. Zaitsev, A.N.; Williams, C.T.; Wall, F.; Zolotarev, A. Evolution of Chemical Composition of Pyrochlore Group Minerals from Phoscorites and Carbonatites of the Khibina Alkaline Massif. Geol. Ore Depos. 2012, 7, 503–515.
42. Hogarth, D.D. Classification and nomenclature of the pyrochlore group. Am. Mineral. 1977, 62, 403–410.
43. Lee, M.J.; Garcia, D.; Moutte, J.; Williams, C.T.; Wall, F. Carbonatites and phoscorites from the Sokli Complex, Finland. In Phoscorites and Carbonatites from Mantle to Mine; Mineralogical Society of Great Britain and Ireland: 2004; pp. 133–162, 5, doi:10.1180/MSS.10.05.
44. McCormick, G.R.; Le Bas, M.J. Phlogopite crystallization in carbonatitic magmas from Uganda. Can. Mineral. 1996, 34, 469–478.
45. Edgar, A.D.; Arima, M. Fluorine and chlorine contents of phlogopites crystallized from ultrapotassic rock compositions in high pressure experiments; implication for halogen reservoirs in source regions. Am. Mineral. 1985, 70, 529–536.
46. Edgar, A.D.; Arima, M. Conditions of phlogopite crystallization in ultrapotassic volcanic rocks. Min. Mag. 1983, 47, 11–19, doi:10.1180/minmag.1983.047.342.02.
47. Tronnes, R.; Edgar, A.; Arima, M. A high pressure-high temperature study of TiO2 solubility in Mg-rich phlogopite: implications to phlogopite chemistry. Geochim. Cosmochim. Acta 1985, 49, 2323–2329, doi:10.1016/0016-7037(85)90232-7.
48. Kogarko, L.; Ryabchikov, I.; Kuzmin, D. High-Ba mica in olivinites of the Guli massif (Maimecha–Kotui province, Siberia). Russ. Geol. Geophys. 2012, 53, 1209–1215, doi:10.1016/j.rgg.2012.09.007.
49. Clarke, L.; Le Bas, M.; Spiro, B. Rare Earth, Trace Element and Stable Isotope Fractionation of Carbonatites at Kruidfontein, Transvaal, South Africa. In Proceedings of the 5th International Kimberlite Conference: Extended Abstracts, Araxá, Brazil, 1991; pp. 49–51.
50. Heathcote, R.C.; McCormick, G.R. Major-cation substitution in phlogopite and evolution of carbonatite in the Potash Sulphur Springs complex, Garland County, Arkansas. Am. Mineral. 1989, 74, 132–140.
51. Lee, M.J.; Garcia, D.; Moutte, J.; Lee, J.I. Phlogopite and tetraferriphlogopite from phoscorite and carbonatite associations in the Sokli massif, Northern Finland. Geosci. J. 2003, 7, 9–20.
52. Veksler, I.V.; Keppler, H. Partitioning of Mg, Ca, and Na between carbonatite melt and hydrous fluid at 0.1–0.2 GPa. Contrib. Min. Pet. 2000, 138, 27–34, doi:10.1007/pl00007659.
53. Doroshkevich, A.; Veksler, I.; Izbrodin, I.; Ripp, G.; Khromova, E.; Posokhov, V.; Travin, A.; Vladykin, N. Stable isotope composition of minerals in the Belaya Zima plutonic complex, Russia: Implications for the sources of the parental magma and metasomatizing fluids. J. Asian Earth Sci. 2016, 116, 81–96, doi:10.1016/j.jseaes.2015.11.011.
54. Giebel, R.J.; Gauert, C.D.; Marks, M.A.W.; Costin, G.; Markl, G. Multi-stage formation of REE minerals in the Palabora Carbonatite Complex, South Africa. Am. Min. 2017, 102, 1218–1233, doi:10.2138/am-2017-6004.
55. Rimskaya-Korsakova, O.M.; Krasnova, N.I.; Kopulova, L.N. Typical chemical features of apatites of the Kovdor complex deposit. Mineral. Geochem. 1979, 6, 58–70 (in Russian).
56. Brassinnes, S.; Balaganskaya, E.; Demaiffe, D. Magmatic evolution of the differentiated ultramafic, alkaline and carbonatite intrusion of Vuoriyarvi (Kola Peninsula, Russia). A LA-ICP-MS study of apatite. Lithos 2005, 85, 76–92, doi:10.1016/j.lithos.2005.03.017.
57. Mangler, M.F.; Marks, M.A.W.; Zaitzev, A.N.; Eby, G.N.; Markl, G. Halogen (F,Cl, and Br) at Oldoinyo Lengai volcano (Tanzania): Effects of magmatic differentiation, silicate–natrocarbonatite melt separation and surface alteration of natrocarbonatite. Chem. Geol. 2014, 365, 43–53.
58. Chebotarev, D.A.; Doroshkevich, A.G.; Klemd, R.; Karmanov, N.S. Evolution of Nb-mineralization in the Chuktukon carbonatite massif, Chadobets upland (Krasnoyarsk Territory, Russia). Period. Di Mineral. 2017, 86, 99–118.
59. Yaroshevsky, A.; Bagdasarov, Y.A. Geochemical Variety of Pyrochlore-Group Minerals. Geokhimiya 2008, 46, 1245–1266.
60. Groulier, P.A.; Turlin, F.; André-Mayer, A.S.; Ohnenstetter, D., Crépon, A. Silicate-carbonate liquid immiscibility: Insights from the Crevier alkaline intrusion (Quebec). J. Petrol. 2020, 61, egaa033, doi:10.1093/petrology/egaa033.
61. Lapin, A.V.; Kulikova, I.M. Alteration processes in pyrochlore and their products in weathering crusts of carbonatites. Zap. Vsesoyuznogo Mineral. Obs. 1989, 118, 41–49 (in Russian).
62. Pekov, I.V. Genetic Mineralogy and Crystal Chemistry of Trace Elements in Highly Alkaline Postmagmatic Systems. Doctoral Dissertation, Moscow State University, Moscow, Russia, 2005.
63. Bagdasarov, Y.A. On the Distribution of Rare-Metal Mineralization in Carbonatites. Zap. Vses. Miner. Ova. 1969, 98, 395–406.
64. Gaidukova, V.S.; Zdorik, T.B. Trace-Element Minerals in Carbonatites. In Geology of Trace-Element Deposits. Issue 17. Geological Structure and Mineralogical–Geochemical Features of Rare-Metal Carbonatites; Gosgeoltekhizdat: Moscow, Russia, 1962; pp. 86–117 (in Russian).
65. Williams, T.; Kogarko, L.N. New Data on Rare-Metal Mineralization in the Guli Massif Carbonatites, Arctic Siberia. Geochem. Int. 1996, 34, 433–440.
66. Subbotin, V.V.; Subbotina, G.F. Pyrochlore Group Minerals in the Phoscorites and Carbonatites of the Kola Peninsula Vestn. Murm. Gos. Tekhn. Univ. 2000, 3, 273–284.
67. Perrault, G. La composition chimique et la structure crystalline du pyrochlore d'Oka, P.Q. Can. Mineral. 1968, 9, 383–402.
68. Epshtein, E.M.; Danil'chenko, N.A.; Nechelyustov, G.N. Hypogenic Bariopyrochlore from a Carbonatite Complex. Zap. Vseross. Mineral. 1991, 120, 74–79.