Инд. авторы: Zinchenko V., Ashchepkov I.V., Ivanov A.
Заглавие: Modelling of the mantle structure beneath the ne part of the lucapa kimberlite corridor. angola
Библ. ссылка: Zinchenko V., Ashchepkov I.V., Ivanov A. Modelling of the mantle structure beneath the ne part of the lucapa kimberlite corridor. angola // Journal of science. Lyon. - 2021. - Iss. 19. - P.7-14. - ISSN 3475-3281.
Идентиф-ры: РИНЦ: 45689060;
Реферат: eng: A database of microprobe EPMA and ICP MS analysis of the kimberlite indicator minerals > 20,000 of the Lunda and Kukumbi-Kwango kimberlite regions were used for construction of series PTCFO2 diagrams for mantle section beneath major kimberlite pipes the and profile through the subcontinental lithospheric mantle (SLM) beneath the NE Angolan Kasai craton within the Lucapa tectonic "corridor", which controls the kimberlite volcanism in the North of Angola. The general construction of the mantle sections are similar for most pipes but details of the structure refer t the mineralogy and degree of the hydrous metasomatism. The vertical and lateral heterogeneity of the mantle in this region and the PTCFO2 parameters in mantle beneath diamond-bearing kimberlite pipes were calculated. There is the inclination of the general mantle structure toward the SW marked by the depleted layer of mantle peridotites. The local dome-like structures are found near the lithosphere base beneath Catoca, Luaxe field and other kimberlite regions. Mapping of the upper mantle beneath the Angolan Archaean cratons of is a relatively pioneer direction in the regional diamond forecasting, developed by the authors.
Ключевые слова: diamond satelite minerals (MSD); mantle transect; subcratonic lithosphere layering; peridotites; eclogites; chromite; clinopyroxene; pyrope; thermobarometry; diamond inclusions;
Издано: 2021
Физ. хар-ка: с.7-14
Цитирование: 1. Araujo A., Perevalov O., Jukov R., et аl. República Popular de Angola. Carta geológica de Angola, 1:1000000. Luanda, Instituto Nacional de Geologia, 1988.
2. Ashchepkov I.V., Pokhilenko N.P., Vladykin N.V., et al. Structure and evolution of the lithospheric mantle beneath Siberian craton, thermobarometric study// Tectonophysics 485, 2010, p.p.17-41, doi:101016/jtecto200911013.
3. Ashchepkov I.V., Ntaflos T., Logvinova A.M., et al. Monomineral universal clinopyroxene and garnet barometers for peridotitic, eclogitic and basaltic systems// Geoscience Frontiers 8, 2017, p.p.775-795, doi:101016/jgsf201606012.
4. Ashchepkov I.V., Alymova N.V., Logvinova A.M. Picroilmenites in Yakutian kimberlites: Variations and genetic models// Solid Earth 5, 2014a, p.p. 915-938, doi:105194/se-5-915-2014.
5. Ashchepkov I.V., Rotman A.Y., Somov S.V., et al. Composition and thermal structure of the lithospheric mantle beneath kimberlite pipes from the Catoca cluster, Angola// Tectonophysics, 530-531, 2012, p.p.128-151.
6. Ashchepkov I.V. Program of the mantle thermometers and barometers: usage for reconstructions and calibration of PT methods// Vestnik Otdelenia nauk o Zemle RAN 3, 2011, NZ6008. doi:102205/2011NZ000138.
7. Ashchepkov I.V., Vladykin N.N., Ntaflos T., et al. Layering of the lithospheric mantle beneath the Siberian Craton: Modeling using thermobarometry of mantle xenolith and xenocrysts//Tectonophysics 634, 2014b, p.p. 55-75, doi:101016/jtecto200911013.
8. Ashchepkov I.V., Ivanov A.S., Kostrovitsky S.I., et al. Mantle terranes of the Siberian craton: their interaction with plume melts based on thermobarometry and geochemistry of mantle xenocrysts// Geodynamics & Tectonophysics 10 (2), 2019, p.p.197-245, doi:105800/GT-2019-10-2-0412.
9. Batumike J.M., Griffin W.L., O'Reilly S.Y. Lithospheric mantle structure and the diamond potential of kimberlites in southern D.R. Congo. Lithos 209, v.112 S1, pp. 166-176.
10. Day H.W. A revised diamond-graphite transition curve// American Mineralogist, 97, 2012, p.p.52- 65.
11. Dongre A. N., Jacob D. E., Stern R. A. Subduction-related origin of eclogite xenoliths from the Wajrakarur kimberlite field, Eastern Dharwar craton, Southern India: Constraints from petrology and geochemistry. Geochimica et Cosmochimica Volume 166, 2015, pp. 165-188.
12. Griffin, W.L., Ryan C.G., Kaminsky F.V., O'Reilly S.Y., Natapov L.M., Win T.T., Kinny P.D., Ilupin I.P. The Siberian lithosphere traverse: Mantle terranes and the assembly of the Siberian Craton. Tectonophysics, 1999. v.310, pp.1-35.
13. Griffin, W.L., Cousens, D.R., Ryan, C.G., Sie, S.H., Suter, G.F. Ni in chrome pyrope garnets: a new geothermometer. Contributions to Mineralogy and Petrology, 1989, 103, 199-202.
14. Gudmundsson G., Wood B.J. Experimental tests of garnet peridotite oxygen barometry. Contributions to Mineralogy and Petrology 119, 1995, p.p. 56- 67, doi:101007/BF00310717.
15. Kennedy C.S., Kennedy G.C. The equilibrium boundary between graphite and diamond// J. Geophys Res. 81, 1976, p.p. 2467-2470.
16. Korolev N.M., Nikitina L.P., Melnik A., et al. Origin of upper mantle eclogites from the Catoca pipe (NE Angola)//11th International Kimberlite Conference Extended Abstract, № 11IKC-4546, Gabarone, 2017, 3 р.
17. Nimis P., Taylor W. Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer// Contributions to Mineralogy and Petrology 139, 2000, p.p. 541-554, doi:101007/s004100000156.
18. Nikitina L.Р., Korolev N.М., Zinchenko V.N., et al. Eclogites from the upper mantel beneath the Kasai Craton (Western Africa): Petrography, whole-rock geochemistry and U-Pb zircon age//Precambrian Research 249, 2014, p.p.13-22.
19. O'Neill HSt.C., Wood B.J. An experimental study of Fe-Mg- partitioning between garnet and olivine and its calibration as a geothermometer// Contributions to Mineralogy and Petrology 70, 1979, p.p.5970.
20. Pal'yanov N., Sokol A. G., Borzdov M., Khokhryakov A. F. Fluid-bearing alkaline carbonate melts as the medium for the formation of diamonds in the Earth's mantle: an experimental study. Lithos. 2002, 60, 145-159.
21. Ryan C. G., Griffin W. L., Pearson N. J. Garnet geotherms: Pressure-temperature data from Crpyrope garnet xenocrysts in volcanic rocks. J. Geophys. Res. B. 1996. V. 101. N3. P. 5611-5625.
22. Serokurov Y., Kalmykov V., Zujev V., et al. Remote prediction of kimberlite magmatism in Africa. Moscow, TRIUMPH Publishing, 2018, 152 p.
23. Smit K.V., Stachel T., Creasera R.A., Ickert R.B., DuFrane S.A., Stern R.A., Seller M. Origin of eclogite and pyroxenite xenoliths from the Victor kimberlite, Canada, and implications for Superior craton formation. Geochimica et Cosmochimica Acta 2014, 125, 308-337.
24. Snyder D.B., 2008. Stacked uppermost mantle layers within the Slave craton of NW Canada as defined by anisotropic seismic discontinuities. Tectonics 27, TC4006.
25. Stagno V., Ojwang D.O., McCammon C.A., Frost D.J. The oxidation state of the mantle and the extraction of carbon from Earth's interior. Nature 2013, 493, 84-88.
26. Ustinov V.N., Bartolomeu A.M.F., Zagainy A.K., et al. Kimberlites distribution in Angola and prospective areas for new discoveries// Mineralogy and Petrology, 112, 2018, p.p. 383-396.
27. Zinchenko V.N., Felix J.T., Francisco J. Diamondiferous trend of the kimberlites in the Lunda region (Аngola)//35th International Geological Congress Abstracts, Cape Town, South Africa, 2016.
28. Zinchenko V.N. Diamond deposits from kimberlites in Northeast of Angola. St. Petersburg University Edition, 2017, p.p.245- 481.
29. Зинченко В.Н. Кимберлиты северовостока Анголы. Геологическое строение, алмазоносность, алмазы. Саарбрюкен (Германия), Palmarium Academic Publishing, 2014, 240 c.
30. Зинченко В.Н., Феликс Ж.Т., Дуарте Т. и др. Структурно-тектонический контроль проявлений кимберлитового магматизма на северовостоке республики Ангола //Региональная геология и металлогения, №47, 2011, с.с.107-114.
31. Манкенда А. Геология месторождений алмазов северо-востока Анголы. Автореферат диссертации на соискание ученой степени канд. геолмин. наук, Москва, 1989, 25 с.
32. Zinchenko V.N., Ivanov A.S. Simulation of physico-geochemical parameters of crystalization of large type IIa diamonds from parasteresis of their satellite minerals// Journal of science. Lyon №17, 2021, p.p.9-14.