Инд. авторы: Kolova E.E., Savva N.E., Glukhov A.N., Zhuravkova T.V., Palyanova G.A.
Заглавие: Au‐ag‐s‐se‐cl‐br mineralization at the corrida deposit (russia) and physicochemical conditions of ore formation
Библ. ссылка: Kolova E.E., Savva N.E., Glukhov A.N., Zhuravkova T.V., Palyanova G.A. Au‐ag‐s‐se‐cl‐br mineralization at the corrida deposit (russia) and physicochemical conditions of ore formation // Minerals. - 2021. - Vol.11. - Iss. 2. - P.1-20. - EISSN 2075-163X.
Идентиф-ры: DOI: 10.3390/min11020144; РИНЦ: 44975920;
Реферат: eng: The mineral and chemical compositions of ores from the Corrida epithermal Au‐Ag deposit (Chukchi Peninsula, Russia) were studied using the optical and scanning electron microscopy with X‐ray energy‐dispersion microanalysis. The deposit was formed at the time close to the period when the basic volume of acid magmas had been emplaced within the Okhotsk–Chukotka belt (84 to 80 Ma). The Au–Ag mineralization is distinguished with Au‐Ag sulphides and selenides (uytenbogaardtite‐fischesserite solid solution, Se‐acanthite, S‐naumannite) and Ag halides of the chlorargyrite‐embolite‐bromargyrite series. The ores were formed in two stages. Using microthermometric methods, it has been established that the ore‐bearing quartz was formed in the mediumtemperature environment (340–160 °С) with the participation of low‐salt (3.55 to 0.18 wt. % NaCl eq.) hydrotherms, mostly of the NaCl composition with magnesium, iron and low‐density СО2. According to our results of thermodynamic modeling at temperatures from 300 to 25°C and data on mineral metasomatic alterations of the host rocks, the Au‐Ag‐S‐Se‐Cl‐Br mineralization was formed at decreasing temperature and fugacity of sulphur (logƒS2 from −6 to −27), selenium (logƒSe2 from −14 to −35), and oxygen (logƒО2 from −36 to −62), with near‐neutral solutions replaced by acid solutions. Analysis of the obtained data shows that the Corrida refers to the group of the LS‐type epithermal deposits. This deposit is a new example of epithermal deposits with significant quantities of Au–Ag chalcogenides (acanthite, uytenbogaardtite, fischesserite, naumannite and others).
Ключевые слова: Physicochemical parameters of ore formation (Т, Р, FO2, FS2, FSe2, PH); LS‐type of deposits; Epithermal mineralization; Corrida deposit (Chukchi Peninsula, Russia); Au‐Ag‐S‐Se‐Cl‐Br mineralization; arctic;
Издано: 2021
Физ. хар-ка: с.1-20
Цитирование: 1. Bortnikov, N.S.; Lobanov, K.V.; Volkov, A.V.; Galyamov, A.L.; Vikentev, I.V.; Tarasov, N.N.; Distler, V.V.; Lalomov, A.V.; Aristov, V.V.; Murashov, K.Y.; et al. Strategy metal deposits in the Arctic zone. Geol. Ore Depos. 2015, 57, 479–500.
2. Volkov, A.V.; Prokofyev, V.Y.; Savva, N.Y.; Sidorov, A.A.; Byankin, M.A.; Uyutnov, K.V.; Kolova, E.E. Ore formation at the Kupol epithermal Au‐Ag deposit (Russia’s North‐East) according to the data from fluid inclusions studies. Geol. Ore Depos. 2012, 54, 295–303.
3. Savva, N.E.; Pal’yanova, G.A.; Byankin, M.A. The problem of genesis of gold and silver sulfides and selenides in the Kupol deposit (Chukci Peninsula, Russia). Rus. Geol. Geophys. 2012, 53, 457–466.
4. Savva, N.E.; Kolova; E.E.; Fomina, M.I.; Kurashko, V.V. Gold mineralization in explosive breccia bodies: Mineralogical characterization and genetic aspects (Sentyabrsky NE Deposit, Chukotka Region, Arctic Russia). Arktos 2017, 3, 6, doi:10.1134/S0742046316060075.
5. Kolova, E.E.; Volkov, A.V.; Savva, N.Y.; Prokofyev, V.Y.; Sidorov, A.A. Features of ore formation at the Dvoynoye epithermal Au‐Ag deposit (West Chukotka). Dokl. Earth Sci. 2018, 478, 561–565.
6. Volkov, A.V.; Prokofyev, V.Y.; Sidorov, A.A.; Vinokurov, S.F.; Yelmanov, A.A.; Murashov, K.Y.; Sidorova, N.V. Conditions of the Au‐Ag epithermal mineralization formation in the Amguema‐Kanchalan volcanic field (East Chukotka). Voclanol. Seismol. 2019, 13, 335–347.
7. Zhuravkova, T.V.; Palyanova, G.A.; Kalinin, Y.А.; Goryachev, N.А.; Zinina, V.Y.; Zhutova, L.М. Physicochemical conditions of formation of gold and silver paragenesis at the Valunistoe deposit (Chukchi Peninsula). Rus. Geol. Geophys. 2019, 60, 1247–1256.
8. Heald, P.; Hayba, D.O.; Foley, N.K. Comparative anatomy of volcanic‐hosted epithermal deposits: Acid sulfate and adulariasericite types. Econ. Geol. 1987, 82, 1–26.
9. White, N.C.; Hedenquist, J.W. Epithermal environments and styles of mineralization: Variations and their causes, and guidelines for exploration. J. Geochem. Explor. 1990, 36, 445–474.
10. Hedenquist, J.W.; Lowenstern, J.B. The role of magmas in the formation of hydrothermal ore deposits. Nature 1994, 370, 519– 527.
11. Hedenquist, J.W.; Arribas, A.; Gonzalez‐Urien, E. Exploration for epithermal gold deposits. Rev. Econ. Geol. 2000, 13, 245–277.
12. Sillitoe, R.H.; Hedenquist, J.W. Linkages between volcanotectonic settings, ore‐fluid compositions, and epithermal precious metal deposits. Spec. Publ. Soc. Econ. Geol. 2003, 10, 315–343.
13. Taylor, B.E. Epithermal Gold Deposits. In Mineral Deposits of Canada: A Synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces and Exploration Methods; Goodfellow, W.D., Ed.; Mineral Deposits Division Special Publication; Geological Association of Canada: St. John’s, NL, Canada, 2007; Volume 5, pp. 113–139.
14. Volkov, А.V.; Goncharov, V.I.; Sidorov, А.А. Gold and Silver Deposits in Chukotka; Neisri Feb Ras: Magadan, Russia, 2006. (In Russian)
15. Struzhkov, S.F.; Konstantinov, М.М. Gold and Silver Metallogeny in the Okhotsk‐Chukotka Volcanogenic Belt; Science World: Moscow, Russia, 2005. (In Russian)
16. White, N.C.; Hedenquist, J.W. Epithermal gold deposits: Styles, characteristics and exploration. SEG Newsl. 1995, 23, 9–13.
17. Barton, P.B., Jr.; Skinner, B.J. Sulfide Mineral Stabilities. In Geochemistry of Hydrothermal Ore Deposits, 2nd ed.; Barnes, H.L., Ed.; Wiley Interscience: New York, NY, USA, 1979; pp. 278–403.
18. Giggenbach, W.F. Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth Planet. Sci. Lett. 1992, 113, 495–510.
19. Rye, R.O. The evolution of magmatic fluids in the epithermal environment; the stable isotope perspective. Econ. Geol. 1993, 88, 733–752.
20. Mancano, D.P.; Campbell, A.R. Microthermometry of enargite‐hosted fluid inclusions from the Lepanto, Philippines, high‐sulfidation CuAu deposit. Geochim. Cosmochim. Acta 1995, 9, 3909–3916.
21. Izawa, E.; Urashima, Y.; Ibaraki, K.; Suzuki, R.; Yokoyama, T.; Kawasaki, K.; Taguchi, S. The Hishikari gold deposit: High‐grade epithermal veins in Quaternary volcanics of southern Kyushu, Japan. J. Geochem. Explor. 1990, 36, 1–56.
22. André‐Mayer, A.S.; Leroy, A.S.; Bailly, J.L.; Chauvet, A.; Marcoux, E.; Grancea, L.; Rosas, J. Boiling and vertical mineralization zoning: A case study from the Apacheta low‐sulfidation epithermal gold‐silver deposit, southern Peru. Miner. Depos. 2002, 37, 452–464.
23. Akinin, V.V.; Miller, E.L. Evolution of lime‐alkaline magmas in the Okhotsk‐Chukotka volcanic belt. Petrol 2011, 19, 237–277.
24. Isayeva, Y.P.; Zvizda, Т.V.; Ushakova, D.D. State Geological Map of the Russian Federation, Scale 1:1 000 000 (3rd Generation), Ser. Chukotka, Sheet Q‐60—Anadyr, Explanatory Note; Vsegei Map Factory: St. Petersburg, Russia, 2016. Available online: ftp://ftp.vsegei.ru/Q‐60/Q‐60_ObZap.pdf (28 October.2020)
25. Sakhno, V.G.; Polin, V.F.; Akinin, V.V.; Sergeev, S.A.; Alenicheva, A.A.; Tikhomirov, P.L.; Moll‐Stalcup, E.J. The diachronous formation of the Enmyvaam and Amguema‐Kanchalan volcanic fields in the Okhotsk‐Chukotka volcanic belt (NE Russia): Evidence from isotopic data. Dokl. Earth Sci. 2010, 434, 365–371.
26. Ledneva, G.V.; Piis, V.L.; Bazylev, B.А. Upper Triassic siliceous‐volcanogenic‐terrigenous deposits of the Chukchi Peninsula. Rus. Geol. Geophys. 2016, 57, 1423–1442.
27. Akinin, V.V.; Gelman, M.L.; Sedov, B.M.; Amato, J.M.; Miller, E.L.; Toro, J.; Calvert, A.T.; Fantini, R.M.; Wright, J.E.; Natal’in, B.A. Koolen metamorphic complex, NE Russia: Implications for the tectonic evolution of the Bering Strait region. Tectonics 1997, 16, 713–729.
28. Glukhov, А.N.; Kolova, E.E.; Savva, N.Y. Gold‐silver mineralization of East Chukotka. In Geology & Mineral Resources of Russia’s North‐East: Proceedings of the 10th All‐Russia Conference with International Participation, Yakutsk, Russia, 8–20 April 2020; Neefu Publishers: Yakutsk, Russia, 2020; pp. 192–195.
29. Redder, E. Fluid Inclusions in Minerals; Nauka: Moscow, Russia, 1987.
30. Van den Kerkhof, A.M.; Hein, U.F. Fluid inclusion petrography. Lithosphere 2001, 55, 27–47.
31. Borisenko, А.S. Studies of the salt composition of gaseous‐fluid inclusions in minerals by cryometry. Rus. Geol. Geophys. 1977, 8, 16–27.
32. Bodnar, R.J.; Vityk, M.O. Interpretation of microterhrmometric data for H2O–NaCl fluid inclusions. In Fluid Inclusions in Minerals: Methods and Applications; Pontignano: Siena, Italy, 1994; pp. 117–130.
33. Brown, P. FLINCOR: A computer program for the reduction and investigation of fluid inclusion data. Am. Mineral. 1989, 74, 1390–1393.
34. Zhang, Y.G.; Frantz, J.D. Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl‐KCl‐CaCl2‐H2O using synthetic fluid inclusions. Chem. Geol. 1987, 64, 335–350.
35. Garrels, R.М.; Christ, C.L. Solutions, Minerals, and Equilibria; Mir: Мoscow, Russia, 1968. (In Russian)
36. Chudnenko, К.V. Thermodynamic Modelling in Geochemistry: Theory, Algorythms, Software, Applications; GEO: Novosibirsk, Russia, 2010. (In Russian)
37. Helgeson, H.C.; Delany, J.M.; Nesbitt, H.W.; Bird, D.K. Summary and critique of the thermodynamic properties of rock‐forming minerals. Am. J. Sci. 1978, 278, 1–229.
38. Yokokawa, H. Tables of thermodynamic properties of inorganic compounds. J. Natl. Chem. Lab. Ind. 1988, 305, 27–118.
39. Thermodderm Thermochemical and Mineralogical Tables for Geochemical Modeling. Available online: https://thermoddem.brgm.fr (accessed on 1 July 2020).
40. Perfetti, E.; Pokrovski, G.S.; Ballerat‐Busserolles, К.; Majer, V.; Gibert, F. Densities and heat capacities of aqueous arsenious and arsenic acid solutions to 350 °C and 300 bar, and revised thermodynamic properties of As(OH)3°(aq), AsO(OH)3°(aq) and iron sulfarsenide minerals. Geochim. Cosmochim. Acta 2008, 72, 713–731.
41. Pokrovski, G.; Gout, R.; Schott, J.; Zotov, A.; Harrichoury, J.C. Thermodynamic properties and stoichiometry of As(III) hydroxide complexes at hydrothermal conditions. Geochim. Cosmochim. Acta 1996, 60, 737–749.
42. Tagirov, B.R.; Baranova, N.N.; Zotov, A.V.; Schott, J.; Bannykh, L.N. Experimental determination of the stabilities of Au2S(cr) at 25 °C and Au(HS)2¯ at 25–250 °C. Geochim. Cosmochim. Acta 2006, 70, 3689–3701, doi:10.1016/j.gca.2006.05.006.
43. Pal’yanova, G.А. Physicochemical modeling of the coupled behavior of gold and silver in hydrothermal processes: Gold fineness, Au/Ag ratios and their possible implications. Chem. Geol. 2008, 255, 399–413.
44. Pal’yanova, G.A.; Chudnenko, K.V.; Zhuravkova, T.V. Thermodynamic properties of solid solutions in the Ag2S–Ag2Se system. Thermochim. Acta 2014, 575, 90–96.
45. Pankratz, L.B. Thermodynamic Data for Silver Chloride and Silver Bromide; US Bur Mines, Rep. Inv. 7430; US Department of Interior, Bureau of Mines: Washington, DC, USA, 1970.
46. Rycerz, L.; Szymanska‐Kolodziej, M.; Kolodziej, P.; Gaune‐Escard, M. Thermodynamic properties of AgCl and AgBr. J. Chem. Eng. 2008, 53, 1116–1119.
47. Scott, S.D.; Barnes, H.L. Sphalerite geothermometry and geobarometry. Econ. Geol. 1971, 66, 653–669.
48. 48. Cook, N.J.; Ciobanu, C.L.; Pring, A.; Skinner, W.; Shimizu, M.; Danyushevsky, L.; Melcher, F. Trace and minor elements in sphalerite: A LA‐ICPMS study. Geochim. Cosmochim. Acta 2009, 73, 4761–4791.
49. Kawakami, Y.; Yamamoto, J.; Kagi, H. Micro‐Raman densimeter for CO2 inclusions in mantle‐derived minerals. Appl. Spectrosc. 2003, 57, 1333–1339.
50. Czamanske, G.K. The stability of argentopyrite and sternbergite. Econ. Geol. 1969, 64, 459–461.
51. Zharikov, V.А.; Rusinov, V.L. Metasomatism and Metasomatic Rocks; Nauchny Mir: Moscow, Russia, 1998; p. 492 (In Russian)
52. Naboko, S.I. Jarosite deposition from acid sulfate water of the Lower Mendeleyev Spring (Kunashir Isle). Proc. Mineral. Mus. 1959, 10, 164–170. (In Russian)
53. Heinrich, C.A. The physical and chemical evolution of low‐salinity magmatic fluids at the porphyry to epithermal transition: A thermodynamic study. Miner. Depos. 2005, 39, 864–889.
54. Berger, B.R.; Henley, R.W. Magmatic‐vapor expansion and the formation of high‐sulfidation gold deposits: Structural controls on hydrothermal alteration and ore mineralization. Ore Geol. Rev. 2011, 39, 75–90.
55. Rottier, B.; Kouzmanov, K.; Casanova, V.; Wälle, M.; Fontboté, L. Cyclic dilution of magmatic metal‐rich hypersaline fluids by magmatic low‐salinity fluid: A major process generating the giant epithermal polymetallic deposit of Cerro de Pasco, Peru. Econ. Geol. 2018, 113, 825–856.
56. Wilkinson, J.J. Fluid inclusions in hydrothermal ore deposits. Lithos 2001, 55, 229–272, doi:10.5382/econgeo.2018.4573.
57. Banks, D.A.; Bozkaya, G.; Bozkaya, O. Direct observation and measurement of Au and Ag in epithermal mineralizing fluids. Ore Geol. Rev. 2019, 111, 102955.
58. Gartman, A.; Hannington, M.; Jamieson, J.W.; Peterkin, B.; Garbe‐Schönberg, D.; Findlay, A.J.; Kwasnitschka, T. Boiling‐induced formation of colloidal gold in black smoker hydrothermal fluids. Geology 2018, 46, 39–42.
59. Prokofiev, V.Y.; Banks, D.A.; Lobanov, K.V.; Selektor, S.L.; Milichko, V.A.; Akinfiev, N.N.; Borovikov, A.A.; Lüders, V.; Chicherov, M.V. Exceptional Concentrations of Gold Nanoparticles in 1,7 Ga Fluid Inclusions From the Kola Superdeep Borehole, Northwest Russia. Sci. Rep. 2020, 10, 1108.
60. Pokrovski, G.S.; Akinfiev, N.N.; Borisova, A.Y.; Zotov, A.V.; Kouzmanov, K. Gold speciation and transport in geological fluids: Insights from experiments and physical‐chemical modelling. Geol. Soc. Lond. Spec. Publ. 2014, 402, 9–70.
61. Williams‐Jones, A.E.; Bowell, R.J.; Migdisov, A.A. Gold in solution. Elements 2009, 5, 281–287.
62. Simmons, S.F.; Christenson, B.W. Origins of calcite in a boiling geothermal system. Am. J. Sci. 1994, 294, 361–400.
63. Akinfiev, N.N.; Tagirov, B.R. Selenium impact on silver transportation and sedimentation by hydrothermal solutions: Thermodynamic description of the Ag‐Se‐S‐Cl‐OH system. Geol. Ore Depos. 2006, 48, 460–472.
64. Tagirov, B.R.; Baranova, N.N. On the role of selenium in the silver hydrothermal transportation (by experimental data). Geochem. Int. 2009, 6, 666–672.
65. Stotler, R.L.; Frape, S.K.; Shouakar‐Stash, O. An isotopic survey of δ81Br and δ37Cl of dissolved halides in the Canadian and Fennoscandian shields. Chem. Geol. 2010, 274, 38–55.
66. Layton‐Matthews, D.; Leybourne, M.I.; Peter, J.M.; Scott, S.D.; Cousens, B.; Eglington, B.M. Multiple sources of selenium in ancient seafloor hydrothermal systems: Compositional and Se, S, and Pb isotopic evidence from volcanic‐hosted and volcanicsediment‐hosted massive sulfide deposits of the Finlayson Lake district, Yukon, Canada. Geochim. Cosmochim. Acta 2013, 117, 313–331.
67. Tikhomirov, P.L.; Glukhov, А.N. On the issue of the age of volcanites within the East Chukotka segment of the OCVB and the associated mineralization. In Cretaceous Systems in Russia and Adjacent Countries: Problems of Stratigraphy and Paleogeography, Proceedings of the 10th All‐Russia Meeting, Magadan, Russia, 20–25 September 2020; MAOBTI: Magadan, Russia, 2020; pp.250–252. (In Russian)
68. Tikhomirov, P.L.; Kalinina, E.A.; Moriguti, T.; Makishima, A.; Kobayashi, K.; Cherepanova, I.Y.; Nakamura, E. The Cretaceous Okhotsk‐Chukotka volcanic belt (NE Russia): Geology, geochronology, magma output rates, and implications on the genesis of silicic LIPs. J. Volcanol. Geotherm. Res. 2012, 221, 14–32.
69. Seryotkin, Y.V.; Pal’yanova G.A.; Savva, N.E. Sulfur–selenium isomorphous substitution and morphotropic transition in the Ag3Au(Se,S)2 series. Rus. Geol. Geophys. 2013, 54, 646–651.
70. Palyanova, G.A.; Savva, N.E.; Zhuravkova, T.V.; Kolova, E.E. Gold and silver minerals in low‐sulfide ores of the Julietta deposit (northeastern Russia). Russ. Geol. Geophys. 2016, 57, 1171–1190.
71. Sidorov, E.G.; Borovikov, A.A.; Tolstykh, N.D.; Bukhanova, D.S.; Palyanova, G.A.; Chubarov, V.M. Gold Mineralization at the Maletoyvayam Deposit (Koryak Highland, Russia) and Physicochemical Conditions of Its Formation. Minerals 2020, 10, 1093.
72. Palyanova, G.A. Gold and Silver Minerals in Sulfide Ore. Geol. Ore Depos. 2020, 62, 383–406.