Инд. авторы: Kokh K.A., Klimov A.O., Atuchin V.V., Adichtchev S.V., Surovtsev N.V., Gavrilova T.A., Bakhadur A.M., Korolkov I.V., Kuratieva N.V., Pervukhina N.V., Mukherjee S.
Заглавие: Cu2znsns4crystal growth using an sncl2based flux
Библ. ссылка: Kokh K.A., Klimov A.O., Atuchin V.V., Adichtchev S.V., Surovtsev N.V., Gavrilova T.A., Bakhadur A.M., Korolkov I.V., Kuratieva N.V., Pervukhina N.V., Mukherjee S. Cu2znsns4crystal growth using an sncl2based flux // Crystengcomm. - 2021. - Vol.23. - Iss. 4. - P.1025-1032. - ISSN 1466-8033.
Идентиф-ры: DOI: 10.1039/d0ce01264e; РИНЦ: 44963625;
Реферат: eng: The stoichiometry and phase homogeneity of the kesterite type compound Cu2ZnSnS4play a key role in its efficiency in solar cells. In this work, CuCl2, ZnCl2and SnCl2were applied as solvents in the Cu2ZnSnS4crystal growth for the first time. The multiphase ingot was obtained by direct fusion of the stoichiometric batch composed of constituent elements. Compared to that, the material recrystallized in SnCl2presented a single-phase Zn-rich kesterite with composition Cu1.94Zn1.06SnS4and unit cell parameters ofa= 5.4324(3) andc= 10.8383(2) Å. The crystal structure of Cu1.94Zn1.06SnS4was determined by single crystal X-ray diffraction analysis. The integral phase purity of the crystals grown with the use of the SnCl2solvent was verified by powder X-ray diffraction analysis and Raman measurements. In the Raman spectrum, the FWHM value of the 337 cm−1line was as low as 9.6 cm−1that indicates the minimal lattice disorder.
Издано: 2021
Физ. хар-ка: с.1025-1032
Цитирование: 1. K.-J. Yang, J.-H. Sim, D.-H. Son, D.-H. Kim, G. Y. Kim, W. Jo, S. Song, J. Kim, D. Nam, H. Cheong, J.-K. Kang, Effects of the compositional ratio distribution with sulfurization temperatures in the absorber layer on the defect and surface electrical characteristics of Cu2ZnSnS4 solar cells, Progr. Photovolt.: Res. Appl. 2015, 23, 1771, 1784
2. M. Lang, T. Renz, N. Mathes, M. Neuwirth, T. Schnabel, H. Kalt, M. Hetterich, Influence of the Cu Content in Cu2ZnSn(S,Se)4 solar cell absorbers on order-disorder related band gap changes, Appl. Phys. Lett. 2016, 109, 142103
3. A. Crovetto, A. Cazzaniga, R. B. Ettlinger, J. Schou, O. Hansen, Large process-dependent variations in band alignment and interface band gaps of Cu2ZnSnS4/CdS solar cells, Sol. Energy Mater. Sol. Cells, 2018, 187, 233, 240
4. L. Grenet, M. A. A. Suzon, F. Emieux, F. Roux, Analysis of failure modes in kesterite solar cells, ACS Appl. Energy Mater. 2018, 1, 5, 2103, 2113
5. B. S. Sengar, V. Garg, A. Kumar, V. Awasthi, S. Kumar, V. V. Atuchin, S. Mukherjee, Band alingment of Cd-free (Zn, Mg)O layer with Cu2ZnSn(S,Se)4 and its effect on the photovoltaic properties, Opt. Mater. 2018, 84, 748, 756
6. T. V. Vu, A. A. Lavrentyev, B. V. Gabrelian, H. D. Tong, V. A. Tkach, O. V. Parasyuk, O. Y. Khyzhun, A theoretical and experimental study of the valence-band electronic structure and optical constants of quaternary copper mercury tin sulfide, Cu2HgSnS4, a potential material for optoelectronics and solar cells, Opt. Mater. 2019, 96, 109296
7. T. V. Vu, A. A. Lavrentyev, B. V. Gabrelian, V. A. Tkach, K. D. Pham, O. V. Marchuk, O. V. Parasyuk, O. Y. Khyzhun, First-principles DFT computation and X-ray spectroscopy study of the electronic band structure and optical constants of Cu2HgGeS4, Solid State Sci. 2020, 104, 106287
8. B. V. Gabrelian, A. A. Lavrentyev, T. V. Vu, V. A. Tkache, O. V. Marchuk, K. F. Kalmykov, L. N. Ananchenko, O. V. Parasyuk, O. Y. Khyzhun, Quaternary Cu2HgGeSe4 selenide: Its electronic and optical properties as elucidated from TB-mBJ band-structure calculations and XPS and XES measurements, Chem. Phys. 2020, 536, 110821
9. T. V. Vu, A. A. Lavrentyev, B. V. Gabrelian, H. D. Tong, V. A. Tkach, O. V. Parasyuk, O. Y. Khyzhun, Simulation within a DFT framework and experimental study of the valence-band electronic structure and optical properties of quaternary selenide Cu2HgSnSe4, Optik, 2020, 202, 163709
10. B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey, S. Guha, Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber, Progr. Photovolt.: Res. Appl. 2013, 21, 72, 76
11. W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, D. B. Mitzi, Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency, Adv. Energy Mater. 2014, 4, 7, 1301465
12. M. G. Gang, S. W. Shin, C. W. Hong, K. V. Gurav, J. Gwak, J. H. Yun, J. Y. Lee, J. H. Kim, Sputtering processed highly efficient Cu2ZnSn(S,Se)4 solar cells by a low-cost, simple, environmentally friendly, and up-scalable strategy, Green Chem. 2016, 18, 700, 711
13. K.-J. Yang, D.-H. Son, S.-J. Sung, J.-H. Sim, Y.-I. Kim, S.-N. Park, D.-H. Jeon, J. S. Kim, D.-K. Hwang, C.-W. Jeon, D. Nam, H. Cheong, J.-K. Kang, D.-H. Kim, A band-gap-graded CZTSSe solar cell with 12.3% efficiency, J. Mater. Chem. A, 2016, 4, 10151, 10158
14. M. A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, J. Holm-Ebinger, A. W. Y. Ho-Baillie, Solar cell efficiency tables (version 50), Progr. Photovolt.: Res. Appl. 2017, 25, 668, 676
15. C. V. Ramana, S. Utsunomiya, R. S. Ewing, U. Becker, V. V. Atuchin, V. S. Aliev, V. N. Kruchinin, Spectroscopic ellipsometry characterization of the optical properties and thermal stability of ZrO2 films made by ion-beam assisted deposition, Appl. Phys. Lett. 2008, 92, 011917
16. C. V. Ramana, R. S. Vemuri, V. V. Kaichev, V. A. Kochubey, A. A. Saraev, V. V. Atuchin, X-ray photoelectron spectroscopy depth profiling of La2O3/Si thin films deposited by reactive magnetron sputtering, ACS Appl. Mater. Interfaces, 2011, 3, 4370, 4373
17. V. V. Atuchin, M. S. Lebedev, I. V. Korolkov, V. N. Kruchinin, E. A. Maksimovskii, S. V. Trubin, Composition-sensitive growth kinetics and dispersive optical properties of thin HfxTi1−xO2 (0 ≤ x ≤ 1) films prepared by the ALD method, J. Mater. Sci.: Mater. Electron. 2018, 30, 812, 823
18. T. Schnabel, E. Ahlswede, On the interface between kesterite absorber and Mo back contact and its impact on solution-processed thin-film solar cells, Sol. Energy Mater. Sol. Cells, 2017, 159, 290, 295
19. O. P. Singh, K. S. Gour, R. Parmar, V. N. Singh, Sodium induced grain growth, defect passivation and enhancement in the photovoltaic properties of Cu2ZnSnS4 thin film solar cell, Mater. Chem. Phys. 2016, 177, 293, 298
20. V. Awasthi, S. K. Pandey, S. K. Pandey, S. Verma, M. Gupta, S. Mukherjee, Growth and characterizations of dual ion beam sputtered CIGS thin films for photovoltaic applications, J. Mater. Sci.: Mater. Electron. 2014, 25, 7, 3069, 3076
21. X. Xu, S. Wang, X. Ma, S. Yang, Y. Li, Z. Tang, Optimization of sulfurization time for properties of Cu2ZnSnS4 films and cells by sputtering method, J. Mater. Sci.: Mater. Electron. 2018, 29, 22, 19137, 19146
22. M. Dimitrievska, A. Fairbrother, E. Saucedo, A. Pérez-Rodríguez, V. Izquierdo-Roca, Secondary phase and Cu substitutional defect dynamics in kesterite solar cells: Impact on optoelectronic properties, Sol. Energy Mater. Sol. Cells, 2016, 149, 304, 309
23. S. Chen, A. Walsh, X.-G. Gong, S.-H. Wei, Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers, Adv. Mater. 2013, 25, 11, 1522, 1539
24. B. S. Sengar, V. Garg, A. Kumar, S. Kumar, S. Mukherjee, Surface layer investigation of dual ion beam sputtered Cu2ZnSn(S,Se)4 thin film for open circuit voltage improvement, J. Phys. D: Appl. Phys. 2018, 51, 31LT01
25. A. Nagaoka, K. Yoshino, H. Taniguchi, T. Taniyama, K. Kakimoto, H. Miyake, Growth and characterization of Cu2ZnSnS4 single crystals, Phys. Status Solidi A, 2013, 210, 7, 1328, 1331
26. S. Podsiadlo, M. Bialoglowski, G. Matyszczak, P. Marek, W. Gebicki, R. Bacewicz, M. Stachowicz, P. Dluzewski, K. Wozniak, Synthesis of bulk kesterite - a prospective photovoltaic material, Eur. J. Inorg. Chem. 2014, 4730, 4733
27. M. Guc, S. Levcenko, I. V. Bodnar, V. Izquierdo-Roca, X. Fontane, L. V. Volkova, E. Arushanov, A. Perez-Rodriguez, Polarized Raman scattering study of kesterite type Cu2ZnSnS4 single crystals, Sci. Rep. 2015, 6, 19414
28. I. V. Bodnar, Temperature dependence of the band gap of Cu2ZnSnS4 single crystals, Semiconductors, 2015, 49, 5, 582, 585
29. A. Nagaoka, R. Katsube, S. Nakatsuka, K. Yoshino, T. Taniyama, H. Miyake, K. Kakimoto, M. A. Scarpulla, Y. Nose, Growth and characterization of Cu2ZnSn (SxSe1-x)4 single crystal grown by traveling heater method, J. Cryst. Growth, 2015, 423, 9, 15
30. T. M. Nga, M. T. Weller, G. P. Kissling, L. M. Peter, P. Dale, F. Babbe, J. de Wild, B. Wenger, H. J. Snaith, D. Lan, Optoelectronic and spectroscopic characterization of vapour-transport grown Cu2ZnSnS4 single crystals, J. Mater. Chem. A, 2017, 5, 3, 1192, 1200
31. A. Nagaoka, T. Masuda, S. Yasui, T. Taniyama, Y. Nose, The single-crystal multinary compound Cu2ZnSnS4 as an environmentally friendly high-performance thermoelectric material, Appl. Phys. Express, 2018, 11, 051203
32. K. Timmo, M. Kauk-Kuusik, M. Pilvet, T. Raadik, M. Altosaar, M. Danilson, M. Grossberg, J. Raudoja, K. Emits, Influence of order-disorder in Cu2ZnSnS4 powders on the performance of monograin layer solar cells, Thin Solid Films, 2017, 633, 122, 126
33. K. Timmo, M. Altosaar, J. Raudoja, M. Grossberg, M. Danilson, O. Volobujeva, E. Mellikov, Proc. IEEE Phot. Spec. Conf. 2010, pp. 1982-1985
34. A. Weber, R. Mainz, H. W. Schock, On the Sn loss from thin films of the material system Cu-Zn-Sn-S in high vacuum, J. Appl. Phys. 2010, 107, 013516
35. A. Redinger, D. M. Berg, P. J. Dale, R. Djemour, L. Gütay, T. Eisenbarth, N. Valle, S. Siebentritt, Route toward high-efficiency single-phase Cu2ZnSn(S,Se)4 thin-film solar cells: Model experiments and literature review, IEEE J. Photovolt. 2011, 1, 2, 200, 206
36. A. Redinger, D. M. Berg, P. J. Dale, S. Siebentritt, The consequences of kesterite equilibria for efficient solar cells, J. Am. Chem. Soc. 2011, 133, 3320, 3323
37. G. Nkwusi, I. Leinemann, J. Raudoja, V. Mikli, E. Karba, M. Altosaar, Impact of growth-synthesis conditions on Cu2Zn1-xCdxSnS4 monograin material properties, Superlattices Microstruct. 2016, 98, 400, 405
38. Powder Diffraction File, release 2010, International Centre for Diffraction Data, Pennsylvania, USA
39. A. A. Coelho, TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++, J. Appl. Crystallogr. 2018, 51, 210, 218
40. Madison, Wisconsin, USA
41. G. M. Sheldrick, Crystal structure refinement with SHELXL, Acta Crystallogr. Sect. C: Struct. Chem. 2015, 71, 3, 8
42. I. D. Olekseyuk, I. V. Dudchak, L. V. Piskach, Phase equilibria in the Cu2S-ZnS-SnS2 system, J. Alloys Compd. 2004, 368, 135, 143
43. Handbook of Chemistry and Physics, CRC Press, Ann Arbor, Michigan, 1990
44. H. Fjellvåg, F. Gronvold, S. Stølen, Low-temperature structural distortion in CuS, Z. Kristallogr. 1988, 184, 111, 121
45. M. K. Rabadanov, A. A. Loshmanov, Y. V. Shaldin, Anharmonic thermal vibrations of atoms in crystals with sphalerite structure - GaP, ZnS, SnSe, and ZnTe: High-temperature X-ray structure studies, Crystallogr. Rep. 1997, 42, 4, 592, 602
46. S. Hull, D. A. Keen, High-pressure polymorphism of the copper(I) halides: A neutron-diffraction study to ~10 GPa, Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 50, 5868, 5885
47. G. Will, E. Hinze, A. R. M. Abdelrahman, Crystal structure analysis and refinement of digenite, Cu1.8S, in the temperature range 20 to 500 °C under controlled sulfur partial pressure, Eur. J. Mineral. 2002, 14, 591, 598
48. P. Bonazzi, L. Bindi, G. P. Bernardini, S. Menchetti, A model for the mechanism of incorporation of Cu, Fe and Zn in the stannite-kësterite series, Cu2FeSnS4 - Cu2ZnSnS4, Can. Mineral. 2003, 41, 639, 647
49. X.-A. Chen, H. Wada, A. Sato, M. Mieno, Synthesis, electrical conductivity, and crystal structure of Cu4Sn7S16 and structure refinement of Cu2SnS3, J. Solid State Chem. 1998, 139, 144, 151
50. A. Lafond, L. Choubrac, C. Guillot-Deudon, P. Fertey, M. Evain, S. Jobic, X-ray resonant single-crystal diffraction technique, a powerful tool to investigate the kesterite structure of the photovoltaic Cu2ZnSnS4 compound, Acta Crystallogr. Sect. B: Struct. Sci. Cryst. Eng. Mater. 2014, 70, 390, 394
51. V. V. Atuchin, S. V. Borisov, S. A. Magaril, N. V. Pervukhina, Sphalerite framework in polar sulfides, J. Chem. Crystallogr. 2013, 43, 9, 488, 492
52. A. Ritscher, M. Hoelzel, M. Lerch, The order-disorder transition in Cu2ZnSnS4 - A neutron scattering investigation, J. Solid State Chem. 2016, 238, 68, 73
53. X. Fontané, V. Izquierdo-Roca, E. Saucedo, S. Schorr, V. O. Yukhymchuk, M. Y. Valakh, A. Perez-Rodriguez, J. R. Morante, Vibrational properties of stannite and kesterite type compounds: Raman scattering analysis of Cu2(Fe,Zn)SnS4, J. Alloys Compd. 2012, 539, 190, 194
54. M. Dimitrievska, F. Boero, A. P. Litvinchuk, S. Delsante, G. Borzone, A. Pérez-Rodríguez, V. Izquierdo-Roca, Structural polymorphism in “kesterite” Cu2ZnSnS4: Raman spectroscopy and first-principles calculations analysis, Inorg. Chem. 2017, 56, 6, 3467, 3474
55. D. Dumcenco, Y.-S. Huang, The vibrational properties study of kesterite Cu2ZnSnS4 single crystals by using polarization dependent Raman spectroscopy, Opt. Mater. 2013, 35, 3, 419, 425
56. M. Y. Valakh, O. F. Kolomys, S. S. Ponomaryov, V. O. Yukhymchuk, I. S. Babichuk, V. Izquiero-Roca, E. Saucedo, A. Perez-Rodriguez, J. R. Morante, S. Schorr, I. V. Bodnar, Raman scattering and disorder effect in Cu2ZnSnS4, Phys. Status Solidi RRL, 2013, 7, 4, 258, 261
57. S. Levcenko, V. E. Tezlevan, E. Arushanov, S. Schorr, T. Unold, Free-to-bond recombination in near stoichiometric Cu2ZnSnS4 single crystals, Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 86, 4, 045206