Инд. авторы: Barkov A.Y., Nikiforov A.A., Barkova L.P., Korolyuk V.N., Martin R.F.
Заглавие: Zones of pge–chromite mineralization in relation to crystallization of the pados-tundra ultramafic complex, serpentinite belt, kola peninsula, russia
Библ. ссылка: Barkov A.Y., Nikiforov A.A., Barkova L.P., Korolyuk V.N., Martin R.F. Zones of pge–chromite mineralization in relation to crystallization of the pados-tundra ultramafic complex, serpentinite belt, kola peninsula, russia // Minerals. - 2021. - Vol.11. - Iss. 1. - P.1-32. - EISSN 2075-163X.
Идентиф-ры: DOI: 10.3390/min11010068; РИНЦ: 44968485;
Реферат: eng: The lopolithic Pados-Tundra layered complex, the largest member of the Serpentinite belt–Tulppio belt (SB–TB) megastructure in the Fennoscandian Shield, is characterized by (1) highly magnesian compositions of comagmatic dunite–harzburgite–orthopyroxenite, with primitive levels of high-field-strength elements; (2) maximum values of Mg# in olivine (Ol, 93.3) and chromian spinel (Chr, 57.0) in the Dunite block (DB), which exceed those in Ol (91.7) and Chr (42.5) in the sills at Chapesvara, and (3) the presence of major contact-style chromite–IPGE-enriched zones hosted by the DB. A single batch of primitive, Al-undepleted komatiitic magma crystallized normally as dunite close to the outer contact, then toward the center. A similar magma gave rise to Chapesvara and other suites of the SB–TB megastructure. Crystallization proceeded from the early Ol + Chr cumulates to the later Ol–Opx and Opx cumulates with accessory Chr in the Orthopyroxenite zone. The accumulation of Chr resulted from efficient cooling along boundaries of the Dunite block. The inferred front of crystallization advanced along a path traced by vectors of Ol and Chr compositions. Grains and aggregates of Chr were mainly deposited early after the massive crystallization of olivine. Chromium, Al, Zn and H2O, all incompatible in Ol, accumulated to produce podiform segregations or veins of chromitites. This occurred episodically along the moving front of crystallization. Crystallization occurred rapidly owing to heat loss at the contact and to a shallow level of emplacement. The Chr layers are not continuous but rather heterogeneously distributed pods or veins of Chr–Ol–clinochlore segregations. Isolated portions of melt enriched in H2O and ore constituents accumulated during crystallization of Ol. Levels of f O2 in the melt and, consequently, the content of ferric iron in Chr, increased progressively, as in other intrusions of the SB–TB megastructure. The komatiitic magma vesiculated intensely, which led to a progressive loss of H2 and buildup in f O2. In turn, this led to the appearance of anomalous Chr–Ilm parageneses. Diffuse rims of Chr grains, abundant in the DB, contain elevated levels of Fe3+ and enrichments in Ni and Mn. In contrast, Zn is preferentially partitioned into the core, leading to a decoupling of Zn from Mn, also known at Chapesvara. The sulfide species display a pronounced Ni-(Co) enrichment in assemblages of cobaltiferous pentlandite, millerite (and heazlewoodite at Khanlauta), deposited at ≤630C. The oxidizing conditions have promoted the formation of sulfoselenide phases of Ru in the chromitites. The attainment of high degrees of oxidation during crystallization of a primitive parental komatiitic magma accounts for the key characteristics of Pados-Tundra and related suites of the SB–TB megastructure.
Ключевые слова: Fennoscandian shield; Highly magnesian magma; Hypabyssal intrusions; Kola Peninsula; komatiites; oxidation; Pados-tundra complex; chromite mineralization; Ultramafic complexes; Serpentinite belt; russia;
Издано: 2021
Физ. хар-ка: с.1-32
Цитирование: 1. Garuti, G.; Pushkarev, E.V.; Thalhammer, O.A.R.; Zaccarini, F. Chromitites of the Urals (part 1): Overview of chromite mineral chemistry and geo-tectonic setting. Ofioliti 2012, 37, 27–53.
2. Pushkarev, E.V.; Anikina, E.V.; Garuti, G.; Zaccarini, F. Chromium-Platinum deposits of Nizhny-Tagil type in the Urals: Structural-substantial characteristic and a problem of genesis. Litosfera 2007, 3, 28–65. (In Russian)
3. Zhang, P.-F.; Zhou, M.-F.; Malpas, J.; Robinson, P.T. Origin of high-Cr chromite deposits in nascent mantle wedges: Petrological and geochemical constraints from the Neo-Tethyan Luobusa ophiolite, Tibet. Ore Geol. Rev. 2020, 123, 103581. [CrossRef]
4. Hulbert, L.J.; von Gruenewaldt, G. Textural and compositional features of chromite in the Lower and Critical zones of the Bushveld Complex south of Potgietersrus. Econ. Geol. 1985, 80, 872–895. [CrossRef]
5. Naldrett, A.J.; Kinnaird, J.; Wilson, A.; Yudovskaya, M.; McQuade, S.; Chunnett, G.; Stanley, C. Chromite composition and PGE content of Bushveld chromitites: Part 1—the Lower and Middle Groups. Appl. Earth Sci. 2009, 118, 131–161. [CrossRef]
6. Barkov, A.Y.; Nixon, G.T.; Levson, V.M.; Martin, R.F.; Fleet, M.E. Chromian spinel from PGE-bearing placer deposits, British Columbia, Canada: Mineralogical associations and provenance. Can. Mineral. 2013, 51, 501–536. [CrossRef]
7. Zaccarini, F.; Garuti, G.; Pushkarev, E.; Thalhammer, O. Origin of platinum group minerals (PGM) inclusions in chromite deposits of the Urals. Minerals 2018, 8, 379. [CrossRef]
8. O'Driscoll, B.; VanTongeren, J.A. Layered intrusions: From petrological paradigms to precious metal repositories. Elements 2017, 13, 383–389. [CrossRef]
9. Irvine, T.N. Origin of chromitite layers in the Muskox intrusion and other stratiform intrusions: A new interpretation. Geology 1977, 5, 273. [CrossRef]
10. Naldrett, A.J.; Wilson, A.; Kinnaird, J.; Yudovskaya, M.; Chunnett, G. The origin of chromitites and related PGE mineralization in the Bushveld Complex: New mineralogical and petrological constraints. Miner. Depos. 2012, 47, 209–232. [CrossRef]
11. Barnes, S.J.; Roeder, P. The range of spinel compositions in terrestrial mafic and ultramafic rocks. J. Petrol. 2001, 42, 2279–2302. [CrossRef]
12. Johan, Z.; Martin, R.F.; Ettler, V. Fluids are bound to be involved in the formation of ophiolitic chromite deposits. Eur. J. Mineral. 2017, 29, 543–555. [CrossRef]
13. Murashov, D.F. Ultrabasic intrusions of the Serpentinite Belt (Pados-Tundra etc.). In Geology of the USSR, Murmanskaya Oblast, Geological Description; Gosgeoltekhizdat Publisher: Moscow, Russia, 1958; Volume 27, pp. 318–321. (In Russian)
14. Vinogradov, L.A. Formations of Alpine-type ultrabasic rocks in the southwestern part of the Kola Peninsula (The Notozerskiy ultrabasic belt). In Problems of Magmatism of the Baltic Shield; Nauka Publisher: Leningrad, Russia, 1971; pp. 147–153. (In Russian)
15. Mamontov, V.P.; Dokuchaeva, V.S. The geology and ore potential of the Pados-Tundra massif in the Kola Peninsula. Otech. Geol. 2005, 6, 52–60. (In Russian)
16. Barkov, A.Y.; Nikiforov, A.A.; Martin, R.F. The structure and cryptic layering of the Pados-Tundra ultramafic complex, Serpentinite Belt, Kola Peninsula, Russia. Bull. Geol. Soc. Finl. 2017, 89, 35–56. [CrossRef]
17. Barkov, A.Y.; Nikiforov, A.A.; Tolstykh, N.D.; Shvedov, G.I.; Korolyuk, V.N. Compounds of Ru–Se–S, alloys of Os–Ir, framboidal Ru nanophases, and laurite–clinochlore intergrowths in the Pados-Tundra complex, Kola Peninsula, Russia. Eur. J. Mineral. 2017, 29, 613–621. [CrossRef]
18. Barkov, A.Y.; Nikiforov, A.A.; Halkoaho, T.A.A.; Konnunaho, J.P. The origin of spheroidal patterns of weathering in the Pados-Tundra mafic-ultramafic complex, Kola Peninsula, Russia. Bull. Geol. Soc. Finl. 2016, 88, 105–113. [CrossRef]
19. Barkov, A.Y.; Nikiforov, A.A.; Korolyuk, V.N.; Barkova, L.P.; Martin, R.F. Anomalous chromite-ilmenite parageneses in the Chapesvara and Lyavaraka ultramafic complexes, Kola Peninsula, Russia. Period. Mineral. 2020, 89, 299–317.
20. Barkov, A.Y.; Korolyuk, V.N.; Barkova, L.P.; Martin, R.F. Double-front crystallization in the Chapesvara ultramafic subvolcanic complex, Serpentinite Belt, Kola Peninsula, Russia. Minerals 2019, 10, 14. [CrossRef]
21. Serov, P.A.; Bayanova, T.B.; Steshenko, E.N.; Kunakkuzin, E.L.; Borisenko, E.S. Metallogenic setting and evolution of the Pados-Tundra Cr-Bearing ultramafic complex, Kola Peninsula: Evidence from Sm–Nd and U–Pb isotopes. Minerals 2020, 10, 186. [CrossRef]
22. Barkov, A.Y.; Nikiforov, A.A.; Barkova, L.P.; Korolyuk, V.N. Komatiitic subvolcanic rocks in the mount Khanlauta massif, Serpentinite Belt, Kola Peninsula. Russ. Geol. Geophys. 2021, in press.
23. Vaasjoki, M. (Ed.) Radiometric Age Determinations from Finnish Lapland and Their Bearing on the Timing of Precambrian Volcano-Sedimentary Sequences; Geological Survey of Finland: Espoo, Finland, 2001; Volume 33, p. 279.
24. Balagansky, V.V.; Gorbunov, I.A.; Mudruk, S.V. Palaeoproterozoic Lapland-Kola and Svecofennian Orogens (Baltic Shield). Her. (Vestn.) Kola Sci. Cent. RAS 2016, 3, 5–11. (In Russian)
25. Nikolaeva, I.V.; Palesskii, S.V.; Koz'menko, O.A.; Anoshin, G.N. Analysis of geologic reference materials for REE and HFSE by inductively coupled plasma-mass spectrometry (ICP-MS). Geochem. Int. 2008, 46, 1016–1022. [CrossRef]
26. Nikolaeva, I.V.; Palesskii, S.V.; Chirko, O.S.; Chernonozhkin, S.M. Determination of major and trace elements by inductively coupled mass-spectrometry in silicate rocks after fusion with LiBO2. Anal. Kontrol 2012, 8, 134–142.
27. Karmanova, N.G.; Karmanov, N.S. A universal methodology of X-ray fluorescence analysis of rocks using an ARL-9900XP spectrometer. In Proceedings of the VII All-Russian Conference on X-ray Spectral Analysis, Novosibirsk, Russia, 19–23 September 2011; p. 126. (In Russian).
28. Korolyuk, V.N.; Usova, L.V.; Nigmatulina, E.N. Accuracy in the determination of the compositions of main rock-forming silicates and oxides on a JXA-8100 microanalyzer. J. Anal. Chem. 2009, 64, 1042–1046. [CrossRef]
29. Lavrent'ev, Y.G.; Korolyuk, V.N.; Usova, L.V.; Nigmatulina, E.N. Electron probe microanalysis of rock-forming minerals with a JXA-8100 electron probe microanalyzer. Russ. Geol. Geophys. 2015, 56, 1428–1436. [CrossRef]
30. Barkov, A.Y.; Nikiforov, A.A.; Martin, R.F. A novel mechanism of spheroidal weathering: A case study from the Monchepluton layered complex, Kola Peninsula, Russia. Bull. Geol. Soc. Finl. 2015, 87, 79–85. [CrossRef]
31. McDonough, W.F.; Sun, S.-S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [CrossRef]
32. Craig, J.R.; Scott, S.D. Sulfide phase equilibria. In Sulfide Mineralogy; Ribbe, P.H., Ed.; Reviews in Mineralogy, Mineral; Walter de Gruyter GmbH & Co. KG: Washington, DC, USA, 1974; Volume 1, pp. CS1–CS110.
33. Jamieson, H.E.; Roeder, P.L. The distribution of Mg and Fe2+ between olivine and spinel at 1300C. Am. Mineral. 1984, 69, 283–291.
34. Balagansky, V.V.; Glebovitsky, V.A. The Lapland Granulite Belt and the Tanaelv Belt. In Early Precambrian of the Baltic Shield; Nauka: Saint-Petersburg, Russia, 2005; pp. 127–175. (In Russian)
35. Leont'eva, O.P.; Belonin, M.D. Geological Map of Mineral Resources of the USSR (Scale 1:200,000; Q-35-VI); Shurkin, K.A., Ed.; Kola Se-ries; Northwestern Geological Department, Ministry of Geology and Mineral Resource Protection of the USSR, Gosgeoltekhizdat: Moscow, Russia, 1964.
36. Barkov, A.Y.; Martin, R.F.; Izokh, A.E.; Nikiforov, A.A.; Korolyuk, V.N. Ultramagnesian olivine in the layered complexes Monchepluton (Fo96) and Pados-Tundra (Fo93), Kola Peninsula. Russ. Geol. Geophys. 2021, in press. [CrossRef]
37. Puchtel, I.S.; Haase, K.M.; Hofmann, A.W.; Chauvel, C.; Kulikov, V.S.; Garbe-Schönberg, C.-D.; Nemchin, A.A. Petrology and geochemistry of crustally contaminated komatiitic basalts from the Vetreny Belt, southeastern Baltic Shield: Evidence for an early Proterozoic mantle plume beneath rifted Archean continental lithosphere. Geochim. Cosmochim. Acta 1997, 61, 1205–1222. [CrossRef]
38. Kulikov, V.S. Highly magnesian volcanism in the Early Proterozoic time. In Komatiites and Highly Magnesian Volcanic Rocks of the Early Precambrian in the Baltic Shield; Bogatikov, O.A., Ed.; Nauka Press: Leningrad, Russia, 1988; pp. 20–88. (In Russian)
39. Kulikov, V.S.; Bychkova, Y.V.; Kulikova, V.V. The Vetreny belt: An Early Proterozoic tectonic and petrologic type of the southeastern Fennoscandia. In Geology of Karelia from the Archean Time to the Present, Proceedings of the All-Russian Conference Devoted to the 50th Anniversary of the Institute of Geology, Petrozavodsk, Russia, 24–26 May 2011; Institute of Geology, KarRC, RAS: Petrozavodsk, Russia, 2011; pp. 91–103. (In Russian)
40. Sharkov, E.V.; Bogatikov, O.A.; Grokhovskaya, T.L.; Chistyakov, A.V.; Ganin, V.A.; Grinevich, N.G.; Snyder, G.A.; Taylor, L.A. Petrology and Ni–Cu–Cr–PGE mineralization of the largest mafic pluton in Europe: The Early Proterozoic Burakovsky layered intrusion, Karelia, Russia. Int. Geol. Rev. 1995, 37, 509–525. [CrossRef]
41. Chistyakov, A.V.; Sharkov, E.V. Petrology of the Early Paleoproterozoic Burakovsky complex, southern Karelia. Petrology 2008, 16, 63–86. [CrossRef]
42. Hanski, E.; Huhma, H.; Rastas, P.; Kamenetsky, V.S. The Palaeoproterozoic komatiite–picrite association of Finnish Lapland. J. Petrol. 2001, 42, 855–876. [CrossRef]
43. Smolkin, V.F. The Komatiitic and Picritic Magmatism of Early Precambrian in the Baltic Shield; Nauka: Saint Petersburg, Russia, 1992; p. 272. (In Russian)
44. Hanski, E.J.; Smolkin, V.F. Iron-and LREE-enriched mantle source for early Proterozoic intraplate magmatism as exemplified by the Pechenga ferropicrites, Kola Peninsula, Russia. Lithos 1995, 34, 107–125. [CrossRef]
45. Arndt, N.T. Thick, layered peridotite–gabbro lava flows in Munro Township, Ontario. Can. J. Earth Sci. 1977, 14, 2620–2637. [CrossRef]
46. Arndt, N.T. Differentiation of komatiite flows. J. Petrol. 1986, 27, 279–301. [CrossRef]
47. Arndt, N. Komatiites, kimberlites, and boninites. J. Geophys. Res. Solid Earth 2003, 108. [CrossRef]
48. Nesbitt, R.W.; Sun, S.S.; Purvis, A.C. Komatiites: Geochemistry and genesis. Can. Mineral. 1979, 17, 165–186.
49. Nesbitt, R.W.; Jahn, B.-M.; Purvis, A.C. Komatiites: An early Precambrian phenomenon. J. Volcanol. Geotherm. Res. 1982, 14, 31–45. [CrossRef]
50. Sun, S.-S.; Nesbitt, R.W. Petrogenesis of Archaean ultrabasic and basic volcanics: Evidence from rare earth elements. Contrib. Mineral. Petrol. 1978, 65, 301–325. [CrossRef]
51. Robin-Popieul, C.C.M.; Arndt, N.T.; Chauvel, C.; Byerly, G.R.; Sobolev, A.V.; Wilson, A. A New model for Barberton komatiites: Deep critical melting with high melt retention. J. Petrol. 2012, 53, 2191–2229. [CrossRef]
52. Rollinson, H. The Archean komatiite-related Inyala chromitite, southern Zimbabwe. Econ. Geol. 1997, 92, 98–107. [CrossRef]
53. Herzberg, C.; Condie, K.; Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 2010, 292, 79–88. [CrossRef]
54. Norman, M.D.; Garcia, M.O. Primitive magmas and source characteristics of the Hawaiian plume: Petrology and geochemistry of shield picrites. Earth Planet. Sci. Lett. 1999, 168, 27–44. [CrossRef]
55. Matzen, A.K.; Baker, M.B.; Beckett, J.R.; Stolper, E.M. Fe–Mg partitioning between olivine and high-magnesian melts and the nature of Hawaiian parental liquids. J. Petrol. 2011, 52, 1243–1263. [CrossRef]
56. Le Bas, M.J. IUGS reclassification of the high-Mg and picritic volcanic rocks. J. Petrol. 2000, 41, 1467–1470. [CrossRef]
57. Eales, H.V.; Costin, G. Crustally contaminated komatiite: Primary source of the chromitites and Marginal, Lower, and Critical Zone magmas in a staging chamber beneath the Bushveld Complex. Econ. Geol. 2012, 107, 645–665. [CrossRef]
58. Yudovskaya, M.A.; Naldrett, A.J.; Woolfe, J.A.S.; Costin, G.; Kinnaird, J.A. Reverse compositional zoning in the Uitkomst chromitites as an indication of crystallization in a magmatic conduit. J. Petrol. 2015, 56, 2373–2394. [CrossRef]
59. Wilson, A.H. The earliest stages of emplacement of the eastern Bushveld Complex: Development of the Lower Zone, Marginal Zone and Basal Ultramafic Sequence. J. Petrol. 2015, 56, 347–388. [CrossRef]
60. Chernosky, J.V., Jr. The upper stability of clinochlore at low pressure and the free energy of formation Mg-cordierite. Am. Mineral. 1974, 59, 496–507.
61. Kullerud, G.; Yund, R.A. The Ni-S system and related minerals. J. Petrol. 1962, 3, 126–175. [CrossRef]
62. Sugaki, A.; Kitakaze, A. High form of pentlandite and its thermal stability. Am. Mineral. 1998, 83, 133–140. [CrossRef]
63. Chashchin, V.V.; Galkin, A.S.; Ozeryanskii, V.V.; Dedyukhin, A.H. The Sopcheozyorsky deposit of chromite and its platinum potential, Monchegorsky pluton (Kola Peninsula, Russia). Geol. Ore Depos. 1999, 41, 507–515. (In Russian)
64. Lavrov, M.M.; Rezhenova, S.A.; Trofimov, N.N. The composition of chromian spinels of the Burakovsky layered intrusion. In Proceedings on the Metallogeny of Karelia; Institute of Geology of the Karelian Science Centre of the RAS: Petrozavodsk, Russia, 1987; pp. 138–151. (In Russian)
65. Alapieti, T.T.; Huhtelin, T.A. The Kemi intrusion and associated chromitite deposit. In Early Palaeoproterozoic (2.5–2.4) Tornio– Näränkävaara Layered Intrusion Belt and Related Chrome and Platinum-Group Element Mineralization, Northern Finland; Alapieti, T.T., Kärki, A.J., Eds.; Field trip guidebook for the 10-th Platinum Symposium; Geological Survey of Finland: Oulu, Finland, 2005; pp. 13–32, Guide 51a, Chapter 2.
66. Simon, G.; Kesler, S.E.; Essene, E.J. Phase relations among selenides, tellurides, and oxides; II, Applications to selenide-bearing ore deposits. Econ. Geol. 1997, 92, 468–484. [CrossRef]
67. Dreibus, G.; Palme, H.; Spettel, B.; Zipfel, J.; Wänke, H. Sulfur and selenium in chondritic meteorites. Meteoritics 1995, 30, 439–445. [CrossRef]
68. Lorand, J.-P.; Alard, O.; Luguet, A.; Keays, R.R. Sulfur and selenium systematics of the subcontinental lithospheric mantle: Inferences from the Massif Central xenolith suite (France). Geochim. Cosmochim. Acta 2003, 67, 4137–4151. [CrossRef]
69. Holwell, D.A.; Keays, R.R.; McDonald, I.; Williams, M.R. Extreme enrichment of Se, Te, PGE and Au in Cu sulfide microdroplets: Evidence from LA-ICP-MS analysis of sulfides in the Skaergaard Intrusion, east Greenland. Contrib. Mineral. Petrol. 2015, 170, 5–6. [CrossRef]
70. Smith, J.W.; Holwell, D.A.; McDonald, I.; Boyce, A.J. The application of S isotopes and S/Se ratios in determining ore-forming processes of magmatic Ni–Cu–PGE sulfide deposits: A cautionary case study from the northern Bushveld Complex. Ore Geol. Rev. 2016, 73, 148–174. [CrossRef]
71. Howard, J.H. Geochemistry of selenium: Formation of ferroselite and selenium behavior in the vicinity of oxidizing sulfide and uranium deposits. Geochim. Cosmochim. Acta 1977, 41, 1665–1678. [CrossRef]
72. Ewers, G.R. Experimental hot water-rock interactions and their significance to natural hydrothermal systems in New Zealand. Geochim. Cosmochim. Acta 1977, 41, 143–150. [CrossRef]