Инд. авторы: Ashchepkov I.V., Medvedev N., Ivanov A., Vladykin N., Ntaflos T., Downes H., Saprykin A., Tolstov A., Vavilov M.A., Shmarov G.
Заглавие: Deep mantle roots of the Zarnitsa kimberlite pipe, Siberian craton, Russia: Evidence for multistage polybaric interaction with mantle melts
Библ. ссылка: Ashchepkov I.V., Medvedev N., Ivanov A., Vladykin N., Ntaflos T., Downes H., Saprykin A., Tolstov A., Vavilov M.A., Shmarov G. Deep mantle roots of the Zarnitsa kimberlite pipe, Siberian craton, Russia: Evidence for multistage polybaric interaction with mantle melts // Journal of Asian Earth Sciences. - 2021. - Vol.213. - Art.104756. - ISSN 1367-9120. - EISSN 1878-5786.
Идентиф-ры: DOI: 10.1016/j.jseaes.2021.104756; РИНЦ: 46773412; WoS: 000647689300001;
Реферат: eng: Zarnitsa kimberlite pipe in Central Yakutia contains pyrope garnets with Cr2O3 ranging from 9 to 19.3 wt% derived from the asthenospheric mantle. They show mostly S-shaped, inflected rare earth element (REE) patterns for dunitic and harzburgitic, lherzolitic and harzburgitic varieties and all are rich in high field strength elements (HFSE) due to reaction with protokimberlite melts. Lithospheric garnets (<9 wt% Cr2O3) show a similar division into four groups but have more symmetric trace element patterns. Cr-diopsides suggest reactions with hydrous alkaline, protokimberlitic and primary (hydrous) partial melts. Cr-diopsides of metasomatic origin have inclined REE patterns and high LILE, U, Th and Zr concentrations. Four groups in REE of Ti-rich Cr-diopsides, and augites have asymmetric bell-like REE patterns and are HFSE-rich. Mg-ilmenites low in REE were formed within dunite conduits. Ilmenite derived from differentiated melts have inclined REE patterns with LREE similar to 100 x chondrite levels. Thermobarometry for dunites shows a 34 mWm(-2) geotherm with a HT branch (>50 mWm(-2)) at 6-9 GPa, and a stepped HT geotherm with heated pyroxenite lenses at four levels from 6.5 to 3.5 GPa. Parental melts calculated with KDs suggest that augites and high-Cr garnets in the lithosphere base reacted with essentially carbonatitic melts while garnets from lower pressure show subduction peaks in U, Ba and Pb. The roots of the Zarnitsa pipe served to transfer large portions of deep (>9 GPa) protokimberlite melts to the lithosphere. Smaller diamonds were dissolved due to the elevated oxidation state but in peripheral zones large diamonds could grow.
Ключевые слова: Lithospheric mantle; Metasomatism; Kimberlite; Garnet ilmenite; Geothermobarometry; Oxidation state; TRACE-ELEMENT GEOCHEMISTRY; LITHOSPHERIC MANTLE; UDACHNAYA KIMBERLITE; OXYGEN FUGACITY; CONTINENTAL LITHOSPHERE; PARTITION-COEFFICIENTS; GARNET XENOCRYSTS; PHASE-RELATIONS; CARBONATE MELTS; Mantle; PERIDOTITE XENOLITHS; Layering;
Издано: 2021
Физ. хар-ка: 104756
Цитирование: 1. Agashev, A.M., Ionov, D.A., Pokhilenko, N.P., Golovin, A.V., Cherepanova, Y., Sharygin, I.S., Metasomatism in lithospheric mantle roots: constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya. Lithos 160–161 (2013), 201–215.
2. Alymova, N.V., Kostrovitsky, S.I., Yakovlev, D.A., Matsyuk, S.S., Suvorova, L.F., Solovieva, L.V., 2008. Ilmenite-bearing mantle parageneses from kimberlite pipes. In: 9th International Kimberlite Conference Long Abstract, 9IKC-A-00015, 2008.
3. Afanasiev, V.P., Ashchepkov, I.V., Verzhak, V.V., O’ Brien, H., Palessky, S.V., PT conditions and trace element variations of picroilmenites and pyropes from the Arkhangelsk region. J. Asian Earth Sci. 70–71 (2013), 45–63.
4. Alifirova, T.A., Pokhilenko, L.N., Korsakov, A.V., Apatite, SiO2, rutile and orthopyroxene precipitates in minerals of eclogite xenoliths from Yakutian kimberlites, Russia. Lithos 226 (2015), 31–49.
5. Amshinsky, A.N., Pokhilenko, N.P., Characteristic features of picroilmenites from Zarnitsa kimberlite pipe. Russ. Geol. Geophys. 11 (1983), 116–119.
6. Artemieva, I.M., The continental lithosphere: Reconciling thermal, seismic, and petrologic data. Lithos 109 (2009), 23–46.
7. Ashchepkov, I.V., Vladykin, N.V., Amshinsky, A.N., Pokhilenko, N.P., Rotman, A.Y., Nikolaeva, I.A., Palessky, V.S., Saprykin, A.I., Anoshin, G.N., Khmelnikova, O.S., Minerals from the Zarnitsa pipe kimberlite: the key to enigma of the mantle composition and construction. Plume and Problems of Deep Sources of Alkaline Magmatism, 2003, Proc. Int. Workshop. Irkutsk State University, Irkutsk, 20–38.
8. Ashchepkov, I.V., Andre, L., Downes, H., Belyatsky, B.A., Pyroxenites and megacrysts from Vitim picrite-basalts, Russia: Polybaric fractionation of rising melts in the mantle?. J. Asian Earth Sci. 42 (2011), 14–37.
9. Ashchepkov, I.V., Ntaflos, T., Logvinova, A.M., Spetsius, Z.V., Downes, H., Vladykin, N.V., Monomineral universal clinopyroxene and garnet barometers for peridotitic, eclogitic and basaltic systems. Geosci. Front. 8 (2017), 775–795.
10. Ashchepkov, I.V., Ivanov, A.S., Kostrovitsky, S.I., Vavilov, M.A., Babushkina, S.A., Vladykin, N.V., Tychkov, N.S., Medvedev, N.S., Mantle terranes of the Siberian craton: their interaction with plume melts based on thermobarometry and geochemistry of mantle xenocrysts. Geodynamics & Tectonophysics 10:2 (2019), 197–245.
11. Ashchepkov, I.V., Logvinova, A.M., Ntaflos, T., Vladykin, N.V., Downes, H., Alakit and Daldyn kimberlite fields, Siberia, Russia: Two types of mantle sub-terranes beneath central Yakutia?. Geosci. Front. 8 (2017), 671–692.
12. Ashchepkov, I.V., Ntaflos, T., Spetsius, Z.V., Salikhov, R.F., Downes, H., Interaction between protokimberlite melts and mantle lithosphere: Evidence from mantle xenoliths from the Dalnyaya kimberlite pipe, Yakutia, Russia. Geosci. Front. 8 (2017), 693–710.
13. Ashchepkov, I.V., Pokhilenko, N.P., Vladykin, N.V., Logvinova, A.M., Kostrovitsky, S.I., Afanasiev, V.P., Pokhilenko, L.N., Kuligin, S.S., Malygina, L.V., Alymova, N.V., Khmelnikova, O.S., Palessky, S.V., Nikolaeva, I.V., Karpenko, M.A., Stagnitsky, Y.B., Structure and evolution of the lithospheric mantle beneath Siberian craton, thermobarometric study. Tectonophysics 485 (2010), 17–41.
14. Ashchepkov, I.V., Rotman, A.Y., Somov, S.V., Afanasiev, V.P., Downes, H., Logvinova, A.M., Nossyko, S., Shimupi, J., Palessky, S.V., Khmelnikova, O.S., Vladykin, N.V., Composition and thermal structure of the lithospheric mantle beneath kimberlite pipes from the Catoca cluster, Angola. Tectonophysics 530–531 (2012), 128–151.
15. Ashchepkov, I.V., Vladykin, N.V., Nikolaeva, I.V., Palessky, S.V., Logvinova, A.M., Saprykin, A.I., Khmel'nikova, O.S., Anoshin, G.N., Mineralogy and Geochemistry of Mantle Inclusions and Mantle Column Structure of the Yubileinaya Kimberlite Pipe, Alakit Field, Yakutia. Doklady of RAS ESS 395 (2004), 517–523.
16. Ashchepkov, I.V., Vladykin, N.V., Ntaflos, T., Downes, H., Mitchell, R., Smelov, A.P., Alymova, N.V., Kostrovitsky, S.I., Rotman, A.Ya., Smarov, G.P., Makovchuk, I.V., Stegnitsky, Yu.B., Nigmatulina, E.N., Khmelnikova, O.S., Regularities and mechanism of formation of the mantle lithosphere structure beneath the Siberian Craton in comparison with other cratons. Gondwana Res. 23 (2013), 4–24.
17. Ashchepkov, I.V., Ntaflos, T., Kuligin, S.S., Malygina, E.V., Agashev, A.M., Logvinova, A.M., Mityukhin, S.I., Alymova, N.V., Vladykin, N.V., Palessky, S.V., Khmelnikova, O.S., 2013b. Deep-seated xenoliths from the brown breccia of the Udachnaya pipe, Siberia. Pearson D. G. et al., eds. Proceedings of 10th International Kimberlite Conference. New Delhi: Springer India, 1, 59-74.
18. Ashchepkov, I.V., Empirical garnet thermobarometry for mantle peridotite. Russian Geology and Geophysics 47 (2006), 1071–1085.
19. Ashchepkov, I.V., Alymova, N.V., Logvinova, A.M., Vladykin, N.V., Kuligin, S.S., Mityukhin, S.I., Downes, H., Stegnitsky, Yu.B., Prokopiev, S.A., Salikhov, R.F., Palessky, V.S., Khmel'nikova, O.S., Picroilmenites in Yakutian kimberlites: variations and genetic models. Solid Earth 5 (2014), 915–938.
20. Ashchepkov, I.V., Logvinova, A.M., Reimers, L.F., Ntaflos, T., Spetsius, Z.V., Vladykin, N.V., Downes, H., Yudin, D.S., Travin, A.V., Makovchuk, I.V., Palesskiy, V.S., Khmel'nikova, O.S., The Sytykanskaya kimberlite pipe: Evidence from deep-seated xenoliths and xenocrysts for the evolution of the mantle beneath Alakit, Yakutia, Russia. Geosci. Front. 6 (2015), 687–714.
21. Ashchepkov, I.V., Vladykin, N.N., Ntaflos, T., Kostrovitsky, S.I., Prokopiev, S.A., Downes, H., Smelov, A.P., Agashev, A.M., Logvinova, A.M., Kuligin, S.S., Tychkov, N.S., Salikhov, R.F., Stegnitsky, Yu.B., Alymova, N.V., Vavilova, M.A., Minin, V.A.S.A., Babushkina, Yu.I., Ovchinnikov, M.A., Karpenko, A.V., Tolstov, G.P. Shmarov, Layering of the lithospheric mantle beneath the Siberian Craton: modeling using thermobarometry of mantle xenolith and xenocrysts. Tectonophysics 634 (2014), 55–75.
22. Ashchepkov, I.V., Medvedev, N.S., Vladykin, N.V., Ivanov, A.S., Downes, H., Thermobarometry and geochemistry of mantle xenoliths from zapolyarnaya pipe, upper muna field, yakutia: implications for mantle layering, interaction with plume melts and diamond grade. Minerals, 10(9), 2020, 755.
23. Aulbach, S., Viljoen, K.S., Gerdes, A., Diamondiferous and barren eclogites and pyroxenites from the western Kaapvaal craton record subduction processes and mantle metasomatism, respectively. Lithos 105588 (2020), 368–369.
24. Barth, M.G., Rudnick, R.L., Horn, I., McDonough, W.F., Spicuzza, M.J., Valley, J.W., Haggerty, S.E., Geochemistry of xenolithic eclogites from West Africa, part I: A link between low MgO eclogites and Archean crust formation. Geochim. Cosmochim. Acta 65 (2001), 1499–1527.
25. Boyd, F.R., Pearson, D.G., Nixon, P.H., Mertzman, S.A., Low-calcium garnet harzburgites from South Africa: their relations to craton structure and diamond crystallization. Contrib. Miner. Petrol. 113 (1993), 352–366.
26. Boyd, F.R., A Siberian geotherm based on lherzolite xenoliths from the Udachnaya kimberlite, U.S.S.R. Geology 12 (1984), 528–530.
27. Boyd, F.R., Pokhilenko, N.P., Pearson, D.G., Mertzman, S.A., Sobolev, N.V., Finger, L.W., Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contributions to Mineralogy and Petrology 128:2–3 (1997), 228–246.
28. Brey, G.P., Kohler, T., Geothermobarometry in four-phase lherzolites. II.New thermobarometers, and practical assessment of existing thermobarometers. J. Petrol. 31 (1990), 1353–1378.
29. Bulanova, G.P., Griffin, W.L., Kaminsky, F.V., Davies, R.M., Spetsius, Z.V., Ryan, C.G., Andrew, A., Zakharchenko, O.D., 1999. Diamonds from Zarnitsa and Dalnaya kimberlites, Yakutia., their nature and lithospheric mantle source. In: Proc.7th Int.Kimberlite Conf. Red Roof Designs, Cape Town, 49-56.
30. Clarke, D.B., Mackay, R.M., An Ilmenite-Garnet-Clinopyroxene nodule from Matsoku: Evidence of Oxide-Rich liquid Immiscibility in Kimberlites?. Can. Mineral. 28 (1990), 229–239.
31. Girnis, A.V., Bulatov, V.K., Brey, G.P., Gerdes, A., Höfer, H.E., Trace element partitioning between mantle minerals and silico-carbonate melts at 6–12GPa and applications to mantle metasomatism and kimberlite genesis. Lithos 160–161 (2013), 183–200.
32. Dawson, J.B., Kimberlites and their Xenoliths. 1980, Springer, Berlin, 210.
33. Dawson, J.B., Smith, J.V., Mantle amphiboles - a review. Mineral. Mag. 45 (1982), 35–46.
34. Dawson, J.B., Stephens, W.E., Statistical classification of garnets from kimberlite and associated xenoliths. J. Geol. 83 (1975), 589–607.
35. DePaolo, D.J., Trace element and isotopic effects of combined wall rock assimilation and fractional crystallization. Earth Planet. Sci. Lett. 53 (1981), 189–202.
36. Doucet, L.S., Ionov, D.A., Golovin, A.V., Pokhilenko, N.P., Depth, degrees and tectonic settings of mantle melting during craton formation: inferences from major and trace element compositions of spinel harzburgite xenoliths from the Udachnaya kimberlite, central Siberia. Earth Planet. Sci. Lett. 359–360 (2012), 206–218.
37. Doucet, L.S., Peslier, A.H., Ionov, D.A., Brandon, A.D., Golovin, A.V., Goncharov, A.G., Ashchepkov, I.V., High water contents in the Siberian cratonic mantle linked to metasomatism: An FTIR study of Udachnaya peridotite xenoliths. Geochim. Cosmochim. Acta 137 (2014), 159–187.
38. Eccles, D.R., Simonetti, S.S., Cox, R., Garnet pyroxenite and granulite xenoliths from or the Eastern Alberta: evidence of ~1.5 Ga lower crust and mantle in western Laurentia. Precambr. Res. 177 (2010), 339–354.
39. Evensen, N.M., Hamilton, P.J., Onions, R.K., Rare-earth abundances in chondritic meteorites. Geochim. Cosmochim. Acta 42 (1979), 1199–1212.
40. Foley, S.F., A Reappraisal of redox melting in the Earth's mantle as a function of tectonic setting and time. J. Petrol. 52 (2011), 1363–1391.
41. Fedortchouk, Y.F., Liebske, C., McCammon, C., Diamond destruction and growth during mantle metasomatism: an experimental study of diamond resorption features. Earth Planet. Sci. Lett. 506 (2019), 493–506.
42. Gladkochub, D.P., Pisarevsky, S.A., Donskaya, T.V., Natapov, L.M., Mazukabzov, A.M., Stanevich, A.M., Sklyarov, E.V., Siberian Craton and its evolution in terms of Rodinia hypothesis. Episodes 29 (2006), 169–174.
43. Golovin, A.V., Sharygin, I.S., Kamenetsky, V.S., Korsakov, A.V., Yaxley, G.M., Alkali-carbonate melts from the base of cratonic lithospheric mantle: Links to kimberlites. Chem. Geol. 483 (2018), 261–274.
44. Goncharov, A.G., Ionov, D.A., Doucet, L.S., Pokhilenko, L.N., Thermal state, oxygen fugacity and C-O-H fluid speciation in cratonic lithospheric mantle: new data on peridotite xenoliths from the Udachnaya kimberlite, Siberia. Earth Planet. Sci. Lett. 357–358 (2012), 99–110.
45. Green, T.H., Blundy, J.D., Adam, J., Yaxley, G.M., SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2–7.5 GPa and 1080–1200 °C. Lithos 53 (2000), 165–187.
46. Gregoire, M., Bell, D.R., Le Roex, A.P., Trace element geochemistry of phlogopite-rich mafic mantle xenoliths: their classification and their relationship to phlogopite-bearing peridotites and kimberlites revisited. Contrib. Miner. Petrol. 142 (2002), 603–625.
47. Griffin, W.L., Ryan, C.G., Kaminsky, F.V., O'Reilly, S.Y., Natapov, L.M., Win, T.T., Kinny, P.D., Ilupin, I.P., The Siberian lithosphere traverse: mantle terranes and the assembly of the Siberian Craton. Tectonophysics 310 (1999), 1–35.
48. Griffin, W.L., O'Reilly, S.Y., Cratonic lithospheric mantle: Is anything subducted?. Episodes 30 (2007), 43–53.
49. Griffin, W.L., Fisher, N.I., Friedman, J.H., O'Reilly, S.Y., Ryan C.G., 2002.Cr-pyrope garnets in the lithospheric mantle, 2. Compositional populations and their distribution in time and space. Geochemistry, Geophysics, Geosystems, 12, 35.
50. Grütter, H.S., Gurney, J.J., Menzies, A.H., Winter, F., An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos 77 (2004), 841–857.
51. Hauri, E.H., Wagner, T.P., Grove, T.L., Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chem. Geol. 117 (1994), 149–166.
52. Hart, S.R., Dunn, T., Experimental cpx/melt partitioning of 24 trace elements. Contrib. Miner. Petrol. 113 (1993), 1–8.
53. Harte, B., Kirkley, M.B., Partitioning of trace elements between clinopyroxene and garnet: data from mantle eclogites. Chem. Geol. 136 (1997), 1–24.
54. Herzberg, C., Rudnick, R., Formation of cratonic lithosphere: An integrated thermal and petrological model. Lithos 14915 (2012), 4–15.
55. Ionov, D.A., Doucet, L.S., Carlson, R.W., Golovin, A.V., Korsakov, A.V., Post-Archean formation of the lithospheric mantle in the central Siberian craton: Re–Os and PGE study of peridotite xenoliths from the Udachnaya kimberlite. Geochim. Cosmochim. Acta 165 (2015), 466–483.
56. Ionov, D.A., Doucet, L.S., Ashchepkov, I.V., Composition of the lithospheric mantle in the siberian craton: new constraints from fresh peridotites in the Udachnaya-East kimberlite. J. Petrol. 51 (2010), 2177–2210.
57. Karato, S., Rheology of the Earth's mantle: A historical review. Gondwana Res. 18 (2010), 17–45.
58. Kargin, A.V., Golubeva, Yu.Yu., Kononova, V.A., Kimberlites of the Daldyn-Alakit region, Yakutia: spatial distribution of the rocks with different chemical characteristics. Petrology 19 (2011), 496–520.
59. Kargin, A.V., Sazonova, L.V., Nosova, A.A., Pervov, V.A., Minevrina, E.V., Khvostikov, V.A., Burmii, Z.P., 2017. Sheared peridotite xenolith from the V.Grib kimberlite pipe, Arkhangelsk Diamond Province, Russia: Texture, composition, and origin. Geoscience Frontiers, 8, 2017, 653-669.
60. Kargin, A.V., Sazonova, L.V., Nosova, A.A., Tretyachenko, V.V., Composition of garnet and clinopyroxene in peridotite xenoliths from the Grib kimberlite pipe, Arkhangelsk diamond province, Russia: evidence for mantle metasomatism associated with kimberlite melts. Lithos 262 (2016), 442–455.
61. Kuzyura, A.V., Litvin, Yu.A., Jeffries, T., Interface partition coefficients of trace elements in carbonate-silicate parental media for diamonds and paragenetic inclusions, experiments at 7.0-8.5 GPa. Russ. Geol. Geophys. 56 (2015), 221–231.
62. Khar'kiv, A.D., Zinchuk, N.N., Kr'ychkov, A.I., 1998. Primary deposits of the diamonds in the World. Moscow, Nedra. 545p., (in Russian).
63. Khokhryakov, A.F., Pal'yanov, Y.N., Influence of the fluid composition on diamond dissolution forms in carbonate melts. Am. Mineral. 95 (2010), 1508–1514.
64. Korolev, N.M., Kopylova, M., Bussweiler, Y., Pearson, D.G., Gurney, J., Davidson, J., The uniquely high-temperature character of Cullinan diamonds: A signature of the Bushveld mantle plume?. Lithos 304–307 (2018), 362–373.
65. Kostrovitsky, S.I., Alymova, N.V., Yakovlev, D.A., Serov, I.V., Specific features of picroilmenite composition in various diamondiferous fields of the Yakutian province. Dokl. Earth Sci., 406, 2006, 9023.
66. Kostrovitsky, S.I., Morikiyo, T., Serov, I.V., Yakovlev, D.A., Amirzhanov, A.A., Isotope-geochemical systematics of kimberlites and related rocks from the Siberian Platform. Russ. Geol. Geophys. 48 (2007), 272–290.
67. Konzett, J., Fei, Y., Transport and Storage of Potassium in the Earth's Upper Mantle and Transition Zone: an Experimental Study to 23 GPa in Simplified and Natural Bulk Compositions. Journal of Petrology 41 (2000), 583–603.
68. Kopylova, M.G., Nowell, G.M., Pearson, D.G., Markovic, G., Crystallization of megacrysts from protokimberlitic fluids: Geochemical evidence from high-Cr megacrysts in the Jericho kimberlite. Lithos, 112(284–295), 2009, 2009.
69. Koreshkova, M.Yu., Downes, H., Levsky, L.K., Vladykin, N.V., Petrology and geochemistry of granulite xenoliths from Udachnaya and Komsomolskaya kimberlite pipes, Siberia. J. Petrol. 52 (2011), 1857–1885.
70. Lavrent'ev, Yu.G., Usova, L.V., New version of KARAT program for quantitative X-ray spectral microanalysis. Zh. Anal. Khim. 5 (1994), 462–468.
71. Lee, C.-T.A., Luffi, P., Chin, E.J., Building and destroying continental mantle. Annual Review of Earth Planetary Sciences 39 (2011), 59–90.
72. Lindsley, D.H., Pyroxene thermometry. Amer. Mineral. 68 (1983), 477–493.
73. McDonough, W.F., Sun, S.-S., The composition of the Earth. Chem. Geol. 120 (1995), 223–253.
74. McGregor, I.D., The system MgO- SiO2- Al2O3: solubility of Al2O3 in enstatite for spinel and garnet peridotite compositions. Am. Miner. 59 (1974), 110–119.
75. Logvinova, A.M., Taylor, L.A., Floss, C., Sobolev, N.V., Geochemistry of multiple diamond inclusions of harzburgitic garnets as examined in situ. International Geology Review 47 (2005), 1223–1233.
76. Manikyamba, C., NuruSaid, N., Santosh, M., Saha, A., Ganguly, S., Subramanyam, K.S.V., U enrichment and Th/U fractionation in Archean boninites: Implications for paleo-ocean oxygenation and U cycling at juvenile subduction zones. J. Asian Earth Sci. 157 (2018), 187–197.
77. Manning, C.E., The chemistry of subduction-zone fluids. Earth Planet. Sci. Lett. 223 (2004), 1–16.
78. McCammon, C.A., Griffin, W.L., Shee, S.R., O'Neill, H.S.C., Oxidation during metasomatism in ultramafic xenoliths from the Wesselton kimberlite, South Africa: implications for the survival of diamond. Contrib. Miner. Petrol. 141 (2001), 287–296.
79. Moore, R.O., Griffin, W.L., Gurney, J., Ryan, C.G., Cousens, D.R., Sie, S.H., Suter, G.F., Trace element geochemistry of ilmenites megacrysts from the Monastery kimberlite, South Africa. Lithos 29 (1992), 1–18.
80. Moore, A.E., Lock, N.P., The origin of mantle-derived megacrysts and sheared peridotites-evidence from kimberlites in the northern Lesotho—Orange Free State, South Africa and Botswana pipe clusters. South Africa J. Geol. 104 (2001), 23–38.
81. Navon, O., Stolper, E., Geochemical consequences of melt percolation: the upper mantle as chromatographic column. J. Geol. 95 (1987), 285–307.
82. Nimis, P., Taylor, W., Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib. Miner. Petrol. 139 (2000), 541–554.
83. Nicklas, R.W., Puchtel, I.S., Ash, R.D., Piccoli, P.M., Hanski, E., Nisbet, E.G., Waterton, P., Pearson, D.G., Anbar, A.D., Secular mantle oxidation across the Archean-Proterozoic boundary: evidence from V partitioning in komatiites and picrites. Geochim. Cosmochim. Acta 250 (2019), 49–75.
84. O'Neill, H., St, C., Wall, V.J., The olivine orthopyroxene-spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth's upper mantle. J. Petrol. 8 (1987), 1169–1191.
85. O'Neill, H., St, C., Wood, B.J., An experimental study of Fe-Mg- partitioning between garnet and olivine and its calibration as a geothermometer. Contrib. Miner. Petrol. 70 (1979), 59–70.
86. Pearson, D.G., The age of continental roots. Lithos 48 (1999), 171–194.
87. Peslier, A.H., Woodland, A.B., Bell, D.R., Lazarov, M., Olivine water contents in the continental lithosphere and the longevity of cratons. Nature 467 (2010), 78–81.
88. Pokhilenko, N.P., Sobolev, N.V., Agashev, A.M., Vavilov, M.A., Pokhilenko, L.N., Malygina, L.N., Anomalous kimberlites of the Snap Lake Area, Canada, and Nakyn Field, Yakutia: evidence of abnormal character of mantle sources and lithosphere structure. Exp. Geosci. 10 (2002), 143–146.
89. Pokhilenko, N.P., Sobolev, N.V., Kuligin, S.S., Shimizu, N., Peculiarities of distribution of pyroxenite paragenesis garnets in Yakutian kimberlites and some aspects of the evolution of the Siberian craton lithospheric mantle. Proceedings of the VII International Kimberlite Conference. The P.H.Nixon volume, 1999, 690–707.
90. Pokhilenko, N.P., Pearson, D.G., Boyd, F.R., Sobolev, N.V., Megacrystalline dunites: sources of Siberian diamonds. Carnegie Institute Washington. Yearbook 90 (1991), 11–18.
91. Ragozin, A.L., Zedgenizov, D.A., Shatsky, V.S., Kuper, K.E., Formation of mosaic diamonds from the Zarnitsa kimberlite. Russ. Geol. Geophys. 59 (2018), 486–498.
92. Ragozin, A., Zedgenizov, D., Kuper, K., Palyanov, Y., Specific internal structure of diamonds from zarnitsa kimberlite pipe. Crystals, 7, 2017, 5.
93. Rudnick, R.L., McDonough, W.F., O'Connell, R.J., Thermal structure, thickness and composition of continental lithosphere. Chem. Geol. 145 (1998), 395–411.
94. Rosenthal, A., Yaxley, G.M., Green, D.H., Hermann J., Kovacs, I., Spandler, C., 2014. Continuous eclogite melting and variable refertilisation in upwelling heterogeneous mantle Scientific Reports, 4, 6099.
95. Rosenthal, A., Yaxley, G.M., Crichton, W.A., Kovács, I.J., Spandler, H.J., Sándorné, J.K., Rose-Koga, E., Pelleter, A.-A., Phase relations and melting of nominally ‘dry’ residual eclogites with variable CaO/Na2O from 3 to 5 GPa and 1250 to 1500 °C; implications for refertilisation of upwelling heterogeneous mantle. Lithos 314–315 (2018), 506–519.
96. Sablukova, L.I., Sablukov, S.M., Stegnitsky, Yu.B., Karpenko, M.A., 2012. Green garnets of the “wehrlite” mantle xenoliths from kimberlites: their composition and origin, Newlands dike South Africa; Nyurbinskaya pipe, Nakyn field, Yakutia.10th IKC, Extended Abstracts 10IKC-0142. 1-5.
97. Sarsadskikh, N.N., Popugaeva, L.A., New data of ultrabasic magmatism on the Siberian platform. Exploration and Protection of Mineral Resources 5 (1955), 11–20 (In Russian).
98. Shirey, S.B., Cartigny, P., Frost, D.J., Keshav, S., Nestola, F., Nimis, P., Pearson, D.G., Sobolev, N.V., Walter, M.J., Diamonds and the geology of mantle carbon. Rev. Mineral. Geochem. 75 (2013), 355–421.
99. Shu, O., Brey, G.P., Ancient mantle metasomatism recorded in subcalcic garnet xenocrysts: Temporal links between mantle metasomatism, diamond growth and crustal tectonomagmatism. Earth and Planetary Science 418 (2015), 27–39.
100. Smart, K.A., Tappe, S., Simonetti, A., Simonetti, S.S., Woodland, A.B., Harris, C., Tectonic significance and redox state of Paleoproterozoic eclogite and pyroxenite components in the Slave cratonic mantle lithosphere, Voyageur kimberlite, Arctic Canada. Chem. Geol. 455 (2017), 98–119.
101. Smelov, A.P., Zaitsev, A.I., 2013. The Age and Localization of Kimberlite Magmatism in the Yakutian Kimberlite Province: Constraints from Isotope Geochronology—An Overview. D.G.Pearson et al., eds., Proceedings of 10th International Kimberlite Conference, Volume 1, Journal of the Geological Society of India, 1 225-234.
102. Smithies, R.H., Archaean boninite-like rocks in an intracratonic setting. Earth Planet. Sci. Lett. 197 (2002), 19–34.
103. Shatskiy, A.F., Litasov, K.D., Sharygin, I.S., Ohtani, E., Composition of primary kimberlite melt in a garnet lherzolite mantle source: constraints from melting phase relations in anhydrous Udachnaya-East kimberlite with variable CO2 content at 6.5GPa. Gondwana Res. 45 (2017), 208–227.
104. Sobolev, N.V., 1977. Deep-seated inclusions in kimberlites and the problem of the composition of the upper mantle. Am. Geophys. Union, Washington, D.C.279p.
105. Sobolev, N.V., Lavrent'yev, Y.G., Isomorphic sodium admixture in garnets formed at high pressures. Contrib. Miner. Petrol. 31 (1971), 1–12.
106. Sobolev, N.V., Lavrent'ev, Y.G., Pokhilenko, N.P., Usova, L.V., Chrome-rich garnets from the kimberlites of Yakutia and their parageneses. Contrib. Miner. Petrol. 40 (1973), 39–52.
107. Sobolev, N.V., Logvinova, A.M., Zedgenizov, D.A., Seryotkin, Y.V., Yefimova, E.S., Floss, C., Taylor, L.A., Mineral inclusions in microdiamonds and macrodiamonds from kimberlites of Yakutia: a comparative study. Lithos 77 (2004), 225–242.
108. Sobolev, N.V., Wirth, R., Logvinova, A.M., Yelisseyev, A.P., Kuzmin, D.V., Retrograde isochemical phase transformations of majoritic garnets included in diamonds: A case study of subcalcic Cr-rich majoritic pyrope from a Snap Lake diamond, Canada. Lithos 265 (2016), 267–277.
109. Solovieva, L.V., Kalashnikova, T.V., Kostrovitsky, S.I., Ivanov, A.V., Matsuk, S.S., Suvorova, L.F., Metasomatism and metasomatic and magmatic processes in the mantle lithosphere of the Birekte terrain of the Siberian craton and their effect on the lithosphere evolution. Geodyn. Tectonophys. 6:3 (2015), 311–344.
110. Spetsius, Z.V., Serenko V.P., 1990. Composition of the continental mantle and low crust beneath the Siberian platform. Moscow, Nauka. 271, (in Russian).
111. Stachel, T., Harris, J.W., The origin of cratonic diamonds — Constraints from mineral inclusions. Ore Geol. Rev. 34 (2008), 5–32.
112. Stachel, T., Luth, R.W., Diamond formation – where, when and how?. Lithos 220 (2015), 200–220.
113. Stagno, V., Ojwang, D.O., McCammon, C.A., Frost, D.J., The oxidation state of the mantle and the extraction of carbon from Earth's interior. Nature 493 (2013), 84–88.
114. Stagno, V., Frost, D.J., Carbon speciation in the asthenosphere: experimental measurements of the redox conditions at which carbonate – bearing melts coexist with graphite or diamond in peridotite assemblages. Earth Planet. Sci. Lett. 300 (2010), 72–84.
115. Sun, J., Liu, C.-Z., Tappe, S., Kostrovitsky, S., Yang, J.-H., Repeated kimberlite magmatism beneath Yakutia and its relationship to Siberian flood volcanism: Insights from in situ U-Pb and Sr–Nd perovskite isotope analysis. Earth Planet. Sci. Lett. 404 (2014), 283–295.
116. Sun, C., Liang, Y., A REE-in-garnet–clinopyroxene thermobarometer for eclogites, granulites and garnet peridotites. Chem. Geol. 393–394 (2015), 79–92.
117. Taylor W.L., Kamperman M., Hamilton R. 1998. New thermometer and oxygen fugacity sensor calibration for ilmenite amd Cr-spinel- bearing peridotite assemblage. 7th IKC Extended abstracts., p. 891.
118. Tsai, H., Meyer, H.O.A., Moreau, J., Milledge, H.J., 1979. Mineral inclusions in diamond: Premier, Jagersfontein and Finsch Kimberlites, South Africa and Williamson Mine, Tanzania. In: Boyd, F.R., Meyer, H.O.A., Eds., 2nd International Kimberlite Conference. American Geophysical Union, Washington DC 1, 16-26.
119. Viljoen, K.S., Harris, J.W., Ivanic, T., Richardson, S.H., Gray, K., Trace element chemistry of peridotitic garnets in diamonds from the Premier, Cullinan and Finsch kimberlites, South Africa: Contrasting styles of mantle metasomatism. Lithos 208–209 (2014), 1–15.
120. Weiss, Y., Griffin, W.L., Bell, D.R., Navon, O., High-Mg carbonatitic melts in diamonds, kimberlites and the sub-continental lithosphere. Earth Planet. Sci. Lett. 309 (2011), 337–347.
121. Weyer, S., Münker, C., Mezger, K., Nb/Ta, Zr/Hf and REE in the depleted mantle: implications for the differentiation history of the crust–mantle system. Earth Planet. Sci. Lett. 205 (2003), 309–324.
122. Yaxley, G.M., Berry, A.J., Kamenetsky, V.S., Woodland, A.B., Golovin, A.V., An oxygen fugacity profile through the Siberian Craton — Fe K-edge XANES determinations of Fe3+/ΣFe in garnets in peridotite xenoliths from the Udachnaya East kimberlite. Lithos 140 (2012), 142–151.
123. Zaitsev, A.I., Smelov, A.P., Isotopic geochronology of rocks of the kimberlite formation of the Yakut province, 2010, Institute of diamond and precious metals Geology SB RAS, 105–p.
124. Ziberna, L., Nimis, P., Zanetti, A., Marzoli, A., Sobolev, N.V., Metasomatic Processes in the Central Siberian Cratonic Mantle: Evidence from Garnet Xenocrysts from the Zagadochnaya Kimberlite. J. Petrol. 54 (2013), 2379–2409.