Инд. авторы: Bentmann H., Maass H., Braun J., Seibel C., Kokh K.A., Tereshchenko O.E., Schreyeck S., Brunner K., Molenkamp L.W., Miyamoto K., Arita M., Shimada K., Okuda T., Kirschner J., Tusche C., Ebert H., Minar J., Reinert F.
Заглавие: Profiling spin and orbital texture of a topological insulator in full momentum space
Библ. ссылка: Bentmann H., Maass H., Braun J., Seibel C., Kokh K.A., Tereshchenko O.E., Schreyeck S., Brunner K., Molenkamp L.W., Miyamoto K., Arita M., Shimada K., Okuda T., Kirschner J., Tusche C., Ebert H., Minar J., Reinert F. Profiling spin and orbital texture of a topological insulator in full momentum space // Physical Review B. - 2021. - Vol.103. - Iss. 16. - Art.L161107. - ISSN 2469-9950. - EISSN 2469-9969.
Идентиф-ры: DOI: 10.1103/PhysRevB.103.L161107; РИНЦ: 46008230; WoS: 000647168800003;
Реферат: eng: We investigate the coupled spin and orbital textures of the topological surface state in Bi-2(Te,Se)(3)(0001) across full momentum space using spin- and angle-resolved photoelectron spectroscopy and relativistic one-step photoemission theory. For an approximately isotropic Fermi surface in Bi2Te2Se, the measured intensity and spin momentum distributions, obtained with linearly polarized light, qualitatively reflect the orbital composition and the orbital-projected in-plane spin polarization, respectively. In Bi2Te3, the in-plane lattice potential induces a hexagonal anisotropy of the Fermi surface, which manifests in an out-of-plane photoelectron spin polarization with a strong dependence on light polarization, excitation energy, and crystallographic direction.
Ключевые слова: MANIPULATION; STATES; REFLECTION; PHOTOEMISSION;
Издано: 2021
Цитирование: 1. M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X. Qi, and S. Zhang, Science 318, 766 (2007) SCIEAS 0036-8075 10.1126/science.1148047.
2. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010) RMPHAT 0034-6861 10.1103/RevModPhys.82.3045.
3. P. Dziawa, B. J. Kowalski, K. Dybko, R. Buczko, A. Szczerbakow, M. Szot, E. Łusakowska, T. Balasubramanian, B. M. Wojek, M. H. Berntsen, Nat. Mater. 11, 1023 (2012) 1476-1122 10.1038/nmat3449.
4. C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.-L. Wang, Science 340, 167 (2013) SCIEAS 0036-8075 10.1126/science.1234414.
5. N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys. 90, 015001 (2018) RMPHAT 0034-6861 10.1103/RevModPhys.90.015001.
6. M. M. Otrokov, I. I. Klimovskikh, H. Bentmann, D. Estyunin, A. Zeugner, Z. S. Aliev, S. Gaß, A. U. B. Wolter, A. V. Koroleva, A. M. Shikin, Nature (London) 576, 416 (2019) NATUAS 0028-0836 10.1038/s41586-019-1840-9.
7. H. Zhang, C.-X. Liu, and S.-C. Zhang, Phys. Rev. Lett. 111, 066801 (2013) PRLTAO 0031-9007 10.1103/PhysRevLett.111.066801.
8. Z.-H. Zhu, C. N. Veenstra, G. Levy, A. Ubaldini, P. Syers, N. P. Butch, J. Paglione, M. W. Haverkort, I. S. Elfimov, and A. Damascelli, Phys. Rev. Lett. 110, 216401 (2013) PRLTAO 0031-9007 10.1103/PhysRevLett.110.216401.
9. D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal, J. H. Dil, J. Osterwalder, F. Meier, G. Bihlmayer, C. L. Kane, Science 323, 919 (2009) SCIEAS 0036-8075 10.1126/science.1167733.
10. M. S. Bahramy, P. D. C. King, A. de la Torre, J. Chang, M. Shi, L. Patthey, G. Balakrishnan, P. Hofmann, R. Arita, N. Nagaosa, Nat. Commun. 3, 1159 (2012) 2041-1723 10.1038/ncomms2162.
11. S. R. Park, J. Han, C. Kim, Y. Y. Koh, C. Kim, H. Lee, H. J. Choi, J. H. Han, K. D. Lee, N. J. Hur, Phys. Rev. Lett. 108, 046805 (2012) PRLTAO 0031-9007 10.1103/PhysRevLett.108.046805.
12. C. Jozwiak, C.-H. Park, K. Gotlieb, C. Hwang, D.-H. Lee, S. G. Louie, J. D. Denlinger, C. R. Rotundu, R. J. Birgeneau, Z. Hussain, Nat. Phys. 9, 293 (2013) 1745-2473 10.1038/nphys2572.
13. Y. Cao, J. A. Waugh, X.-W. Zhang, J.-W. Luo, Q. Wang, T. J. Reber, S. K. Mo, Z. Xu, A. Yang, J. Schneeloch, Nat. Phys. 9, 499 (2013) 1745-2473 10.1038/nphys2685.
14. Z.-H. Zhu, C. N. Veenstra, S. Zhdanovich, M. P. Schneider, T. Okuda, K. Miyamoto, S.-Y. Zhu, H. Namatame, M. Taniguchi, M. W. Haverkort, I. S. Elfimov, and A. Damascelli, Phys. Rev. Lett. 112, 076802 (2014) PRLTAO 0031-9007 10.1103/PhysRevLett.112.076802.
15. Z. Xie, S. He, C. Chen, Y. Feng, H. Yi, A. Liang, L. Zhao, D. Mou, J. He, Y. Peng, Nat. Commun. 5, 3382 (2014) 2041-1723 10.1038/ncomms4382.
16. J. Sanchez-Barriga, A. Varykhalov, J. Braun, S.-Y. Xu, N. Alidoust, O. Kornilov, J. Minár, K. Hummer, G. Springholz, G. Bauer, Phys. Rev. X 4, 011046 (2014) 2160-3308 10.1103/PhysRevX.4.011046.
17. C. Seibel, J. Braun, H. Maaß, H. Bentmann, J. Minár, T. V. Kuznetsova, K. A. Kokh, O. E. Tereshchenko, T. Okuda, H. Ebert, Phys. Rev. B 93, 245150 (2016) 2469-9950 10.1103/PhysRevB.93.245150.
18. H. L. Meyerheim and C. Tusche, Phys. Status Solidi (RRL)-Rapid Res. Lett. 12, 1870337 (2018) 1862-6254 10.1002/pssr.201870337.
19. J. H. Dil, Electron. Struct. 1, 023001 (2019) 2516-1075 10.1088/2516-1075/ab168b.
20. C. Tusche, M. Ellguth, A. Krasyuk, A. Winkelmann, D. Kutnyakhov, P. Lushchyk, K. Medjanik, G. Schönhense, and J. Kirschner, Ultramicroscopy 130, 70 (2013) ULTRD6 0304-3991 10.1016/j.ultramic.2013.02.022.
21. C. Tusche, A. Krasyuk, and J. Kirschner, Ultramicroscopy 159, 520 (2015) ULTRD6 0304-3991 10.1016/j.ultramic.2015.03.020.
22. C. Jozwiak, J. A. Sobota, K. Gotlieb, A. F. Kemper, C. R. Rotundu, R. J. Birgeneau, Z. Hussain, D.-H. Lee, Z.-X. Shen, and A. Lanzara, Nat. Commun. 7, 13143 (2016) 2041-1723 10.1038/ncomms13143.
23. D. Vasilyev, C. Tusche, F. Giebels, H. Gollisch, R. Feder, and J. Kirschner, J. Electron. Spectrosc. Relat. Phenom. 199, 10 (2015) JESRAW 0368-2048 10.1016/j.elspec.2014.12.006.
24. H. Maaß, S. Schreyeck, S. Schatz, S. Fiedler, C. Seibel, P. Lutz, G. Karczewski, H. Bentmann, C. Gould, K. Brunner, J. Appl. Phys. 116, 193708 (2014) JAPIAU 0021-8979 10.1063/1.4902010.
25. S. Schreyeck, K. Brunner, A. Kirchner, U. Bass, S. Grauer, C. Schumacher, C. Gould, G. Karczewski, J. Geurts, and L. W. Molenkamp, J. Phys.: Condens. Matter 28, 145002 (2016) JCOMEL 0953-8984 10.1088/0953-8984/28/14/145002.
26. T. Okuda, K. Miyamaoto, H. Miyahara, K. Kuroda, A. Kimura, H. Namatame, and M. Taniguchi, Rev. Sci. Instrum. 82, 103302 (2011) RSINAK 0034-6748 10.1063/1.3648102.
27. T. Okuda, K. Miyamoto, A. Kimura, H. Namatame, and M. Taniguchi, J. Electron Spectrosc. Relat. Phenom. 201, 23 (2015) JESRAW 0368-2048 10.1016/j.elspec.2014.10.010.
28. K. A. Kokh, S. V. Makarenko, V. A. Golyashov, O. A. Shegai, and O. E. Tereshchenko, Cryst. Eng. Commun. 16, 581 (2013) 1466-8033 10.1039/C3CE42026D.
29. H. Ebert, D. Ködderitzsch, and J. Minár, Rep. Prog. Phys. 74, 096501 (2011) RPPHAG 0034-4885 10.1088/0034-4885/74/9/096501.
30. J. Braun, J. Minár, and H. Ebert, Phys. Rep. 740, 1 (2018) PRPLCM 0370-1573 10.1016/j.physrep.2018.02.007.
31. See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.103.L161107 for additional details describing the theoretical photoemission calculations.
32. S. V. Halilov, H. Gollisch, E. Tamura, and R. Feder, J. Phys.: Condens. Matter 5, 4711 (1993) JCOMEL 0953-8984 10.1088/0953-8984/5/27/015.
33. M. Potthoff, J. Lachnitt, W. Nolting, and J. Braun, Phys. Status Solidi (b) 203, 441 (1997) PSSBBD 0370-1972 10.1002/1521-3951(199710)203:2%3C441::AID-PSSB441%3E3.0.CO;2-7.
34. R. Feder, J. Phys. C 14, 2049 (1981) JPSOAW 0022-3719 10.1088/0022-3719/14/15/006.
35. J. Braun, Rep. Prog. Phys. 59, 1267 (1996) RPPHAG 0034-4885 10.1088/0034-4885/59/10/002.
36. G. Malmström and J. Rundgren, Comput. Phys. Commun. 19, 263 (1980) CPHCBZ 0010-4655 10.1016/0010-4655(80)90053-3.
37. H. Bentmann, H. Maaß, E. E. Krasovskii, T. R. F. Peixoto, C. Seibel, M. Leandersson, T. Balasubramanian, and F. Reinert, Phys. Rev. Lett. 119, 106401 (2017) PRLTAO 0031-9007 10.1103/PhysRevLett.119.106401.
38. J. H. Ryoo and C.-H. Park, Phys. Rev. B 93, 085419 (2016) 2469-9950 10.1103/PhysRevB.93.085419.
39. L. Fu, Phys. Rev. Lett. 103, 266801 (2009) PRLTAO 0031-9007 10.1103/PhysRevLett.103.266801.
40. S. Souma, K. Kosaka, T. Sato, M. Komatsu, A. Takayama, T. Takahashi, M. Kriener, K. Segawa, and Y. Ando, Phys. Rev. Lett. 106, 216803 (2011) PRLTAO 0031-9007 10.1103/PhysRevLett.106.216803.
41. J. Henk, A. Ernst, S. V. Eremeev, E. V. Chulkov, I. V. Maznichenko, and I. Mertig, Phys. Rev. Lett. 108, 206801 (2012) PRLTAO 0031-9007 10.1103/PhysRevLett.108.206801.
42. Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, Science 325, 178 (2009) SCIEAS 0036-8075 10.1126/science.1173034.
43. I. Zeljkovic, Y. Okada, C.-Y. Huang, R. Sankar, D. Walkup, W. Zhou, M. Serbyn, F. Chou, W.-F. Tsai, H. Lin, Nat. Phys. 10, 572 (2014) 1745-2473 10.1038/nphys3012.
44. F. Reis, G. Li, L. Dudy, M. Bauernfeind, S. Glass, W. Hanke, R. Thomale, J. Schäfer, and R. Claessen, Science 357, 287 (2017) SCIEAS 0036-8075 10.1126/science.aai8142.
45. C.-H. Min, H. Bentmann, J. N. Neu, P. Eck, S. Moser, T. Figgemeier, M. Ünzelmann, K. Kissner, P. Lutz, R. J. Koch, Phys. Rev. Lett. 122, 116402 (2019) PRLTAO 0031-9007 10.1103/PhysRevLett.122.116402.
46. N. B. M. Schröter, S. Stolz, K. Manna, F. D. Juan, M. G. Vergniory, J. A. Krieger, D. Pei, T. Schmitt, P. Dudin, T. K. Kim, Science 369, 179 (2020) SCIEAS 0036-8075 10.1126/science.aaz3480.
47. M. Schüler, U. D. Giovannini, H. Hübener, A. Rubio, M. A. Sentef, and P. Werner, Sci. Adv. 6, eaay2730 (2020) 2375-2548 10.1126/sciadv.aay2730.