Инд. авторы: Doroshkevich A.G., Sharygin V.V., Belousova E.A., Izbrodin I.A., Prokopyev I.R
Заглавие: Zircon from the Chuktukon alkaline ultramafic carbonatite complex (Chadobets uplift, Siberian craton) as evidence of source heterogeneity
Библ. ссылка: Doroshkevich A.G., Sharygin V.V., Belousova E.A., Izbrodin I.A., Prokopyev I.R Zircon from the Chuktukon alkaline ultramafic carbonatite complex (Chadobets uplift, Siberian craton) as evidence of source heterogeneity // Lithos. - 2021. - Vol.382. - Art.105957. - ISSN 0024-4937. - EISSN 1872-6143.
Идентиф-ры: DOI: 10.1016/j.lithos.2020.105957; РИНЦ: 45039067; WoS: 000652194600026;
Реферат: eng: The Chuktukon alkaline carbonatite complex is a part of the Chadobets complex, situated in the southwestern part of the Siberian craton. It is composed principally of aillikite-damtjernite and carbonatite and a host of Nb and REE mineralisation. Zircons were collected from drillhole samples of the damtjernites and hydrothermally overprinted carbonatites. Zircon grains show oscillatory zoning and a significant signature of recrystallization in cathodoluminescence images. Oscillatory zoned zircons preserved primary signatures, whereas recrystallization processes were related to infiltration of carbonatite melt and late stage fluid. The recrystallization led to different changes in the zircon geochemistry and appearance of multiphase inclusions with mineral composition, which is common of carbonatites (alkali-rich carbonates, fluorcalciopyrochlore, fluorapatite, Ba-Sr-REE-Ca-carbonates, calcite, dolomite, phlogopite and others). Hf-isotope composition of oscillatory zoned and recrystallized zircons is similar and records the signature of their primary heterogeneous source, with epsilon Hf(t) varying from 6.3 to -0.6. U-Pb age of oscillatory zoned zircon from damtjernite shows that the rock was emplaced at 256.7 +/- 1.1Ma, indicating that the Chuktukon intrusion was coeval with the Permian-Triassic Siberian Traps (252-250Ma) and extensive alkaline magmatism in the Siberian craton. (C) 2020 Elsevier B.V. All rights reserved.
Ключевые слова: Geochronology; Hf isotopes; Multiphase inclusions; Carbonatite; Damtjernite; Alkaline ultramafic magmatism; Chadobets uplift; CRYSTALLIZED MELT INCLUSIONS; SITU U-PB; FLOOD BASALTS; ISOTOPIC COMPOSITION; MAYMECHA-KOTUY; HF ISOTOPES; GULI MASSIF; MANTLE PLUMES; EASTERN SAYAN; TRACE-ELEMENT COMPOSITION; Zircon;
Издано: 2021
Физ. хар-ка: 105957
Цитирование: 1. Agashev, A.M., Chervyakovskaya, M.V., Serov, I.V., Tolstov, A.V., Agasheva, E.V., Votyakov, S.L., Source rejuvenation vs. re-heating: constraints on Siberian kimberlite origin from U-Pb and Lu-Hf isotope compositions and geochemistry of mantle zircons. Lithos 364–365 (2020), 1–10.
2. Andersen, T., Correction of common Pb in U–Pb analyses that do not report 204Pb. Chem. Geol. 192 (2002), 59–79.
3. Andreeva, I.A., Carbonatitic melts in olivine and magnetite from rare metal carbonatite of the Belaya Zima alkaline carbonatite complex (East Sayan, Russia). Dokl. Earth Sci. 455:2 (2014), 436–440.
4. Andreeva, I.A., Kovalenko, V.I., Kononkova, N.N., Chemical composition of magma (melt inclusions) of melilite-bearing nephelinite from the Belaya Zima carbonatite complex, Eastern Sayan. Dokl. Earth Sci. 394:1 (2004), 116–119.
5. Andreeva, I.A., Kovalenko, V.I., Kononkova, N.N., Natrocarbonatitic melts of the Bol'shaya Tagna Massif, the Eastern Sayan Region. Dokl. Earth Sci. 408:4 (2006), 542–546.
6. Andreeva, I.A., Kovalenko, V.I., Nikiforov, A.V., Kononkova, N.N., Compositions of magmas, formation conditions, and genesis of carbonate-bearing ijolites and carbonatites of the Belaya Zima alkaline carbonatite complex, Eastern Sayan. Petrology 15:6 (2007), 551–574.
7. Arndt, N., Chauvel, C., Czamanske, G., Fedorenko, V., Two mantle sources, two plumbing systems: tholeiitic and alkaline magmatism of the Maymecha River basin, Siberian flood volcanic province. Contrib. Mineral. Petrol. 133 (1998), 297–313, 10.1007/s004100050453.
8. Basu, A.R., Poreda, R.J., Renne, P.R., Telchmann, F., Vasiliev, Y.R., Sobolev, N.V., Turrin, B.D., High-3He plume origin and temporal–spatial evolution of the Siberian flood basalts. Science 269:5225 (1995), 825–882, 10.1126/science.269.5225.822.
9. Belousova, E.A., Walters, S., Griffin, W.L., O'Reilly, S.Y., Fisher, N.I., Igneous zircon: trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol. 143 (2002), 602–622.
10. Black, L.P., Kamo, S.L., Allen, C.M., TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chem. Geol. 200 (2003), 155–170.
11. Bouvier, A., Vervoort, J.D., Patchett, P.J., The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 273 (2008), 48–57.
12. Burgess, S.D., Bowring, S.A., High-precision geochronology confirms voluminous magmatism before, during, and after Earth's most severe extinction. Sci. Adv., 1(7), 2015, e1500470, 10.1126/sciadv.1500470.
13. Carlson, R.W., Czamanske, G., Fedorenko, V., Ilupin, I., A comparison of Siberian meimechites and kimberlites: implications for the source of high-Mg alkali magmas and flood basalts. Geochem. Geophys. Geosyst., 7(11), 2006, 10.1029/2006GC001342.
14. Chakhmouradian, A.R., Reguir, E.P., Zaitsev, A.N., Calcite and dolomite in intrusive carbonatites. I. Textural variations. Mineral. Petrol. 110 (2016), 333–360.
15. Chebotarev, D.A., Doroshkevich, A.G., Sharygin, V.V., Yudin, D.S., Ponomarchuk, A.V., Sergeev, S.A., Geochronology of the Chuktukon carbonatite massif, Chadobets uplift (Krasnoyarsk Territory). Russ. Geol. Geophys. 58 (2017), 1222–1231.
16. Chebotarev, D.A., Doroshkevich, A.G., Klemd, R., Karmanov, N.S., Evolution of Nb mineralization in the Chuktukon carbonatite massif, Chadobets uplift (Krasnoyarsk Territory, Russia). Period. Mineral. 86 (2017), 99–118, 10.2451/2017PM733.
17. Chen, R.-X., Zheng, Y.-F., Xie, L., Metamorphic growth and recrystallization of zircon: distinction by simultaneous in-situ analyses of trace elements, U–Th–Pb and Lu–Hf isotopes in zircons from eclogite-facies rocks in the Sulu orogen. Lithos 114 (2010), 132–154.
18. Chen, W., Kamenetsky, V.S., Simonetti, A., Evidence for the alkaline nature of parental carbonatite melts at Oka complex in Canada. Nat. Commun., 4, 2013, 2687.
19. Dalrymple, G.B., Czamanske, G.K., Fedorenko, V.A., Simonov, O.N., Lanphere, M.A., Likhachev, A.P., A reconnaissance 40Ar/39Ar geochronologic study of ore-bearing and related rocks, Siberian Russia. Geochim. Cosmochim. Acta 59:10 (1995), 2071–2083, 10.1016/0016-7037.
20. Dashkevich, N.N., Regional prediction of kimberlite magmatism in the southwestern Siberian Platform. Geologiya i poleznye iskopaemye Krasnoyarskogo kraya (Geology and Mineral Resources of Krasnoyarsk District) in Russian, 1999, 31–42.
21. DeBievre, P., Taylor, P.D.P., Table of the isotopic composition of the elements. Int. J. Mass Spectrom. Ion Process., 123, 1993, 149.
22. Doroshkevich, A.G., Veksler, I.V., Klemd, R., Khromova, E.A., Izbrodin, I.A., Trace-element composition of minerals and rocks in the Belaya Zima carbonatite complex (Russia): implications for the mechanisms of magma evolution and carbonatite formation. Lithos 284-285 (2017), 91–108.
23. Doroshkevich, A.G., Prokopyev, I.R., Izokh, A.E., Klemd, R., Ponomarchuk, A.V., Nikolaeva, I.V., Vladykin, N.V., Isotopic and trace element geochemistry of the Seligdar magnesiocarbonatites (South Yakutia, Russia): insights regarding the mantle evolution beneath the Aldan-Stanovoy shield. J. Asian Earth Sci. 154 (2018), 354–368.
24. Doroshkevich, A.G., Chebotarev, D.A., Sharygin, V.V., Prokopyev, I.R., Nikolenko, A.M., Petrology of alkaline silicate rocks and carbonatites of the Chuktukon massif, Chadobets uplift, Russia: sources, evolution and relation to the Triassic Siberian LIP. Lithos 332–333 (2019), 245–260.
25. Elhlou, S., Belousova, E.A., Griffin, W.L., Pearson, N.J., O'Reilly, S.Y., Trace element and isotopic composition of GJ red zircon standard by Laser Ablation. Geochim. Cosmochim. Acta, 70(18), 2006, A158.
26. Ernst, R.E., Davies, D.R., Jowitt, S.M., Campbell, I.H., When do mantle plumes destroy diamonds?. Earth Planet. Sci. Lett. 502 (2018), 244–252.
27. Fedorenko, V., Czamanske, G., Zenko, T., Budahn, J., Siems, D., Field and geochemical studies of the Melilite-Bearing Arydzhangsky Suite, and an overall perspective on the Siberian Alkaline–Ultramafic Flood-Volcanic Rocks. Int. Geol. Rev. 42 (2000), 769–804, 10.1080/00206810009465111.
28. Ghobadi, M., Gerdes, A., Kogarko, L., Hoefer, H., Brey, G., In situ LA-ICPMS isotopic and geochronological studies on carbonatites and phoscorites from the Guli Massif, Maymecha-Kotuy, Polar Siberia. Geochem. Int. 56:8 (2018), 766–783, 10.1134/S0016702918080049.
29. Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., van Achterbergh, E., O'Reilly, S.Y., Shee, S.R., The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 64 (2000), 133–147.
30. Griffin, W.L., Pearson, N.J., Belousova, E.A., Saeed, A., Reply to “Comment to short-communication ‘Comment: Hf-isotope heterogeneity in zircon 91500’ by W.L. Griffin, N.J. Pearson, E.A. Belousova and A. Saeed (Chemical Geology 233 (2006) 358–363)” by F. Corfu. Chem. Geol. 244 (2007), 354–356.
31. Griffin, W.L., Powell, W.J., Pearson, N.J., O'Reilly, S.Y., GLITTER: data reduction software for laser ablation ICP-MS. Sylvester, P., (eds.) Laser Ablation-ICP-MS in the Earth Sciences: Mineralogical Association of Canada Short Course Series, 40, 2008, 204–207 (Appendix 2).
32. Howarth, G.H., Barry, P.H., Pernet-Fisher, J.F., Baziotis, I.P., Pokhilenko, N.P., Pokhilenko, L.N., Bodnar, R.J., Taylor, L.A., Agashev, A.M., Superplume metasomatism: evidence from Siberian mantle xenoliths. Lithos 184 (2014), 209–224.
33. Ivanov, A.V., He, H., Yan, L., Ryabov, V.V., Shevko, A.Y., Palesskii, S.V., Nikolaeva, I.V., Siberian Traps large igneous province: evidence for two food basalt pulses around the Permo–Triassic boundary and in the Middle Triassic, and contemporaneous granitic magmatism. Earth Sci. Rev. 122 (2013), 58–76, 10.1016/j.earscirev.2013.04.001.
34. Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., The application of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICPMS) to in situ U-Pb zircon geochronology. Chem. Geol. 211 (2004), 47–69.
35. Kargin, A.V., Nosova, A.A., Postnikov, A.V., Chugaev, A.V., Postnikova, O.V., Popova, L.P., Poshibaev, V.V., Sazonova, L.V., Dokuchaev, A.Y., Smirnova, M.D., Devonian ultramafic lamprophyre in the Irkineeva–Chadobets trough in the southwest of the Siberian Platform: age, composition, and implications for diamond potential prediction. Geol. Ore Depos. 58 (2016), 383–403, 10.1134/S1075701516050068.
36. Kemp, A.I.S., Wormald, R.J., Whitehouse, M.J., Price, R.C., Hf isotopes in zircon reveal contrasting sources and crystallization histories for alkaline to peralkaline granites of Temora, southeastern Australia. Geology 33 (2005), 797–800.
37. Kirichenko, T., Zuev, K., Perfilova, O.Yu., Sosnovskaya, O., Smokotina, I., Markovich, L.A., Borodin, E., Mironyuk, E., State Geological Map of Russian Federation, Scale 1: 1000000 (Third Generation). Ser. Angaro-Eniseysk. Sheet O-47 Bratsk. Explanatory Note. Cartografic Factory of VSEGEI, St. Petersburg. 2012, 163–179 (In Russian).
38. Kogarko, L.N., Ryabchikov, I.D., Geochemical evidence for meimechite magma generation in the subcontinental lithosphere of Polar Siberia. Journal of Asian Earth Sciences 18 (2000), 195–203, 10.1016/S1367-9120(99)00041-3.
39. Kogarko, L.N., Zartman, R.E., New data on the age of the Guli intrusion and implications for the relationships between alkaline magmatism in the Maymecha–Kotuy province and the Siberian Superplume: U–Th–Pb isotopic systematics. Geochem. Int. 49:5 (2011), 439–448, 10.1134/S0016702911050065.
40. Lafuente, B., Downs, R.T., Yang, H., Stone, N., The power of databases: the RRUFF project. Armbruster, T., Danisi, R.M., (eds.) Highlights in Mineralogical Crystallography, 2016, W. de Gruyter GmbH, Berlin, Germany, 1–29, 10.1515/9783110417104-003.
41. Lapin, A.V., About kimberlites of the Chadobets uplift in connection with a problem of the formational-metallogeny analysis of the platform alkaline ultrabasic magmatic rocks. Otechestvennaya Geol. 4 (2001), 30–35 (In Russian).
42. Lapin, A.V., Lisitzyn, D.V., About mineralogical typomorphism of alkaline ultrabasic magmatic rocks of Chadobets uplift. Otechestvennaya Geol., 683, 2004, 93 (In Russian).
43. Letnikova, E.F., Izokh, A.E., Nikolenko, E.I., Pokhilenko, N.P., Shelestov, V.O., Geng, Hilen, Lobanov, S.S., Late Triassic high-potassium trachytic volcanism of the northeast of the Siberian platform: evidence in the sedimentary record. Doklady Earth Sci. 459:1 (2014), 1344–1347, 10.1134/S1028334X14110221.
44. Lightfoot, P.C., Hawkesworth, C.J., Hergt, J., Naldrett, A.J., Gorbachev, N.S., Fedorenko, V.A., Doherty, W., Remobilization of the continental lithosphere by a mantle plume: major-, trace-element, and Sr-, Nd- and Pb-isotopic evidence frompicritic and tholeiitic lavas of the Noril'sk district, Siberia. Contrib. Mineral. Petrol. 114 (1993), 171–188, 10.1007/BF00307754.
45. Lomayev, V.G., Serdyuk, S.S., The Chuktukon Nb-TR deposit - the priority object for modernization of the Russian rare-earth industry. J. Siber. Feder. Univ. 4 (2011), 132–154.
46. Malitch, K.N., Belousova, E.A., Griffin, W.L., Badanina, I.Yu., Hafnium-neodymium constraints on source heterogeneity of the economic ultramafic-mafic Noril'sk-1 intrusion (Russia). Lithos 164–167 (2013), 36–46.
47. Malitch, K.N., Khiller, V.V., Badanina, I.Yu., Belousova, E.A., Results of dating of thorianite and baddeleyite from carbonatites of the Guli massif. Russian Doklady Earth Sci. 464:2 (2015), 1029–1032.
48. Malitch, K.N., Kogarko, L.N., Badanina, I.Y., Belousova, E.A., Hafnium–Neodymium isotope systematics of carbonatites from the Guli Massif (Maimecha–Kotui Province, Russia). Dokl. Earth Sci. 480 (2018), 652–655.
49. Nebel, O., Mezger, K., Timing of thermal stabilization of the Zimbabwe Craton deduced from high-precision Rb–Sr chronology, Great Dyke. Precambrian Res. 164:3–4 (2008), 227–232.
50. Nedosekova, I.L., Belousova, E.A., Sharygin, V.V., Belyatsky, B.V., Bayanova, T.B., Origin and evolution of the Ilmeny-Vishnevogorsky carbonatites (Urals, Russia): insights from trace-elements compositions, Rb-Sr, Sm-Nd, U-Pb, Lu-Hf isotope data. Mineral. Petrol. 107:1 (2013), 101–123, 10.1007/s00710-012-0223-9.
51. Nedosekova, I.L., Belousova, E.A., Belyatsky, B.V., Hf isotopes and trace elements as indicators of zircon genesis in the evolution of the alkaline–carbonatite magmatic system (Il'meno–Vishnevogorskii Complex, Urals, Russia). Dokl. Earth Sci. 461:2 (2015), 384–389.
52. Nedosekova, I.L., Koroteev, V.A., Belyatsky, B.V., Sharygin, V.V., Lepekhinа, Е.N., Pribavkin, S.V., U-Pb Dating of niobium ore minerals of the pyrochlore group (Ilmeno-Vishnevogorsk Carbonatite-Miaskite Complex, South Urals). Lithosphere 18:5 (2018), 758–773, 10.24930/1681-9004-2018-18-5-758-773.
53. Nielsen, T.F.D., Solovova, I.P., Veksler, I.V., Parental melts of melilitolite and origin of alkaline carbonatite: evidence from crystallized melt inclusions, Gardiner complex. Contrib. Mineral. Petrol. 126 (1997), 331–344.
54. Nosova, A.A., Sazonova, L.V., Kargin, A.V., Smirnova, M.D., Lapin, A.V., Shcherbakov, V.D., Olivine in ultramafic lamprophyres: Chemistry, crystallisation, and melt sources of Siberian Pre- and post-trap aillikites. Contrib. Mineral. Petrol., 173, 2018, 55, 10.1007/s00410-018-1480-3.
55. Nosova, A.A., Kargin, A.V., Sazonova, L.V., Dubinina, E.O., Chugaev, A.V., Lebedeva, N.M., Yudin, D.S., Larionova, Y.O., Abersteiner, A., Gareev, B.I., Sr-Nd-Pb isotopic systematic and geochronology of ultramafic alkaline magmatism of the southwestern margin of the Siberian Craton: metasomatism of the sub-continental lithospheric mantle related to subduction and plume events. Lithos, 2020, 364–365, 10.1016/j.lithos.2020.105509.
56. Panina, L.I., Multiphase carbonate–salt immiscibility in carbonatite melts: data on melt inclusions from the Krestovskiy massif minerals (Polar Siberia). Contrib. Mineral. Petrol. 150 (2005), 19–36.
57. Paton, M.T., Ivanov, A.V., Fiorentini, M.L., McNaughton, M.J., Mudrovska, I., Reznitskii, L.Z., Demonterova, E.I., Late Permian and Early Triassic magmatic pulses in the Angara-Taseeva syncline, Southern Siberian Traps and their possible influence on the environment. Russ. Geol. Geophys. 51 (2010), 1012–1020.
58. Pearson, N.J., Griffin, W.L., O'Reilly, S.Y., Mass fractionation correction in laser ablation-multiple collector ICP-MS: implications for overlap corrections and precise and accurate in situ isotope ratio measurement. Sylvester, P., (eds.) Laser-Ablation-ICP-MS in the Earth Sciences : Current Practices and Outstanding. Mineralogical Association of Canada Short Course 40, Vancouver, B.C, 2008, 93–116.
59. Pernet-Fisher, J.F., Howarth, G.H., Pearson, D.G., Woodland, S., Barry, P.H., Pokhilenko, N.P., Agashev, A.M., Taylor, L.A., Plume impingement on the Siberian SCLM: evidence from Re-Os isotope systematics. Lithos 218–219 (2015), 141–154.
60. Potter, N.J., Kamenetsky, V.S., Chakhmouradian, A.R., Kamenetsky, M.B., Goemann, K., Rodemann, T., Polymineralic inclusions in oxide minerals of the Afrikanda alkaline-ultramafc complex: implications for the evolution of perovskite mineralisation. Contrib. Mineral. Petrol., 175, 2020, 18, 10.1007/s00410-020-1654-7.
61. Prokopyev, I., Starikova, A., Doroshkevich, A., Nugumanova, Y., Potapov, V., Petrogenesis of Ultramafic Lamprophyres from the Terina Complex (Chadobets Uplift, Russia): mineralogy and melt inclusion composition. Minerals, 10, 2020, 419, 10.3390/min10050419.
62. Rao, N.V.C., Lehmann, B., Kimberlites, flood basalts and mantle plumes: new insights from the Deccan Large Igneous Province. Earth Sci. Rev. 107 (2011), 315–324.
63. Ryabchikov, I.D., Kogarko, L.N., Solovova, I.P., Physicochemical conditions of magma formation at the base of the Siberian plume: insight from the investigation of melt inclusions in the meymechites and alkali picrites of the Maimecha—Kotui Province. Petrology 17 (2009), 287–299, 10.1134/S0869591109030059.
64. Scherer, E., Munker, C., Mezger, K., Calibration of the lutetium–hafnium clock. Science 293 (2001), 683–687.
65. Sharma, M., Basu, A.R., Nesterenko, G.V., Nd-Sr isotopes, petrochemistry, and origin of the Siberian flood basalts, USSR. Geochim. Cosmochim. Acta 53 (1991), 1183–1192, 10.1016/0016-7037(91)90177-7.
66. Sharma, M., Basu, A.R., Nesterenko, G.V., Temporal Sr-, Nd-, and Pb-isotopic variations in the Siberian flood basalts: implications for the plume-source characteristics. Earth Planet. Sci. Lett. 113 (1992), 365–381, 10.1016/0012-821X(92)90139-M.
67. Sharygin, V.V., Tainiolite from Chuktukon carbonatite massif, Chadobets Uplift, Russia. Zaitsev, V.A., Ermolaeva, V.N., (eds.) Proceedings of XXXIV International Conference. “Magmatism of the Earth and Related Strategic Metal Deposits”, 2017, GEOKHI RAS, 242–244.
68. Sharygin, V.V., Doroshkevich, A.G., Mineralogy of secondary olivine-hosted inclusions in calcite carbonatites of the Belaya Zima alkaline massif, Eastern Sayan, Russia: evidence for late-magmatic Na-Ca-rich carbonate composition. J. Geol. Soc. India 90:11 (2017), 524–530.
69. Sharygin, V.V., Zhitova, L.M., Nigmatullina, E.N., Fairchildite K2Ca(CO3)2 in phoscorites from Phalaborwa, South Africa: first occurrence in alkaline carbonatite complexes. Russ. Geol. Geophys. 52 (2011), 208–219, 10.1016/j.rgg.2010.12.015.
70. Sharygin, V.V., Kamenetsky, V.S., Zaitsev, A.N., Kamenetsky, M.B., Silicate-natrocarbonatite liquid immiscibility in 1917 eruption combeite-wollastonite nephelinite, Oldoinyo Lengai volcano, Tanzania: melt inclusion study. Lithos 152 (2012), 23–39, 10.1016/j.lithos.2012.01.021.
71. Sharygin, V.V., Doroshkevich, A.G., Chebotarev, D.A., Nа-Sr-Ba-REE-carbonates and phosphates in carbonatite minerals of Chuktukon massif, Krasnoyarsk territory. Abstract volume of 17th Russian Conference on Fluid Inclusion Studies, Ulan-Ude, GI SB RAS, 2016, 180–182 (in Russian).
72. Sharygin, V.V., Doroshkevich, A.G., Seryotkin, Y.V., Karmanov, N.S., Belogub, E.V., Moroz, T.N., A new K-Nb-cyclosilicate K2(Nb,Ti)2(Si4O12)O(O,F) from Chuktukon carbonatite massif, Chadobets uplift, Russia. Abstract volume of 2nd European Mineralogical Conference, Rimini, Italy, 2016 (421–421).
73. Sobolev, A.V., Sobolev, S.V., Kuzmin, D.V., Siberian meimechites: origin and relation to flood basalts and kimberlites. Russian Geol. Geophys. 50 (2009), 999–1033, 10.1016/j.rgg.2009.11.002.
74. Stacey, J.S., Kramers, J.D., Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 26 (1975), 207–221.
75. Staroseltsev, V.S., Identifying paleorifts as promising tectonic elements for active oil and gas generation. Russ. Geol. Geophys. 50:4 (2009), 358–364.
76. Sun, S.-S., McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 42 (1989), 313–345, 10.1144/GSL.SP.1989.042.01.19.
77. Sun, J., Liu, C., Tappe, S., Kostrovitsky, S.I., Wu, F.-Y., Yakovlev, D., Yang, Y.-H., Yang, J.-H., Repeated kimberlite magmatism beneath Yakutia and its relationship to Siberian flood volcanism: insights from in situ U–Pb and Sr–Nd perovskite isotope analysis. Earth Planet. Sci. Lett. 404 (2014), 283–295, 10.1016/j.epsl.2014.07.039.
78. Sun, J., Tappe, S., Kostrovitsky, S.I., Liu, C., Skuzovatov, S.Yu., Wu, F., Mantle sources of kimberlites through time: a U-Pb and Lu-Hf isotope study of zircon megacrysts from the Siberian diamond fields. Chem. Geol. 479 (2018), 228–240.
79. Tappe, S., Foley, S.F., Jenner, G.A., Kjarsgaard, B.A., Integrating ultramafic lamprophyres into the IUGS classification of igneous rocks: Rationale and implications. J. Petrol. 46 (2005), 1893–1900.
80. Tichomirowa, M., Whitehouse, M.J., Gerdes, A., Götze, J., Schulz, B., Belyatsky, B.V., Different zircon recrystallization types in carbonatites caused by magma mixing: evidence from U–Pb dating, trace element and isotope composition (Hf and O) of zircons from two Precambrian carbonatites from Fennoscandia. Chem. Geol. 353 (2013), 173–198.
81. Veksler, I.V., Nielsen, T.F.D., Sokolov, S.V., Mineralogy of crystallized melt inclusions from Gardiner and Kovdor ultramafic alkaline complexes: implications for carbonatite genesis. J. Petrol. 39 (1998), 2015–2031.
82. Vrublevskii, V.V., Voitenko, N.N., Romanov, A.P., Polyakov, G.V., Izokh, A.E., Gertner, I.F., Krupchatnikov, V.I., Magma sources of Triassic lamproites of Gornyi Altai and Taimyr: Sr and Nd isotope evidence for plume–lithosphere interaction. Doklady Earth Sci. 405a:9 (2005), 1365–1367.
83. Wooden, J.L., Czamanske, G.K., Fedorenko, V.A., Arndt, N.T., Chauvel, C., Bouse, R.M., King, B.-S.W., Knight, R.J., Siems, D.F., Isotopic and trace-element constraints on mantle and crustal contributions to Siberian continental flood basalts, Noril'sk area, Siberia. Geochim. Cosmochim. Acta 57 (1993), 3677–3704, 10.1016/0016-7037(93)90149-Q.
84. Wu, F.-Y., Yang, Y.-H., Li, Q.-L., Mitchell, R., Dawson, J.B., Brandl, G., Yuhara, M., In situ determination of U–Pb ages and Sr–Nd–Hf isotopic constraints on the petrogenesis of the Phalaborwa carbonatite Complex, South Africa. Lithos 127 (2011), 309–322.