Инд. авторы: Щукина Е.В
Заглавие: Magmatic Material in Sandstone Shows Prospects for New Diamond Deposits within the Northern East European Platform
Библ. ссылка: Щукина Е.В Magmatic Material in Sandstone Shows Prospects for New Diamond Deposits within the Northern East European Platform // MINERALS. - 2021. - Vol.11. - Iss. 4. - Art.339.
Идентиф-ры: DOI: 10.3390/min11040339; РИНЦ: 46768464; WoS: 000643335300001;
Реферат: eng: A detailed study of sandstones recovered from the upper part of the recently discovered KL-01 magmatic pipe in the southern part of the Arkhangelsk diamondiferous province (ADP), containing magmatic material and rare kimberlite indicator minerals, is presented in this paper. Results are compared to the composition of crater samples of the highly diamondiferous Vladimir Grib kimberlite pipe and several poorly to non-diamondiferous ADP pipes. To identify the type of magmatic material admixture, a model of binary mixing between country Vendian sandstones and typical ADP magmatic rocks based on correlations of La/Yb and Zr/Nb ratios and Ni contents is proposed. The modeling results show that the type of magmatic component in the KL-01 samples can be identified as kimberlite, with a maximum admixture of 20 vol.%. Kimberlite indicator mineral geochemistry did not exclude the interpretation that the composition, structure, thermal state and metasomatic enrichment of the lithospheric mantle sampled by the KL-01 pipe were suitable for the formation and preservation of diamonds. The lower boundary of the sampled lithospheric mantle could be in the depth range of 175-190 km, with a diamond window width of 55-70 km. Thus, the sandstones could represent the upper level of the crater of a new kimberlite pipe.
Ключевые слова: diamond exploration; kimberlite indicator mineral; pyrope geochemistry; lithospheric mantle; saponite; GRIB KIMBERLITE PIPE; SINGLE-CLINOPYROXENE THERMOBAROMETRY; GARNET XENOCRYSTS; METASOMATIC PROCESSES; SOUTH-AFRICA; NW RUSSIA; ORIGIN; PROVINCE; XENOLITHS; ARKHANGELSK REGION; Kola craton;
Издано: 2021
Физ. хар-ка: 339
Цитирование: 1. Shchukina, E.V.; Shchukin, V.S. Diamond exploration potential of the northern East European Platform. Minerals 2018, 8, 189. [CrossRef]
2. Smit, K.V.; Shor, R. Geology and development of the Lomonosov diamond deposit, Northwestern Russia. Gems Gemol. 2017, 53, 144–167. [CrossRef]
3. Shchukina, E.V.; Agashev, A.M.; Shchukin, V.S. Diamond-bearing root beneath the northern East European Platform (Arkhangelsk region, Russia): Evidence from Cr-pyrope trace-element geochemistry. Minerals 2019, 9, 261. [CrossRef]
4. Verichev, E.M. Geological Conditions of Formation and Exploration of the V. Grib Deposit. Ph.D Thesis, M.V. Lomonosov Moscow State University, Moscow, Russia, 2002. (In Russian).
5. Korotkov, Y.V. Search for Hidden Kimberlite Bodies Using Pulsed Inductive Electrical Prospecting in the Arkhangelsk Diamon-diferous Province. Ph.D Thesis, Arkhangelsk Institute of Ecological Problems of the North, Arkhangelsk, Russia, 2012. (In Russian).
6. Stogniy, V.V.; Korotkov, Y.V. Search for Kimberlite Bodies by the Method of Transitional Processes; Publishing House “Small Circulation Printing 2D”: Novosibirsk, Russia, 2010; p. 121. (In Russian)
7. Zinchuk, N.N. Specific features of typical models of kimberlite pipes and their use in diamond prospecting. Vestn. Voronezh State Univ. 2011, 1, 133–144. (In Russian)
8. Shevchenko, S.S.; Lokhov, K.I.; Sergeev, S.A. Isotope studies in VSEGEI. Prospects of application of results for predicting and search of diamond deposits. In Proceedings of the Scientific Practical Conference on Efficiency of Prediction and Search for Diamond Deposits: Past, Present, and Future, Saint-Petersburg, Russia, 25–27 May 2004; pp. 383–387.
9. Bogatikov, O.A.; Garanin, V.K.; Kononova, V.A.; Kudryavceva, G.P.; Vasil'eva, E.R.; Verzhak, V.V.; Verichev, E.M.; Parsadanyan, K.S.; Posuhova, T.V. Arkhangelsk Diamondiferous Province; Moscow State University: Moscow, Russia, 1999; p. 521, (In Russian). ISBN 5-211-02558-X.
10. Golovin, N.N. Geological Structure, Mineral Composition and Formation Conditions of Alkaline-Ultra-Basic Rocks of the Kepino Field (Arkhangelsk Diamondiferous Province). Ph.D Thesis, M.V. Lomonosov Moscow State University, Moscow, Russia, 2003. (In Russian).
11. Garanin, K.V. Alkaline Ultramafic Magmatites of the Zimny Bereg: Their Potential Diamond Content and Prospects for Industrial Development. Ph.D Thesis, M.V. Lomonosov Moscow State University, Moscow, Russia, 2004. (In Russian).
12. Shpilyaeva, D.V. Geological Structure, Mineral Composition, and Environmental Aspects of the Development of the Arkhangel-skaya Pipe (the M.V. Lomonosov Diamond Deposit). Ph.D. Thesis, M.V. Lomonosov Moscow State University, Moscow, Russia, 2008. (In Russian).
13. Bogatikov, O.A.; Kononova, V.A.; Nosova, A.A.; Kondrashov, I.A. Kimberlites and lamproites of the East-European Platform: Petrology and geochemistry. Petrology 2007, 15, 315–334. [CrossRef]
14. Kononova, V.A.; Golubeva, Y.Y.; Bogatikov, O.A.; Kargin, A.V. Diamond resource potential of kimberlites from the Zimny Bereg field, Arkhangel'sk oblast. Geol. Ore Deposit. 2007, 49, 421–441. [CrossRef]
15. Smith, C.B.; Gurney, J.J.; Skinner, E.M.W.; Clement, C.R.; Ebrahim, N. Geochemical character of Southern African kimberlites: A new approach on isotopic constraints. Trans. Geol. Soc. S. Afr. 1985, 88, 267–280.
16. Lehtonen, M.; O'Brien, H.; Peltonen, P.; Kukkonen, I.; Ustinov, V.; Verzhak, V. Mantle xenocrysts from the Arkhangelskaya kimberlite (Lomonosov mine, NW Russia): Constraints on the composition and thermal state of the diamondiferous lithospheric mantle. Lithos 2009, 112, 924–933. [CrossRef]
17. Beard, A.D.; Downes, H.; Hegner, E.; Sablukov, S.M. Geochemistry and mineralogy of kimberlites from the Arkhangelsk Region, NW Russia: Evidence for transitional kimberlite magma types. Lithos 2000, 51, 47–73. [CrossRef]
18. Sinitsin, A.; Ermolaeva, L.; Grib, V. The Arkhangelsk diamond-kimberlite province—A recent discovery in the north of the east European platform. In Proceedings of the 5th International Kimberlite Conference, Araxa, Brazil, 18 June–4 July 1991; Companhia de Pesquisa de Recursos Minerals: Rio de Janeiro, Brazil; pp. 27–33.
19. Mahotkin, I.L.; Gibson, S.A.; Thompson, R.N.; Zhuravlev, D.Z.; Zherdev, P.U. Late Devonian diamondiferous kimberlite and alkaline picrite (proto-kimberlite?) magmatism in the Arkhangelsk region, Russia. J. Petrol. 2000, 41, 201–227. [CrossRef]
20. Mahotkin, I.L.; Sablukov, S.M.; Zhuravlev, D.Z.; Zherdev, P.U. Geochemistry and Sr-Nd composition of kimberlites, melilitites and basalts from the Arkhangelsk region, Russia. Int. Kimberl. Conf. Ext. Abstr. 1995, 6, 342–344.
21. Golubev, Y.K.; Prusakova, N.A.; Golubeva, Y.Y. Kepino field kimberlites, Arkhangelsk region. Ores Met. 2010, 1, 38–44. (In Russian)
22. Nikolaeva, I.V.; Palesskii, S.V.; Koz'menko, O.A.; Anoshin, G.N. Analysis of geologic reference materials for REE and HFSE by inductively coupled plasma-mass spectrometry (ICP-MS). Geochem. Int. 2008, 46, 1016–1022. [CrossRef]
23. Korolyuk, V.N.; Lavrent'ev, Y.G.; Usova, L.V.; Nigmatulina, E.N. JXA-8100 microanalyzer: Accuracy of analysis of rock-forming minerals. Russ. Geol. Geophys. 2008, 49, 165–168. [CrossRef]
24. Lavrent'ev, Y.G.; Korolyuk, V.N.; Usova, L.V.; Nigmatulina, E.N. Electron probe microanalysis of rock-forming minerals with a JXA-8100 electron probe microanalyzer. Russ. Geol. Geophys. 2015, 56, 1428–1436. [CrossRef]
25. Horn, L.; Hinton, R.W.; Jackson, S.E.; Longerich, H.P. Ultra-trace element analysis of NIST SRM 616 and 614 using laser ablation microprobe-inductively coupled plasma mass spectrometry (LAM-ICP-MS): A comparison with secondary ion mass spectrometry (SIMS). Geostand. Newslett. 1997, 21, 191–203. [CrossRef]
26. Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95, 185–187. [CrossRef]
27. Golubeva, Y.Y.; Pervov, V.A.; Kononova, V.A. Petrogenesis of Autoliths from Kimberlitic Breccias in the V. Grib Pipe (Arkhangelsk District). Dokl. Earth Sci. 2006, 411, 1257–1262. [CrossRef]
28. Grütter, H.S.; Gurney, J.J.; Menzies, A.H.; Winter, F. An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos 2004, 77, 841–857. [CrossRef]
29. Shchukina, E.V.; Agashev, A.M.; Soloshenko, N.G.; Streletskaya, M.V.; Zedgenizov, D.A. Origin of V. Grib pipe eclogites (Arkhangelsk region, NW Russia): Geochemistry, Sm-Nd and Rb-Sr isotopes and relation to regional Precambrian tectonics. Mineral. Petrol. 2019, 113, 593–612. [CrossRef]
30. Sobolev, N.V.; Lavrentyev, Y.G.; Pokhilenko, N.P.; Usova, L.V. Chrome-rich garnets from the kimberlites of Yakutia and their parageneses. Contrib. Mineral. Petrol. 1973, 40, 39–52. [CrossRef]
31. McDonough, W.F.; Sun, S.S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [CrossRef]
32. Shchukina, E.V.; Agashev, A.M.; Kostrovitsky, S.I.; Pokhilenko, N.P. Metasomatic processes in the lithospheric mantle beneath the V. Grib kimberlite pipe (Arkhangelsk diamondiferous province). Russ. Geol. Geophys. 2015, 56, 1701–1716. [CrossRef]
33. Shchukina, E.V.; Agashev, A.M.; Pokhilenko, N.P. Metasomatic origin of garnet xenocrysts from the V. Grib kimberlite pipe, Arkhangelsk region, NW Russia. Geosci. Front. 2017, 8, 641–651. [CrossRef]
34. Agashev, A.M.; Serov, I.V.; Tolstov, A.V.; Shchukina, E.V.; Ragozin, A.L.; Pokhilenko, N.P. New genetic classification of lithospheric mantle garnets. In Proceedings of the 5th Russian Scientific and Practical Conference “Efficiency of Geological Exploration for Diamonds: Prospects, Resource, Methodology and Innovative-Technological Aspects”, Mirny, Russia, 29 May–1 June 2018; pp. 338–342. (In Russian).
35. Ryan, C.G.; Griffin, W.L.; Pearson, N.J. Garnet geotherms: A technique for derivation of P-T data from Cr-pyrope garnets. J. Geophys. Res. 1996, 101, 5611–5625. [CrossRef]
36. Griffin, W.L.; Shee, S.R.; Ryan, C.G.; Win, T.T.; Wyatt, B.A. Harzburgite to lherzolite and back again: Metasomatic processes in ultramafic xenoliths from the Wesselton kimberlite, Kimberly, South Africa. Contrib. Mineral. Petrol. 1999, 134, 232–250. [CrossRef]
37. Stachel, T.; Banas, A.; Aulbach, S.; Smit, K.V.; Wescott, P.; Chinn, I.L.; Julie Kong, J. The Victor Mine (Superior Craton, Canada): Neoproterozoic lherzolitic diamonds from a thermally-modified cratonic root. Mineral. Petrol. 2018, 112 (Suppl. 1), S325–S326. [CrossRef]
38. Gibson, S.A. On the nature and origin of garnet in high-refractory Archean lithospheric mantle: Constraints from the garnet exsolved in Kaapvaal craton orthopyroxene. Mineral. Mag. 2017, 81, 781–809. [CrossRef]
39. Tappert, R.; Stachel, T.; Harris, J.W.; Muehlenbachs, K.; Ludwig, T.; Brey, G.P. Diamonds from Jagersfontein (South Africa): Messengers from the sublithospheric mantle. Contrib. Mineral. Petrol. 2005, 150, 505–522. [CrossRef]
40. Gregoire, M.; Bell, D.R.; Le Roex, A.P. Garnet lherzolites from the Kaapvaal craton (South Africa): Trace element evidence for a metasomatic history. J. Petrol. 2003, 44, 629–657. [CrossRef]
41. Schulze, D.J. Origins of chromian and aluminous spinel macrocrysts from kimberlites in Southern Africa. Can. Mineral. 2001, 39, 361–376. [CrossRef]
42. Nowicki, T.E.; Moore, R.O.; Gurney, J.; Baumgartner, M.C. Diamonds and associated heavy minerals in kimberlite: A review of key concepts and applications. In Developments in Sedimentology; Elsevier: Amsterdam, The Netherlands, 2007; Volume 58, pp. 1235–1267.
43. Wyatt, B.A.; Baumgartner, M.; Anchar, E.; Grutter, H. Compositional classification of “kimberlitic” and “non-kimberlitic” ilmenite. Lithos 2004, 77, 819–840. [CrossRef]
44. Kargin, A.V.; Nosova, A.A.; Sazonova, L.V.; Peresetskaya, E.V.; Golubeva, Y.Y.; Lebedeva, N.M.; Tretyachenko, V.V.; Khvostikov, V.A.; Burmii, J.P. Ilmenite from the Arkhangelsk Diamond Province, Russia: Composition, Origin and Indicator of Diamondiferous Kimberlites. Petrology 2020, 28, 315–337. [CrossRef]
45. Sobolev, N.V.; Shvedenkov, G.Y.; Zinchuk, Koroluk, V.N. Nitrogen in chromite and olivine coexisting with diamond. Dokl. Acad. Nauk USSR 1989, 309, 697–701. (In Russian)
46. Sablukov, S.M.; Sablukova, L.I.; Shavyrina, M.V. Mantle xenoliths from the Zimnii Bereg kimberlite deposits of rounded diamonds, Arkhangelsk diamondiferous province. Petrologia 2000, 8, 518–548. (In Russian)
47. Sazonova, L.V.; Nosova, A.A.; Kargin, A.V.; Borisovskiy, S.E.; Tretyachenko, V.V.; Abazova, Z.M.; Griban, Y.G. Olivine from the Pionerskaya and V. Grib kimberlite pipes, Arkhangelsk diamond province, Russia: Types, composition, and origin. Petrology 2015, 23, 227–258. [CrossRef]
48. Malkovets, V.G.; Zedgenizov, D.A.; Sobolev, N.V.; Kuzmin, D.V.; Gibsher, A.A.; Shchukina, E.V.; Golovin, N.N.; Verichev, E.M.; Pokhilenko, N.P. Contents of trace elements in olivines from diamonds and peridotite xenoliths of the V. Grib kimberlite pipe (Arkhangel'sk diamondiferous province, Russia). Dokl. Earth Sci. 2011, 436, 219–223. [CrossRef]
49. Ramsey, R.R.; Tompkins, L.A. The geology, heavy mineral concentrate mineralogy, and diamond prospectivity of Boa Esperanca and Cana Verde pipes, Corrego D'anta, Minas Gerais, Brazil. In Kimberlites, Related Rocks and Mantle Xenoliths; Meyer, H.O.A., Leonardos, O.H., Eds.; Companhia de Pesquisa de Recursos Minerais: Araxá, Brazil, 1991; pp. 329–345.
50. Nimis, P. Evaluation of diamond potential from the composition of peridotitic chromian diopside. Eur. J. Mineral. 1998, 10, 505–519. [CrossRef]
51. Nimis, P.; Taylor, W.R. Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib. Mineral. Petrol. 2000, 139, 541–554. [CrossRef]
52. Ziberna, L.; Nimis, P.; Kuzmin, D.; Malkovets, V.G. Error sources in single-clinopyroxene thermobarometry and a mantle geotherm for the Novinka kimberlite, Yakutia. Am. Mineral. 2016, 101, 2222–2232. [CrossRef]
53. Morkel, J.; Vermaak, M.K.G. The role of swelling clay in kimberlite weathering. Miner. Process. Extr. Metall. 2006, 115, 150–154. [CrossRef]
54. Morkel, J.; Pistorius, P.C.; Vermaak, M.K.G. Cation exchange behaviour of kimberlite in solutions containing Cu2+ and K+. Miner. Eng. 2007, 20, 1145–1152. [CrossRef]
55. Sobolev, V.K. To Study the Kimberlites of the Southeastern White Sea, Develop and Implement Methods for Their Forecasting and Assessment; Territorial Regional Geological Fund; TSNIGRI: Moscow, Russia, 1988. (In Russian)
56. Zinchuk, N.N. Comparative characteristics of weathering crust composition of kimberlite rocks in the Siberian and East-European platforms. Russ. Geol. Geophys. 1992, 33, 99–109.
57. Shcherbakova, T.E. Typomorphic Characteristics of Kimberlite Minerals in Pipe Halos and Their Use in Prospecting for Diamond Deposits within the Zimniy Bereg. Ph.D. Thesis, Central Research Institute of Geological Prospecting for Base and Precious Metals, Moscow, Russia, 2005. (In Russian).
58. Afanasiev, V.P.; Zinchuk, N.N.; Pokhilenko, N.P. Exploration Mineralogy of Diamond; Sobolev, N.V., Mityukhin, S.I., Eds.; Academic Publishing House “Geo”: Novosibirsk, Russia, 2010; (In Russian). ISBN 978-5-9747-0180-1.
59. Vasil'ev, I.D. Geological Structures Near the Arkhangelskaya Kimberlite Pipe and Their Use for Diamond Exploration within the Zimnii Bereg. Ph.D. Thesis, Sergo Ordzhonikidze Russian State University for Geological Prospecting, Moscow, Russia, 2010. (In Russian).
60. Sobolev, V.K.; Koldaev, S.M.; Kolod'ko, A.A.; Levin, V.I. Method of Searching for Areas of Kimberlite. Russian. Federation Patent No. 2062493, 20 June 1996.
61. Giuliani, A.; Pearson, D.G.; Soltys, A.; Dalton, H.B.; Phillips, D.; Foley, S.F.; Lim, E.; Goemann, K.; Griffin, W.L.; Mitchell, R.H. Kimberlite genesis from a common carbonate-rich primary melt modified by lithospheric mantle assimilation. Sci. Adv. 2020, 6, eaaz0424. [CrossRef] [PubMed]
62. Soltys, A.; Giuliani, A.; Phillips, D. A new approach to reconstructing the composition and evolution of kimberlite melts: A case study of the archetypal Bultfontein kimberlite (Kimberley, South Africa). Lithos 2018, 304–307, 1–15. [CrossRef]
63. Kjarsgaard, B.A.; Pearson, D.G.; Tappe, S.; Nowell, G.M.; Dowall, D.P. Geochemistry of hypabyssal kimberlites from Lac de Gras, Canada: Comparisons to a global database and applications to the parent magma problem. Lithos 2009, 112, 236–248. [CrossRef]
64. Afanasiev, V.P.; Ashchepkov, I.V.; Verzhak, V.V.; O'Brien, H.O.; Palessky, S.V. PT conditions and trace element variations of picroilmenites and pyropes from placers and kimberlites in the Arkhangelsk region, NW Russia. J. Asian Earth Sci. 2013, 70–71, 45–63. [CrossRef]
65. Hasterok, D.; Chapman, D.S. Heat production and geotherms for the continental lithosphere. Earth Planet. Sci. Lett. 2011, 307, 59–70. [CrossRef]
66. Agashev, A.M.; Ionov, D.A.; Pokhilenko, N.P.; Golovin, A.V.; Cherepanova, Yu.; Sharygin, I.S. Metasomatism in the lithospheric mantle roots: Constraints from WR and minerals chemical composition of deformed peridotite xenoliths from the Udachnaya kimberlite pipe. Lithos 2013, 160–161, 201–215. [CrossRef]
67. Howarth, G.H.; Barry, P.H.; Pernet-Fisher, J.F.; Baziotis, I.P.; Pokhilenko, N.P.; Pokhilenko, L.N.; Bodnar, R.J.; Tayor, L.A.; Agashev, A.M. Superplume metasomatism: Evidence from Siberian mantle xenoliths. Lithos 2014, 184-187, 209–224. [CrossRef]
68. Stachel, T.; Aulbach, S.; Brey, G.P.; Harris, J.W.; Leost, I.; Tappert, R.; Viljoen, K.S. The trace element composition of silicate inclusions in diamonds: A review. Lithos 2004, 77, 1–19. [CrossRef]
69. Ziberna, L.; Nimis, P.; Zanetti, A.; Marzoli, A.; Sobolev, N.V. Metasomatic processes in the central Siberian cratonic mantle: Evidence from garnet xenocrysts from the Zagadochnaya kimberlite. J. Petrol. 2013, 54, 2379–2409. [CrossRef]
70. Doucet, L.S.; Ionov, D.A.; Golovin, A.V. The origin of coarse garnet peridotites in cratonic lithosphere: New data on xenoliths from the Udachnaya kimberlite, central Siberia. Contrib. Mineral. Petrol. 2013, 165, 1225–1242. [CrossRef]
71. Shu, Q.; Brey, G.P. Ancient mantle metasomatism recorded in subcalcic garnet xenocrysts: Temporal links between mantle metasomatism, diamond growth and crustal tectonomagmatism. Earth Planet. Sci. Lett. 2015, 418, 27–39. [CrossRef]
72. Chepurov, A.A.; Faryad, S.W.; Agashev, A.M.; Strnad, L.; Jedlicka, R.; Turkin, A.I.; Mihaljevic, M.; Lin, V.V. Experimental crystallization of a subcalcic Cr-rich pyrope in the presence of REE-bearing carbonatite. Chem. Geol. 2019, 509, 103–114. [CrossRef]