Инд. авторы: Starikova A.E., Prokopyev I.R, Doroshkevich A.G., Ragozin A.L., Chervyakovsky V.
Заглавие: Polygenic Nature of Olivines from the Ultramafic Lamprophyres of the Terina Complex (Chadobets Upland, Siberian Platform) Based on Trace Element Composition, Crystalline, and Melt Inclusion Data
Библ. ссылка: Starikova A.E., Prokopyev I.R, Doroshkevich A.G., Ragozin A.L., Chervyakovsky V. Polygenic Nature of Olivines from the Ultramafic Lamprophyres of the Terina Complex (Chadobets Upland, Siberian Platform) Based on Trace Element Composition, Crystalline, and Melt Inclusion Data // MINERALS. - 2021. - Vol.11. - Iss. 4. - Art.408.
Идентиф-ры: DOI: 10.3390/min11040408; РИНЦ: 46774669; WoS: 000643332100001;
Реферат: eng: Olivine from the deep mantle-derived rocks, such as ultramafic lamprophyres, carries important information about the composition of the mantle source, the processes of mantle metasomatism, the origin of specific silicate-carbonate melts, as well as the composition and mechanisms of crystallization of these rocks. Textures and compositions of olivine from the carbonate-rich ultramafic lamprophyres (aillikites) of the Terina complex, along with their mineral and melt inclusions, exposed that olivines have different sources. Two populations of olivines were considered: macrocrysts (>1 mm) and groundmass olivines (<1 mm). Groundmass olivines are phenocrysts and characterized by weak variations in Mg# (84-86.5), a sharp increase in Ca and Ti contents, and a decrease in Ni and Cr from core to rim. They have higher concentrations of Li, Cu, Ti, and Na compared to macrocrysts. Among the macrocrysts, the following populations are observed: (1) high-Mg olivines (Mg# 89-91) with high Ni and low Ti contents, which are interpreted as xenocrysts from the slightly depleted lherzolite mantle; (2) high-Ca olivines (Mg# 84-88, CaO 0.13-0.21 wt %), which have patterns similar to groundmass olivines and are interpreted as cumulates of early portions of aillikite melt; (3) macrocrysts with wide variations in Mg# (73-88), low CaO contents (0.04-0.11 wt %), and positive slope in Ca vs. Al and negative slope in Ca vs. Mn, which are interpreted as disintegrated megacrysts from the Cr-poor megacryst suite. The megacryst suite could have been formed in the pre-trap period during the melting of the metasomatized subcontinental lithospheric mantle (SCLM). The aillikite melt evolution is traced by secondary melt inclusions in olivine macrocrysts: early phlogopite-diopside-calcite-apatite association, containing Ti-magnetite and ilmenite, is followed by an association with magnetite and sulfides (pyrrhotite and pentlandite); finally, at a late stage, inclusions with a predominance of Ca-Na-carbonates and sulfates and enriched in U, Th, Y, REEs, Sr, and Ba were captured.
Ключевые слова: melt inclusion; ultramafic lamprophyre; aillikite; Siberian craton; MONASTERY KIMBERLITE; PETROLOGY; MINERALOGY; MEGACRYSTS; METASOMATISM; FLUID; ORIGIN; IGNEOUS ROCKS; FLOOD BASALTS; LITHOSPHERIC MANTLE; olivine;
Издано: 2021
Физ. хар-ка: 408
Цитирование: 1. Tappe, S.; Foley, S.F.; Jenner, G.A.; Kjarsgaard, B.A. Integrating Ultramafic Lamprophyres into the IUGS Classification of Igneous Rocks: Rationale and Implications. J. Petrol. 2005, 46, 1893–1900. [CrossRef]
2. Foley, S.F.; Andronikov, A.V.; Melzer, S. Petrology of ultramafic lamprophyres from the Beaver Lake area of Eastern Antarctica and their relation to the breakup of Gondwanaland. Miner. Petrol. 2002, 74, 361–384. [CrossRef]
3. Kjarsgaard, B.; Pearson, D.; Tappe, S.; Nowell, G.; Dowall, D. Geochemistry of hypabyssal kimberlites from Lac de Gras, Canada: Comparisons to a global database and applications to the parent magma problem. Lithos 2009, 112, 236–248. [CrossRef]
4. Tappe, S.; Jenner, G.A.; Foley, S.F.; Heaman, L.; Besserer, D.; Kjarsgaard, B.A.; Ryan, B. Torngat ultramafic lamprophyres and their relation to the North Atlantic Alkaline Province. Lithos 2004, 76, 491–518. [CrossRef]
5. Le Roex, A.P.; Bell, D.R.; Davis, P. Petrogenesis of Group I Kimberlites from Kimberley, South Africa: Evidence from Bulk-rock Geochemistry. J. Petrol. 2003, 44, 2261–2286. [CrossRef]
6. Kamenetsky, V.S.; Grütter, H.; Kamenetsky, M.B.; Gömann, K. Parental carbonatitic melt of the Koala kimberlite (Canada): Constraints from melt inclusions in olivine and Cr-spinel, and groundmass carbonate. Chem. Geol. 2013, 353, 96–111. [CrossRef]
7. Francis, D.; Patterson, M. Kimberlites and aillikites as probes of the continental lithospheric mantle. Lithos 2009, 109, 72–80. [CrossRef]
8. Tappe, S.; Foley, S.F.; Jenner, G.A.; Heaman, L.M.; Kjarsgaard, B.A.; Romer, R.L.; Stracke, A.; Joyce, N.; Hoefs, J. Genesis of Ultramafic Lamprophyres and Carbonatites at Aillik Bay, Labrador: A Consequence of Incipient Lithospheric Thinning beneath the North Atlantic Craton. J. Petrol. 2006, 47, 1261–1315. [CrossRef]
9. Tappe, S.; Foley, S.F.; Stracke, A.; Romer, R.L.; Kjarsgaard, B.A.; Heaman, L.M.; Joyce, N. Craton reactivation on the Labra-dor Sea margins: 40Ar/39Ar age and Sr–Nd– Hf–Pb isotope constraints from alkaline and carbonatite intrusives. Earth Planet. Sci. Lett. 2007, 256, 433–454. [CrossRef]
10. Mitchell, R.; Tappe, S. Discussion of “kimberlites and aillikites as probes of the continental lithospheric mantle”, by D. Francis and M. Patterson (Lithos v. 109, p. 72–80). Lithos 2010, 115, 288–292. [CrossRef]
11. Armstrong, J.P.; Wilson, M.; Barnett, R.L.; Nowicki, T.; Kjarsgaard, B.A. Mineralogy of primary carbonate-bearing hypabyssal kimberlite, Lac de Gras, Slave Province, Northwest Territories, Canada. Lithos 2004, 76, 415–433. [CrossRef]
12. Chakhmouradian, A.R.; Reguir, E.P.; Kamenetsky, V.S.; Sharygin, V.V.; Golovin, A.V. Trace-element partitioning in perovskite: Implications for the geochemistry of kimberlites and other mantle-derived undersaturated rocks. Chem. Geol. 2013, 353, 112–131. [CrossRef]
13. Giuliani, A.; Phillips, D.; Kamenetsky, V.S.; Goemann, K. Constraints on kimberlite ascent mechanisms revealed by phlogopite compositions in kimberlites and mantle xenoliths. Lithos 2016, 240–243, 189–201. [CrossRef]
14. Sobolev, N.; Tomilenko, A.; Kovyazin, S.; Batanova, V.; Kuz’Min, D. Paragenesis and complex zoning of olivine macrocrysts from unaltered kimberlite of the Udachnaya-East pipe, Yakutia: Relationship with the kimberlite formation conditions and evolution. Russ. Geol. Geophys. 2015, 56, 260–279. [CrossRef]
15. Kamenetsky, V.S.; Kamenetsky, M.B.; Sobolev, A.V.; Golovin, A.V.; Demouchy, S.; Faure, K.E.; Sharygin, V.V.; Kuzmin, D.V. Olivine in the Udachnaya-East Kimberlite (Yakutia, Russia): Types, Compositions and Origins. J. Petrol. 2007, 49, 823–839. [CrossRef]
16. Fedortchouk, Y. Intensive Variables in Kimberlite Magmas, Lac de Gras, Canada and Implications for Diamond Survival. J. Petrol. 2004, 45, 1725–1745. [CrossRef]
17. Arndt, N.T.; Guitreau, M.; Boullier, A.-M.; Le Roex, A.; Tommasi, A.; Cordier, P.; Sobolev, A. Olivine, and the Origin of Kimberlite. J. Petrol. 2010, 51, 573–602. [CrossRef]
18. Arndt, N.T.; Boullier, A.M.; Clement, J.P.; Dubois, M.; Schissel, D. What olivine, the neglected mineral, tells us about kim-berlite petrogenesis. eEarth Discuss. 2006, 1, 37–50. [CrossRef]
19. Brett, R.; Russell, J.; Moss, S. Origin of olivine in kimberlite: Phenocryst or impostor? Lithos 2009, 112, 201–212. [CrossRef]
20. Bussweiler, Y.; Foley, S.F.; Prelević, D.; Jacob, D.E. The olivine macrocryst problem: New insights from minor and trace element compositions of olivine from Lac de Gras kimberlites, Canada. Lithos 2015, 220–223, 238–252. [CrossRef]
21. Tychkov, N.S.; Agashev, A.M.; Pokhilenko, N.P.; Tsykh, V.A.; Sobolev, N.V. Types of Xenogenic Olivine from Siberian Kimberlites. Minerals 2020, 10, 302. [CrossRef]
22. Moore, A.; Costin, G. Kimberlitic olivines derived from the Cr-poor and Cr-rich megacryst suites. Lithos 2016, 258–259, 215–227. [CrossRef]
23. Nosova, A.A.; Sazonova, L.V.; Kargin, A.V.; Smirnova, M.D.; Lapin, A.V.; Shcherbakov, V.D. Olivine in ultramafic lamprophyres: Chemistry, crystallisation, and melt sources of Siberian Pre-and post-trap aillikites. Contrib. Miner. Petrol. 2018, 173, 55. [CrossRef]
24. Veter, M.; Foley, S.F.; Mertz-Kraus, R.; Groschopf, N. Trace elements in olivine of ultramafic lamprophyres controlled by phlogopite-rich mineral assemblages in the mantle source. Lithos 2017, 292–293, 81–95. [CrossRef]
25. Wang, C.; Zhang, Z.; Giuliani, A.; Cheng, Z.; Liu, B.; Kong, W. Geochemical and O-C-Sr-Nd Isotopic Constraints on the Petrogenetic Link between Aillikites and Carbonatites in the Tarim Large Igneous Province. J. Petrol. 2021, 2021a, egab017. [CrossRef]
26. Wang, C.H.; Zhang, Z.C.; Xie, Q.H.; Cheng, Z.G.; Kong, W.L.; Liu, B.X.; Santosh, M.; Jin, S.K. Olivine from aillikites in the Tarim large igneous province as a window into mantle metasomatism and multi-stage magma evolution. Am. Miner. 2020. [CrossRef]
27. Kirichenko, T.; Zuev, K.; Perfilova, O.Y.; Sosnovskaya, O.; Smokotina, I.; Markovich, L.A.; Borodin, M.E. State Geological Map of Russian Federation, Scale 1:1000000 (Third Generation). Ser. Angaro-Eniseysk. Sheet O-47 Bratsk. Explanatory Note; Cartografic Factory of VSEGEI: St. Petersburg, Russian, 2012; pp. 163–179. (In Russian)
28. Dashkevich, N.N. Regional prediction of kimberlite magmatism in the southwestern Siberian Platform. Geologiya i Poleznye Iskopaemye Krasnoyarskogo Kraya 1999, 1–4. (In Russian)
29. Starosel’Tsev, V. Identifying paleorifts as promising tectonic elements for active oil and gas generation. Russ. Geol. Geophys. 2009, 50, 358–364. [CrossRef]
30. Doroshkevich, A.; Sharygin, V.; Belousova, E.; Izbrodin, I.; Prokopyev, I. Zircon from the Chuktukon alkaline ultramafic carbonatite complex (Chadobets uplift, Siberian craton) as evidence of source heterogeneity. Lithos 2021, 382–383, 105957. [CrossRef]
31. Doroshkevich, A.G.; Chebotarev, D.A.; Sharygin, V.V.; Prokopyev, I.R.; Nikolenko, A.M. Petrology of alkaline silicate rocks and carbonatites of the Chuktukon massif, Chadobets upland, Russia: Sources, evolution and relation to the Triassic Siberian LIP. Lithos 2019, 332–333, 245–260. [CrossRef]
32. Nosova, A.A.; Kargin, A.V.; Sazonova, L.V.; Dubinina, E.O.; Chugaev, A.V.; Lebedeva, N.M.; Yudin, D.S.; Larionova, Y.O.; Abersteiner, A.; Gareev, B.I.; et al. Sr-Nd-Pb isotopic systematic and geochronology of ultramafic alkaline magmatism of the southwestern margin of the Siberian Craton: Metasomatism of the sub-continental lithospheric mantle related to subduction and plume events. Lithos 2020, 364–365, 105509. [CrossRef]
33. Chebotarev, D.; Doroshkevich, A.; Sharygin, V.; Yudin, D.; Ponomarchuk, A.; Sergeev, S. Geochronology of the Chuktukon carbonatite massif, Chadobets uplift (Krasnoyarsk Territory). Russ. Geol. Geophys. 2017, 58, 1222–1231. [CrossRef]
34. Lapin, A.V.; Lisitsin, D.V. On the mineralogical typomorphism of alkaline ultrabasic migmatites of the Chadobets ulift. Otech-estvennaya Geol. 2004, 6, 83–92. (In Russian)
35. Lapin, A.V.; Pyatenko, I.K. Chadobets complex of ultrabasic alkaline rocks and carbonatites: New data about composition and condition of formation. Dokl. Earth Sci. 1992, 6, 88–101. (In Russian)
36. Slukin, A.D. Bauxite Deposits with Unusually High Concentrations of REE, Nb, Ti, and Th, Chadobets Uplift, Siberian Platform. Int. Geol. Rev. 1994, 36, 179–193. [CrossRef]
37. Pernet-Fisher, J.; Howarth, G.; Pearson, D.; Woodland, S.; Barry, P.; Pokhilenko, N.; Pokhilenko, L.; Agashev, A.; Taylor, L. Plume impingement on the Siberian SCLM: Evidence from Re–Os isotope systematics. Lithos 2015, 218–219, 141–154. [CrossRef]
38. Prokopyev, I.; Starikova, A.; Doroshkevich, A.; Nugumanova, Y.; Potapov, V. Petrogenesis of Ultramafic Lamprophyres from the Terina Complex (Chadobets Upland, Russia): Mineralogy and Melt Inclusion Composition. Minerials 2020, 10, 419. [CrossRef]
39. Scott Smith, B.H.; Nowicki, T.E.; Russell, J.K.; Webb, K.J.; Mitchell, R.H.; Hetman, C.M.; Harder, M.; Skinner, E.M.W.; Robey, J.A. Kimberlite Terminology and Classification. In Proceedings of the 10th International Kimberlite Conference, Bangalore, India, 5–11 February 2012; pp. 1–17.
40. Longerich, H.P.; Jackson, S.E.; Günther, D. Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J. Anal. At. Spectrom. 1996, 11, 899–904. [CrossRef]
41. Günther, D.; Audétat, A.; Frischknecht, R.; Heinrich, C.A. Quantitative analysis of major, minor and trace elements in fluid inclusions using laser ablation–inductively coupled plasmamass spectrometry. J. Anal. At. Spectrom. 1998, 13, 263–270. [CrossRef]
42. Ulrich, T.; Günther, D.; Heinrich, C.A. The Evolution of a Porphyry Cu-Au Deposit, Based on LA-ICP-MS Analysis of Fluid Inclusions: Bajo de la Alumbrera, Argentina. Econ. Geol. 2002, 97, 1889–1920. [CrossRef]
43. Heinrich, C.; Pettke, T.; Halter, W.; Aigner-Torres, M.; Audétat, A.; Günther, D.; Hattendorf, B.; Bleiner, D.; Guillong, M.; Horn, I. Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry. Geochim. Cosmochim. Acta 2003, 67, 3473–3497. [CrossRef]
44. Prokopyev, I.R.; Borisenko, A.S.; Borovikov, A.A.; Pavlova, G.G. Origin of REE-rich ferrocarbonatites in southern Siberia (Russia): Implications based on melt and fluid inclusions. Miner. Petrol. 2016, 110, 845–859. [CrossRef]
45. Cordier, C.; Sauzeat, L.; Arndt, N.T.; Boullier, A.-M.; Batanova, V.; Barou, F. Metasomatism of the Lithospheric Mantle Immediately Precedes Kimberlite Eruption: New Evidence from Olivine Composition and Microstructures. J. Petrol. 2015, 56, 1775–1796. [CrossRef]
46. Howarth, G.H. Olivine megacryst chemistry, Monastery kimberlite: Constraints on the mineralogy of the HIMU mantle reservoir in southern Africa. Lithos 2018, 314–315, 658–668. [CrossRef]
47. Haggerty, S.E. Chapter 10—Oxide mineralogy of the upper mantle. Oxide Miner. Mineral. Soc. Am. Rev. Mineral. 1991, 25, 355–416. [CrossRef]
48. Wyatt, B.A.; Baumgartner, M.; Anckar, E.; Grutter, H. Compositional classification of “kimberlitic” and “non-kimberlitic” ilmenite. Lithos 2004, 77, 819–840. [CrossRef]
49. Frezzotti, M.L.; Tecce, F.; Casagli, A. Raman spectroscopy for fluid inclusion analysis. J. Geochem. Explor. 2012, 112, 1–20. [CrossRef]
50. Wang, X.; Chou, I.-M.; Hu, W.; Burruss, R.C.; Sun, Q.; Song, Y. Raman spectroscopic measurements of CO2 density: Experimental calibration with high-pressure optical cell (HPOC) and fused silica capillary capsule (FSCC) with application to fluid inclusion observations. Geochim. Cosmochim. Acta 2011, 75, 4080–4093. [CrossRef]
51. Lamadrid, H.; Moore, L.; Moncada, D.; Rimstidt, J.; Burruss, R.; Bodnar, R. Reassessment of the Raman CO2 densimeter. Chem. Geol. 2017, 450, 210–222. [CrossRef]
52. Shatskiy, A.; Gavryushkin, P.N.; Litasov, K.D.; Koroleva, O.N.; Kupriyanov, I.N.; Borzdov, Y.M.; Sharygin, I.S.; Funakoshi, K.; Palyanov, Y.N.; Ijiohtani, E. Na-Ca carbonates synthesized under upper-mantle conditions: Raman spectroscopic and X-ray diffraction studies. Eur. J. Miner. 2015, 27, 175–184. [CrossRef]
53. Zaitsev, A.N.; Keller, J.; Spratt, J.; Jeffries, T.E.; Sharygin, V.V. Chemical composition of nyerereite and gregoryite from natrocar-bonatites of Oldoinyo Lengai volcano, Tanzania. Geol. Ore Deposits 2009, 51, 608–616. [CrossRef]
54. Buzgar, N.; Apopei, A.I. The Raman study on certain carbonates. Geoarheology 2009, 55, 97–112.
55. Giuliani, A. Insights into kimberlite petrogenesis and mantle metasomatism from a review of the compositional zoning of olivine in kimberlites worldwide. Lithos 2018, 312–313, 322–342. [CrossRef]
56. Foley, S.F.; Prelevic, D.; Rehfeldt, T.; Jacob, D.E. Minor and trace elements in olivines as probes into early igneous and mantle melting processes. Earth Planet. Sci. Lett. 2013, 363, 181–191. [CrossRef]
57. Boyd, F. Compositional distinction between oceanic and cratonic lithosphere. Earth Planet. Sci. Lett. 1989, 96, 15–26. [CrossRef]
58. Sharygin, I.S.; Litasov, K.D.; Shatskiy, A.; Safonov, O.G.; Golovin, A.V.; Ohtani, E.; Pokhilenko, N.P. Experimental constraints on orthopyroxene dissolution in alkali-carbonate melts in the lithospheric mantle: Implications for kimberlite melt composition and magma ascent. Chem. Geol. 2017, 455, 44–56. [CrossRef]
59. Bell, D.R.; Rossman, G.R.; Moore, R.O. Abundance and Partitioning of OH in a High-pressure Magmatic System: Megacrysts from the Monastery Kimberlite, South Africa. J. Petrol. 2004, 45, 1539–1564. [CrossRef]
60. Eggler, D.H.; McCallum, M.E.H.; Smith, C.B.H. Megacryst assemblages in kimberlite from northern Colorado and southern Wyoming: Petrology, geothermometry-barometry, and areal distribution. In The Mantle Sample: Inclusion in Kimberlites and Other Volcanics; American Geophysical Union (AGU): Washington, DC, USA, 1979; pp. 213–226.
61. Moore, R.O. A Study of the Kimberlites, Diamonds and Associated Rocks and Minerals from the Monastery Mine, South Af-rica. Ph.D. Thesis, University of Cape Town, Cape Town, South Africa, 1986.
62. Gurney, J.J.; Jakob, W.R.O.; Dawson, J.B. Megacrysts from the Monastery Kimberlite Pipe, South Africa. In The Mantle Sample: Inclusion in Kimberlites and Other Volcanics; American Geophysical Union (AGU): Washington, DC, USA, 1979; pp. 227–243.
63. Moore, R.; Griffin, W.L.; Gurney, J.; Ryan, C.; Cousens, D.; Sie, S.; Suter, G. Trace element geochemistry of ilmenite megacrysts from the Monastery kimberlite, South Africa. Lithos 1992, 29, 1–18. [CrossRef]
64. Hatton, C.J. The kimberlite-megacryst link at the Monastery Mine. Extended Abstracts. In Proceedings of the 7th International Kimberlite Conference, Cape Town, South Africa, 11–17 April 1998; pp. 314–316.
65. Köhler, T.; Brey, G. Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications. Geochim. Cosmochim. Acta 1990, 54, 2375–2388. [CrossRef]
66. Sobolev, A.V.; Hofmann, A.W.; Kuzmin, D.V.; Yaxley, G.M.; Arndt, N.T.; Chung, S.-L.; Danyushevsky, L.V.; Elliott, T.; Frey, F.A.; Garcia, M.O.; et al. The amount of recycled crust in sources of mantle-derived melts. Science 2007, 316, 412–417. [CrossRef]
67. Sobolev, A.; Kuzmin, D.; Malitch, K.; Petrunin, A. Siberian meimechites: Origin and relation to flood basalts and kimberlites. Russ. Geol. Geophys. 2009, 50, 999–1033. [CrossRef]
68. Sobolev, A.V.; Krivolutskaya, N.A.; Kuzmin, D.V. Petrology of the parental melts and mantle sources of Siberian trap magmatism. Petrology 2009, 17, 253–286. [CrossRef]
69. Gavrilenko, M.; Herzberg, C.; Vidito, C.; Carr, M.J.; Tenner, T.; Ozerov, A. A calcium-in-olivine geohygrometer and its ap-plication to subduction zone magmatism. J. Petrol. 2016, 57, 1811–1832. [CrossRef]
70. Mitchell, R.H. Kimberlites: Mineralogy, Geochemistry and Petrology; Plenum Press: New York, NY, USA, 1986; p. 406.
71. Davies, G.R.; Spriggs, A.J.; Nixon, P.H. A Non-cognate Origin for the Gibeon Kimberlite Megacryst Suite, Namibia: Implications for the Origin of Namibian Kimberlites. J. Petrol. 2001, 42, 159–172. [CrossRef]
72. Boyd, F.R.; Nixon, P.H. Origin of the ilmenite-silicate nodules in kimberlites from Lesotho and South Africa. In Lesotho Kimberlites; Nixon, P.H., Ed.; Lesotho National Development Corporation: Maseru, Lesotho, 1973; pp. 254–268.
73. Schulze, D.J. Cr-Poor Megacrysts from the Hamilton Branch Kimberlite, Elliott County, Kentucky. Dev. Petrol. 1984, 11, 97–108. [CrossRef]
74. Nowell, G.M.; Pearson, D.G.; Bell, D.R.; Carlson, R.W.; Smith, C.B.; Kempton, P.D.; Noble, S.R. Hf Isotope Systematics of Kimberlites and their Megacrysts: New Constraints on their Source Regions. J. Petrol. 2004, 45, 1583–1612. [CrossRef]
75. Altunkaynak, Ş.; Ünal, A.; Howarth, G.H.; Aldanmaz, E.; Nývlt, D. The origin of low-Ca olivine from ultramafic xenoliths and host basaltic lavas in a back-arc setting, James Ross Island, Antarctic Peninsula. Lithos 2019, 342–343, 276–287. [CrossRef]
76. Foley, S.F.; Musselwhite, D.S.; van der Laan, S.R. Melt compositions from ultramafic vein assemblages in the lithospheric mantle: A comparison of cratonic and non-cratonic settings. In Proceedings of the 7th International Kimberlite Conference, Cape Town, South Africa, 11–17 April 1998; pp. 238–246.
77. Ammannati, E.; Jacob, D.E.; Avanzinelli, R.; Foley, S.F.; Conticelli, S. Low Ni olivine in silica-undersaturated ultrapotassic igneous rocks as evidence for carbonate metasomatism in the mantle. Earth Planet. Sci. Lett. 2016, 444, 64–74. [CrossRef]
78. Howarth, G.H.; Harris, C. Discriminating between pyroxenite and peridotite sources for continental flood basalts (CFB) in southern Africa using olivine chemistry. Earth Planet. Sci. Lett. 2017, 475, 143–151. [CrossRef]
79. Yang, Z.-F.; Li, J.; Liang, W.-F.; Luo, Z.-H. On the chemical markers of pyroxenite contributions in continental basalts in Eastern China: Implications for source lithology and the origin of basalts. Earth Sci. Rev. 2016, 157, 18–31. [CrossRef]
80. Tompkins, L.A.; Haggerty, S.E. Groundmass oxide minerals in the Koidu kimberlite dikes, Sierra Leone, West Africa. Contrib. Miner. Petrol. 1985, 91, 245–263. [CrossRef]
81. Robles-Cruz, S.E.; Watangua, M.; Isidoro, L.; Melgarejo, J.C.; Galí, S.; Olimpio, A. Contrasting compositions and textures of ilmenite in the Catoca kimberlite, Angola, and implications in exploration for diamond. Lithos 2009, 112, 966–975. [CrossRef]
82. Castillo-Oliver, M.; Melgarejo, J.C.; Galí, S.; Pervov, V.; Gonçalves, A.O.; Griffin, W.L.; Pearson, N.J.; O’Reilly, S.Y. Use and misuse of Mg-and Mn-rich ilmenite in diamond exploration: A petrographic and trace element approach. Lithos 2017, 292–293, 348–363. [CrossRef]
83. Haggerty, S.E.; Hardie, R.B.; McMahon, B.M. The mineral chemistry of ilmenite nodule associations from the Monastery diatreme. In The Mantle Sample: Inclusion in Kimberlites and Other Volcanics; American Geophysical Union (AGU): Washington, DC, USA, 1979; pp. 249–256.
84. Mitchell, R.H. Petrology of hypabyssal kimberlites: Relevance to primary magma compositions. J. Volcanol. Geotherm. Res. 2008, 174, 1–8. [CrossRef]
85. Russell, J.K.; Porritt, L.A.; Lavallée, Y.; Dingwell, D.B. Kimberlite ascent by assimilation-fuelled buoyancy. Nat. Cell Biol. 2012, 481, 352–356. [CrossRef] [PubMed]
86. Dasgupta, R.; Hirschmann, M.M.; Smith, N.D. Partial Melting Experiments of Peridotite + CO2 at 3 GPa and Genesis of Alkalic Ocean Island Basalts. J. Petrol. 2007, 48, 2093–2124. [CrossRef]
87. Moore, A.E. Olivine: A monitor of magma evolutionary paths in kimberlites and olivine melilitites. Contrib. Miner. Petrol. 1988, 99, 238–248. [CrossRef]
88. Fitzpayne, A.; Giuliani, A.; Maas, R.; Hergt, J.; Janney, P.; Phillips, D. Progressive metasomatism of the mantle by kimberlite melts: Sr–Nd–Hf–Pb isotope compositions of MARID and PIC minerals. Earth Planet. Sci. Lett. 2019, 509, 15–26. [CrossRef]
89. Ionov, D.A.; Chanefo, I.; Bodinier, J.-L. Origin of Fe-rich lherzolites and wehrlites from Tok, SE Siberia by reactive melt percolation in refractory mantle peridotites. Contrib. Miner. Petrol. 2005, 150, 335–353. [CrossRef]
90. Kopylova, M.; Nowell, G.; Pearson, D.; Markovic, G. Crystallization of megacrysts from protokimberlitic fluids: Geochemical evidence from high-Cr megacrysts in the Jericho kimberlite. Lithos 2009, 112, 284–295. [CrossRef]
91. Moore, A.; Belousova, E. Crystallization of Cr-poor and Cr-rich megacryst suites from the host kimberlite magma: Implications for mantle structure and the generation of kimberlite magmas. Contrib. Miner. Petrol. 2005, 149, 462–481. [CrossRef]