Инд. авторы: Koulakov I., Komzeleva V., Smirnov S.Z., Bortnikova S.B.
Заглавие: Magma-Fluid Interactions Beneath Akutan Volcano in the Aleutian Arc Based on the Results of Local Earthquake Tomography
Библ. ссылка: Koulakov I., Komzeleva V., Smirnov S.Z., Bortnikova S.B. Magma-Fluid Interactions Beneath Akutan Volcano in the Aleutian Arc Based on the Results of Local Earthquake Tomography // Journal of Geophysical Research: Solid Earth. - 2021. - Vol.126. - Iss. 3. - Art.e2020JB021192. - ISSN 2169-9313. - EISSN 2169-9356.
Идентиф-ры: DOI: 10.1029/2020JB021192; РИНЦ: 46795349; РИНЦ: 46795349; WoS: 000638091600032;
Реферат: eng: Akutan Island hosts a volcano considered as one of most active in the Aleutian Arc. We build a new tomography model including the 3D distributions of the Vp, Vs, and Vp/Vs ratio based on arrival time data from more than 4,000 local earthquakes recorded by 13 seismic stations. In this model, we reveal a columnar anomaly of high Vp, low Vs, and high Vp/Vs ratio with a top boundary at a depth of similar to 6 km below sea level, which represents a steady conduit feeding the Akutan volcano. In the upper part of the tomographic model, the highly heterogeneous structures are associated with interactions of shallow magmatic sources, meteoric and magmatic fluids, as well as degassing. Beneath the summit area of Akutan, we observe a prominent anomaly of high Vp/Vs, which may represent a shallow magma reservoir directly responsible for recent eruption activity and ongoing gas emission through the summit fumarole. The other fumarole field at the eastern flank of the volcano appears to be associated with a seismically active zone of low Vp/Vs ratio at depths of 2-4 km below surface. These structures indicate different depths of magma degassing in these two areas, which may explain distinct geochemical features of emitted gases. Besides the prominent anomaly representing the shallow magma reservoir beneath the caldera and the active cone, we observe several areas with high Vp/Vs ratio, some of which are interpreted as shallow magma storage regions, and some as zones of meteoric water penetration.
Ключевые слова: meteoric and magmatic fluids; magma conduit; Akutan volcano; Aleutian arc; local seismicity; seismic tomography;
Издано: 2021
Цитирование: 1. Aki, K., & Koyanagi, R. (1981). Deep volcanic tremor and magma ascent mechanism under Kilauea, Hawaii. Journal of Geophysical Research, 86(B8), 7095–7109. https://doi.org/10.1029/JB086iB08p07095
2. Benz, H. M., Chouet, B. A., Dawson, P. B., Lahr, J. C., Page, R. A., & Hole, J. A. (1996). Three-dimensional P and S wave velocity structure of Redoubt Volcano, Alaska. Journal of Geophysical Research, 101(B4), 8111–8128. https://doi.org/10.1029/95jb03046
3. Bergfeld, D., Lewicki, J. L., Evans, W. C., Hunt, A. G., Revesz, K., & Huebner, M. (2013). Geochemical investigation of the hydrothermal system on Akutan Island, Alaska, July 2012. Scientific Investigations Report 2013–5231. http://dx.doi.org/10.3133/
4. Bushenkova, N., Koulakov, I., Senyukov, S., Gordeev, E. I., Huang, H. H., El Khrepy, S., & Al Arifi, N. (2019). Tomographic images of magma chambers beneath the Avacha and Koryaksky volcanoes in Kamchatka. Journal of Geophysical Research: Solid Earth, 124(9), 9694–9713. https://doi.org/10.1029/2019JB017952
5. Casadevall, T. J. (1993). Volcanic hazards and aviation safety. Lessons from the past decade (pp. 1–9): Flight Safety Foundation–Flight Safety Digest.
6. Chiarabba, C., & Moretti, M. (2006). An insight into the unrest phenomena at the Campi Flegrei caldera from Vp and Vp/Vs tomography. Terra Nova, 18(6), 373–379. https://doi.org/10.1111/j.1365-3121.2006.00701.x
7. Christensen, N. I. (1996). Poisson's ratio and crustal seismology. Journal of Geophysical Research, 101(2), 3139–3156. https://doi.org/10.1029/95jb03446
8. Cross, R. S., & Freymueller, J. T. (2008). Evidence for and implications of a Bering plate based on geodetic measurements from the Aleutians and western Alaska. Journal of Geophysical Research, 113(7), 1–19. https://doi.org/10.1029/2007JB005136
9. Dixon, J. P., Stihler, S. D., Haney, M. M., Lyons, J. J., Ketner, D. M., Mulliken, K. M., et al. (2019). Catalog of earthquake parameters and description of seismograph and infrasound stations at Alaskan volcanoes—January 1, 2013, through December 31, 2017: US Geological Survey.
10. Endo, E. T., Malone, S. D., Noson, L. L., & Weaver, C. S. (1981). Locations, magnitudes and statistics of the March 20–May 18 earthquake sequence. In U. S. Lipman, P. W., & D. R. Mullineaus (Eds.), The 1980 eruptions of Mount St. Helens (pp. 93–107). Washington, DC: Geological.
11. Giggenbach, W. F. (1996). Chemical composition of volcanic gases. In R. Scarpa & R. I. Tilling (Eds.), Monitoring and mitigation of volcano hazards (Vol. 24, pp. 221–256). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-80087-0_7
12. Hayes, G. P., Wald, D. J., & Johnson, R. L. (2012). Slab1.0: A three-dimensional model of global subduction zone geometries. Journal of Geophysical Research, 117, B01302. https://doi.org/10.1029/2011JB008524
13. Husen, S., Smith, R. B., & Waite, G. P. (2004). Evidence for gas and magmatic sources beneath the Yellowstone volcanic field from seismic tomographic imaging. Journal of Volcanology and Geothermal Research, 131(3–4), 397–410. https://doi.org/10.1016/S0377-0273(03)00416-5
14. Janiszewski, H. A., Abers, G. A., Shillington, D. J., & Calkins, J. A. (2013). Crustal structure along the Aleutian island arc: New insights from receiver functions constrained by active-source data. Geochemistry, Geophysics, Geosystems, 14(8), 2977–2992. https://doi.org/10.1002/ggge.20211
15. Kasatkina, E., Koulakov, I., West, M., & Izbekov, P. (2014). Seismic structure changes beneath Redoubt Volcano during the 2009 eruption inferred from local earthquake tomography. Journal of Geophysical Research: Solid Earth, 119(6), 4938–4954. https://doi.org/10.1002/2013JB010935
16. Kolker, A., Cumming, W., Stelling, P., Prakash, A., & Kleinholz, C. (2011). Akutan geothermal project. Renewable Energy Alaska Project (REAP) Forum.
17. Koulakov, I. (2009). LOTOS code for local earthquake tomographic inversion: Benchmarks for testing tomographic algorithms. Bulletin of the Seismological Society of America, 99(1), 194–214. https://doi.org/10.1785/0120080013
18. Koulakov, I., Boychenko, E., & Smirnov, S. Z. (2020). Magma chambers and meteoric fluid flows beneath the Atka volcanic complex (Aleutian Islands) inferred from local earthquake tomography. Geosciences, 10(6), 1–18. https://doi.org/10.3390/geosciences10060214
19. Koulakov, I., Gordeev, E. I., Dobretsov, N. L., Vernikovsky, V. A., Senyukov, S., & Jakovlev, A. (2011). Feeding volcanoes of the Kluchevskoy group from the results of local earthquake tomography. Geophysical Research Letters, 38(9), 1–6. https://doi.org/10.1029/2011GL046957
20. Koulakov, I., Komzeleva, V., Abkadyrov, I., Kugaenko, Y., El Khrepy, S., & Al Arifi, N. (2019). Unrest of the Udina volcano in Kamchatka inferred from the analysis of seismicity and seismic tomography. Journal of Volcanology and Geothermal Research, 379, 45–59. https://doi.org/10.1016/j.jvolgeores.2019.05.006
21. Koulakov, I., Smirnov, S. Z., Gladkov, V., Kasatkina, E., West, M., El Khrepy, S., & Al-Arifi, N. (2018). Causes of volcanic unrest at Mt. Spurr in 2004–2005 inferred from repeated tomography. Scientific Reports, 8(1), 1–7. https://doi.org/10.1038/s41598-018-35453-w
22. Koulakov, I., West, M., & Izbekov, P. (2013). Fluid ascent during the 2004-2005 unrest at Mt. Spurr inferred from seismic tomography. Geophysical Research Letters, 40(17), 4579–4582. https://doi.org/10.1002/grl.50674
23. Kuznetsov, P. Y., Koulakov, I., Jakovlev, A., Abkadyrov, I., Deev, E., Gordeev, E. I., et al. (2017). Structure of volatile conduits beneath Gorely volcano (Kamchatka) revealed by local earthquake tomography. Geosciences, 7(4), 3–7. https://doi.org/10.3390/geosciences7040111
24. Lanza, F., Thurber, C. H., Syracuse, E. M., Power, J. A., & Ghosh, A. (2020). Seismic tomography of compressional wave velocity and attenuation structure for Makushin Volcano, Alaska. Journal of Volcanology and Geothermal Research, 393, 106804. https://doi.org/10.1016/j.jvolgeores.2020.106804
25. Lin, G., & Shearer, P. M. (2009). Evidence for water-filled cracks in earthquake source regions. Geophysical Research Letters, 36(17), 1–5. https://doi.org/10.1029/2009GL039098
26. Lu, Z., & Dzurisin, D. (2014). InSAR imaging of Aleutian volcanoes: Monitoring a volcanic arc from space. New York, NY: Springer.
27. Lu, Z., Wicks, C., Kwoun, O., Power, J. A., & Dzurisin, D. (2005). Surface deformation associated with the March 1996 earthquake swarm at Akutan Island, Alaska, revealed by C-band ERS and L-band JERS radar interferometry. Canadian Journal of Remote Sensing, 31(1), 7–20. https://doi.org/10.5589/m04-054
28. Lu, Z., Wicks, C., Power, J. A., & Dzurisin, D. (2000). Ground deformation associated with the March 1996 earthquake swarm at Akutan volcano, Alaska, revealed by satellite radar interferometry. Journal of Geophysical Research, 105(B9), 21483–21495. https://doi.org/10.1029/2000jb900200
29. Mann, M., Kaspereit, D., & Kirkman, R. (2019). Akutan geothermal: Resource report. Golden, CO. https://doi.org/10.2172/1596089
30. McConnell, V. S., Beget, J. E., Roach, A. L., Bean, K. W., & Nye, C. J. (1998). Geologic map of the Makushin volcanic field, Unalaska Island, Alaska. https://doi.org/10.14509/2576
31. Miller, T. P., McGimsey, R. G., Richter, D. H., Riehle, J. R., Nye, C. J., Yount, M. E., & Dumoulin, J. A. (1998). Catalog of the historically active volcanoes of Alaska (Vol. 104): Department of the Interior U. S. Geological Survey. Retrieved from https://pubs.usgs.gov/of/1998/0582/report.pdf
32. Motyka, R. J., Wescott, E. M., Turner, D. L., Swanson, S. E., Romick, J. D., Moorman, M. A., & Allely, R. D. (1985). Geological, geochemical, and geophysical survey of the geothermal resources at Hot Springs Bay Valley, Akutan Island, Alaska (Vol. 1). Fairbanks, AK: Alaska Department of Natural Resources, Alaska Division of Geological & Geophysical Surveys.
33. Murphy, R., Thurber, C., Prejean, S., & Bennington, N. (2014). Three-dimensional seismic velocity structure and earthquake relocations at Katmai, Alaska. Journal of Volcanology and Geothermal Research, 276, 121–131. https://doi.org/10.1016/j.jvolgeores.2014.02.022
34. Myers, J. D., Marsh, B. D., & Sinha, A. K. (1985). Strontium isotopic and selected trace element variations between two Aleutian volcanic centers (Adak and Atka): Implications for the development of arc volcanic plumbing systems. Contributions to Mineralogy and Petrology, 91(3), 221–234.
35. Nakajima, J., & Hasegawa, A. (2003). Tomographic imaging of seismic velocity structure in and around the Onikobe volcanic area, northeastern Japan: Implications for fluid distribution. Journal of Volcanology and Geothermal Research, 127(1–2), 1–18. https://doi.org/10.1016/S0377-0273(03)00155-0
36. Neal, C. A., & McGimsey, R. G. (1997). 1996 volcanic activity in Alaska and Kamchatka: Summary of events and response. U.S. Geological Survey Open-File Report, 97-433.
37. Nolet, G. (1987). Seismic wave propagation and seismic tomography. In G. Nolet (Ed.), Seismic tomography (pp. 1–23). https://doi.org/10.1007/978-94-009-3899-1_1
38. Ohlendorf, S. J., Thurber, C. H., Pesicek, J. D., & Prejean, S. G. (2014). Seismicity and seismic structure at Okmok Volcano, Alaska. Journal of Volcanology and Geothermal Research, 278–279, 103–119. https://doi.org/10.1016/j.jvolgeores.2014.04.002
39. Ohren, M., Bailey, A., Hinz, N., Oppliger, G., Hernandez, J., Rickard, W., & Dering, G. (2013). Akutan geothermal area exploration results and pre-drilling resource model. Transactions—Geothermal Resources Council, 37(PART 1), 301–307.
40. Paige, C. C., & Saunders, M. A. (1982). LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software, 8(2), 43–71. Retrieved from http://dl.acm.org/doi/10.1145/355993.356000
41. Portner, D. E., Wagner, L. S., Janiszewski, H. A., Roman, D. C., & Power, J. A. (2020). Ps-P tomography of a midcrustal magma reservoir beneath Cleveland volcano, Alaska. Geophysical Research Letters, 47(22), e2020GL090406.
42. Power, J. A. (2004). Renewed unrest at Mount Spurr Volcano, Alaska. Eos, 85(43), 434. https://doi.org/10.1029/2004EO430004
43. Power, J. A., Jolly, A. D., Page, R. A., & McNutt, S. R. (1995). Seismicity and forecasting of the 1992 Eruptions of Crater Peak Vent, Mount Spurr Volcano, Alaska: An overview. In T. E. C. Keith (Ed.), The 1992 eruptions of crater Peak vent, Mount Spurt Volcano, Alaska (pp. 149–159).
44. Power, J. A., Lahr, J. C., Page, R. A., Chouet, B. A., Stephens, C. D., Harlow, D. H., et al. (1994). Seismic evolution of the 1989-1990 eruption sequence of Redoubt Volcano, Alaska. Journal of Volcanology and Geothermal Research, 62(1–4), 69–94. https://doi.org/10.1016/0377-0273(94)90029-9
45. Power, J. A., Villaseñor, A., & Benz, H. M. (1998). Seismic image of the Mount Spurr magmatic system. Bulletin of Volcanology, 60(1), 27–37. https://doi.org/10.1007/s004450050214
46. Reeder, J. W. (1983). Preliminary dating of the caldera forming Holocene volcanic events for the eastern Aleutian Islands: Geological Society of America Abstracts with Programs.
47. Richter, D. H., Waythomas, C. F., McGimsey, R. G., & Stelling, P. L. (1998). Geologic map of Akutan Island, Alaska. U.S. Geological Survet Open-File Report, 98-135.
48. Romick, J. D., Perfit, M. R., Swanson, S. E., & Shuster, R. D. (1990). Magmatism in the eastern Aleutian Arc: Temporal characteristic of igneous activity on Akutan Island. Contributions to Mineralogy and Petrology, 104(6), 700–721. https://doi.org/10.1007/BF01167288
49. Shapiro, N. M., Droznin, D. V., Droznina, S. Y., Senyukov, S. L., Gusev, A. A., & Gordeev, E. I. (2017). Deep and shallow long-period volcanic seismicity linked by fluid-pressure transfer. Nature Geoscience, 10(6), 442–445. https://doi.org/10.1038/ngeo2952
50. Shinohara, H., Ohba, T., Kazahaya, K., & Takahashi, H. (2008). Origin of volcanic gases discharging from a cooling lava dome of Unzen volcano, Japan. Journal of Volcanology and Geothermal Research, 175(1–2), 133–140. https://doi.org/10.1016/j.jvolgeores.2008.03.024
51. Siebert, L., & Simkin, T. (2013). Volcanoes of the world: An illustrated catalog of Holocene volcanoes and their eruptions. Retrieved from http://www.volcano.si.edu
52. Simkin, T., & Siebert, L. (1994). Volcanoes of the world. Tucson, AZ: Geoscience Press.
53. Stelling, P., Hinz, N. H., Kolker, A., & Ohren, M. (2015). Exploration of the Hot Springs Bay Valley (HSBV) geothermal resource area, Akutan, Alaska. Geothermics, 57, 127–144. https://doi.org/10.1016/j.geothermics.2015.05.002
54. Sychev, I. V., Koulakov, I., Egorushkin, I., Zhuravlev, S., West, M., El Khrepy, S., et al. (2019). Fault-associated magma conduits beneath Volcán de Colima revealed by seismic velocity and attenuation tomography studies. Journal of Geophysical Research: Solid Earth, 124(8), 8908–8923. https://doi.org/10.1029/2019JB017449
55. Syracuse, E. M., Maceira, M., Zhang, H., & Thurber, C. H. (2015). Seismicity and structure of Akutan and Makushin Volcanoes, Alaska, using joint body and surface wave tomography. Journal of Geophysical Research: Solid Earth, 120(2), 1036–1052. https://doi.org/10.1002/2014JB011616
56. Syracuse, E. M., Thurber, C. H., & Power, J. A. (2011). The Augustine magmatic system as revealed by seismic tomography and relocated earthquake hypocenters from 1994 through 2009. Journal of Geophysical Research, 116(9), 1–11. https://doi.org/10.1029/2010JB008129
57. Takei, Y. (2002). Effect of pore geometry on Vp/Vs: From equilibrium geometry to crack. Journal of Geophysical Research, 107(B2). https://doi.org/10.1029/2001jb000522
58. Um, J., & Thurber, C. (1987). A fast algorithm for two-point seismic ray tracing. Bulletin of the Seismological Society of America, 77(3), 972–986.
59. Vargas, C. A., Koulakov, I., Jaupart, C., Gladkov, V., Gomez, E., El Khrepy, S., & Al-Arifi, N. (2017). Breathing of the Nevado del Ruiz volcano reservoir, Colombia, inferred from repeated seismic tomography. Scientific Reports, 7(April), 8–13. https://doi.org/10.1038/srep46094
60. Waythomas, C. F. (1999). Stratigraphic framework of Holocene volcaniclastic deposits, Akutan Volcano, east-central Aleutian Islands, Alaska. Bulletin of Volcanology, 61(3), 141–161. https://doi.org/10.1007/s004450050268