Инд. авторы: Medved I., Bataleva E.A., Buslov M.M.
Заглавие: Studying the Depth Structure of the Kyrgyz Tien Shan by Using the Seismic Tomography and Magnetotelluric Sounding Methods
Библ. ссылка: Medved I., Bataleva E.A., Buslov M.M. Studying the Depth Structure of the Kyrgyz Tien Shan by Using the Seismic Tomography and Magnetotelluric Sounding Methods // GEOSCIENCES. - 2021. - Vol.11. - Iss. 3. - Art.122.
Идентиф-ры: DOI: 10.3390/geosciences11030122; РИНЦ: 46768171; WoS: 000633705100001;
Реферат: eng: This paper presents new results of detailed seismic tomography (ST) on the deep structure beneath the Middle Tien Shan to a depth of 60 km. For a better understanding of the detected heterogeneities, the obtained velocity models were compared with the results of magnetotelluric sounding (MTS) along the Kekemeren and Naryn profiles, running parallel to the 74 and 76 meridians, respectively. We found that in the study region the velocity characteristics and geoelectric properties correlate with each other. The high-velocity high-resistivity anomalies correspond to the parts of the Tarim and Kazakhstan-Junggar plates submerged under the Tien Shan. We revealed that the structure of the Middle Tien Shan crust is conditioned by the presence of the Central Tien Shan microcontinent. It manifests itself as two anomalies lying one below the other: the lower low-velocity low-resistivity anomaly, and the upper high-velocity high-resistivity anomaly. The fault zones, limiting the Central Tien Shan microcontinent, appear as low-velocity low-resistivity anomalies. The obtained features indicate the fluid saturation of the fault zones. According to the revealed features of the Central Tien Shan geological structure, it is assumed that the lower-crustal low-velocity layer can play a significant role in the delamination of the mantle part of the submerged plates.
Ключевые слова: geodynamics; magnetotelluric studies; lithosphere; seismic tomography; electrical conductivity; Tien Shan;
Издано: 2021
Физ. хар-ка: 122
Цитирование: 1. Avouac, J.P.; Tapponnier, P.; Bai, M.; You, H.; Wang, G. Active thrusting and folding along the Northern Tien Shan, and Late Cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan. J. Geophys. Res. Solid Earth 1993, 98, 6755–6804.
2. Windley, B.F.; Alexeiev, D.; Xiao, W.J.; Kröner, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. 2007, 164, 31–47.
3. Gao, J.; Klemd, R.; Qian, Q.; Zhang, X.; Li, J.L.; Jiang, T.; Yang, Y.Q. The collision between the Yili and Tarim blocks of the Southwestern Altaids: Geochemical and age constraints of a leucogranite dike crosscutting the HP–LT metamorphic belt in the Chinese Tianshan Orogen. Tectonophysics 2011, 499, 118–131.
4. He, C.; Santosh, M.; Chen, X.; Li, X. Crustal growth and tectonic evolution of the Tianshan orogenic belt NW China: A receiver function analysis. J. Geodyn. 2014, 75, 41–52.
5. Lei, J.; Zhao, D. Teleseismic P-wave tomography and the upper mantle structure of the central Tien Shan orogenic belt. Phys. Earth Planet. Inter. 2007, 162, 165–185.
6. Xu, Y.; Liu, F.; Liu, J.; Chen, H. Crust and upper mantle structure beneath western China from P wave travel time tomography. J. Geophys. Res. Solid Earth 2002, 107, ESE-4.
7. Xu, L.; Rondenay, S.; Van der Hilst, R.D. Structure of the crust beneath the southeastern Tibetan Plateau from teleseismic receiver functions. Phys. Earth Planet. Inter. 2007, 165, 176–193.
8. Zhiwei, L.; Roecker, S.; Zhihai, L.; Bin, W.; Haitao, W.; Schelochkov, G.; Bragin, V. Tomographic image of the crust and upper mantle beneath the western Tien Shan from the MANAS broadband deployment: Possible evidence for lithospheric delami-nation. Tectonophysics 2009, 477, 49–57.
9. Koulakov, I.Y. High-frequency P and S velocity anomalies in the upper mantle beneath Asia from inversion of worldwide traveltime data. J. Geophys. Res. Solid Earth 2011, 116, doi:10.1029/2010JB007938.
10. Zabelina, I.V.; Koulakov, I.Y.; Buslov, M.M. Deep mechanisms in the Kyrgyz Tien Shan orogen (from results of seismic to-mography). Russ. Geol. Geophys. 2013, 54, 695–706.
11. Vinnik, L.; Reigber, C.; Aleshin, I.; Kosarev, G.; Kaban, M.; Oreshin, S.; Roecker, S. Receiver function tomography of the central Tien Shan. Earth Planet. Sci. Lett. 2004, 225, 131–146.
12. Makarov, V.I.; Alekseev, D.V.; Batalev, V.Y.; Bataleva, E.A.; Belyaev, I.V.; Bragin, V.D.; Dergunov, N.; Efimova, N.; Leonov, M.; Munirova, L.; et al. Underthrusting of Tarim beneath the Tien Shan and deep structure of their junction zone: Main results of seismic experiment along MANAS Profile Kashgar-Song-Köl. Geotectonics 2010, 44, 102–126.
13. Laverov, N.P. Present-day Geodynamics of the intracontinental collisional orogeny. Nauchnyi Mir, Moscow, 2005, 1–400. (In Russian)
14. Sychev, I.V.; Koulakov, I.; Sycheva, N.A.; Koptev, A.; Medved, I.; El Khrepy, S.; Al-Arifi, N. Collisional processes in the crust of the northern Tien Shan inferred from velocity and attenuation tomography studies. J. Geophys. Res. Solid Earth 2018, 123, 1752–1769.
15. Chen, H.; Kosarev, G.; Roecker, S. Shear wave velocity structure at depths 0–410 km determined by the teleseismic broadband P-wavefroms in northern Pakistan and Kirghizstan. EOS Trans. AGU 1994, 75, 464.
16. Bump, H.A.; Sheehan, A.F. Crustal thickness variations across the northern Tien Shan from teleseismic receiver functions. Geophys. Res. Lett. 1998, 25, 1055–1058.
17. Peive, A.V. Tectonic Stratification of the Lithosphere of the Latest Mobile Zones; Nauka: Moscow, Russia, 1982; Volume 115. (In Russian)
18. Bragin, V.D.; Dergunov, N.; Efimova, N.; Leonov, M.; Munirova, L.; Pavlenkin, A.; Shchelochkov, G. Tarim sinking under the Tien Shan and the deep structure of the zone of their articulation: The main results of seismic studies on the MANAS profile. Geotectonics 2010, 2, 23–42. (In Russian)
19. Gubin, I.E. The Tien Shan Lithosphere; Nauka: Moscow, Russia, 1986. (In Russian)
20. Nikolaevsky, V.N. Mechanics of Porous & Fractured-Fissured Media; Nedra: Moscow, Russia, 1984; Volume 232. (In Russian)
21. Krasnopevtseva, G.V. Geologic-Geophysical Features of Low Velocity Layers in the Earth's Crust; All-Union Scientific Research Institute of Mineral Resources Economics: Helsinki, Finland, 1978; Volume 30.
22. Batalev, V.Y.; Berdichevsky, M.N.; Golland, M.L.; Golubtsova, N.S.; Kuznetsov, V.A. Interpretation of the deep magnetotelluric soundings in the в Chu basin. Izv. Phys. Solid Earth 1989, 9, 42–45.
23. Batalev, V.Y.; Volykhin, A.M.; Rybin, A.K.; Trapeznikov, Y.A.; Finyakin, V.V. The structure of the crust in the Eastern Kyrgyz Tien Shan from MTS data. Reflection of geodynamic processes in geophysical fields. Nauka: Moscow, Russia, 1993, 96–113. (In Rus-sian)
24. Batalev, V.Y.; Bataleva, E.A.; Matyukov, V.E.; Rybin, A.K.; Egorova, V.V. The lithospheric structure of the Central and Southern Tien Shan: MTS data correlated with petrology and laboratory studies of lower-crust and upper-mantle xenoliths. Russ. Geol Geophys. 2011, 52, 1592–1599.
25. Batalev, V.Y. Petrological interpretation of the magnetotelluric data of the depth zone of the Tarim and Tian Shan junction. Dokl. Earth Sci. 2011, 438, 588–592. (In Russian)
26. Batalev, V.Y.; Bataleva, E.A.; Matyukov, V.E.; Rybin, A.K. Deep structure of the western area of Talas-Fergana fault because of magnetotelluric soundings. Lithosphere 2013, 4, 136–145. (In Russian)
27. Trapeznikov, Y.A.; Andreeva, E.V.; Batal Kissinev, V.Y.; Berdichevsky, M.N.; Vanyan, L.L.; Volykhin, A.M.; Golubtsova, N.S.; Rybin, A.K. Magnetotelluric soundings in the Kyrgyz Tien Shan. Izv. Phys. Solid Earth 1997, 33, 1–17.
28. Rybin, A.K.; Batalev, V.Y.; Il'ichev, P.V.; Shchelochkov, G.G. Magnetotelluric and magnetovariational soundings of the Kyrgyz Tien Shan. Russ. Geol. Geophys. 2001, 42, 1485–1492.
29. Rybin, A.K.; Batalev, V.Y.; Bataleva, E.A.; Matyukov, V.E.; Spichak, V.V. Array magnetotelluric soundings in the active seismic area of northern Tian Shan. Russ. Geol. Geophys. 2008, 49, 337–349.
30. Bragin, V.D.; Batalev, V.Y.; Zubovich, A.V.; Lobanchenko, A.N.; Rybin, A.K.; Trapeznikov, Y.A.; Shchelochkov, G.G. Signature of neotectonic movements in the geoelectric structure of the crust in and seismicity distribution in the central Tian Shan. Russ. Geol. Geophys. 2001, 42, 1527–1537.
31. Bataleva, E.A.; Buslov, M.M.; Rybin, A.K.; Batalev, V.Y.; Safronov, I.V. Crustal conductor associated with the Talas-Fergana fault and deep structure of the southwestern Tien Shan: Geodynamic implications. Russ. Geol. Geophys. 2006, 9, 1036–1042.
32. Kissin, I.G.; Ruzaikin, A.I. Relations between seismically active and electrically conductive crustal zones in the Kyrgyz Tien Shan. Izv. Phys. Solid Earth 1997, 33, 18–25.
33. Rybin, A.K. Deep structure and recent geodynamics of the central Tien Shan by magnetotelluric research results. Nauchnyi Mir: Moscow, Russia, 2011, 272. (In Russian)
34. Dobretsov, N.L.; Buslov, M.M.; Delvaux, D.; Berzin, N.A.; Ermikov, V.D. Meso-and Cenozoic tectonics of the Central Asian mountain belt: Effects of lithospheric plate interaction and mantle plume. Int. Geol. Rev. 1996, 38, 430–466.
35. Buslov, M.M.; De Grave, J.; Bataleva, E.A. Cenozoic tectonics and geodynamic evolution of the Tien Shan mountain belt as response to India-Eurasia convergence. Himal. J. Sci. 2004, 2, 106–107.
36. Buslov, M.M.; De Grave, J.; Bataleva, E.A.V.; Batalev, V.Y. Cenozoic tectonic and geodynamic evolution of the Kyrgyz Tien Shan Mountains: A review of geological, thermochronological and geophysical data. J. Asian Earth Sci. 2007, 29, 205–214.
37. De Grave, J.; Buslov, M.M.; Van den Haute, P. Distant effects of India—Eurasia convergence and Mesozoic intracontinental deformation in Central Asia: Constraints from apatite fission-track thermochronology. J. Asian Earth Sci. 2007, 29, 188–204.
38. Dobretsov, N.L.; Buslov, M.M.; Vasilevsky, A.N. Geodynamic Complexes and Structures of Transbaikalia: Record in Gravity Data. Russ. Geol. Geophys. 2019, 60, 254–266.
39. Buslov, M.M. Geodynamic nature of the Baikal Rift Zone and its sedimentary filling in the Cretaceous–Cenozoic: The effect of the far-range impact of the Mongolo-Okhotsk and Indo-Eurasian collisions. Russ. Geol. Geophys. 2012, 53, 955–962.
40. De Grave, J.; Buslov, M.M.; Van den Haute, P. Intracontinental deformation in central Asia: Distant effects of India–Eurasia convergence revealed by apatite fission-track thermochronology. Himal. J. Sci. 2004, 2, 121–122.
41. De Grave, J.; Buslov, M.; Van den Haute, P.; Metcalf, J.; Batalev, V. From Palaeozoic Eurasian assembly to ongoing Indian in-dentation: Multi-chronometry of the northern Kyrgyz Tien Shan batholith. J. Asian Earth Sci. 2006, 26, 133.
42. De Grave, J.; Buslov, M.M.; Van den Haute, P.; Dehandschutter, B. Meso-Cenozoic evolution of Mountain range—Intramontane basin systems in the southern Siberian Altai Mountains by apatite fission–track thermochronology. J. Asian Earth Sci. 2007, 29, 2–9.
43. De Grave, J.; Buslov, M.M.; Van den Haute, P.; Dehandschutter, B.; Delvaux, D. Meso-Cenozoic evolution of Mountain Range—Intramontane basin systems in the Southern Siberian Altai Mountains by apatite fission-track thermochronology. In Trust Belts and Foreland Basins: From Fold Kinematics Hydrocarbon Systems; Springer: Berlin/Heidelberg, Germany, 2007; Volume 24, pp. 457–490.
44. De Grave, J.; Van den Haute, P.; Buslov, M.M.; Dehandschutter, B.; Glorie, S. Apatite fission-track thermochronology applied to the Chulysman Plateau, Siberian Altai Region. Radiat. Meas. 2008, 43, 38–42.
45. De Grave, J.; Glorie, S.; Buslov, M.M.; Izmer, A.; Fournier-Carrie, A.; Elburg, M.; Batalev, V.Y.; Vanhaeke, F.; Van den Haute, P. The thermo-tectonic history of the Song-Kul Plateau, Kyrgyz Tien Shan: Constraints by apatite and titanite ther-mo-chronometry and zircon U/Pb dating. Gondwana Res. 2011, 20, 745–763.
46. De Grave, J.; Glorie, S.; Zhimulev, F.I.; Buslov, M.M.; Elburg, M.; Vanhaecke, F.; Van den Haute, P. Emplacement and exhumation of the Kuznetsk-Alatau basement (Siberia): Implications for the tectonic evolution of the Central Asian Orogenic Belt and sediment supply to the Kuznetsk, Minusa and West Siberian Basins. Terra Nova 2011, 23, 248–256.
47. De Grave, J.; Glorie, S.; Ryabinin, A.; Zhimulev, F.I.; Buslov, M.M.; Izmer, A.; Elburg, M.A.; Vanhaecke, F. Late Palaeozoic and Meso-Cenozoic tectonic evolution of the southern Kyrgyz Tien Shan: Constraints from multimethod thermochronology in the Trans-Alai, Turkestan-Alai segment and the southeastern Ferghana Basin. J. Asian Earth Sci. 2012, 44, 149–168.
48. De Grave, J.; Glorie, S.; Buslov, M.M.; Stockli, D.F.; Mcwilliams, M.O.; Batalev, V.Y.; Van den Haute, P. Thermo-tectonic history of the Issyk-Kul basement (Kyrgyz Northern Tien Shan, Central Asia). Gondwana Res. 2013, 23, 998–1020.
49. Glorie, S.; De Grave, J.; Buslov, M.M.; Elburg, M.A.; Stockli, D.F.; Gerdes, A.; Van den Haute, P. Multimethod chronometric constraints on the evolution of the Northern Kyrgyz Tien Shan granitoids (Central Asian Orogenic Belt): From emplacement to exhumation. J. Asian Earth Sci. 2010, 38, 131–146.
50. Glorie, S.; De Grave, J.; Buslov, M.M.; Zhimulev, F.I.; Stockli, D.F.; Batalev, V.Y.; Izmer, A.; Van den Haute, P.; Vanhaecke, F.; Elburg, M.A. Thermotectonic history of the Kyrgyz South Tien Shan (Atbashi-Inylchek) suture zone: The role of inherited structures during deformation-propagation. Tectonics 2011, 30, 6016.
51. Glorie, S.; De Grave, J.; Buslov, M.M.; Zhimulev, F.I.; Elburg, M.A.; Van den Haute, P. Structural control on Meso-Cenozoic tectonic reactivation and denudation in the Siberian Altai: Insights from multi-method thermochronometry. Tectonophysics 2012, 544–545, 75–92.
52. Allen, M.B.; Windley, B.F.; Zhang, C. Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, Central Asia. Tectonophysics 1993, 220, 89–115.
53. Jun, G.; Maosong, L.; Xuchang, X.; Yaoqing, T.; Guoqi, H. Paleozoic tectonic evolution of the Tienshan Orogen, northwestern China. Tectonophysics 1998, 287, 213–231.
54. Chen, C.; Lu, H.; Jia, D.; Cai, D.; Wu, S. Closing history of the southern Tianshan oceanic basin, western China: An oblique collisional orogeny. Tectonophysics 1999, 302, 23–40.
55. Brookfield, M.E. Geological development and Phanerozoic crustal accretion in the western segment of the southern Tien Shan (Kyrgyzstan, Uzbekistan and Tajikistan), Tectonophysics 2000, 328, 1–14.
56. Laurent-Charvet, S.; Charvet, J.; Shu, L.; Ma, R.; Lu, H. Palaeozoic late collisional strike-slip deformations in Tianshan and Altay, Eastern Xinjiang, NW China. Terra Nova 2002, 14, 249–256.
57. Van der Voo, R.; Levashova, N.M.; Skrinnik, L.I.; Kara, T.V.; Bazhenov, M.L. Late orogenic, large-scale rotations in the Tien Shan and adjacent mobile belts in Kyrgyzstan and Kazakhstan. Tectonophysics 2006, 426, 335–360.
58. Yang, T.N.; Wang, Y.; Li, J.Y.; Sun, G.H. Vertical and horizontal strain partitioning of the central Tianshan (NW China): Evidence from structures and 40Ar/39Ar geochronology. J. Struct. Geol. 2007, 29, 1605–1621.
59. Alexeiev, D.; Cook, H.E.; Djenchuraeva, A.V.; Mikolaichuk, A.V. The stratigraphic, sedimentological and structural evolution of the southern margin of the Kazakhstan continent in the Tien Shan Range during the Devonian to Permian. Geol. Soc. Lond. Spec. Publ. 2017, 427, 231–269.
60. Biske, Y.S.; Seltmann, R. Paleozoic Tian-Shan as a transitional region between the Rheic and Urals-Turkestan oceans. Gondwana Res. 2010, 17, 602–613.
61. Bakirov, A.B.; Maksumova, R.A. Geology and evolution of the Tien Shan lithosphere. Russian Geol. Geofiz. 2001, 42, 1435–1443.
62. Maksumova, R.A.; Jenchuraeva, A.V.; Berezansky, A.V. Major tectonic units and evolution of the Tien Shan orogen. In Paleozoic Geodynamics and Gold Deposits in the Kyrgyz Tien Shan, Proceedings of the IGCP 373 Field Conference, IAGOD Guidebook Series 9, London; Seltmann, S., Jenchuraeva, R., Eds.; Natural History Museum: London, UK, 2001; pp. 17–20.
63. Buslov, M.M.; Klerkx, J.; Abdrakhmatov, K.; Delvaux, D.; Batalev, V.Y.; Kuchai, O.A.; Dehandschutter, B.; Muraliev, A. Recent strike-slip deformation of the northern Tien Shan. In Intraplate Strike-Slip Deformation Belts; Storti, F., Holdsworth, R.E., Salvini, F., Eds.; Geological Society, London, Special Publications: London, UK, 2003; Volume 210, pp. 53–64.
64. Wang, B.; Chen, Y.; Zhan, S.; Shu, L.; Faure, M.; Cluzel, D.; Charvet, J.; Laurent-Charvet, S. Primary Carboniferous and Permian paleomagnetic results from the Yili block (NW China) and their implications on the geodynamic evolution of Chinese Tianshan belt. Earth Planet. Sci. Lett. 2007, 263, 288–308.
65. Wang, B.; Shu, L.S.; Cluzel, D.; Faure, M.; Charvet, J. Geochemical constraints on Carboniferous volcanic rocks of the Yili block (Xinjiang, NW China): Implications for the tectonic evolution of western Tianshan. J. Asian Earth Sci. 2007, 29, 148–159.
66. Solomovich, L.I.; Trifonov, B.A. Postcollisional granites in the South Tien Shan Variscan collisional belt, Kyrgyzstan. J. Asian Earth Sci. 2002, 21, 7–21.
67. Konopelko, D.; Biske, G.; Seltmann, R.; Eklund, O.; Belyatsky, B. Hercynian post-collisional Atype granites of the Kokshaal Range, Southern Tien Shan, Kyrgyzstan. Lithosphere 2007, 97, 140–160.
68. Kröner, A.; Hegner, E.; Lehmann, B.; Heinhorst, J.; Wingat, M.T.D.; Liu, D.Y.; Ermelov, P. Palaeozoic arc magmatism in the Central Asian Orogenic Belt of Kazakhstan: SHRIMP zircon ages and whole-rock Nd isotopic systematics. J. Asian Earth Sci. 2008, 32, 118–130.
69. Burtman, V.S. The structural geology of the Variscan Tien Shan. Am. J. Sci. 1975, 275, 157–186.
70. Biske, Y.S. Paleozoic Structure and History of Southern Tian-Shan; Leningrad University: Leningrad, Russia, 1996; p. 187.
71. Seltmann, R.; Konopelko, D.; Biske, G.; Divaev, F.; Sergeev, S. Hercynian postcollisional magmatism in the context of Paleozoic magmatic evolution of the Tien Shan orogenic belt. J. Asian Earth Sci. 2011, 42, 821–838.
72. Koulakov, I. LOTOS code for local earthquake tomographic inversion. Benchmarks for testing tomographic algorithms. Bull. Seismol. Soc. Am. 2009, 99, 194–214.
73. Zabelina, I.; Ruppert, N.A.; Freymueller, J.T. Velocity structure of the Saint Elias, Alaska, Region from local earthquake to-mography. Bull. Seismol. Soc. Am. 2014, 104, 2597–2603.
74. Zabelina, I.; Koulakov, I.; Amanatashvili, I.; El Khrepy, S.; Al-Arifi, N. Seismic structure of the crust and uppermost mantle beneath Caucasus based on regional earthquake tomography. J. Asian Earth Sci. 2016, 119, 87–99.
75. Ghose, S.; Hamburger, M. W.; & Virieux, J. Three-dimensional velocity structure and earthquake locations beneath the northern Tien Shan of Kyrgyzstan, central Asia. J. Geophys. Res.: Solid Earth. 1998, 103(B2), 2725-2748.
76. Roecker, S. W., Sabitova, T. M., Vinnik, L. P., Burmakov, Y. A., Golvanov, M. I., Mamatkanova, R., & Munirova, L.. Three-dimensional elastic wave velocity structure of the western and central Tien Shan. J. Geophys. Res.: Solid Earth. 1993, 98(B9), 15779-15795.
77. Um, J.; Thurber, C.A. Fast algorithm for two-point seismic ray tracing. Bull. Seismol. Soc. Am. 1987, 77, 972–986.
78. Van der Sluis, A.; Van der Vorst, H.A. Seismic Tomography; Nolet, G., Ed.; Springer: Dordrecht, The Netherlands, 1987; pp. 49–83, ISBN 978-90-277-2583-7.
79. Roecker, S. Constraints on the crust and upper mantle of the Kyrgyz Tien Shan from the preliminary analysis of GHENGIS broadband seismic data. Russ. Geol. Geophys. 2001, 42, 1554–1565.
80. Rybin, A.K.; Batalev, V.Y.; Bataleva, E.A.; Makarov, V.I.; Safronov, I.V. Structure of the Earth crust by magnitotelluric sound-ings. In Recent Geodynamics of Intracontinental Areas of Collision Mountain Building (Central Asia); Nauchny Mir: Moscow, Russia, 2005; pp. 79–96.
81. Rybin, A.K.; Bataleva, E.A.; Morozov, Y.A.; Leonov, M.G.; Batalev, V.Y.; Matyukov, V.E.; Nelin, V.O. Specific features in the deep structure of the Naryn Basin–Baibichetoo Ridge–Atbashi Basin System: Evidence from the complex of geological and geophysical data. Dokl. Earth Sci. 2018, 479, 499–502.
82. Bielinski, R.A.; Park, S.K.; Rybin, A.; Batalev, V.; Jun, S.; Sears, C. Lithospheric heterogeneity in the Kyrgyz Tien Shan imaged by magnetotelluric studies. Geophys. Res. Lett. 2003, 30, 15.
83. Bataleva, E.A.; Przhiyalgovskii, E.S.; Batalev, V.Y.; Lavrushina, E.V.; Leonov, M.G.; Matyukov, V.E.; Rybin, A.K. New data on the deep structure of the South Kochkor zone of concentrated deformation. Dokl. Earth Sci. 2017, 475, 930–934. (In Russian)
84. Zabinyakova, O.; Rybin, A. The Deep Distribution of Longitudinal Electrical Conductivity in the Earth's Crust (Central Tien Shan). Int. J. Civ. Eng. Technol. 2019, 10, 398–404.
85. Berdichevsky, M.N.; Dmitriev, V.I.; Novikov, D.B.; Pastutsan, V.V. Analysis and Interpretation of Magnetotelluric Data. Dialog: Moscow, Russia, 1997, 1-161. (In Russian)
86. Berdichevsky, M.N.; Sokolova, E.Y.; Varentsov, I.M.; Rybin, A.K.; Baglaenko, N.V.; Batalev, V.Y.; Golubtsova, N.; Matyukov, V.; Pushkarev, P.Y. Geoelectric section of the Central Tien Shan: Analysis of magnetotelluric and magnetovariational responses along the Naryn geotraverse. Izv. Phys. Solid Earth 2010, 46, 679–697.
87. Bataleva, E.A.; Batalev, V.Y.; Rybin, A.K. Interrelation of conductivity, seismic velocities and the seismicity for Central Tien Shan lithosphere. Lithosphere 2015, 5, 81–89.
88. Thompson, S.C.; Weldon, R.J.; Rubin, C.M.; Abdrakhmatov, K.; Molnar, P.; Berger, G.W. Late Quaternary slip rates across the central Tien Shan, Kyrgyzstan, Central Asia. J. Geophys. Res. 2002, 107, 1–32.
89. Makarov, V.I. The Newest Tectonic Structure of the Tien Shan; Nauka: Moscow, Russia, 1977; Volume 169. (In Russian)
90. Austrheim, H. The granulite-eclogite facies transition: A comparison of experimental work and a natural occurrence in the Bergen Arcs, western Norway. Lithosphere 1990, 25, 163–169.
91. Bird, P. Formation of the Rocky Mountains, western United States: A continuum computer model. Science 1988, 239, 1501–1507.
92. Leech, M.L. Arrested orogenic development: Eclogitization, delamination, and tectonic collapse. Earth Planet. Sci. Lett. 2001, 185, 149–159.
93. Houseman, G.A.; McKenzie, D.P.; Molnar, P. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. J. Geophys. Res. Solid Earth 1981, 86, 6115–6132.
94. McKenzie, D.; O'nions, R.K. Mantle reservoirs and ocean island basalts. Nature 1983, 301, 229.
95. Kiselev, A.; Gordienko, I.; Lashkevich, V. Petrological aspects of gravitational instability of tectonically thickened lithosphere. Tikhookean. Geol. 2004, 23, 20–29. (In Russian)
96. Zubovich, A.V.; Trapeznikov, Y.A.; Bragin, V.D.; Mosienko, O.I.; Shchelochkov, G.G.; Rybin, A.K.; Batalev, V.Y. Deformation field, earth's crust deep structure, and spatial seismicity distribution in the Tien Shan. Russ. Geol. Geophys. 2001, 42, 1634–1640.
97. Ueda, K.; Gerya, T.V.; Burg, J.P. Delamination in collisional orogens: Thermomechanical modeling. J. Geophys. Res. Solid Earth 2012, 117, doi:10.1029/2012JB009144.