Инд. авторы: Vetrov E.V., Kotler P.D., Kruk N.N., Zhigalov S.V., Babin G.A., Fedoseev G.S., Vetrova N.I.
Заглавие: Evolution of the Kolyvan-Tomsk granitoid magmatism (Central Siberia): Insights into the tectonic transition from post-collision to intraplate settings in the northwestern part of the Central Asian Orogenic Belt
Библ. ссылка: Vetrov E.V., Kotler P.D., Kruk N.N., Zhigalov S.V., Babin G.A., Fedoseev G.S., Vetrova N.I. Evolution of the Kolyvan-Tomsk granitoid magmatism (Central Siberia): Insights into the tectonic transition from post-collision to intraplate settings in the northwestern part of the Central Asian Orogenic Belt // Gondwana Research. - 2021. - Vol.93. - P.26-47. - ISSN 1342-937X. - EISSN 1878-0571.
Идентиф-ры: DOI: 10.1016/j.gr.2021.01.008; РИНЦ: 44978105; WoS: 000634524600002;
Реферат: eng: Late Paleozoic - earlyMesozoic geological evolution of the Kolyvan-Tomsk Fold Zone (KTFZ) located in the northwestern part of the Central Asian Orogenic Belt is significant to understanding the tectonic transition from postcollision to intraplate settings. We present new whole-rock geochemical and Sr-Nd isotopic data, and in situ zircon U-Pb ages for granitic rocks from the KTFZ basement to constrain their petrogenesis and to characterize changing of the tectonic setting and geodynamic evolution. Zircon U-Pb ages reveal extended multi-stage emplacement of the KTFZ granitoids for about 20 Ma from similar to 260 to similar to 240 Ma, that can be divided into two stages: the Permian-Triassic (similar to 260 to 250 Ma) and the Triassic (similar to 250 to 240 Ma). The Permian -Triassic granitic rocks with SiO2 between 63% and 74% have high LREE, HFSE (except Nb and Ta), Sr, Mg#, Cr, Ni concentrations, Sr/Y and (La/Yb)(N) ratios and remarkably low Y and Yb contents and Sr-87/Sr-86((T)) values (0.704682 and 0.703368). They are magnesian and show metaluminous to weakly peraluminous natures, indicating their formation through high degree fractionation of mantle-derived magmas. The Triassic granitoids exhibit extremely high SiO2 (73-77%), HFSE, HREE, Rb contents, Rb/Sr ratios and elevated negative Eu and Sr anomalies, low Mg#. They are ferroan and have a peraluminous nature with the absence of aluminium-rich minerals, all of which indicate the presence of the crustal substance in the magma source. Isotopic Nd compositions show that the both the Permian -Triassic and Triassic granitoids have uniform magma's, whichwere derived frompartialmelting of juvenile Neoproterozoic sources. These two stages of granitoid magmatism are interpreted as reflecting the transition from post-collisional magmatism, related to the final closure of the Paleo-Asian Ocean due to collision between the Baltica and Siberian paleocontinents during the Late Permian - Early Triassic and hence, to the intraplatemagmatism. The formation of the KTFZ granitic rocks was induced by an upwelling asthenosphere in an extensional geodynamic setting. During the post-collisional process, the large-scale lithospheric delamination plays a key role in the genesis of the Permian-Triassic granitoids and provide the magma generation for them. In the Triassic, we propose additional source of heat from mantle plume beneath the KTFZ, which promote extending of the granitoid magmatism in intraplate setting. (C) 2021 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Ключевые слова: Sr-Nd isotopes; Zircon U-Pb dating; Post-collisional; Kolyvan-Tomsk Fold Zone; Intraplate; Central Asian Orogenic Belt;
Издано: 2021
Физ. хар-ка: с.26-47
Цитирование: 1. Almukhamedov, A.I., Medvedev, A.Ya., Kirda, N.P., Comparative analysis of geodynamic settings of the Permo-Triassic magmatism in East and West Siberia. Russ. Geol. Geophys. 40:11 (1999), 1575–1587.
2. Almukhamedov, A.I., Medvedev, A.Y., Zolotukhin, V.V., Chemical evolution of the Permian–Triassic basalts of the Siberian platform in space and time. Petrology 12:4 (2004), 297–311.
3. Altunkaynak, Ş., Collision-driven slab break off magmatism in Northwestern Anatolia, Turkey. J. Geol. 115 (2007), 63–82.
4. Augland, L.E., Ryabov, V.V., Vernikovsky, V.A., Planke, S., Polozov, A.G., Callegaro, S., Jerram, D.A., Svensen, H.H., The main pulse of the Siberian Traps expanded in size and composition. Sci. Rep., 9, 2019, 18723.
5. Babin, G.A., Chernyh, A.I., Golovina, A.G., Zhigalov, S.V., Dolgushin, S.S., Vetrov, V.E., Korableva, T.V., Bodina, N.A., Svetlova, N.A., Fedoseev, G.S., Hil'ko, A.P., Epifanov, V.A., Loskutov, Yu.I., Loskutov, I.Yu., Miharevich, M.V., Pihutin, E.A., Explanation Note to the State Geological Map of Russian Federation, Scale 1:1 000 000 (Third Generation) Atai-Sayan Series, Sheet N-44 (Novosibirsk), 181. 2015 (in Russian).
6. Black, L.P., Kamo, S.L., Allen, C.M., Aleinikoff, J.N., Davis, D.W., Korsch, R.J., Foudoulis, C., TEMORA 1: a new zircon standard for U-Pb geochronology. Chem. Geol. 200 (2003), 155–170.
7. Bochkarev, V.S., Nesterov, I.I., Brekhuntsov, A.M., Tectonics of the West Siberian geosyneclise basement. Foundations, framing structures of the West-Sibisian Meso-Cenozoic sedimentary basin, their geodynamic evolution and oil and gas problems, 2008, 26–28.
8. Bogomolov, E.S., Guseva, V.F., Turchenko, S.I., Mantle origin of the Pana Tundra layered mafic intrusion: evidence from Sm–Nd and Rb–Sr data. Geochem. Int. 40:9 (2002), 855–859.
9. Bonin, B., Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos 78 (2004), 1–24.
10. Bonin, B., A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos 97 (2007), 1–29.
11. Boynton, W.V., Cosmochemistry of the rare Earth elements: Meteorite Studies. Rare Earth Element Geochemistry. Amsterdam Et al. 1984, Elsevier, 63–114.
12. Buslov, M.M., Watanabe, T., Fujiwara, Y., Iwata, K., Smirnova, L.V., Safonova, I.Yu., Semakov, N.N., Kiryanova, A.P., Late Paleozoic faults of the Altai region, Central Asia: tectonic pattern and model of formation. J. Asian Earth Sci. 23 (2004), 655–671.
13. Buslov, M.M., Safonova, I.Y., Fedoseev, G.S., Reichow, M.K., Davies, K., Babin, G.A., Permo-Triassic plume magmatism of the Kuznetsk Basin, Central Asia: Geology, geochronology, and geochemistry. Russ. Geol. Geophys. 51:9 (2010), 1021–1036.
14. Buslov, M.M., Geng, H., Travin, A.V., Otgonbaatar, D., Kulikova, A.V., Chen, M., Stijn, G., Semakov, N.N., Rubanova, E.S., Abildaeva, M.A., Voitishek, E.E., Trofimova, D.A., Tectonics and geodynamics of Gorny Altai and adjacent structures of the Altai–Sayan folded area. Russ. Geol. Geophys. 54 (2013), 1250–1271.
15. Chen, X.J., Shu, L.S., Santosh, M., Late Paleozoic post-collisional magmatism in the Eastern Tianshan Belt, Northwest China: new insights from geochemistry, geochronology and petrology of bimodal volcanic rocks. Lithos 127 (2011), 581–598.
16. Collins, W.J., Beams, S.D., White, A.J.R., Chappell, B.W., Nature and origin of A type granites with particular reference to southeastern Australia. Contrib. Mineral. Petrol. 80 (1982), 189–200.
17. Corfu, F., Hanchar, J.M., Hoskin, P.W.O., Kinny, P., Atlas of Zircon Textures. Rev. Mineral. Geochem. 53 (2003), 469–500.
18. Coulon, C., Megartsi, M., Fourcade, S., Maury, R.C., Bellon, H., Louni-Hacini, A., Cotten, J., Coutelle, A., Hermitte, D., Post-collisional transition from calc-alkaline to alkaline volcanism during the Neogene in Oranie (Algeria): magmatic expression of a slab breakoff. Lithos 62 (2002), 87–110.
19. Davies, J.H., Von Blanckenburg, F., Slab breakoff: a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet. Sci. Lett. 129 (1995), 85–102.
20. De Paolo, D.J., Linn, A.M., Schubert, G., The continental crust age distribution: methods of determining mantle separation ages from Sm-Nd isotopic data and application to the southwestern United States. J. Geophys. Res. 96 (1991), 2071–2088.
21. Dobretsov, N.L., Permian-Triassic magmatism and sedimentation in Eurasia as a result of a superplume. Transactions (Doklady) of the Russian Academy of Sciences. Earth Sci. Sect. 354:4 (1997), 497–501.
22. Dobretsov, N.L., Mantle plumes and their role in the formation of anorogenic granitoids. Russ. Geol. Geophys. 44:12 (2003), 1243–1261.
23. Dobretsov, N.L., Vladimirov, A.G., Kruk, N.N., Permian–Triassic magmatism in the Altai–Sayan fold system as a reflection of the Siberian superplume. Dokl. Earth Sci. 400:1 (2005), 40–48.
24. Dobretsov, N.L., Borisenko, A.S., Izokh, A.E., Zhmodik, S.M., A thermochemical model of Eurasian Permo-Triassic mantle plumes as a basis for prediction and exploration for Cu-Ni-PGE and rare-metal oredeposits. Russ. Geol. Geophys. 51:9 (2010), 903–924.
25. Eby, G.N., The A-type granitoids—a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26 (1990), 115–134.
26. Eby, G.N., Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20 (1992), 641–644.
27. Faure, G., Principles of Isotope Geology. 1986, John Wiley and Sons, Inc, New York, NY None.
28. Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., A geochemical classification for granitic rocks. J. Petrol. 42 (2001), 2033–2048.
29. Frost, C.D., Frost, B.R., On Ferroan (A-type) Granitoids: their compositional variability and modes of origin. J. Petrol. 52 (2011), 39–53.
30. Fujimaki, H., Partition coefficients of Hf, Zr, and REE between zircon, apatite, and liquid. Contrib. Mineral. Petrol. 94 (1986), 42–45.
31. Gavryushkina, O.A., Travin, A.V., Kruk, N.N., Duration of granitoid magmatism in peripheral parts of large igneous provinces (based on 40Ar/39Ar isotopic studies of Altai Permian-Triassic granitoids). Geodynam. Tectonophys. 8:4 (2017), 1035–1047.
32. Hanson, G.N., An approach to trace element modeling using a simple igneous system as an example. Lipin, B.T., McKay, G.A., (eds.) Geochemistry and Mineralogy of the Rare Earth Elements Mineralogical Society of America Reviews in Mineralogy, 21, 1989, 79–97.
33. Hoskin, P.W.O., Black, L.P., Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J. Metamorph. Geol. 18:4 (2000), 423–439.
34. Jenner, G.A., Longerich, P., Jackson, S.E., Fryer, B.J., ICP-MS — A powerful tool for high-precision trace-element analysis in Earth sciences: Evidence from analysis of selected U.S.G.S. reference samples. Chemical Geology 83:1-2 (1990), 133–148.
35. Kotelnikov, A.D., Maksikov, S.V., Kotelnikova, I.V., Makarenko, N.A., Subbotin, K.S., Explanation Note to the Sheet N-44-XVIII (Cherepanovo) of the Geological Map of Russian Federation, Scale 1:200 000 (Second Edition), 202. 2008 (in Russian).
36. Kröner, A., Windley, B.F., Badarch, G., Tomurtogoo, O., Hegner, E., Jahn, B.M., Gruschka, S., Khain, E.V., Wingate, M.T.D., Accretionary growth and crust formation in the Central Asian Orogenic Belt and comparison with the Arabian–Nubian shield. Geol. Soc. Am. Mem. 200 (2007), 181–209.
37. Kruk, N.N., Plotnikov, A.V., Vladimirov, A.G., Kutolin, V.A., Geochemistry and geodynamic conditions of the trap rock formation in the Kuznetsk Basin. Dokl. Earth Sci. 369 (1999), 1387–1390.
38. Kuzmin, M.I., Yarmolyuk, V.V., Plate tectonics and mantle plumes as a basis of deep-seated Earth's tectonic activity for the last 2 Ga. Russ. Geol. Geophys. 55:2 (2014), 120–143.
39. Kuzmin, M.I., Yarmolyuk, V.V., Kravchinsky, V.A., Phanerozoic within Plate Magmatism of North Asia: absolute Paleogeographic Reconstructions of the African large Low Shear Velocity Province. Geotectonics 45:6 (2011), 415–438.
40. LaTourrette, T., Hervig, R.L., Holloway, J.R., Trace element partitioning between amphibole, phlogopite, and basanite melt. Earth Planet. Sci. 983 Lett. 135:1–4 (1995), 13–30.
41. Le Maitre, R.W.B., Dudek, P., Keller, A., Lameyre, J., Le Bas, J., Sabine, M.J., Zanettin, A.R., A classification of igneous rocks and glossary of terms: recommendations of the International Union of Geological Sciences. Subcomm. Syst. Igneous Rocks, 552, 1989, 3.
42. Li, T., Daukeev, S.Z., Kim, B.C., Tomurtogoo, O., Petrov, O.V., (eds.) Atlas of Geological Maps of Central Asia and Adjacent Areas, Scale 1:2 500 000, 2008, Publishing House, Beijing.
43. Liégeois, J.P., Preface — some words on the post-collisional magmatism. Lithos 45 (1998), xv–xvii.
44. Liew, T.C., Hofmann, A.W., Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe: Indications from a Nd and Sr isotopic study. Contributions to Mineralogy and Petrology 98 (1988), 129–138.
45. Liu, F., Han, D., Petrogenetic and tectonic implications of Triassic granitoids in the Chinese Altay: the Alaer granite example. Heliyon, 5(2), 2019, E01261.
46. Lustrino, M., How the delamination and detachment of lower crust can influence basaltic magmatism. Earth Sci. Rev. 72 (2005), 21–38.
47. Mahood, G., Hildreth, W., Large partition coefficients for trace elements in high-silica rhyolites. Geochim. Cosmochim. Acta 47 (1983), 11–30.
48. Maniar, P.D., Piccoli, P.M., Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 101:5 (1989), 635–643.
49. Mao, Q.G., Xiao, W.J., Fang, T.H., Windley, B.F., Sun, M., Ao, S.J., Zhang, J.E., Huang, X.K., Geochronology, geochemistry and petrogenesis of early Permian alkaline magmatism in the Eastern Tianshan: implications for tectonics of the Southern Altaids. Lithos 190–191 (2014), 37–51.
50. McDonough, W.F., Sun, S.-S., The composition of the Earth. Chem. Geol. 120 (1995), 223–253.
51. Middlemost, Magmas and Magmatic Rocks. An Introduction to Igneous Petrology. 1985, Longman, London, New York, 266.
52. Miller, J.S., Matzel, J.E.P., Miller, C.F., Burgess, S.D., Miller, R.B., Zircon growth and recycling during the assembly of large, composite arc plutons. J. Volcanol. Geotherm. Res. 167 (2007), 282–299.
53. Patiño Douce, A.E., Beard, J.S., Dehydration–melting of biotite and quartz amphibolite from 3 to 15 kb. J. Petrol. 36 (1995), 707–738.
54. Pearce, J.A., Harris, N.B., Tindle, A.G., Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 25 (1984), 956–983.
55. Philpotts, J.A., Schnetzler, C.C., Phenocryst-matrix partition coefficients for K, Rb, Sr and Ba, with applications to anorthosite and basalt genesis. Geochim. Cosmochim. Acta 34 (1970), 307–322.
56. Reichow, M.K., Pringle, M.S., Al'Mukhamedov, A.I., Allen, M.B., Andreichev, V.L., Buslov, M.M., Davies, C.E., Fedoseev, G.S., Fitton, J.G., Inger, S., Medvedev, A.Ya., Mitchell, C., Puchkov, V.N., Safonova, I.Yu., Scott, R.A., Saunders, A.D., The timing and extent of the eruption of the Siberian Traps large igneous province: implications for the end-Permian environmental crisis. Earth Planet. Sci. Lett. 277:1–2 (2009), 9–20.
57. Richards, J.R., Kerrich, R., Special paper: Adakite-like rocks: their diverse origins and questionable role in metallogenesis. Econ. Geol. 102 (2007), 537–576.
58. Rogers, G., Hawkesworth, C.J., A geochemical traverse across the north Chilean Andes: evidence for crust generation from the mantle wedge. Earth Planet. Sci. Lett. 9 (1989), 271–285.
59. Rudnick, R.L., Gao, S., Composition of the Continental Crust. 3, 2003, Elsevier-Pergamon, Oxford, 1–64.
60. Sengör, A.M.C., Natalin, B.A., Burtman, V.S., Evolution of the Altaid Tectonic Collage and Paleozoic crustal growth in Eurasia. Nature 364 (1993), 299–307.
61. Sisson, T.W., Hornblende-melt trace-element partitioning measured by ion microprobe. Chem. Geol. 117 (1994), 331–344.
62. Skjerlie, K.P., Johnston, A.D., Fluid-absent melting behavior of an F-rich tonalitic gneiss at mid-crustal pressures: implications for the generation of anorogenic granites. J. Petrol. 34 (1993), 785–815.
63. Sotnikov, V.I., Fedoseev, G.S., Kungurtsev, L.V., Borisenko, A.S., Obolenskiy, A.A., Vasiliev, I.P., Gimon, V.O., Geodynamics, magmatism, and metallogeny of the Kolyvan’–Tomsk fold zone. Novosibirsk, 227, 1999 (in Russian).
64. Sotnikov, V.I., Fedoseev, G.S., Ponomarchuk, V.А., Borisenko, А.S., Berzina, А.N., Granitoid complexes of the Kolyvan’–Tomsk folded zone (West Siberia). Russ. Geol. Geophys. 41:1 (2000), 120–125.
65. Stacey, J.S., Kramers, J.D., Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26:2 (1975), 207–221.
66. Surkov, V.S., Kazakov, A.M., Devyatov, V.P., Smirnov, L.V., Lower-Middle Triassic riftogenic complex of the West Siberian basin. Nat. Geol. 3 (1997), 31–37 (In Russian).
67. Tadayon, M., Rossetti, F., Zattin, M., Nozaem, R., Calzolari, G., Madanipour, S., Salvini, F., The post-Eocene evolution of the Doruneh Fault region (Central Iran): the intraplate response to the Reorganization of the Arabia-Eurasia collision zone. Tectonics 36 (2017), 3038–3064.
68. Tang, G.J., Chung, S.L., Wang, Q., Wyman, D.A., Dan, W., Chen, H.Y., Zhao, Z.H., Petrogenesis of a late Carboniferous mafic dike–granitoid association in the western Tianshan: response to the geodynamics of oceanic subduction. Lithos 202–203 (2014), 85–89.
69. Vermeesch, P., IsoplotR: a free and open toolbox for geochronology. Geosci. Front. 9 (2018), 1479–1493.
70. Vrublevskii, V.A., Nagorniy, M.P., Rubtsov, A.F., Erv'ye, Y.U., Geological structure of the conjugation domain of the Kuznetsk Alatau and Kolyvan–Tomsk folded zone. Tomsk. 1987, 96 (in Russian).
71. Wang, T., Jahn, B.M., Kovach, V.P., Tong, Y., Hong, D.W., Han, B.F., Nd–Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt. Lithos 110 (2009), 359–372.
72. Watson, E.B., Harrison, T.M., Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 64 (1983), 295–304.
73. Wilhem, C., Windley, B.F., Stampfli, G.M., The Altaids of Central Asia: a tectonic and evolutionary innovative review. Earth Sci. Rev. 113 (2012), 303–341.
74. Williams, I.S., U–Th–Pb Geochronology by Ion Microprobe. In applications of Microanalytical Techniques to Understanding Mineralizing Processes; McKibben, M.A., Shanks, W.C., Ridley, W.I., Eds. Rev. Econ. Geol. 7 (1998), 1–35.
75. Willner, A.P., Richter P.P., Ring, U., Structural overprint of a late Paleozoic accretionary system in north-central Chile (34°-35°S) during post-accretional deformation. Andean Geology 36:1 (2009), 17–36.
76. Wilson, M., Igneous Petrogenesis: A Global Tectonic Approach. 1989, Unwyn Hyman, London.
77. Windley, B.F., Allen, M.B., Zhang, C., Zhao, Z.Y., Wang, G.R., Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range, Central Asia. Geology, 18, 1990, 128.
78. Windley, B.F., Alexeiev, D., Xiao, W., Kroner, A., Badarch, G., Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. London. 164 (2007), 31–47.
79. Wu, F.Y., Sun, D.Y., Li, H.M., Jahn, B.M., Wilde, S., A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chem. Geol. 287 (2002), 143–173.
80. Wu, S.J., Hu, J.M., Ren, M.H., Gong, W.B., Liu, Y., Yan, J.Y., Petrography and zircon U-Pb isotopic study of the Bayanwulashan complex: Constraints on the Paleoproterozoic evolution of the Alxa Block, westernmost North China Craton. J. Asian Earth Sci. 94 (2014), 226–239.
81. Xiao, W., Huang, B., Han, C., Sun, S., Li, J., A review of the western part of the Altaids: a key to understanding the architecture of accretionary orogens. Gondwana Res. 18 (2010), 253–273.
82. Xiao, W.J., Windley, B.F., Sun, S., Li, J., Huang, B.C., Han, C.M., Yuan, C., Sun, M., Chen, H.L., A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: oroclines, sutures, and terminal accretion. Annu. Rev. Earth Planet. Sci. 43 (2015), 477–507.
83. Yurimoto, H., Duke, E.F., Papike, J.J., Shearer, C.K., Are discontinuous chondrite-normalized REE patterns in pegmatitic granite systems the results of monazite fractionation?. Geochim. Cosmochim. Acta 54 (1990), 2141–2145.
84. Zhang, H.F., Parrish, R., Zhang, L., Xu, W.C., Yuan, H.L., Gao, S., Crowley, Q.G., A-type granite and adakitic magmatism association in Songpan-Ganzi fold belt, eastern Tibetan Plateau: implication for lithospheric delamination. Lithos 97 (2007), 323–335.
85. Zhang, X.R., Zhao, G.C., Eizenhöfer, P.R., Sun, M., Han, Y.G., Hou, W.Z., Liu, D.X., Wang, B., Liu, Q., Xu, B., Zhu, C.Y., Tectonic transition from late Carboniferous subduction to early Permian post-collisional extension in the Eastern Tianshan, NW China: insights from geochronology and geochemistry of mafic-intermediate intrusions. Lithos 256–257 (2016), 269–281.
86. Zhimulev, F.I., Gillespie, J., Glorie, S., Vetrov, E.V., De Grave, J., Tectonic history of the Kolyvan–Tomsk folded zone (KTFZ), Russia: Insight from zircon U/Pb geochronology and Nd isotopes. Geol. J. 55 (2020), 1913–1930.