Инд. авторы: Romanenko A.V., Rashchenko S.V., Sokol A.G., Korsakov A.V., Seryotkin Y.V., Glazyrin K.V., Musiyachenko K.A.
Заглавие: Crystal structures of K-cymrite and kokchetavite from single-crystal X-ray diffraction
Библ. ссылка: Romanenko A.V., Rashchenko S.V., Sokol A.G., Korsakov A.V., Seryotkin Y.V., Glazyrin K.V., Musiyachenko K.A. Crystal structures of K-cymrite and kokchetavite from single-crystal X-ray diffraction // American Mineralogist. - 2021. - Vol.106. - Iss. 3. - P.404-409. - ISSN 0003-004X. - EISSN 1945-3027.
Идентиф-ры: DOI: 10.2138/am-2020-7407; РИНЦ: 46765408; РИНЦ: 46765408; WoS: 000623798100006;
Реферат: eng: We determined for the first time the crystal structures of high-pressure K-cymrite (KAlSi3O8 center dot H2O) and its dehydrated form kokchetavite (KAlSi3O8) using single-crystal X-ray diffraction. The K-cymrite structure has been successfully refined in the hexagonal space group P6/mmm [a = 5.3361(3) angstrom, c = 7.7081(7) angstrom, V= 190.08(3) angstrom(3), R1 = 0.036 for 127 unique observed reflections], which is in agreement with previous models from powder X-ray diffraction. In contrast, kokchetavite shows superstructural reflections, suggesting a different unit cell and a space group of P6/mcc [a = 10.5757(3)angstrom, c = 15.6404(6) angstrom, V= 1514.94(10) angstrom(3), R1 = 0.068 for 1455 unique observed reflections]. Upon dehydration, singlecrystal grains of K-cymrite transform into single-crystal grains of kokchetavite. The latter questions a previous interpretation of kokchetavite crystals in mineral inclusions as a product of direct crystallization from fluid/melt. The Raman spectrum of K-cymrite shows a strong polarization dependence, which is important in identification of the mineral inclusions.
Ключевые слова: NITROGEN; MINERALS; BREAKDOWN; POLYMORPH; POTASSIUM-FELDSPAR; CONDITIONS BEAMLINE P02.2; Raman spectroscopy; single-crystal X-ray diffraction; kokchetavite; K-cymrite; SILICATE; ORIGIN;
Издано: 2021
Физ. хар-ка: с.404-409
Цитирование: 1. Basciano, L.C., and Groat, L.A. (2007) The crystal structure of kampfite. Canadian Mineralogist, 45, 935-943.
2. Bolotina, N.B., Rastsvetaeva, R.K., Andrianov, V.I., and Kashaev, A.A. (1991) Refinement of modulated crystals: Structure of cymrite. Soviet Physics: Crystallography, 36, 190-194.
3. Bolotina, N.B., Rastsvetaeva, R.K., and Kashaev, A.A. (2010) Refinement of the twinned structure of cymrite from the Ruby Creek deposit (Alaska). Crystallography Reports, 55, 569-574.
4. Capillas, C., Tasci, E.S., de la Flor, G., Orobengoa, D., Perez-Mato, J.M., and Aroyo, M.I. (2011) A new computer tool at the Bilbao Crystallographic Server to detect and characterize pseudosymmetry. Zeitschrift für Kristallographie Crystalline Materials, 226, 186-196.
5. Chantler, C.T. (1995) Theoretical form factor, attenuation, and scattering tabulation for Z =1-92 from E =1-10 eV to E =0.4-1.0 MeV. Journal of Physical and Chemical Reference Data, 24, 71-643.
6. Christy, A.G., Kampf, A.R., Mills, S.J., Housley, R.M., and Thorne, B. (2014) Crystal structure and revised chemical formula for burckhardtite, Pb2(Fe3+Te6+)[AlSi3O8]O6: A double-sheet silicate with intercalated phyllotellurate layers. Mineralogical Magazine, 78, 1763-1773.
7. Drits, V.A., and Kashaev, A.A. (1968) The origin of satellites in the reciprocal lattice of cymrite. Soviet Physics-Crystallography, 13, 700-705.
8. Fasshauer, D.W., Chatterjee, N.D., and Marler, B. (1997) Synthesis, structure, thermodynamic properties, and stability relations of K-cymrite, K [AlSi3O8]·H2O. Physics and Chemistry of Minerals, 24, 455-462.
9. Faust, J., and Knittle, E. (1994) The equation of state, amorphization, and high-pressure phase diagram of muscovite. Journal of Geophysical Research: Solid Earth, 99, 19785-19792.
10. Ferrero, S., Ziemann, M.A., Angel, R.J., O'Brien, P.J., and Wunder, B. (2016) Kumdykolite, kokchetavite, and cristobalite crystallized in nanogranites from felsic granulites, Orlica-Snieznik Dome (Bohemian Massif): Not evidence for ultrahigh-pressure conditions. Contributions to Mineralogy and Petrology, 171.
11. Galuskina, I.O., Galuskin, E.V., Vapnik, Y., Prusik, K., Stasiak, M., Dzierzanowski, P., and Murashko, M. (2017) Gurimite, Ba3(VO4)2and hexacelsian, BaAl2Si2O8-two new minerals from schorlomite-rich paralava of the Hatrurim Complex, Negev Desert, Israel. Mineralogical Magazine, 81, 1009-1019.
12. Harley, S.L., Thompson, P., Hensen, B.J., and Buick, I.S. (2002) Cordierite as a sensor of fluid conditions in high-grade metamorphism and crustal anatexis: Cordierite, metamorphism and anatexis. Journal of Metamorphic Geology, 20, 71-86.
13. Hawthorne, F.C., Uvarova, Y.A., and Sokolova, E. (2019) A structure hierarchy for silicate minerals: sheet silicates. Mineralogical Magazine, 83, 3-55.
14. Huang, W.-L., and Wyllie, P.J. (1975) Melting reactions in the system NaAlSi3O8- KAlSi3O8-SiO2to 35 kilobars, dry and with excess water. The Journal of Geology, 83, 737-748.
15. Hübschle, C.B., Sheldrick, G.M., and Dittrich, B. (2011) ShelXle: A Qt graphical user interface for SHELXL. Journal of Applied Crystallography, 44, 1281-1284.
16. Hwang, S.L., Shen, P.Y., Chu, H.T., Yui, T.F., Liou, J., Sobolev, N.V., Zhang, R.Y., Shatsky, V.S., and Zayachkovsky, A.A. (2004) Kokchetavite: A new potassiumfeldspar polymorph from the Kokchetav ultrahigh-pressure terrane. Contributions to Mineralogy and Petrology, 148, 380-389.
17. Hwang, S.-L., Shen, P., Chu, H.-T., Yui, T.-F., Liou, J.G., and Sobolev, N.V. (2009) Kumdykolite, an orthorhombic polymorph of albite, from the Kokchetav ultrahigh-pressure massif, Kazakhstan. European Journal of Mineralogy, 21, 1325-1334.
18. Kanzaki, M., Xue, X.Y., Amalberti, J., and Zhang, Q. (2012) Raman and NMR spectroscopic characterization of high-pressure K-cymrite (KAlSi3O8·H2O) and its anhydrous form (kokchetavite). Journal of Mineralogical and Petrological Sciences, 107, 114119.
19. Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O-H O hydrogen bond lengths in minerals. In P. Schuster and W. Mikenda, Eds., Hydrogen Bond Research, pp. 103-115. Springer.
20. Liebau, F. (1985) Structural Chemistry of Silicates: Structure, bonding, and classification. Springer-Verlag.
21. Liermann, H.-P., Konôpková, Z., Morgenroth, W., Glazyrin, K., Bednarčik, J., McBride, E.E., Petitgirard, S., Delitz, J.T., Wendt, M., Bican, Y., and others (2015) The Extreme Conditions beamline P02.2 and the Extreme Conditions science infrastructure at PETRA III. Journal of Synchrotron Radiation, 22, 908-924.
22. Maruyama, S., Ikoma, M., Genda, H., Hirose, K., Yokoyama, T., and Santosh, M. (2013) The naked planet Earth: Most essential pre-requisite for the origin and evolution of life. Geoscience Frontiers, 4, 141-165.
23. Massonne, H.-J. (1992) Evidence for low-temperature ultrapotassic siliceous fluids in subduction zone environments from experiments in the system K2O-MgO-Al2O3- SiO2-H2O (KMASH). Lithos, 28, 421-434.
24. Mikhno, A.O., Schmidt, U., and Korsakov, A.V. (2013) Origin of K-cymrite and kokchetavite in the polyphase mineral inclusions from Kokchetav UHP calc-silicate rocks: Evidence from confocal Raman imaging. European Journal of Mineralogy, 25, 807-816.
25. Momma, K., and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 1272-1276.
26. Palyanov, Y.N., Borzdov, Y.M., Khokhryakov, A.F., Kupriyanov, I.N., and Sokol, A.G. (2010) Effect of nitrogen impurity on diamond crystal growth processes. Crystal Growth and Design, 10, 3169-3175.
27. Rothkirch, A., Gatta, G.D., Meyer, M., Merkel, S., Merlini, M., and Liermann, H.-P. (2013) Single-crystal diffraction at the Extreme Conditions beamline P02.2: Procedure for collecting and analyzing high-pressure single-crystal data. Journal of Synchrotron Radiation, 20, 711-720.
28. Runnells, D.D. (1964) Cymrite in a copper deposit, Brooks Range, Alaska. American Mineralogist, 49, 158-165.
29. Safonova, I., Litasov, K., and Maruyama, S. (2015) Triggers and sources of volatile-bearing plumes in the mantle transition zone. Geoscience Frontiers, 6, 679-685.
30. Schreyer, W. (1987) Continental crust subducted to depths near 100 km: Implications for magma and fluid genesis in collision zones. Magmatic Processes: Physicochemical Principles, 1, 10.
31. Seki, Y., and Kennedy, G.C. (1964) The breakdown of potassium feldspar, KAlSi3O8at high temperatures and high pressures. American Mineralogist, 49, 1688-1706.
32. Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystal-lographica, C71, 3-8.
33. Smith, W.C., Bannister, F.A., and Hey, M.H. (1949) Cymrite, a new barium mineral from the Benallt manganese mine, Rhiw, Carnarvonshire. Mineralogical Magazine and Journal of the Mineralogical Society, 28, 676-681.
34. Sokol, A.G., Borzdov, Y.M., Palyanov, Y.N., and Khokhryakov, A.F. (2015) High-temperature calibration of a multi-anvil high pressure apparatus. High Pressure Research, 1-9.
35. Sokol, A.G., Kupriyanov, I.N., Seryotkin, Y.V., Sokol, E.V., Kruk, A.N., Tomilenko, A.A., Bul'bak, T.A., and Palyanov, Y.N. (2019) Cymrite as mineral clathrate: An overlooked redox insensitive transporter of nitrogen in the mantle. Gondwana Research.
36. Thompson, P., Parsons, I., Graham, C.M., and Jackson, B. (1998) The breakdown of potassium feldspar at high water pressures. Contributions to Mineralogy and Petrology, 130, 176-186.
37. Zhang, R.Y., Liou, J.G., Iizuka, Y., and Yang, J.S. (2009) First record of K-cymrite in North Qaidam UHP eclogite, Western China. American Mineralogist, 94, 222-228.
38. Zolotarev, A.A., Krivovichev, S.V., Panikorovskii, T.L., Gurzhiy, V.V., Bocharov, V.N., and Rassomakhin, M.A. (2019) Dmisteinbergite, CaAl2Si2O8, a metastable polymorph of anorthite: Crystal-structure and Raman spectroscopic study of the holotype specimen. Minerals, 9, 570.