Инд. авторы: Yudin D.S., Murzintsev N.G., Travin A.V., Alifirova T.A., Zhimulev E.I., Novikova S.A.
Заглавие: Studying the Stability of the K/Ar Isotopic System of Phlogopites in Conditions of High T, P: Ar-40/Ar-39 Dating, Laboratory Experiment, Numerical Simulation
Библ. ссылка: Yudin D.S., Murzintsev N.G., Travin A.V., Alifirova T.A., Zhimulev E.I., Novikova S.A. Studying the Stability of the K/Ar Isotopic System of Phlogopites in Conditions of High T, P: Ar-40/Ar-39 Dating, Laboratory Experiment, Numerical Simulation // MINERALS. - 2021. - Vol.11. - Iss. 2. - Art.192.
Идентиф-ры: DOI: 10.3390/min11020192; РИНЦ: 46750811; WoS: 000622849800001;
Реферат: eng: Typically, Ar-40/Ar-39 dating of phlogopites from deep-seated xenoliths of kimberlite pipes produces estimates that suggest much older ages than those when these pipes were intruded. High-pressure (3 GPa) laboratory experiments enabled the authors to explore the behaviour of argon in the phlogopite structure under the conditions that correspond to the mantle, at the temperatures (from 700 to 1000 degrees C), far exceeding closure temperature of the K/Ar isotopic system. "Volume diffusion" remains foremost for describing the mobility of argon in phlogopite at high pressures. The mantle material age can be estimated through the dating of the phlogopites from deep-seated xenoliths of kimberlites, employing the Ar-40/Ar-39 method, subject to correction for a partial loss of radiogenic Ar-40 when xenolith moves upwards to the Earth's surface. The obtained data served as the basis for proposing the behaviour model of the K/Ar isotopic system of minerals in conditions of great depths (lower crust, mantle), and when transporting xenoliths in the kimberlite melt.
Ключевые слова: laboratory experiments; Ar-40; mantle xenoliths; kimberlite pipes; Ar-39 dating; numerical modelling;
Издано: 2021
Физ. хар-ка: 192
Цитирование: 1. Bulanova, G.P.; Muchemwa, E.; Pearson, D.G.; Griffin, B.J.; Kelley, S.P.; Klemme, S.; Smith, C.B. Syngenetic inclusions of yimengite in diamond from Sese kimberlite (Zimbabwe)—Evidence for metasomatic conditions of growth. Lithos 2004, 77, 181– 192, doi:10.1016/j.lithos.2004.04.002.
2. Gregory, L.C.; Meert, J.G.; Pradhan, V.; Pandit, M.K.; Tamrat, E.; Malone, S.J. A paleomagnetic and geochronologic study of the Majhgawan kimberlite, India: Implications for the age of the Upper Vindhyan Supergroup. Precambrian Res. 2006, 149, 65–75, doi:10.1016/J.PRECAMRES.2006.05.005.
3. Phillips, D.; Harris, J.W. Provenance studies from40Ar/39Ar dating of mineral inclusions in diamonds: Methodological tests on the Orapa kimberlite, Botswana. Earth Planet. Sci. Lett. 2008, 274, 169–178, doi:10.1016/j.epsl.2008.07.019.
4. Zaitsev, A.I.; Smelov, A.P. Isotopic Geochronology of Rocks of the Kimberlite Formation of the Yakut Province; IGABM SB RAS; Offset: Yakutsk, Russia, 2010; 108p.
5. Osborn, I.; Sherlock, S.; Anand, M.; ArglesT. New Ar–Ar ages of southern Indian kimberlites and a lamproite and their geochemical evolution. Precambrian Res. 2011, 189, 91–103, doi:10.1016/j.precamres.2011.05.004.
6. Kostrovitsky, S.I.; Solovyova, L.V.; Yakovlev, D.A.; Suvorova, L.F.; Sandimirova, G.P.; Travin, A.V.; Yudin, D.S. Kimberlites and megacrystal Association of minerals, isotope-geochemical studies. Petrology 2013, 21, 143–162, doi:10.7868/S0869590313020052.
7. Pokhilenko, L.N.; Alifirova, T.A.; Yudin, D.S.40Ar/39Ar-Dating of phlogopite from mantle xenoliths: Evidence of ancient deep metasomatism of the lithosphere of the Siberian craton. Dokl. RAS 2013, 449, 76–79, doi:10.1134/S1028334X13030057.
8. Yudin, D.S.; Tomilenko, A.A.; Travin, A.V.; Agashev, A.M.; Pokhilenko, N.P. Orihashi Yu. Age of introduction of the Udachnaya-Vostochnaya kimberlite pipe: U/Pb and40Ar/39Ar data. Dokl. RAS 2014, 455, 91–93, doi:10.1134/S1028334X14030106.
9. Ashchepkov, I.V.; Logvinova, A.M.; Reimers, L.F.; Ntaflos, T.; Spetsius, Z.V.; Vladykin, N.V.; Downes, H.; Yudin, D.S.; Travin, A.V.; Makovchuk, I.V.; et al. The Sytykanskaya kimberlite pipe: Evidence from deep-seated xenoliths and xenocrysts for the evolution of the mantle beneath Alakit, Yakutia, Russia. Geosci. Front. 2015, 6, 687–714, doi:10.1016/j.gsf.2014.08.005.
10. Larionova, Y.O.; Sazonova, L.V.; Lebedeva, N.M.; Nosova, A.A.; Tretyachenko, V.V.; Travin, A.V.; Kargin, A.V.; Yudin, D.S. Age of the Arkhangelsk Province kimberlites: Rb-Sr, 40Ar/39Ar isotopic-geochronological and mineralogical data for phlogopite. Petrology 2016, 24, 607–639, doi:10.1134/S0869591116040020.
11. Pushkarev, Y.D. Actual Problems of K-Ar Geochronometry: Report at the 1st All-Union Workshop on Isotope Geochronology (5–12 May 1976); USSR AS. Geol. Inst. Kolsky Branch: Apatity, Russia, 1977; 54p.
12. Levskiy, L.K.; Levchenkov, O.A. Geochronology and Geochemistry of Isotopes: Proceedings; Pre-Cambrian Institute of Geology and Geochronology (USSR Academy of Sciences) Publ. House “Nauka”, Leningrad Branch: Moscow, Russia, 1987; 216p.
13. Morozova, I.M.; Rublev, A.G. Potassium-Argon Systems of Polymetamorphic Rocks; Shukolyukov, Y.A.М., Ed.; Nauka: Moscow, Russia, 1987; pp. 19–28.
14. Lee, J.K.W. The argon release mechanisms of hornblende in vacuo. Chemi. Geol. 1993, 106, 133–160, doi:10.1016/0009 2541(93)90170-N.
15. Sletten, V.M.; Onstott, T.C. The effect of the instability of muscovite during in vacuo heating on 40Ar/39Ar step-heating spectra. Geochim. Cosmochim. Acta 1998, 62, 123–142, doi:10.1016/S0016-7037(97)00323-2.
16. Lo, C.-H.; Lee, J.K.W.; Onstott, T.C. Argon release mechanisms of biotite in vacuo and the role of short-circuit diffusion and recoil. Chem. Geol. 2000, 165, 135–166, doi:10.1016/S0009-2541(99)00167-9.
17. Lovera, O.M.; Grove, M.; Harrison, T.M.; Mahon, K.I. Systematic analysis of K-feldspar 40Ar/39Ar step heating results: I Significance of activation energy determinations. Geochim. Cosmochim. Acta 1997, 61, 3171–3192, doi:10.1016/S0016-7037(97)00147-6.
18. Wartho, J.-A.; Kelley, S.P. 40Ar/39Ar ages in mantle xenolith phlogopites: Determining the ages of multiple lithospheric mantle events and diatreme ascent rates in southern Africa and Malaita, Solomon Islands. In Geochronology: Linking the Isotopic Record with Petrology and Textures, Geological Journa; Vance, D., Müller, W., Villa, I.M., Eds.; Special Publications: London, UK, 2003; Volume 220, pp. 231–248, doi:10.1144/GSL.SP.2003.220.01.14.
19. Cassata, W.S.; Renne, P.R.; Shuster, D.L. Argon diffusion in plagioclase and implications for thermochronology: A case study from the Bushveld Complex, South Africa. Geochim. Cosmochim. Acta 2009, 73, 6600–6612, doi:10.1016/j.gca.2009.07.017.
20. Hodges, K.V. Geochronology and Thermochronology in Orogenic Systems. In Treatise on Geochemistry; Elsevier: Oxford, UK, 2004; pp. 263–292, doi:10.1016/B0-08-043751-6/03024-3.
21. Lee, J.K.W.; Aldama, A.A. Multipath diffusion: A general numerical model. Comput. Geosci. 1992, 18, 531–555, doi:10.1016/0098 3004(92)90093-7.
22. Harrison, T.M.; Duncan, I.; McDougall, I. Diffusion of 40Ar in biotite—Temperature, pressure and compositional effects. Geochim. Cosmochim. Acta 1985, 49, 2461–2468, doi:10.1016/0016-7037(85)90246-7.
23. Harrison, T.M.; Celerier, J.; Aikman, A.B.; Hermann, J.; Heizler, M.T. Diffusion of 40Ar in muscovite. Geochim. Cosmochim. Acta 2009, 73, 1039–1051, doi:10.1016/j.gca.2008.09.038.
24. Baxter, E.F. Diffusion of Noble Gases in Minerals. Rev. Mineral. Geochem. 2010, 72, 509–557.
25. Kerchman, V.I.; Lobkovskiy, L.I. Specific features of geology, seismicity, and thermal behaviour of collision-zone belts, due to intracontinental subduction. Rep. USSR Acad. Sci. 1990, 125-132.
26. Persikov, E.S.; Bukhtiyarov, P.G.; Sokol, A.G. Changes in viscosity of kimberlite and basaltic magmas in the processes of their origination and evolution (forecast). Geol. Geophys. 2015, 56, 1131–1140, doi:10.1016/j.rgg.2015.05.005.
27. Peslier, A.H.; Woodland, A.B.; Wolff, J.A. Fast kimberlite ascent rates estimated from hydrogen diffusion profiles in xenolithic mantle olivines from southern Africa. Geochim. Cosmochim. Acta 2008, 72, 2711–2722, doi:10.1016/j.gca.2008.03.019.
28. Alifirova, T.A.; Pokhilenko, L.N. Features of microstructures and accessory mineralogy in garnet peridotites from the Udachnaya kimberlite pipe, Sakha Republic (Yakutia). Lithosphere and alkaline-ultramafic magmatism of the Siberian platform and its framing: Processes of formation of diamond deposits, methods of forecasting and prospecting. Collection of scientific papers on fundamental research of, V.S. Sobolev Institute of Geology and Mineralogy of the SB RAS. Novosibirsk 2018, 2, 4–16.
29. Pearson, D.G.; Kelly, S.P.; Pokhilenko, N.P.; Boyd, F.R. Laser 40Ar/39Ar analyses of phlogopites from Southern African and Siberian kimberlites and their xenoliths: Modelling of eruption ages, melt degassing, and mantle volatile compositions. Geol. Geophys. 1997, 38, 100–111.
30. Ichiro, K.; Ken-Ichiro, A. 40Ar/39Ar analyses of phlogopite nodules and phlogopite-bearing peridotites in South African kimberlites. Earth Planet. Sci. Lett. 1978, 40, 119–129, doi:10.1016/0012-821X(78)90081-X.
31. Phillips, D. Argon isotope and halogen chemistry of phlogopite from South African kimberlites: A combined step-heating, laser probe, electron microprobe and TEM study. Chem. Geol. Isot. Geosci. Sect. 1991, 87, 71–98, doi:10.1016/0168-9622(91)90043-V.
32. Hopp, J.; Trieloff, M.; Brey, G.P.; Woodland, A.B.; Simon, N.S.C.; Wijbrans, J.R.; Siebel, W.; Reitter, E. 40Ar/39Ar-ages of phlogopite in mantle xenoliths from South African kimberlites: Evidence for metasomatic mantle impregnation during the Kibaran orogenic cycle. Lithos 2008, 106, 351–364, doi:10.1016/j.lithos.2008.09.001.
33. Foland, K.A. Limited mobility of argon in a metamorphic terrain. Geochim. Cosmochim. Acta 1979, 43, 793–801, doi:10.1016/0016 7037(79)90219-9.
34. Roddick, J.C.; Cliff, R.A.; Rex, D.C. The evolution of excess argon in Alpine biotites. A 40Ar/39Ar analysis. Earth Planet. Sci. Lett. 1980, 48, 185–208, doi:10.1016/0012-821X(80)90181-8.
35. Dahl, P.S. The crystal-chemical basis for Ar retention in micas: Inferences from interlayer partitioning and implications for geochronology. Contrib. Mineral. Petrol. 1996, 123, 22–39, doi:10.1007/s004100050141.
36. Smye, A.J.; Warren, C.J.; Bickle, M.J. The signature of devolatisation: Extraneous 40Ar systematics in high-pressure metamorphic rocks. Geochim. Cosmochim. Acta 2013, 113, 94–112, doi:10.1016/j.gca.2013.03.018.
37. Baxter, E.F. Quantification of the factors controlling the presence of excess 40Ar or 4He. Earth Planet. Sci. Lett. 2003, 216, 619– 634, doi:10.1016/S0012-821X(03)00541-7.
38. Watson, E.B.; Baxter, E.F. Diffusion in solid-Earth systems. Earth Planet. Sci. Lett. 2007, 253, 307–327, doi:10.1016/j.epsl.2006.11.015.
39. Baksi, A.K.; Archibald, D.A.; Farrar, E. Intercalibration of 40Ar/39Ar dating standards. Chem. Geol. 1996, 129, 307–324, doi:10.1016/0009-2541(95)00154-9.
40. Chepurov, A.I.; Fedorov, I.I.; Sonin, V.M. Experimental study of diamond formation at high P-T parameters. Geol. Geofiz. 1998, 39, 234–244.
41. Zhimulev, E.I.; Chepurov, A.I.; Sonin, V.M.; Litasov, K.D.; Chepurov, A.A.: Experimental modeling of percolation of molten iron through polycrystalline olivine matrix at 2.0–5.5 GPa and 1600 °C. High Press. Res. 2018, 38, 153–164, doi:10.1080/08957959.2018.1458847.
42. Chepurov, A.A., Sonin, V.M.; Dereppe, J.M.; Zhimulev, E.I.; Chepurov, A.I.: How do diamonds grow in metal melt together with silicate minerals? An experimental study of diamond morphology. Eur. J. Mineral. 2020, 32, 41–55, doi:10.5194/ejm-32-412020.
43. Davis, G.L.; Sobolev, N.V.; Khar’kiv, A.D. New data on the ageof Yakutian kimberlites obtained by the uranium-lead methodon zircons. Dokl. Akad. Nauk SSSR 1980, 254, 175–179.
44. Kinny, P.D.; Griffin, B.J.; Heaman, L.M.; Brakhfogel, F.F.; Spetsius, Z.V. SHRIMP U-Pb ages of perovskite from Yakutian kimberlites. Geol. Geofiz. 1997, 38, 91–99.
45. Winterburn, P.A.; Harte, B.; Gurney, J.J. Peridotite xenoliths from the Jagersfontein kimberlite pipe: I. Primary and primary metasomatic mineralogy. Geochim. Cosmochim. Acta 1990, 54, 329–341, doi:10.1016/0016-7037(90)90322-C.
46. Erlank, A.J.; Water, F.G.; Haggerty, S.E.; Hawkesworth, C.J. Characterization of metasomatic processes in peridotite nodules contained in kimberlite. In Proceedings of the 4th International Kimberlite Conference: Extended Abstracts, Perth, Australia, 11–15 August 1986; pp. 232–234.
47. Solovieva, L.V.; Vladimirov, V.M., Dneprovskaya, L.V.; Maslovskaya, M.I.; Brandt, S.B. Kimberlites and Kimberlite-Like Rocks: Upper Mantle Material under Ancient Platforms; VO “Nauka”: Novosibirsk, Russia, 1997; 256p.
48. Galimov, E.M.; Solovieva, L.V.; Belomestnykh, A.V. Isotopic composition of carbon from metasomatically altered mantle rocks…. Geochemistry/Geokhimiya 1989, 4, 508–515.
49. Rozen, O.M.; Manakov, A.V.; Serenko, V.P. Palaeoproterozoic collision system and diamond-bearing crustal root of the Yakutsk kimberlite province. Geol. Geophys. 2005, 46, 1259–1272.
50. Nimis, P.; Taylor, W.R. Single Clinopyroxene Thermobarometery for Garnet Peridotites. Part, I. Calibration and Testing of the Cr-in-Cpx Barometer and an Enstitite-in-Cpx Thermometer. Contrib. Mineral. Petrol. 2000, 139, 541–554.
51. Brey, G.P.; Köhler, T. Geothermobarometry in Four-phase Lherzolites II. New Thermobarometers, and Practical Assessment of Existing Thermobarometers. J. Petrol. 1990, 31, 1353–1378.
52. Tutti, F.; Dubrovinsky, L.S.; Saxena, S.K. High pressure transformation of jadeite and stability of NaAlSiO4 with calcium-ferrite type structure in the lower mantle conditions. Geophys. Res. Lett. 2000, 27, 2025–2028, doi:10.1029/2000GL008496.
53. Tutti, F.; Lazor, P. Temperature-induced phase transition in phlogopite revealed by Raman spectroscopy. J. Phys. Chem. Solids 2008, 69, 2535–2539, doi:10.1016/j.jpcs.2008.05.009.
54. Comodi, P.; Fumagalli, P.; Montagnoli, M.; Zanazzi, P.F. A single-crystal study on the pressure behavior of phlogopite and petrological implications. Am. Mineral. 2004, 89, 647–653, doi:10.2138/am-2004-0420.
55. Chon, C.-M.; Lee, C.-K.; Song, Y.; Kim, S.A. Structural changes and oxidation of ferroan phlogopite with increasing temperature: In situ neutron neutron powder diffraction and Fourier transform infrared spectroscopy. Phys. Chem. Miner. 2006, 33, 289–299, doi:10.1007/s00269-005-0045-y.
56. Giletti, B.J. Studies in diffusion. Argon in phlogopite mica. In Geochemical Transport and Kinetics. Carnegie Institution of Washington; Hofmann, A.W., Giletti, B.J., Yoder, H.S., Jr.; Yund, R.A., Eds.; Carnegie Institution of Washington: Washington, DC, USA, 1974; pp. 107–115.
57. Hodges, K.V.; Hames, W.E.; Bowring, S.A. 40Ar/39Ar gradients in micas from a high-temperature-low-pressure metamorphic terrain: Evidence for very slow cooling and implications for the interpretation of age spectra. Geology 1994, 22, 55–58, doi:10.1130/0091-7613(1994)022<0055:AAAGIM>2.3.CO;2.
58. Giletti, B.J.; Tullis, J. Studies in diffusion. Pressure dependence of Ar Diffusion in Phlogopite mica. Earth Planet. Sci. Lett. 1977, 35, 180–183, doi:10.1016/0012-821X(77)90041-3.
59. McDougall, I.; Harrison, T.M. Geochronology and Thermochronology by the 40Ar/39Ar Method; Oxford University Press: Oxford, UK, 1999.
60. Lister, G.S.; Baldwin, S.L. Modelling the effect of arbitrary P-T-t histories on argon diffusion in minerals using the MacArgon program for the Apple Macintosh. Tectonophysics 1996, 253, 83–109.