Инд. авторы: Antonova I.V., Nebogatikova N.A., Stepina N.P., Volodin V.A., Kirienko V.V., Rybin M.G., Obrazstova E.D., Golyashov V.A., Kokh K.A., Tereshchenko O.E.
Заглавие: Growth of Bi2Se3/graphene heterostructures with the room temperature high carrier mobility
Библ. ссылка: Antonova I.V., Nebogatikova N.A., Stepina N.P., Volodin V.A., Kirienko V.V., Rybin M.G., Obrazstova E.D., Golyashov V.A., Kokh K.A., Tereshchenko O.E. Growth of Bi2Se3/graphene heterostructures with the room temperature high carrier mobility // Journal of Materials Science. - 2021. - Vol.56. - Iss. 15. - P.9330-9343. - ISSN 0022-2461. - EISSN 1573-4803.
Идентиф-ры: DOI: 10.1007/s10853-021-05836-y; РИНЦ: 44857967; WoS: 000619431100001;
Реферат: eng: Heterostructures of Bi2Se3 topological insulators were epitaxially grown on graphene by means of the physical vapor deposition at 500 degrees C. Micrometer-sized flakes with thickness 1 QL (quintuple layer similar to 1 nm) and films of millimeter-scale with thicknesses 2-6 QL had been grown on CVD graphene. The minimum thickness of large-scaled continuous Bi2Se3 films was found to be similar to 8 QL for the regime used. The heterostructures with a Bi2Se3 film thickness of > 10 QL had resistivity as low as 200-500 Omega/sq and a high room temperature carrier mobility similar to 1000-3400 cm(2)/Vs in the Bi2Se3/graphene interface channel. Moreover, the coexistence of a p-type graphene-related conductive channel, simultaneously with the n-type conductive surface channel of Bi2Se3, was observed. The improvement of the bottom Bi2Se3/graphene interface with the increase in the growth time clearly manifested itself in the increase of conductivity and carrier mobility in the grown layer. The grown Bi2Se3/G structures have lower resistivities and more than one order of magnitude higher carrier mobilities in comparison with the van der Waals Bi2Se3/graphene heterostructures created employing exfoliation of thin Bi2Se3 layers. The grown heterostructures demonstrated the properties that are perspective for new functional devices, for a variety of signal processing and logic applications.
Ключевые слова: thickness measurement; signal processing; physical vapor deposition; Hall mobility; graphene; bismuth compounds; Hole mobility; van der Waals forces;
Издано: 2021
Физ. хар-ка: с.9330-9343
Цитирование: 1. Geim, A.K., Grigorieva, I.V. (2013) Van der Waals heterostructures // Nature, 499 (7459), pp. 419-425. doi: 10.1038/nature12385.
2. Novoselov, K.S., Mishchenko, A., Carvalho, A., Castro Neto, A.H. (2016) 2D materials and van der Waals heterostructures // Science, 353 (6298), art. no. aac9439. http://science.sciencemag.org/content/sci/353/6298/aac9439.full.pdf doi: 10.1126/science.aac9439.
3. Zhu, W., Park, S., Yogeesh, M.N., Akinwande, D. (2017) Advancements in 2D flexible nanoelectronics: From material perspectives to RF applications // Flexible and Printed Electronics, 2 (4), art. no. 043001. http://iopscience.iop.org/article/10.1088/2058-8585/aa84a4/pdf
4. Matsuhisa, N., Chen, X., Bao, Z., Someya, T. (2019) Materials and structural designs of stretchable conductors // Chemical Society Reviews, 48 (11), pp. 2946-2966. http://pubs.rsc.org/en/journals/journal/cs
5. Li, X., Tao, L., Chen, Z., Fang, H., Li, X., Wang, X., Xu, J.-B., (..), Zhu, H. (2017) Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics // Applied Physics Reviews, 4 (2), art. no. 021306. http://scitation.aip.org/content/aip/journal/apr2/browse
6. Thanh, T.D., Chuong, N.D., Hien, H.V., Kshetri, T., Tuan, L.H., Kim, N.H., Lee, J.H. (2018) Recent advances in two-dimensional transition metal dichalcogenides-graphene heterostructured materials for electrochemical applications // Progress in Materials Science, 96, pp. 51-85.
7. Miwa, J.A., Dendzik, M., Grønborg, S.S., Bianchi, M., Lauritsen, J.V., Hofmann, P., Ulstrup, S. (2015) Van der Waals Epitaxy of Two-Dimensional MoS2-Graphene Heterostructures in Ultrahigh Vacuum // ACS Nano, 9 (6), pp. 6502-6510. http://pubs.acs.org/journal/ancac3
8. Woods, J.M., Jung, Y., Xie, Y., Liu, W., Liu, Y., Wang, H., Cha, J.J. (2016) One-Step Synthesis of MoS2/WS2 Layered Heterostructures and Catalytic Activity of Defective Transition Metal Dichalcogenide Films // ACS Nano, 10 (2), pp. 2004-2009. http://pubs.acs.org/journal/ancac3
9. Zhang, C., Li, C., Yu, J., Jiang, S., Xu, S., Yang, C., Liu, Y.J., (...), Man, B. (2018) SERS activated platform with three-dimensional hot spots and tunable nanometer gap // Sensors and Actuators, B: Chemical, 258, pp. 163-171. doi: 10.1016/j.snb.2017.11.080.
10. Lewin, M., Hauer, B., Bornhöfft, M., Jung, L., Benke, J., Michel, A.-K.U., Mayer, J., (..), Taubner, T. (2015) Imaging of phase change materials below a capping layer using correlative infrared near-field microscopy and electron microscopy // Applied Physics Letters, 107 (15), art. no. 151902. http://scitation.aip.org/content/aip/journal/apl
11. Tian, W., Yu, W., Shi, J., Wang, Y. (2017) The property, preparation and application of topological insulators: A review // Materials, 10 (7), art. no. 814. http://www.mdpi.com/1996-1944/10/7/814/pdf
12. Khokhriakov, D., Cummings, A.W., Song, K., Vila, M., Karpiak, B., Dankert, A., Roche, S., (..), Dash, S.P. (2018) Tailoring emergent spin phenomena in Dirac material heterostructures // Science Advances, 4 (9), art. no. aat9349. http://advances.sciencemag.org/content/4/9/eaat9349/tab-pdf
13. Qu, D.-X., Hor, Y.S., Xiong, J., Cava, R.J., Ong, N.P. (2010) Quantum oscillations and hall anomaly of surface states in the topological insulator Bi2Te3 // Science, 329 (5993), pp. 821-824. http://www.sciencemag.org/cgi/reprint/329/5993/821.pdf
14. Chiatti, O., Riha, C., Lawrenz, D., Busch, M., Dusari, S., Sánchez-Barriga, J., Mogilatenko, A., (..), Fischer, S.F. (2016) 2D layered transport properties from topological insulator Bi 2 Se 3 single crystals and micro flakes // Scientific Reports, 6, art. no. 27483. www.nature.com/srep/index.html
15. He, L., Xiu, F., Yu, X., Teague, M., Jiang, W., Fan, Y., Kou, X., (...), Wang, K.L. (2012) Surface-dominated conduction in a 6 nm thick Bi 2Se 3 thin film // Nano Letters, 12 (3), pp. 1486-1490. doi: 10.1021/nl204234j
16. Song, K., Soriano, D., Cummings, A.W., Robles, R., Ordejón, P., Roche, S. (2018) Spin Proximity Effects in Graphene/Topological Insulator Heterostructures // Nano Letters, 18 (3), pp. 2033-2039. http://pubs.acs.org/journal/nalefd doi: 10.1021/acs.nanolett.7b05482.
17. Zhang, L., Yan, Y., Wu, H.-C., Yu, D., Liao, Z.-M. (2016) Gate-Tunable Tunneling Resistance in Graphene/Topological Insulator Vertical Junctions // ACS Nano, 10 (3), pp. 3816-3822. http://pubs.acs.org/journal/ancac3 doi: 10.1021/acsnano.6b00659.
18. Cao, W., Zhang, R.-X., Tang, P., Yang, G., Sofo, J., Duan, W., Liu, C.-X. (2016) Heavy Dirac fermions in a graphene/topological insulator hetero-junction // 2D Materials, 3 (3), art. no. 034006. http://iopscience.iop.org/article/10.1088/2053-1583/3/3/034006/pdf
19. Qiao, H., Yuan, J., Xu, Z., Chen, C., Lin, S., Wang, Y., Song, J., (...), Bao, Q. (2015) Broadband photodetectors based on graphene-Bi2Te3heterostructure // ACS Nano, 9 (2), pp. 1886-1894. http://pubs.acs.org/journal/ancac3 doi: 10.1021/nn506920z.
20. Vaklinova, K., Hoyer, A., Burghard, M., Kern, K. (2016) Current-Induced Spin Polarization in Topological Insulator-Graphene Heterostructures // Nano Letters, 16 (4), pp. 2595-2602. http://pubs.acs.org/journal/nalefd
21. Kim, N., Lee, P., Kim, Y., Kim, J.S., Kim, Y., Noh, D.Y., Yu, S.U., (...), Kim, K.S. (2014) Persistent topological surface state at the interface of Bi 2Se3 film grown on patterned graphene // ACS Nano, 8 (2), pp. 1154-1160. doi: 10.1021/nn405503k.
22. Lin, Y.-M., Dimitrakopoulos, C., Farmer, D.B., Han, S.-J., Wu, Y., Zhu, W., Gaskill, D.K., (..), Avouris, P. (2010) Multicarrier transport in epitaxial multilayer graphene // Applied Physics Letters, 97 (11), art. no. 112107.
23. Steinberg, H., Gardner, D.R., Lee, Y.S., Jarillo-Herrero, P. (2010) Surface state transport and ambipolar electric field effect in Bi 2Se3 nanodevices // Nano Letters, 10 (12), pp. 5032-5036.
24. Ren, Z., Taskin, A.A., Sasaki, S., Segawa, K., Ando, Y. (2010) Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2 Te2 Se // Physical Review B - Condensed Matter and Materials Physics, 82 (24), art. no. 241306. http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org:PhysRevB.82.241306&metadataPrefix=oai_apsmeta_2
25. Lee, P., Jin, K.-H., Sung, S.J., Kim, J.G., Ryu, M.-T., Park, H.-M., Jhi, S.-H., (...), Chung, J. (2015) Proximity Effect Induced Electronic Properties of Graphene on Bi2Te2Se // ACS Nano, 9 (11), pp. 10861-10866. http://pubs.acs.org/journal/ancac3 doi: 10.1021/acsnano.5b03821.
26. Liu, G., Rumyantsev, S., Shur, M.S., Balandin, A.A. (2013) Origin of 1/f noise in graphene multilayers: Surface vs. volume // Applied Physics Letters, 102 (9), art. no. 093111.
27. Bøggild, P., Mackenzie, D.M.A., Whelan, P.R., Petersen, D.H., Buron, J.D., Zurutuza, A., Gallop, J., (..), Jepsen, P.U. (2017) Mapping the electrical properties of large-area graphene // 2D Materials, 4 (4), art. no. 042003. http://iopscience.iop.org/article/10.1088/2053-1583/aa8683/pdf
28. Cultrera, A., Serazio, D., Zurutuza, A., Centeno, A., Txoperena, O., Etayo, D., Cordon, A., (..), Callegaro, L. (2019) Mapping the conductivity of graphene with Electrical Resistance Tomography // Scientific Reports, 9 (1), art. no. 10655.
29. Peng, H., Dang, W., Cao, J., Chen, Y., Wu, D., Zheng, W., Li, H., (...), Liu, Z. (2012) Topological insulator nanostructures for near-infrared transparent flexible electrodes // Nature Chemistry, 4 (4), pp. 281-286. doi: 10.1038/nchem.1277.
30. Min, Y., Moon, G.D., Kim, B.S., Lim, B., Kim, J.-S., Kang, C.Y., Jeong, U. (2012) Quick, controlled synthesis of ultrathin Bi 2Se 3 nanodiscs and nanosheets // Journal of the American Chemical Society, 134 (6), pp. 2872-2875. doi: 10.1021/ja209991z.
31. Hong, S.S., Kundhikanjana, W., Cha, J.J., Lai, K., Kong, D., Meister, S., Kelly, M.A., (...), Cui, Y. (2010) Ultrathin topological insulator Bi2Se3 nanoribbons exfoliated by atomic force microscopy // Nano Letters, 10 (8), pp. 3118-3122. doi: 10.1021/nl101884h.
32. Zhang, J., Peng, Z., Soni, A., Zhao, Y., Xiong, Y., Peng, B., Wang, J., (...), Xiong, Q. (2011) Raman spectroscopy of few-quintuple layer topological insulator Bi 2Se3 nanoplatelets // Nano Letters, 11 (6), pp. 2407-2414. doi: 10.1021/nl200773n.
33. Ryu, S., Maultzsch, J., Han, M.Y., Kim, P., Brus, L.E. (2011) Raman spectroscopy of lithographically patterned graphene nanoribbons // ACS Nano, 5 (5), pp. 4123-4130. doi: 10.1021/nn200799y.
34. Ferrari, A., Robertson, J. (2000) Interpretation of Raman spectra of disordered and amorphous carbon // Physical Review B - Condensed Matter and Materials Physics, 61 (20), pp. 14095-14107. doi: 10.1103/PhysRevB.61.14095.
35. Antonova, I.V., Nebogatikova, N.A., Kokh, K.A., Kustov, D.A., Soots, R.A., Golyashov, V.A., Tereshchenko, O.E. (2020) Electrochemically exfoliated thin Bi2Se3 films and van der Waals heterostructures Bi2Se3/graphene // Nanotechnology, 31 (12), art. no. 125602. https://iopscience.iop.org/article/10.1088/1361-6528/ab5cd5/pdf
36. Piazza, A., Giannazzo, F., Buscarino, G., Fisichella, G., Magna, A.L., Roccaforte, F., Cannas, M., (..), Agnello, S. (2015) Graphene p-Type Doping and Stability by Thermal Treatments in Molecular Oxygen Controlled Atmosphere // Journal of Physical Chemistry C, 119 (39), pp. 22718-22723. http://pubs.acs.org/journal/jpccck
37. Liu, H., Liu, Y., Zhu, D. (2011) Chemical doping of graphene // Journal of Materials Chemistry, 21 (10), pp. 3335-3345. doi: 10.1039/c0jm02922j.
38. Xue, L., Zhou, P., Zhang, C.X., He, C.Y., Hao, G.L., Sun, L.Z., Zhong, J.X. (2013) First-principles study of native point defects in Bi2Se 3 // AIP Advances, 3 (5), art. no. 052105. http://scitation.aip.org/content/aip/journal/adva
39. Chae, J., Kang, S.-H., Park, S.H., Park, H., Jeong, K., Kim, T.H., Hong, S.-B., (..), Cho, M.-H. (2019) Closing the surface bandgap in thin Bi2Se3/Graphene heterostructures // ACS Nano, 13 (4), pp. 3931-3939. http://pubs.acs.org/journal/ancac3
40. Grassi, R., Low, T., Gnudi, A., Baccarani, G. (2013) Contact-induced negative differential resistance in short-channel graphene FETs // IEEE Transactions on Electron Devices, 60 (1), art. no. 6375800, pp. 140-146.
41. Tran, P.X. (2018) Modulation of Negative Differential Resistance in Graphene Field-Effect Transistors by Tuning the Contact Resistances // Journal of Electronic Materials, 47 (10), pp. 5905-5912.
42. Sacépé, B., Oostinga, J.B., Li, J., Ubaldini, A., Couto, N.J.G., Giannini, E., Morpurgo, A.F. (2011) Gate-tuned normal and superconducting transport at the surface of a topological insulator // Nature Communications, 2 (1), art. no. 575. http://www.nature.com/ncomms/index.html
43. Wang, S., Li, Y., Ng, A., Hu, Q., Zhou, Q., Li, X., Liu, H. (2020) 2D Bi2Se3 van der waals epitaxy on mica for optoelectronics applications // Nanomaterials, 10 (9), art. no. 1653, pp. 1-11. https://www.mdpi.com/2079-4991/10/9/1653/pdf
44. Li, H.D., Wang, Z.Y., Kan, X., Guo, X., He, H.T., Wang, Z., Wang, J.N., (..), Xie, M.H. (2010) The van der Waals epitaxy of Bi2Se3 on the vicinal Si(111) surface: An approach for preparing high-quality thin films of a topological insulator // New Journal of Physics, 12, art. no. 103038. http://iopscience.iop.org/1367-2630/12/10/103038/pdf/1367-2630_12_10_103038.pdf
45. Kamboj, V.S., Singh, A., Ferrus, T., Beere, H.E., Duffy, L.B., Hesjedal, T., Barnes, C.H.W., (..), Ritchie, D.A. (2017) Probing the Topological Surface State in Bi2Se3 Thin Films Using Temperature-Dependent Terahertz Spectroscopy // ACS Photonics, 4 (11), pp. 2711-2718. http://pubs.acs.org/journal/apchd5
46. Brahlek, M., Kim, Y.S., Bansal, N., Edrey, E., Oh, S. (2011) Surface versus bulk state in topological insulator Bi2Se 3 under environmental disorder // Applied Physics Letters, 99 (1), art. no. 012109.
47. Bianchi, M., Guan, D., Bao, S., Mi, J., Iversen, B.B., King, P.D.C., Hofmann, P. (2010) Coexistence of the topological state and a two-dimensional electron gas on the surface of Bi2Se3 // Nature Communications, 1 (8), art. no. 128.
48. Zhang, L., Lin, B.-C., Wu, Y.-F., Wu, H.-C., Huang, T.-W., Chang, C.-R., Ke, X., (...), Liao, Z.-M. (2017) Electronic Coupling between Graphene and Topological Insulator Induced Anomalous Magnetotransport Properties // ACS Nano, 11 (6), pp. 6277-6285. http://pubs.acs.org/journal/ancac3 doi: 10.1021/acsnano.7b02494.
49. Dang, W., Peng, H., Li, H., Wang, P., Liu, Z. (2010) Epitaxial heterostructures of ultrathin topological insulator nanoplate and graphene // Nano Letters, 10 (8), pp. 2870-2876.
50. Zhang, C., Liu, M., Man, B.Y., Jiang, S.Z., Yang, C., Chen, C.S., Feng, D.J., (..), Zhang, J.X. (2014) Facile fabrication of graphene-topological insulator Bi2Se3hybrid Dirac materials via chemical vapor deposition in Se-rich conditions // CrystEngComm, 16 (38), pp. 8941-8945. http://www.rsc.org/publishing/journals/CE/article.asp?type=CurrentIssue
51. Sun, Z., Man, B., Yang, C., Liu, M., Jiang, S., Zhang, C., Zhang, J., (...), Xu, Y. (2016) Selenium-assisted controlled growth of graphene-Bi 2 Se 3 nanoplates hybrid Dirac materials by chemical vapor deposition // Applied Surface Science, 365, pp. 357-363. http://www.journals.elsevier.com/applied-surface-science/ doi: 10.1016/j.apsusc.2015.12.212.