Инд. авторы: Ketterl A.S., Andres B., Polverigiani M., Voroshnin V., Gahl C., Kokh K.A., Tereshchenko O.E., Chulkov E.V., Shikin A., Weinelt M.
Заглавие: Effect of Rashba splitting on ultrafast carrier dynamics in BiTeI
Библ. ссылка: Ketterl A.S., Andres B., Polverigiani M., Voroshnin V., Gahl C., Kokh K.A., Tereshchenko O.E., Chulkov E.V., Shikin A., Weinelt M. Effect of Rashba splitting on ultrafast carrier dynamics in BiTeI // Physical Review B. - 2021. - Vol.103. - Iss. 8. - Art.085406. - ISSN 2469-9950. - EISSN 2469-9969.
Идентиф-ры: DOI: 10.1103/PhysRevB.103.085406; РИНЦ: 46758426; WoS: 000614271100003;
Реферат: eng: Narrow-gap semiconductors with strong spin-orbit coupling such as bismuth tellurohalides have become popular candidates for spintronic applications. But driving spin-polarized photocurrents in these materials with circularly polarized light requires picosecond lifetimes of the photoexcited carriers and low spin-flip scattering rates. In search of these essential ingredients, we conducted an extensive study of the carrier dynamics on the Te-terminated surface of BiTeI, which exhibits a giant Rashba splitting of both surface and bulk states. We observe a complex interplay of surface and bulk dynamics after photoexcitation. Carriers are rapidly rearranged in momentum space by quasielastic phonon and defect scattering, while a phonon bottleneck leads to a slow equilibration between bulk electrons and lattice. The particular band dispersion opens an inelastic decay channel for hot carriers in the form of plasmon excitations, which are immanent to Rashba-split systems. These ultrafast scattering processes effectively redistribute excited carriers in momentum and energy space and thereby inhibit spin-polarized photocurrents.
Издано: 2021
Физ. хар-ка: 085406
Цитирование: 1. M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82, 3045 (2010) RMPHAT 0034-6861 10.1103/RevModPhys.82.3045.
2. A. Bansil, H. Lin, and T. Das, Colloquium: Topological band theory, Rev. Mod. Phys. 88, 021004 (2016) RMPHAT 0034-6861 10.1103/RevModPhys.88.021004.
3. S. Datta and B. Das, Electronic analog of the electro-optic modulator, Appl. Phys. Lett. 56, 665 (1990) APPLAB 0003-6951 10.1063/1.102730.
4. M. Studer, G. Salis, K. Ensslin, D. C. Driscoll, and A. C. Gossard, Gate-Controlled Spin-Orbit Interaction in a Parabolic GaAs/AlGaAs Quantum Well, Phys. Rev. Lett. 103, 027201 (2009) PRLTAO 0031-9007 10.1103/PhysRevLett.103.027201.
5. J. W. McIver, D. Hsieh, H. Steinberg, P. Jarillo-Herrero, and N. Gedik, Control over topological insulator photocurrents with light polarization, Nat. Nanotechnol. 7, 96 (2011) 1748-3387 10.1038/nnano.2011.214.
6. J. Mauchain, Y. Ohtsubo, M. Hajlaoui, E. Papalazarou, M. Marsi, A. Taleb-Ibrahimi, J. Faure, K. A. Kokh, O. E. Tereshchenko, S. V. Eremeev, E. V. Chulkov, and L. Perfetti, Circular Dichroism and Superdiffusive Transport at the Surface of BiTeI, Phys. Rev. Lett. 111, 126603 (2013) PRLTAO 0031-9007 10.1103/PhysRevLett.111.126603.
7. C. Kastl, C. Karnetzky, H. Karl, and A. W. Holleitner, Ultrafast helicity control of surface currents in topological insulators with near-unity fidelity, Nat. Commun. 6, 6617 (2015) 2041-1723 10.1038/ncomms7617.
8. V. V. Volobuev, P. S. Mandal, M. Galicka, O. Caha, J. Sánchez-Barriga, D. D. Sante, A. Varykhalov, A. Khiar, S. Picozzi, G. Bauer, P. Kacman, R. Buczko, O. Rader, and G. Springholz, Giant Rashba splitting in (Equation presented) (111) topological crystalline insulator films controlled by Bi doping in the bulk, Adv. Mater. 29, 1604185 (2017) ADVMEW 0935-9648 10.1002/adma.201604185.
9. E. I. Rashba, Properties of semiconductors with an extremum loop. 1. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop, Sov. Phys. Solid State 2, 1109 (1960) 0584-5807.
10. Y. A. Bychkov and E. I. Rashba, Properties of a 2D electron gas with lifted spectral degeneracy, Pis'ma Zh. Eksp. Teor. Fiz. 39, 66 (1984)
11. Y. A. Bychkov and E. I. Rashba, [JETP Lett. 39, 78 (1984)].
12. Yu. A. Bychkov and E. I. Rashba, Oscillatory effects and the magnetic susceptibility of carriers in inversion layers, J. Phys. C: Solid State Phys. 17, 6039 (1984) JPSOAW 0022-3719 10.1088/0022-3719/17/33/015.
13. K. Ishizaka, M. S. Bahramy, H. Murakawa, M. Sakano, T. Shimojima, T. Sonobe, K. Koizumi, S. Shin, H. Miyahara, A. Kimura, K. Miyamoto, T. Okuda, H. Namatame, M. Taniguchi, R. Arita, N. Nagaosa, K. Kobayashi, Y. Murakami, R. Kumai, Y. Kaneko, Y. Onose, and Y. Tokura, Giant Rashba-type spin splitting in bulk BiTeI, Nat. Mater. 10, 521 (2011) 1476-1122 10.1038/nmat3051.
14. S. V. Eremeev, I. A. Nechaev, Yu. M. Koroteev, P. M. Echenique, and E. V. Chulkov, Ideal Two-Dimensional Electron Systems with a Giant Rashba-Type Spin Splitting in Real Materials: Surfaces of Bismuth Tellurohalides, Phys. Rev. Lett. 108, 246802 (2012) PRLTAO 0031-9007 10.1103/PhysRevLett.108.246802.
15. A. Crepaldi, L. Moreschini, G. Autès, C. Tournier-Colletta, S. Moser, N. Virk, H. Berger, Ph. Bugnon, Y. J. Chang, K. Kern, A. Bostwick, E. Rotenberg, O. V. Yazyev, and M. Grioni, Giant Ambipolar Rashba Effect in the Semiconductor BiTeI, Phys. Rev. Lett. 109, 096803 (2012) PRLTAO 0031-9007 10.1103/PhysRevLett.109.096803.
16. S. Fiedler, T. Bathon, S. V. Eremeev, O. E. Tereshchenko, K. A. Kokh, E. V. Chulkov, P. Sessi, H. Bentmann, M. Bode, and F. Reinert, Termination-dependent surface properties in the giant-Rashba semiconductors (Equation presented) ((Equation presented)=Cl, Br, I), Phys. Rev. B 92, 235430 (2015) PRBMDO 1098-0121 10.1103/PhysRevB.92.235430.
17. S. V. Eremeev, I. A. Nechaev, and E. V. Chulkov, Giant Rashba-type spin splitting at polar surfaces of BiTeI, JETP Lett. 96, 437 (2012) JTPLA2 0021-3640 10.1134/S0021364012190071.
18. G. Landolt, S. V. Eremeev, Y. M. Koroteev, B. Slomski, S. Muff, T. Neupert, M. Kobayashi, V. N. Strocov, T. Schmitt, Z. S. Aliev, M. B. Babanly, I. R. Amiraslanov, E. V. Chulkov, J. Osterwalder, and J. H. Dil, Disentanglement of Surface and Bulk Rashba Spin Splittings in Noncentrosymmetric BiTeI, Phys. Rev. Lett. 109, 116403 (2012) PRLTAO 0031-9007 10.1103/PhysRevLett.109.116403.
19. N. Ogawa, M. S. Bahramy, Y. Kaneko, and Y. Tokura, Photocontrol of Dirac electrons in a bulk Rashba semiconductor, Phys. Rev. B 90, 125122 (2014) PRBMDO 1098-0121 10.1103/PhysRevB.90.125122.
20. S. Fiedler, L. El-Kareh, S. V Eremeev, O. E Tereshchenko, C. Seibel, P. Lutz, K. A Kokh, E. V Chulkov, T. V Kuznetsova, V. I Grebennikov, H. Bentmann, M. Bode, and F. Reinert, Defect and structural imperfection effects on the electronic properties of BiTeI surfaces, New J. Phys. 16, 075013 (2014) NJOPFM 1367-2630 10.1088/1367-2630/16/7/075013.
21. A. S. Ketterl, S. Otto, M. Bastian, B. Andres, C. Gahl, J. Minár, H. Ebert, J. Braun, O. E. Tereshchenko, K. A. Kokh, Th. Fauster, and M. Weinelt, Origin of spin-polarized photocurrents in the topological surface states of (Equation presented), Phys. Rev. B 98, 155406 (2018) 2469-9950 10.1103/PhysRevB.98.155406.
22. C. J. Butler, H.-H. Yang, J.-Y. Hong, S.-H. Hsu, R. Sankar, C.-I. Lu, H.-Y. Lu, K.-H. O. Yang, H.-W. Shiu, C.-H. Chen, C.-C. Kaun, G.-J. Shu, F.-C. Chou, and M.-T. Lin, Mapping polarization induced surface band bending on the Rashba semiconductor BiTeI, Nat. Commun. 5, 4066 (2014) 2041-1723 10.1038/ncomms5066.
23. J. S. Lee, G. A. H. Schober, M. S. Bahramy, H. Murakawa, Y. Onose, R. Arita, N. Nagaosa, and Y. Tokura, Optical Response of Relativistic Electrons in the Polar BiTeI Semiconductor, Phys. Rev. Lett. 107, 117401 (2011) PRLTAO 0031-9007 10.1103/PhysRevLett.107.117401.
24. See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.103.085406 for further details of the density of states, proof of (Equation presented)-independent dynamics, electron and hole thermalization times, carrier dynamics in pristine and Mn-doped BiTeI, and a comparison of electron dynamics at 60 and 296 K.
25. Th. Fauster, M. Weinelt, and U. Höfer, Quasi-elastic scattering of electrons in image-potential states, Prog. Surf. Sci. 82, 224 (2007) PSSFBP 0079-6816 10.1016/j.progsurf.2007.03.007.
26. J. Sánchez-Barriga, M. R. Scholz, E. Golias, E. Rienks, D. Marchenko, A. Varykhalov, L. V. Yashina, and O. Rader, Anisotropic effect of warping on the lifetime broadening of topological surface states in angle-resolved photoemission from (Equation presented), Phys. Rev. B 90, 195413 (2014) PRBMDO 1098-0121 10.1103/PhysRevB.90.195413.
27. S. I. Anisimov, B. L. Kapelovich, and T. L. Perelman, Electron emission from metal surfaces exposed to ultrashort laser pulses, Zh. Eksp. Teor. Fiz. 66, 776 (1974)
28. S. I. Anisimov, B. L. Kapelovich, and T. L. Perelman, [JETP 39, 375 (1974)].
29. L. Wu, J. Yang, M. Chi, S. Wang, P. Wei, W. Zhang, L. Chen, and J. Yang, Enhanced thermoelectric performance in Cu-intercalated BiTeI by compensation weakening induced mobility improvement, Sci. Rep. 5, 14319 (2015) 2045-2322 10.1038/srep14319.
30. P. M. Echenique, R. Berndt, E. V. Chulkov, Th. Fauster, A. Goldmann, and U. Höfer, Decay of electronic excitations at metal surfaces, Surf. Sci. Rep. 52, 219 (2004) SSREDI 0167-5729 10.1016/j.surfrep.2004.02.002.
31. P. Hosur, Circular photogalvanic effect on topological insulator surfaces: Berry-curvature-dependent response, Phys. Rev. B 83, 035309 (2011) PRBMDO 1098-0121 10.1103/PhysRevB.83.035309.
32. H. Soifer, A. Gauthier, A. F. Kemper, C. R. Rotundu, S.-L. Yang, H. Xiong, D. Lu, M. Hashimoto, P. S. Kirchmann, J. A. Sobota, and Z.-X. Shen, Band-Resolved Imaging of Photocurrent in a Topological Insulator, Phys. Rev. Lett. 122, 167401 (2019) PRLTAO 0031-9007 10.1103/PhysRevLett.122.167401.
33. K. Kuroda, J. Reimann, J. Güdde, and U. Höfer, Generation of Transient Photocurrents in the Topological Surface State of (Equation presented) by Direct Optical Excitation with Midinfrared Pulses, Phys. Rev. Lett. 116, 076801 (2016) PRLTAO 0031-9007 10.1103/PhysRevLett.116.076801.
34. J. C. Johannsen, S. Ulstrup, F. Cilento, A. Crepaldi, M. Zacchigna, C. Cacho, I. C. E. Turcu, E. Springate, F. Fromm, C. Raidel, T. Seyller, F. Parmigiani, M. Grioni, and P. Hofmann, Direct View of Hot Carrier Dynamics in Graphene, Phys. Rev. Lett. 111, 027403 (2013) PRLTAO 0031-9007 10.1103/PhysRevLett.111.027403.
35. M. J. Stern, L. P. Rene de Cotret, M. R. Otto, R. P. Chatelain, J.-P. Boisvert, M. Sutton, and B. J. Siwick, Mapping momentum-dependent electron-phonon coupling and nonequilibrium phonon dynamics with ultrafast electron diffuse scattering, Phys. Rev. B 97, 165416 (2018) 2469-9950 10.1103/PhysRevB.97.165416.
36. I. Yu. Sklyadneva, R. Heid, K.-P. Bohnen, V. Chis, V. A. Volodin, K. A. Kokh, O. E. Tereshchenko, P. M. Echenique, and E. V. Chulkov, Lattice dynamics of bismuth tellurohalides, Phys. Rev. B 86, 094302 (2012) PRBMDO 1098-0121 10.1103/PhysRevB.86.094302.
37. J. Horák, L. Tichý, and P. Lošťák, Electrical conductivity of BiTeI crystals, Phys. Status Solidi A 63, 407 (1981) PSSABA 0031-8965 10.1002/pssa.2210630205.
38. N. Dich, P. Lošťák, and J. Horák, Preparation and basic physical properties of BiTeI single crystals, Czech. J. Phys. 28, 1297 (1978) CZLIA6 0011-4626 10.1007/BF01599969.
39. M. Scheuch, T. Kampfrath, M. Wolf, K. von Volkmann, C. Frischkorn, and L. Perfetti, Temperature dependence of ultrafast phonon dynamics in graphite, Appl. Phys. Lett. 99, 211908 (2011) APPLAB 0003-6951 10.1063/1.3663867.
40. L. Perfetti, P. A. Loukakos, M. Lisowski, U. Bovensiepen, H. Eisaki, and M. Wolf, Ultrafast Electron Relaxation in Superconducting (Equation presented) by Time-Resolved Photoelectron Spectroscopy, Phys. Rev. Lett. 99, 197001 (2007) PRLTAO 0031-9007 10.1103/PhysRevLett.99.197001.
41. V. A. Kulbachinskii, V. G. Kytin, Z. V. Lavrukhina, A. N. Kuznetsov, and A. V. Shevelkov, Galvanomagnetic and thermoelectric properties of BiTeBr and BiTeI single crystals and their electronic structure, Semiconductors 44, 1548 (2010) SMICES 1063-7826 10.1134/S1063782610120031.
42. I. A. Nechaev and E. V. Chulkov, Width of the quasiparticle spectral function in a two-dimensional electron gas with spin-orbit interaction, Phys. Solid State 51, 1772 (2009) PSOSED 1063-7834 10.1134/S1063783409090029.
43. I. A. Nechaev, P. M. Echenique, and E. V. Chulkov, Inelastic decay rate of quasiparticles in a two-dimensional spin-orbit coupled electron system, Phys. Rev. B 81, 195112 (2010) PRBMDO 1098-0121 10.1103/PhysRevB.81.195112.
44. I. A. Nechaev, V. M. Silkin, and E. V. Chulkov, Features of quasiparticle decay in 2d electronic systems with spin-orbit interaction, J. Exp. Theor. Phys. 112, 134 (2011) JTPHES 1063-7761 10.1134/S1063776110051188.
45. B. Diaconescu, K. Pohl, L. Vattuone, L. Savio, P. Hofmann, V. M. Silkin, J. M. Pitarke, E. V. Chulkov, P. M. Echenique, D. Farías, and M. Rocca, Low-energy acoustic plasmons at metal surfaces, Nature (London) 448, 57 (2007) NATUAS 0028-0836 10.1038/nature05975.
46. F. Stern, Polarizability of a Two-Dimensional Electron Gas, Phys. Rev. Lett. 18, 546 (1967) PRLTAO 0031-9007 10.1103/PhysRevLett.18.546.